# Hyperspectral Data Analysis Using Feature Extraction Techniques

Zhenxu Tang Department of Agriculture and Biological Engineering Dec. 11, 2002

### Objectives

 Carrying out a maximum likelihood supervised classification using feature extraction techniques, including DAFE, DBFE and NWFE;

 Exploring and comparing the use of the three feature extraction techniques.

## Data set and Method

- Washington DC mall with 210 spectral bands (0.4-2.4µm), 15M
- Use DAFE, DBFE and NWFE techniques to obtain 15 optimal features
- Reformat data set using the first 15 features from DAFE, DBFE and NWFE, respectively
- Classify reformatted data set using the maximum likelihood classifier



### Result

#### **Table 1 - Classification Accuracy**

| • Field Type          | Classification Accuracy |         |         |
|-----------------------|-------------------------|---------|---------|
|                       | • DAFE                  | • DBFE  | • NWFE  |
| • CPU time*<br>(min.) | • 0.3                   | • 28    | • 18    |
| • Training<br>Fields  | • 100%                  | • 100%  | • 99.9% |
| • Test Fields         | • 99.7%                 | • 99.4% | • 99.4% |

\* A DELL PC G\*240 was used.



Ŧ

#### Conclusion

Efficient techniques;
Similar performance in this particular dataset;
Multispec is recommendable.

(Available http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/)

 "Signal Theory Methods in Multispectral Remote Sensing" by Prof. Landgrebe