(A3
S AS
%20

LARS|ENTM 21L

Short Course on

Advanced Topics
in the Analysis
of Remote
Sensing Data

Purdue University

Laboratory for Applications
of Remote Sensing (LARS)

W, Lafayette, Indiana 47907 USA




ADVANCED. TOPICS IN THE
ANA ANALYSIS OF REMOTE SENSING DATA

(978

AsSLgnmeﬁt ﬁor Monday evenlng, April 10: Multitemporal Data
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@Hélavailabilxﬁy of ‘miltipass data over a given ground -

'ﬂ-écene -8ghdndes the. possibilfity of . using time-track information
€0’ assiét“iﬁ characﬁerﬁzing the various ground cover classes in

. ‘the scéfie “6r to.monitor ﬁhanges~thh time.in the scene. Tech-="
' piques ﬁéﬁ»prec151on ragﬁstratlon ‘of the data have been developed,

'i‘,:‘

and so ERES poss;bllity of " multltemporal analysis has become

¥~ YrealityvioTémorrow wé-.shall look’in detail at a number of methods‘

' for multféénporal data analysxs‘p--A

T

: Td“prepare for thdse sessionsg; take some time to cons;der
“a speciffé” remete "sensing:applfcation with which you have been :. .-
fpersonally znvolved ,ox are.famijiar., How might multitemporal
-Canaiysfs Be usged to: ‘enhance the:results achievabie for this ap-
* plication?t Jot,down: some' notes and be prepared to discuss this

appllc&tkdn in alass, including: .

—*Deflnitlon of the remote sensing appllcatLon
3 @praﬁuqts ‘needed, data available, etc.).

-*Time-varylng aspects of the scene. Are these
ellkély to help in characterizing the scene?

C —=HE&W - wOuld you go': about incorporating the time

‘«ahriaﬁllit in theranalysis? Would additional
*féfenencé ﬁata {"ground truth") be required?

~-ﬁ§w?fqa31ble do:you think it would be to apply

-tmi¥eitemporal analysis in: this context? Why?
-~Wh§t‘pr6blems would have to be overcome to
iide miltitemporal analysis successfully?
‘Wotild the benefats»be likely to justify the
cost° .

~=TA“ thzs application, is "change detection"

wilkély to be of use? What approaches can you
' ththk of for extracting change information

«‘"frem mult1temporal/mult1spectral data?

Zn LPRS 7@;%4144/ /@/&le Wself

091577

/70 =

PN

e



1.
L

iv.

TUESDAY
METHODS FOR MULTITEMPORAL ANALYSIS

Philip H. Swain

Introduction

Bayesian Formulation for the Multitemporal Problem

Layered Classifiers %;é/[}mzﬂl /(7

Change Detection /
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ADVANCED TOPICS IN THE
ANALYSIS OF REMOTE SENSING DATA

Assignment for Tuesday evening, April 1l:

Multitemporal Analysis - Review

Look back over the notes you made in conjunction with
last evening's assignment. In light of what you learned today,
would you change your response? Be specific, even to the point
of making a new set of notes.

Some questions you may now have concerning multitemporal
analysis might not be answerable until you are faced with a real
opportunity to make use of it. Others may be worth dealing
with immediately. Make a list of such questions and, if you
wish, raise them when Dr. Swain rejoins the group on Wednesday
afternoon., Or surprise Dr. Landgrebe with them in the morning!

Information from the Spatial Domain

Since presumably you meet the prerequisite requirements
of this Short Course, you have viewed a considerable amount of
multispectral remote sensing imagery. If, in particular, you
have seen some examples of color-composite LANDSAT imagery, you
are probably aware that with your eyes you can readily identify
classes of objects in the scene that probably cannot be identi-
fied by any pattern classifier that "looks" at only one pixel at
a time, Examples include airports, bridges, superhighways, lakes,
geological fault lines, etc. One thing which all of these classes
have in common is that they are characterized at least as much by
their spatial characteristics and their spatial relationships to
other things in the scene as they are by their spectral properties.

Extend the list of spatially characterized classes begun
above by at least six., Write down a brief description of the

spatial property which characterizes each class. For instance,

your list of spatial properties might include texture, shape, ori=-
entation relative to another object, proximity to another object,
homogeneity, etc. Think about how a computer program might em-

body each of these spatial characteristics. You'll find it's a

hard job if you really try to be specific!

As you did last evening, focus your attention on a specific
remote sensing application with which you are familiar. Make
some written notes concerning how spatial information in the scene
might be relevant to this application and try to think of ways to
"capture" that information by means of a computer algorithm., In
the course of our discussions tomorrow, we'll make time to discuss
some of these applications.
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METHODS FOR

MULTITEMPORAL ANALYSIS

OF

MULTISPECTRAL REMOTE SENSING DATA
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PRINCIPAL USES OF MULTITEMPORAL DATA

== ENHANCE DISCRIMINABILITY
OF INFORMATION CLASSES

== MONITOR CHANGE

To— 2
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MULTITEMPORAL ANALYSIS: APPROACHES

-- CONCATENATED ("STACKED")
VECTORS

== MULTISTAGE CLASSIFIERS

THE CASCADE CLASSIFIER
THE DECISION TREE CLASSIFIER

== CHANGE DETECTION



CoNCATENATED VECTORS
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CONCATENATED VECTORS

