Urban Forestry and Remote Sensing

Ryan R. Jensen

Indiana State University Department of Geography, Geology, and Anthropology

Cities

- United Nations, Instanbul, 2001, p. 1
 - Cities draw people
 - Services, resources, etc.
 - 1800 only 2% lived in cities/urban centers
 - Currently ~ 6.4 billion slightly less than ½
 live in cities/urban centers
 - $-2007 over \frac{1}{2}$ will live in cities/urban centers
 - Demographic transformation

Urban Areas

- United States
 - 80% of the population
 - 25% of the nation's total tree canopy cover

Why Study?

- 1970-1990 urban density *decreased* by 23% (AP)
- Changes in land use alter ecosystem
 - Structure
 - Function
 - Pattern
- Alter local climate

http://www.ci.atlanta.ga.us/skyline.htm

Major US Cities

4000	4000		Population	Population	o/ I
1999 rank	1990 rank	Name New York	1999 (est.)	1990	% change
1	1	N.Y.	7,428,162	7,322,564	1.40%
2	2	Los Angeles,	3,633,591	3,485,499	4.20%
3	З	Chicago III	2 799 050	2 783 660	0.60%
J		Houston,	2,700,000	2,700,000	0.0070
4	4	Texas Philadelphia	1,845,967	1,697,873	8.70%
5	5	, Pa. San Diego.	1,417,601	1,585,577	-10.60%
6	6	Calif.	1,238,974	1,111,031	11.50%
7	10	Ariz.	1,211,466	988,983	22.50%
8	9	San Antonio,	1,147,213	997,434	15.00%
9	8	Dallas, Texas	1,076,214	1,006,646	6.90%
10	7	Detroit, Mich.	965.084	1.027.946	-6.10%
44	11	San Jose,	967.675	702.224	10.000/
11	11	San	670,706	703,324	10.80%
12	14	Francisco, Indianapolis	746,777	723,959	3.20%
13	13	, Ind.	738,907	731,726	1.00%
14	16	, Fla.	695,877	635,042	9.60%
15	15	Ohio	671,247	636,323	5.50%
16	12	Baltimore, Md.	632,681	736,014	-14.00%
17	22	El Paso, Texas	612,770	515,652	18.80%
18	18	Memphis, Tenn	606 109	618 894	-2 10%
10	25	Austin,	507 072	404 200	18.00%
19	25	Milwaukee,	567,675	494,290	10.90%
20	17	Wisc. Boston,	572,424	628,300	-8.90%
21	20	Mass. Seattle.	555,249	574,289	-3.30%
22	21	Wash.	537,150	516,332	4.00%
23	33	N.C.	520,829	426,984	22.00%
24	19	, D.C.	519,000	606,900	-14.50%
25	26	Nashville-	506 295	100 100	2 70%
20	20	Daviuson,	506,385	400,100	5.70%

Urban Sprawl

- Land use / land cover conversion
- Human habitat
- Urban forest
 - Concern

Urban Forests

- Trees and other vegetation that grow in urban and suburban areas
 - Public lands
 - Private lands
- Require investments

Source: Alachua County Visitors and Conventions Bureau

Urban Forests

- Valued for many reasons
 - Pleasant landscape
 - Peace and quiet
 - Screening and privacy
 - Recreation opportunities
 - Increase property values

Moeller Realty, Inc.

Environmental Benefits

- High urban leaf areas
 - Air-filtering systems
 - Reduce runoff
 - Reduce energy load
 - Wildlife habitat and diversity
 - Cool air
 - Shade
 - Evapotranspiration

Urban-Heat Island

Akbari et al., 1992, p. 9, fig 1-4.

CO₂ Reduction

Akbari et al., 1992, p. 35, fig. 2-10

Municipal Tree Ordinances

- Necessary
 - Education alone does not guarantee action
- Some residents don't appreciate the value of tree ordinances
- Very difficult to prove \$ saved or gained
 How to quantify \$ saved

Disadvantages of Urban Forests

- Fill landfills
 - -20% of municipal waste (EPA)
 - Compost soil amendment
 - Wood chips for fuel
 - Increased shade could decrease ground cover
- Higher water demand not true
 - Native trees
 - Lawns use more water than trees

Disadvantage

Disadvantage

Disadvantage

Challenge

- Convince people
- Money
- Penalties
- Geospatial technologies
 - Remote sensing
 - GIS

http://www.dec.state.ny.us/website/environmentdec/2004a/kidstree.jpg

Urban Remote Sensing

- Implemented by many agencies
 - Planners
 - Tax assessors
 - Transportation
 - Utility companies
 - Departments of parks, recreation, and tourism
- Accuracy

Urban Remote Sensing

- Careful in interpretation
- Parametric methods may not be adequate
 - Leaf Area Index

Leaf Area Index

- Useful in ecosystem analysis
- Related to biological processes
 - Primary productivity
 - Canopy gas exchange
- Used in global circulation models
- Estimated via RS

Modified from Jensen (1983)

NDVI Saturation

(adapted from Carlson and Ripley, 1997).

Remote Urban LAI Estimation

- Good indicator of urban canopy
- Input into local, regional, and global models
- Terre Haute, Indiana
 - 145 random points
- Accuracy?

