Backcasting Land Use Change Using GIS and Neural Networks Alison M. Goss, Purdue University

Introduction: Why "backcast"?

- Landscape analysis limited by availability of historical maps and remotely sensed images
- Recent recognition of importance of land use legacies
- Valuable in evaluating reliability of forecasted information

Methodology

- Previously developed Land Transformation Model (LTM) was significantly modified to produce a model to "backcast" land use change—LTM-Legacy
- Sixteen predictor variables created using GIS
 - Distance to roads, rivers, each of 4 land uses, etc.
 - Slope, soil permeability, max pH of soil, USGS ecoregions, etc.
 - Land use density
- Used to train artificial neural networks (ANN) to recognize patterns involved in the conversion of urban, forest, agriculture, and shrub land uses

Distance to Roads

Methodology

- Backcasts based on two proxy datasets
 - Total housing units data for each time period derived from the U.S. Census.
 - The National Agriculture Statistics
 Service (NASS) data for Land in Farms for each county converted from acres to 30-m cells.

•Transitions in forests and shrubland calculated from ratios of known change (1978-1998)

Conclusions

- Represents first step in linking recreations of historical land use scenarios to a Variable Infiltration Capacity model for the Great Lakes Basin
 - Predicts water and energy fluxes within an area of interest
- Through reconstructing time history of water and energy balances over the basin
- Using several climate scenarios, future water cycle variations in response to land use and climate change can be predicted

Contact Information Alison Goss

Earth and Atmospheric Sciences Purdue University Civil Engineering Building Room 4173 550 Stadium Mall Drive West Lafayette, IN 47907-2051

Phone: 765-494-0678

Fax: 765-496-1210

http://web.ics.purdue.edu/~agoss