ADVANTAGES:

==~ EXTEND MULTISPECTRAL ANALYSIS TECHNIQUES

== INTERTEMPORAL COVARIANCES MAY CONTAIN
USEFUL INFORMATION

DISADVANTAGES:

==  DIMENSIONALITY
== MULTIPLICITY OF CLASSES
== DEMANDS ON TRAINING DATA

Tw—3



THE CASCADE CLASSIFIER

A BAYESIAN MODEL

-~ ACCOMPLISHES TEMPORAL "DECOUPLING"
== STATISTICALLY OPTIMAL

==~ VERSATILE (DATA TIMES AND TYPES)




CASCADE CLASSIFIER
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Bayes decsion theory revisided —
l®) </
_ ™w
Expected |pss: \_X )= Z )-Lj 1’(‘%' IX)
j=

For "o-) loss function”:
LyCi)= g /\o(wjlx) = \—P(w'.l)()
J=1 :
i)
Discrmiaawk Funchon + (WiIX)

ov @%u:w’a(ew\'\ji ?(X |, )—P(wi )

(% vaasimum hkelihood ” )

ly— 11



Ei'ﬁempm“al qevxera( t%a:f‘\&vx —

) |
EK*PP.Q.:\"EG\ loss: L‘X\Xq_ Q)= 2] )LJ {’(wzj lxlXL)
J=1
[(32.3 = W (t,_)]

Maﬁfﬁ;MMM hé@&hh@bd 3‘1‘1",}23\3 : CJ\—OOSQ C(QSS 402
de wat il /K}(,wt \Y‘,Xz ) |

o, e%,wva(emﬂﬁj

{;)J‘ NCIRATNWUR FICIATRRICH

s Lo Mmoo, s S we—— cm—— —om— enme— B

,é%géw&gég;;fg,‘) = ?(,Q-L,X”)(z )//P(XHXL)
. :
e T Lt 00

L “constant”

f?(%ag\ﬁm)wa W ) = /FLX“YZ \L\)hu)z) ,P(w“a)z)
= /?(XUX‘L“-OUM»;_)POQQ_‘LD' ),P(Ldl )

Ty~ 12
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Some. resulds —

Foye fte Cunty, TI. -  LANDSAT deda
Covn, g‘*‘é.LQAV\S) Uooc(s, ‘Oder!
t, (e/a/73) €37 comeet  (all bands)
t, 1/171/73) 72% C
Cascod e® 34 % C « )
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THE DECISION TREE CLASSIFIER
(LAYERED CLASSIFIER)

A HIERARCHICAL MODEL

== PROVIDES GREATEST FLEXIBILITY

== DESIGNED FOR ACCURACY AND EFFICIENCY

== ACCOMPLISHES TEMPORAL "DECOUPLING"

Ty = 15



ConvenTional  CLASSIFIER

CLasses
C‘ ‘C'l_, LR TN Cm

MAXIMUM\ FEATURE SET
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b%mszm& TrRee CLASSIFIER

Q ENERAL MODEL

C,= [Cu,cz,..-,c\m-] = C
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ADVANTAGES

- MAY USE DIFFERENT FEATURE SUBSETS AT
EACH NODE

—~ MAY USE DIFFERENT DECISION RULES AT
EACH NODE

DISADVANTAGES
- LOGICAL OVERHEAD, BUT ...,
- COMPLEX DESIGN PROBLEM, BUT .44

Tir 19



Coincident Spectral Plot (Mean * One Std. Bev/ for Classess

Spectral
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EXAMPLE: [ ANDSAT DATA, GRANT COUNTY, KANSAS

CLLASSES: WHEAT, CORN, ALFALFA, FALLOW,
PASTURE

May 9, ‘74 31 SPECTRAL CLASSES 62 %

JUNE 14, ‘74 29 SPECTRAL CLASSES 55 %

MULTITEMPORAL DECISION TREE

M.L. NODES
UNITEMPORAL NODES

MANUAL DESIGN

TWO LAYERS /17

T 22



RATIONALE FOR AUTOMATED APPROACH

- BETTER USE OF MULTIVARIATE INFORMATION

= NEED TO DEAL WITH COMPLEX CASES

- DESIRE FOR ANALYTICAL, REPEATABLE PROCESS
—~ SEARCH FOR OPTIMALITY



REQUIREMENTS (CONFLICTING)
~ MAXIMiZE CLASSIFIER ACCURACY

- MINIMIZE CLASSIFICATION TIME

CANDIDATE APPROACHES

- DEVELOP VERY SOPHISTICATED SEARCH
PROCEDURE

- RESTRICT THE FORM OF THE DECISION
TREE

7;{“, 24



EVALUVATION FUNCTION

E(q; )_ -T(a;) ~ K- G’(d ) + ZJ “'J E(d°+d)
§=

T = wede cmpdu:l-lbvx time
€ld;) = node chss:feccd'lb"n errov

?(di+s) = evaluation o‘F th descendont
of d;

¢ = number of descendants of d;

¥> = probebili ‘7 that jth degcendowt™
of d; will be reacheoL from d;

K = Trade~off constant, speed vs accuraey

Lower bound (conventiomalk s—!-o.ga):