ANN Method

- Artificial Neural Network
 - Backpropagation

Other Remote LAI Estimation Methods

- Parametric
- Regression
 - Vegetation indices
 - All band
 - Band ratios

Terre Haute

- Population ~ 65,000
- Wabash River and
 Interstate 70
- County seat of Vigo County

Terre Haute's Urban Forest

- Fairly strict ordinance
- Rotating tree board
- City forester

Sampling Method

• 20 meter quadrats • GPS point Nt 20 m 20 m $-\ln\frac{Q_1}{Q_2}}{k}$ LAI : • Ceptometer

Methods

- Regression
 - Multiple inputs and ratios
- Artificial Neural Network
 - Multiple inputs and ratios

	Subsystem	Band No.	Spectral Range (µm)	Spatial Resolution	
	VNIR	1	0.52 - 0.60		
		2	0.63 - 0.69	15 m	
		3N	0.78 - 0.86	13111	
		3B	0.78 - 0.86		
		4	1.600 - 1.700		
		5	2.145 - 2.185		
	SWIR	6	2.185 - 2.225	30 m	
	OWIN	7	2.235 - 2.285	50 m	
TI		8	2.295 - 2.365		
		9	2.360 - 2.430		
		10	8.125 - 8.475		
		11	8.475 - 8.825		
	TIR	12	8.925 - 9.275	90 m	
		13	10.25 - 10.95		
		14	10.95 - 11.65		

ASTER

ASTER Spectral Bands

Source: NASA, JPL

Leaf Area Index

- 145 random points
 - Regression
 - Artificial neural network

Results

Method	Inputs	R	SEE
Regression	Green : Red	0.60	1.54
Regression	Green : Red, Infrared	0.62	1.51
ANN	GREEN	0.69	1.39
ANN	NDVI	0.68	1.39
ANN	Red : Infrared	0.69	1.39
ANN	GREEN, Red : Infrared	0.71	1.35

LAI Map

• Derived from ANN

Questions

- Measurable difference in summer residential electricity use that can be attributed to the urban forest
- Relationship between urban leaf area and UHIE
- Equitable distribution of urban leaf area

Terre Haute

- Relationship between LAI and summer energy consumption
- 300 random addresses
 - Issues of privacy
 - Cinergy PSI
 - -534 N. 6th Street

Standardize

- Residential meters are generally read once each month, but not all on the same day.
 - Some residences appeared to have been missed one month with a make-up the next month
 - Some residences appeared to have been turned off for a month or more during the study time
- Kilowatt-hours/day.

Correlation

- Slight correlation between LAI and household energy consumption
 - For every one unit increase in LAI, KwHr per day usage decreases by 4.17368

Accuracy

- Summer time energy usage could depend on
 - Thermostat
 - Windows
 - Window units or central air
 - # of occupants
 - Insulation
 - Television

Significance

- Money!
- ~ 120 cooling days
- \$0.075 / KwHr
 - One unit increase in LAI
 - \$37.53 season savings
 - Four unit increase in LAI
 - \$150.12

Urban Heat Island

- Urban temperatures
- LAI

Celsius High : 55.75 Low : 0.0 0 1 2 4 Kilometers

Urban Temperature and LAI

- Same LAI dataset - 145 points
- Relationship with urban temperature

Celsius Low : 0.0 0

4 Kilometers 1 2

Urban Temperature and LAI

- Explains 19.3% of variance $-R^2 = 19.3\%$
- Celsius = 33.0 1.17 * LAI
- Cooler temperatures as leaf area increases

Equitable Distribution of UF

- Environmental justice
- Urban quality of life
- Distribution?
- 250 points
- ANN-derived urban LAI

Methods

- Census block groups
 - 2000
- Socio-economic patterns
 - Median income
 - Median housing value
 - Population density
 - % African American
 - Owner-occupied

Random Points

Results

	LAI	Home Value	Median Income	Density	Percent AA
LAI	1				
Home Value	0.321	1			
significance	0.000	0.000			
Median Income	0.401	0.710	1		
significance	0.000	0.000	0.000		
Density	-0.325	-0.465	-0.489	1	
significance	0.000	0.000	0.000	0.000	
Percent AA	-0.064	-0.232	-0.232	0.392	1
significance	0.225	0.000	0.000	0.000	0.000
Owner Occ.	-0.156	-0.386	-0.326	0.078	0.324
significance	0.004	0.000	0.000	0.137	0.000

New Urban Image Data

- AISA+ Hyperspectral Sensor
 - Recently awarded to ISU from National Science Foundation
 - 400 900 nm
 - Spectral bandwidth 2.3 nm
- Portable
- Bands are fully programmable

AISA+ Hyperspectral Sensor

AISA+ Hyperspectral Sensor

RESEARCH PARTNERS

University of South Carolina

Center for GIS & Remote Sensing John Jensen, Co-Director

Indiana University Anthropological Center for Training Emilio Moran, Director

Conclusions

- Remote sensing
- Different kinds of studies
- ASTER
- Hyperspectral
- Qualitative research
- Reliable field data