E W) = -l — Kk &(d; )
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Nc»ﬁmait%wl Q\i&lua.*liﬁ’\ ‘Fuwoﬁb-n :

)= €(d)~EB )
= [T W) -T ()]
+ ke [ W) ~ew]
v Z% R EWiy)

Normalized oaumd bounded. :

E'd) = @) -Td)]
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“HEURISTIC SEARCH WITH FORWARD PRUNING”

= AT EACH NODE, SAVE A LIMITED NUMBER
OF BEST ALTERNATIVES

- TIME VARIES LINEARLY WITH THE NUMBER
OF CLASSES, AS N(N+1) WHERE N IS THE
NUMBER OF FEATURES

- USE INDIRECT MEASURE OF ERROR PROBABILITY

= IF DESCENDANTS DO NOT CORRESPOND TO
DISJOINT CLASS SUBSETS, ESTIMATE THE
TRANSITION PROBABILITIES BY CLASSIFYING
THE TRAINING DATA
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Comparison of Decision Tree Classifiers and Single Stage Classifiers

s

Single
: Stage Single
Maxirum : Classi- tage
Numbexy of ‘ Decision Tree - Decision Tree fication Training
Features  Separability Separability Trade Off Classification Training Field Tine Accuracy
Per ilode Heasure Threshold Constant Time {(Seconds} Accuracy (%) {Seconds} (%)
4 BT . 1950 20.0,10.0 545 93.5 1574 93.7
N\ ,. |
v 4 Dy, 1950 10.0 655 93.6
N
[e0]
3 BT . 1950 10.0 440 92.9 1036 93.0
3 DT 1950 25,0 , 520 92,9
2 By, 1950 5.0 450 91.6 650 90.2
2 ' B,, 1850 5.0 390 90.4
2 D 1850 5.0 435 92.2
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Avpplications of Layered Classifiers

General Application Example

IMulii-image Analysis Multitemporal classification
Change detection

Use of Mixed Feature Types Texture

Topography
Geophysical data

oy
speciii opercies Crop stress detection
rorest type mapping
Water quality mavping
Water temperature mapping

Tu~ 30



CoMpaRATIVE RESULTS

FAYETTE CouNTY , TLL. = LANDSAT — MULTITEMPORAL

CorN, SO{BEANS | WOODS, ‘omer’

t, (Suwe 29, *73 ) &8 Jo 235 sec.
%7'2, (.‘Su,lsg 17, 273 ) 72 %o 240
I AYERED # %2 % 224
CASCADE 34 T 165%

%Suﬁw&‘ Eﬁﬁ@* used cmlj +o resolve.
fi@if%“%“mﬁ»ééw’g @E&%SQ}
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GRANT CoOMTY, KAN. — LANDSAT — MULTITEMPORAL

WHERT, CORN, ALFALFA, PASTURE , FALLOW

Ty (Moy 9, 77¢) 2% 230 %c.
{71_,(&\‘3 20,7 7¢) 5590 238 %c.
&Y ereD b¥ To 5l Sec.
CASCADE G4 %o 3037 dec

77/“7 32



RESTRICTED DECISION TREE MODELS

LINEAR BINARY TREE
~ FEWER STRUCTURES POSSIBLE
—~ COMPENSATE FOR GREATER DEPTH WITH
LLINEAR DECISION FUNCTION

ONE FEATURE PER NODE

- OPTIMALITY CLAIMED

72"* 33
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MULTITEMPORAL ANALYSIS

REFERENCES

SWAIN, H. HAUSKA: THE DECISION TREE CLASSIFIER: DESIGN
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CHANGE DETECTION
AND MONITORING

= LAND USE PLANNING

- METEOROLOGICAL APPLICATIONS

= TACTICAL APPLICATIONS

7V”ﬂ 35



POST-CLASSIFICATION (“DIRECT”)
CHANGE DETECTION

METHOD

= DIRECT COMPARISON OF INDEPENDENT
CLASSIFICATIONS

ADVANTAGES
- TEMPORALLY DECOUPLED CLASSIFICATION
-~ USES "ORDINARY” METHODS FOR CLASSIFICATION

— CAN REPROCESS FOR CHANGE WITHOUT
RECLASSIFYING

DISADVANTAGES %

= NO USE OF MULTITEMPORAL INFORMATION
IN CLASSIFICATION

=~ ERRORS ARE COMPOUNDED WITH TIME

7~ 36



DELTA-DATA
CHANGE DETECTION

METHOD
- CREATE “DELTA” (DIFFERENCE) DATA SET
- CLASSIFY '

ADVANTAGES
- ONLY ONE CLASSIFICATION REQUIRED
- ONLY CHANGE CLASSES NEED BE CHARACTERIZED

DISADVANTAGES

- LARGE INFORMATION LOSS IN DIFFERENCING
- SENSITIVITY TO REGISTRATION ERROR

Ju~ 31



SPECTRO-TEMPORAL
CHANGE CLASSIFICATION

METHOD
- STACKED VECTOR ANALYSIS
- IDENTIFY "CHANGE” TRAINING FIELDS
- CLASSIFY AS USUAL

ADVANTAGES
- ONLY ONE CLASSIFICATION REQUIRED

- MULTITEMPORAL INFORMATION AVAILABLE FOR
USE IN CLASSIFICATION

DISADVANTAGES

- LARGE NUMBER OF SPECTRO-TEMPORAL
SUBCLASSES

- DIFFICULT TO FIND ADEQUATE TRAINING
DATA FOR CHANGE CLASSES

- INCREASED DEMAND FOR TRAINING DATA
- COMPUTATIONAL LOAD

Ty~ 38



LAYERED CLASSIFIER
CHANGE DETECTION

METHOD
- USE DECISION TREE LOGIC FOR CLASSIFICATION
AND DETECTION OF CHANGE
ADVANTAGES
- REQUIRES ONLY ONE CLASSIFICATION
~ MULTITEMPORAL INFORMATION AVAILABLE
FOR CLASSIFICATION
~ "CHANGE CLASS” TRAINING DATA NOT NEEDED
- ALL ADVANTAGES OF LAYERED CLASSIFICATION
DISADVANTAGES

= LOGIC DESIGN MAY BE QUITE TEDIOUS

Ty 39
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WEDNESDAY
INFORMATICN FROM THE SPATIAL DOMAIN

Scene Segmentation and Classification of Objects - David A. Landgrebe

Texture - David A. Landgrebe
Context -APhilip H. Swain

Syntatic Scene Analysis - Philip H. Swain

W i




Reference Papers for Short Course on Advanced Topics in the Analysis of Remote Sensing Data
Wednesday Session: Information from the Spatial Domain
Haralick, R.M., K. Shanmugam, and I. Dinstein. (1973) “Textural Features for Image Classification”. IEEE

Transactions on Systems, Man, And Cybernetics, November 1973, Vol. SMC-#, No. 6, pp. 610-621.
DOI: 10.1109/TSMC.1973.4309314.

Weszka, J.S., C.R. Dyer, and A. Rosenfeld. (1976) “A Comparative Study of Texture Measures for Terrain
Classification”. IEEE Transactions on Systems, Man, and Cybernetics, April, 1976, Vol. SMC-6, No. 4, pp.
269-285. DOI: 10.1109/TSMC.1976.5408777.

Brayer, J.M., P.H. Swain, K.S. (1977) Modeling of Earth Resources Satellite Data. In: Fu K.S. (eds)
Syntactic Pattern Recognition, Applications. Communication and Cybernetics, vol 14. Springer,
Berlin, Heidelberg. DOI: 10.1007/978-3-642-66438-0 9
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CONTEXT

IN REMOTE SENSING DATA ANALYSIS

EVIDENTLY HELPFUL
LOCAL VERSUS GLOBAL

PRESENCE INDICATORS VERSUS APPEARANCE MODIFIERS

we- 1



TerninoLoey & NOTATION

Q= {w\ aoz)m»“’ri : r classes

A= {q”a,“.“, Qs}‘. S Possihle actious

L(wi,a;) ¢ less meurred on deciding aj
when w; is the true class.

X : wmeasurement vector

£X10) : class -conditional probability
o\ens‘r‘j function
,\o(m): o priort Pm\pabi(i-hl of occurrawen

of class 0.

B‘A,es Sh‘a*éaj . Min‘m’(%& the QXPCC*‘EA ﬁsb.—
r
-{;I&)Z, L(w;, ) p (Xlw; ) ple;)

2

We >



Compound DECSION PROBLEM

N \denwhcol Simp(t decision Wy Wi
lems cver awn Wy Wi
W =Jw,0 Wy ] veet o e
= e * or ) ”
— Tz T of stetes Frame
x_ = [X.,X-;,... , Xn ] . Vector of

measurement Vectors

W] ¢ vedor of "achms”

a = [a,a,,.., 4
(classfroations )

The Cm?ouwl dec,\scon Pmblem Minimiee

Lw,a) 2 -‘- Z_’, L (W, %)

onlww.\ SHb.'\‘ESj 4 Class'ofj Xh (iu hﬂ‘ cell )
to \Miv\'\w\.l‘él-

g_'_‘, LGy a0 ) (X 1w.) p )
k.

We 3



fQS‘Uﬂ - '&’(’SNMXAD»XA L6y, )

Ry

Flid

f"&lwk) = ?(‘X‘Nklbb’x‘l)“)h)?(x&b)xkh‘)h\

¥ Assume Comtextnal relationships befween
v\mo.d.iac.ewf' Pfxds are nejh'aiui.

13(! |0y )= ’P(X-NA | Xan ) P(X-Ab) Xi Lwy)

.'. Mmimize (C—'\oose Qg € A) -

‘Q kara‘k)'f)(.x.ﬂh ‘ _Y_Ab )’P (-XAD) xh \wk)f(wk)

ér, Q%mb a(e,w{-\y . manl mize
%:, L) a) p (Xap, X VWi ) p Wiy
R

— J \< J
¢ Y

Wé/4 (Lbhf. )



,Q(ka,xp‘“k),= ‘P(xk\ .X.Ab'wh)")(xAb‘wh) @f)
| (1) ()
T):
2 o 10 ) = LN, Xz s Xz » Xy 100y )
= b O 1 Xes Xien, s W) X
fLXIz':.‘xka;xhq)wk) X
‘(f(y\u\xkq > W ) x
P(Xq'“k)

bt Xy 's ore nemadjocedt .3 c\a.ss-mdf-h'uudy
|'V\dz‘wv\d¢wf , s°e

(X | Wi ) = K, le0r ) p (G, 1wy )+ P(Xha Wy )
= TT‘— /P(in | We )

Nou),vur'ﬂ-i
W 0 )= 2 (K 0 T wr)
Wi,

= 2 ’P (Xk; ‘whi ;“)k )/P(whi. ll‘)k )
= Z/P (Xm |whi) 'P(,D)bb‘ U)R)

we-s
(cont: )



.o We now have '4."
’(’(Xmlw\..)"‘ I 24 T(intwki)'f’(wm AN )

L= W,

0 Xm0 ) = p Ut )

o @) - top of previous Poge — becomes |
,PQQM,,Xk W) = ’t’(xk'wk)-‘i‘: %;t/]’ (Xhz‘wk;)f(“)kimh)

kc\shloq \'&JQ.S C‘aSS.(‘Fj Xk as ak ""b Ml'n;mi-z;c

L=

E Ly, 2 ) o, 104) ’F\' %z % (i 1y )p (0, 10 )

Maximuw Likelibwod :  Classif Xhe ‘ok to Ma_x_____'“ﬂ‘le

pkthk)f(wk)'ﬁ- ZEJ P04 g ) plwy 1, )
L=t Wy,

Vamn

W’£A6




Reference

e J.R Weleh, K.G. Salder: A Condext Abor;{-hm
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SYNTACTIC SCENE ANALYSIS

CHARACTERIZATION AND ANALYSIS
OF
SCENE STRUCTURE AND STRUCTURAL RELATIONSHIPS

wWe—s



AN ANALOGY: LANGUAGE

LETTERS

\ WORDS
\\\\\’*PHRASES

‘\\\\\‘\iSENTENCE

THE NEW LANDSAT HURTLED INTO A PERFECT ORBIT

\ ]
"
t noun phrase ,
N
L I prepositional phrasgl

N v~
noun phrase verb phrase

MEANING DEPENDS ON:
THE SPECIFIC PRIMITIVES (LETTERS)
RELATIONSHIPS AMONG PRIMITIVES (WORDS)
RELATIONSHIPS AMONG PATTERNS OF PRIMITIVES (PHRASES)

RELATIONSHIPS AMONG PATTERNS OF PATTERNS (PHRASES —
SENTENCE)

we - o



EXAMPLE:

GENERALLY SPEAKING WOMEN ARE PRETTY
WOMEN ARE PRETTY GENERALLY SPEAKING
ARE PRETTY SPEAKING GENERALLY WOMEN
GENERALLY SPEAKING WOMEN ARE TRETPY

Weé— 10



TYPICAL IMAGE-ORIENTED HIERARCHY:

SPECTRAL BAND RADIANCES

Ry

PIXEL MEASUREMENT VECTORS
\‘2
HOMOGENEOUS OBJECTS
\?3
MORE COMPLEX OBJECTS

Ry

REGIONS

\1:5

SCENE

We-—11



GRAMMAR

A PHRASE-STRUCTURE GRAMMAR b IS

A U-TuPLE, G = (VN, VT, P{ S), WHERE

VN: NONTERMINALS

VT: TERMINALS

S (IN VN): START SYMBOL

P IS A FINITE SET OF PRODUCTIONS (REWRITING
RULES), OF THE FORM ot—» @ WHERE & IS A
STRING OF ONE OR MORE TERMINALS AND NON-
TERMINALS, @ IS A STRING OF TERMINALS AND

NONTERMINALS,

Wwe-12



COMMON NOTATION

V*: SET OF ALL STRINGS OVER V, INCLUDING
(STRING OF LENGTH 0)

Vi= v - ()

Ix| = LENGTH OF STRING X

XN = N REPETITIONS OF X

A =—5'>B: A DERIVES B BY APPLICATION OF ONE
PRODUCTION IN G

*
A ==>B: A DERIVES B BY APPLICATION OF A
SEQUENCE OF PRODUCTIONS IN G

THE LANGUAGE L GENERATED BY A GRAMMAR G IS THE SET OF STRINGS

L = {xIxeV;* ano S==>x}

wWe~ 13



TYPCS OF PHRASE —STRUCTURE GRAMMARS —

ForM oF PRODUCTION: & —>» @

ContexT-SENITIVE  (TyPEL)®
lal < |l

CouTexT- FrEe (TVYPE 2 ):

oL € Vy

REGULAR (TNPE 3)!
% = A AG-VN
B&VN

= 0B or P=a

ae Vo

14



ContexT -FRee GRAMMAR G

Vy={s,n 8], Ve=iab],

P: yS—aB ) A—a
() S — bA &) B—bS
B)A—> aS ) B—»aBB
&) A—> bAA ) B>bL

L)= {X | X eV-r+aM X combams an

e‘.uol nuwmber of a’s owd b's}

T'-zpfwl devivation w G :
S aR &4 488 -(-i—)->aLLA E—'?'# abba

Derivation tree (same dem/a*ien)t
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SynTAcTic PATTERN RECOGNITION
- 3ySTEM MODEL -

INPUT PrRE- X: PATTERN SYNTAX DecsIoN
PATT PROCESSNG chswnwmo? ANALYSIS >
aTTERN Xe L@)?
_____ __| __Rexoan mieN
LEARN ING
SAMPLE GRAMMATICAL.
Pmm——’us INFERENCE

e 16




SELECTION OF PATTERN PRIMITIVES

DEPENDS ON

-- THE NATURE OF THE DATA
-- THE APPLICATION
-- THE IMPLEMENTATION TECHNOLOGY

REQUIREMENTS

-- BASIC PATTERN ELEMENTS
-- EASILY RECOGNIZED

EXAMPLE

We= 11



Vp = {a,b,¢,4,c}
vy = {s, T, Bottom, Side, Armpair, Rightpart, Leftpart, Arm}

P: S = Armpair < Armpair
T - Bottom - Armpair
Armpair = Side - Armpair
Armpzir < Armpair - Side
Armpair = Arm - Righipart
Armpair - Leftpart « Arn
Leftpart = Arn » ¢

* Rigntpart = c + Arm

Bottom = b +« Botiom
Bottom — Eottom + b
Bottom = ¢
Side - b -+ Side
Side = Side * b
Side = b -+ &
Arm = b - Arm
Arm = Arm + b

Arm ~ 8
-
a b ¢ d e

A Grammar for Submedian and

Telocentric Chromosomes
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A Wep GRAMHAR

G= (-VN)VT)P:S)

wheve VN”{A}) VT'{‘NB;"'}; S={A}
and P: . |

W) A— a.< E-{(f,g)\ (‘,’A) is an

c edge m +he hest weh}

b

Q) A— «

A € = (same as above)

L&) = %esd- of all webs o«tH&u%m

M/g ~19
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THURSDAY
SYSTEM DESIGN AND EVALUATION

System pesign and Evaluation of Results - Barbara J. Davis
Marvin E. Bauer

e




Reference Papers for Short Course on Advanced Topics in the Analysis of Remote Sensing Data
Thursday Session: System Design and Evaluation

Bauer, M.E., M.M. Hixson, B.J. Davis, and J.B. Etheridge. (1977) “Crop Identification and Area Estimation
by Computer-Aided Analysis of Landsat Data”. Proceedings of 1977 Machine Processing of Remotely
Sensed Data Symposium, Purdue University, June 21-23, 1977.

https://docs.lib.purdue.edu/lars symp/188/.
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SYSTEM DESIGN AND EVALUATION

MARVIN BAUER AND BArRBARA DAVIS
AprIL 13, 1978

SysTeM DesicN
A, SysTem DesieN - Key StePs
B. DerINING INFORMATION REQUIREMENTS
C. EsTABLISHING PROJECT FEASIBILITY
D. PROJECT PLANNING AND IMPLEMENTATION
1. DaTA AcauisiTION
A. RemoTE SENSING DATA
B. REFERENCE AND ANCILLARY DATA
2. SAMPLE DESIGN
A. ENUMERATION AND SAMPLING
B. SAMPLING TECHNIQUES
C. STRATIFICATION
3. DATA PREPROCESSING
A. SELECTION AND USE oF TECHNIQUES
4, DaTa ANALYSIS

A. RELATION OF DATA ACQUISITION, SAMPLE
DESIGN AND PREPROCESSING TO ANALYSIS

EVALUATION OF RESULTS
A, StaTIsTIcAL TERMS
B. IMPACT oF OBJECTIVES
C. AssessiNG CLASSIFICATION AND MAP ACCURACY
1. TRAINING SET EVALUATION
2, TesT DATA SELECTION
3. ImpacT oF REFERENCE DATA QUALITY ON ACCURACY
4. CoNFIDENCE INTERVALS ON Accuracy
Th-1



SysTeEM DesiGN AND EvALUATION (coNT'D.)

Dl

AREA AND PROPORTION ESTIMATION

1. CaALcuLATING ESTIMATES

2. CALCULATING B1As AND PrRecisioN OF ESTIMATES
3. RemovinG Bias FrRoM AREA ESTIMATES
4

. IMPORTANCE OF CLASSIFICATION ACCURACY IN
AREA ESTIMATION

CoMPARING ESTIMATES AND REFERENCE DATA
1. ANALYSIS OF VARIANCE

2. CORRELATION

3. ImpacT oF REFERENCE DATA QUALITY



SysTeM DesieN -- Key STEPs

DEFINE INFORMATION REQUIREMENTS AND
OBJECTIVES

ESTABLISH FEASIBILITY
PLAN THE PROJECT
IMPLEMENT THE PROJECT
USE AND EVALUATE RESULTS



DEFINING INFORMATION REQUIREMENTS -- KEY QUESTIONS

- WHAT ARE THE EARTH SURFACE FEATURES OR COVER TYPES
OF INTEREST?

- WHAT DOES THE USER WANT TO KNOW ABOUT THESE COVER
TYPES? LOCATION, AREA, CONDITION?

- WHAT SIZE AREA IS INVOLVED?

- IN WHAT FORMAT ARE THE RESULTS NEEDED? MAPS, TABLES,
OR BOTH? '

- How ACCURATE MUST THE RESULTS BE?

- Is COMPLETE COVERAGE OF THE AREA REQUIRED OR WILL A
SAMPLE PROVIDE THE NECESSARY INFORMATION?

- WHAT ARE THE TEMPORAL CONSIDERATIONS? TIMING AND
FREQUENCY?

Th 4
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ESTABLISHING PROJECT FEASIBILITY

REVIEW PREVIOUS INVESTIGATIONS AND RESULTS

ADDITIONAL RESEARCH MAY BE REQUIRED TO DETERMINE
FEASIBILITY

FEASIBILITY STUDY SHOULD INCLUDE CONSIDERATION
OF WHETHER:

= COVER TYPES OF INTEREST HAVE DISTINGUISHABLE
SPECTRAL, SPATIAL, OR TEMPORAL CHARACTERISTICS

= SUITABLE DATA COLLECTION SYSTEMS ARE AVAILABLE

= APPROPRIATE DATA PROCESSING AND ANALYSIS
SYSTEMS ARE AVAILABLE

PRODUCT OF FEASIBILITY STUDY SHOULD BE LIST OF
OPTIONAL APPROACHES

Zh— 5
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ProJECT PLANNING AND IMPLEMENTATION

PROJECT PLANNING IS MORE SPECIFIC THAN FEASIBILITY
STUDY

PROJECT PLANNING NARROWS CHOICES TO A SPECIFIC
APPROACH

DECISIONS MUST BE MADE WITH RESPECT TO:

DATA COLLECTION SYSTEM USED
FREQUENCY OF DATA COLLECTION

REFERENCE DATA AND GROUND OBSERVATION
REQUIREMENTS

DATA PREPROCESSING REQUIREMENTS
DATA ANALYSIS PROCEDURES
PLAN FOR RESULTS UTILIZATION AND EVALUATION

- IMPLEMENTATION -- DECISION MAKING STEPS ARE PUT INTO
ACTION

’71)”5



DAaTA ACQUISITION

SENSOR SELECTION

1. SPECTRAL CONSIDERATIONS

- SPECTRAL DISCRIMINABILITY OF
COVER TYPES OF INTEREST

2. SPATIAL CONSIDERATIONS
- SIZE OF SURVEY AREA

- COMPLETE AREA COVERAGE OR SAMPLE
SEGMENT COVERAGE

- RESULTS FORMAT: MAPS OR STATISTICS

- SPATIAL CHARACTERISTICS OF COVER
TYPES IN RELATION TO SENSOR
RESOLUTION

3. TEMPORAL CONSIDERATIONS

- WHAT 1S BEST OR REQUIRED TIME OF
YEAR TO COLLECT DATA?

- How FREQUENTLY IS DATA REQUIRED?

ARE THERE DIURNAL CONSIDERATIONS?

- Is MULTITEMPORAL DATA REQUIRED FOR
DISCRIMINATION?



(o]

o

o

REFERENCE DATA COLLECTION

1. GROUND OBSERVATIONS

2. AERIAL PHOTOGRAPHY

3, USE OF MULTISTAGE SAMPLING

ANCILLARY DATA COMPILATION
1. Marps

2. HISTORICAL DATA

FIR.ST HAND EXPERIENCE IS INVALUABLE
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SampPLE DEsiGN

A. ENUMERATION AND SAMPLING

o DEFINITIONS (IN A REMOTE SENSING CONTEXT)

ENUMERATION IS THE IDENTIFICATION OF
EACH AND EVERY MEMBER OF THE POPULATION,
E.G. ALL THE PIXELS IN A LANDSAT SCENE,

SAMPLING IS THE SELECTION AND IDENTIFICATION

OF A PART (SAMPLE) OF THE POPULATION TO

REPRESENT THE ENTIRE POPULATION.,

Thv 9



o ADVANTAGES OF ENUMERATION

- GIVES THE MOST PRECISE RESULTS, THERE IS
NO VARIANCE

= EACH INDIVIDUAL MEMBER OF THE POPULATION
IS IDENTIFIED

o ADVANTAGES OF SAMPLING

REDUCED COST AND GREATER SPEED IN OBTAINING
AND PROCESSING INFORMATION

GREATER SCOPE OF INVESTIGATION MAY BE POSSIBLE

GREATER ACCURACY MAY BE OBTAINED BY USING MORE
RELIABLE PERSONNEL AND A DECREASED VOLUME OF
WORK.,

7Th+10




o ENUMERATION OR SAMPLING??

- THE CHOICE OF ENUMERATION OR SAMPLING
DEPENDS UPON THE PROBLEM AT HAND.

- THREE CRITERIA MUST BE CONSIDERED TO
MAKE THE CHOICE:

o PRECISION REQUIRED
o KIND OF INFORMATION REQUIRED
o RESOURCES AVAILABLE



IT 1S NECESSARY TO OBTAIN AN ACCEPTABLE BALANCE
AMONG THESE THREE FACTORS.

SOME EXAMPLES:

- PRODUCING A MAP GENERALLY REQUIRES ENUMERATION,
I.E+ CLASSIFICATION OF EACH PIXEL.

- IF NO VARIANCE IS PERMISSIBLE, ENUMERATION MUST
BE CARRIED OUT. SAMPLES, HOWEVER, CAN PRODUCE
ESTIMATES WITH QUITE SMALL VARIANCES,

- ENUMERATION SHOULD NOT BE USED IN SELECTION OF

A TRAINING SET; OTHERWISE, WHAT IS THE USE OF
THE CLASSIFICATION?

/7y —12



B. SAMPLING TECHNIQUES

o PrRINCIPAL STEPS IN A SAMPLE SURVEY

- OBJECTIVES

- POPULATION TO BE SAMPLED

- DATA TO BE COLLECTED

- DEGREE OF PRECISION REQUIRED
- METHOD OF MEASUREMENT

- THE SAMPLING FRAME

- SELECTION OF THE SAMPLE

- PRETEST

- ORGANIZATION OF THE WORK

- SUMMARY AND ANALYSIS OF DATA

- INFORMATION GAINED FOR FUTURE
SURVEYS

7hv 13



o RoLE oF SAMPLING THEORY

- PURPOSE OF THEORY IS TO MAKE SAMPLING MORE
EFFICIENT.

- [T ATTEMPTS TO DEVELOP METHODS OF SAMPLE
SELECTION AND ESTIMATION THAT PROVIDE, AT
THE LOWEST POSSIBLE COST, ESTIMATES THAT
ARE PRECISE ENOUGH FOR THE SPECIFIED PURPOSE.

- To APPLY THIS PRINCIPLE, WE NEED TO KNOW FOR
ANY SAMPLING PROCEDURE UNDER CONSIDERATION,
THE PRECISION AND THE COST TO BE EXPECTED.

o PRECISION IS JUDGED BY EXAMINING THE
FREQUENCY DISTRIBUTION GENERATED FOR
THE ESTIMATE IF THE PROCEDURE IS
APPLIED REPEATEDLY TO THE SAME POPULATION.,

o A FURTHER SIMPLIFICATION--THE SAMPLE
ESTIMATES ARE USUALLY APPROXIMATELY
NORMALLY DISTRIBUTED. THEREFORE, THE
FREQUENCY DISTRIBUTION IS UNIQUELY
DEFINED BY THE MEAN AND STANDARD
DEVIATION.,
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o PROBABILITY SAMPLING

- ALL SAMPLING PROCEDURES FOR WHICH A THEORY
HAS BEEN DEVELOPED HAVE THE FOLLOWING
PROPERTIES:

1. SET OF DISTINCT SAMPLES, S;, S,,...S., CAN
BE DEFINED,

2. EACH POSSIBLE SAMPLE S; HAS A KNOWN
PROBABILITY OF SELECTION T,

5. ONE OF THE S; IS SELECTED BY A PROCESS IN
WHICH EACH S; RECEIVES ITS APPROPRIATE
PROBABILITY T; OF SELECTION

4, THE METHOD FOR COMPUTING THE ESTIMATE
FROM THE SAMPLE MUST LEAD TO A UNIQUE
ESTIMATE FROM ANY SPECIFIC SAMPLE

- FOR ANY SAMPLING PROCEDURE THAT SATISFIES THESE
PROPERTIES, WE CAN CALCULATE THE FREQUENCY
DISTRIBUTION OF THE ESTIMATES IT GENERATES,

- A SAMPLING THEORY CAN BE DEVELOPED FOR ANY PRO-
CEDURE OF THIS TYPE,

The 15



o NONPROBABILITY SAMPLING

- Is NOT AMENABLE TO THE DEVELOPMENT OF
A SAMPLING THEORY SINCE NO ELEMENT OF
RANDOM SELECTION IS INVOLVED,

~ THEREFORE, IT IS NOT POSSIBLE TO DETERMINE
MAGNITUDE OF SAMPLING ERRORS AND BIAS,

o SINCE THERE ARE, IN ACTUALITY, ALMOST ALWAYS
REQUIREMENTS OF PRECISION AND ACCURACY
(ALTHOUGH THIS IS NOT ALWAYS RECOGNIZED AS

SUCH), PROBABILITY SAMPLING 1S HIGHLY RECOM-
MENDED.
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[LLUSTRATIONS OF PRECISION AND ACCURACY

X /\\
. |

i o
/

¢ *‘
*
~__ /,//////

ACCURATE NoT AcCURATE (BIASED)
NoT PRECISE PRECISE
\ /\
N\
\
R
. :gx

NoT ACCURATE ACCURATE
NoT PRECISE PRECISE
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o THREE BASIC TYPES OF PROBABILITY SAMPLING

- SimpLE RANDOM SAMPLING
- STRATIFIED RANDOM SAMPLING
- SysTeEMATIC RANDOM SAMPLING

o PROBLEM: SUPPOSE WE WANT TO DETERMINE THE
AREAS TO BE CLASSIFIED FOR MAKING AN ESTIMATE
OF THE AMOUNT OF WHEAT IN KANsAs. How caN
THIS BE DONE USING EACH TYPE OF PROBABILITY
SAMPLING?

Th v 18




SIMPLE RANDOM SAMPLING

(1)

(2)

(3)
()

DIVIDE THE ENTIRE STATE INTO N BLOCKS
OF A GIVEN SIZE,

DETERMINE THE NUMBER TO BE TABULATED,
SAY N, CONSIDERING PRECISION AND COST,

RANDOMLY SELECT N OF THE N AREAS,
CLASSIFY AND MAKE A STATE ESTIMATE.

719



STRATIFIED RANDOM SAMPLING

(1> DIVIDE THE ENTIRE STATE INTO N BLOCKS OF
A GIVEN SIZE.

(2) DETERMINE THE NUMBER TO BE TABULATED, SAY N,
CONSIDERING PRECISION AND COST.

(3) ALLOCATE THE N SAMPLES TO COUNTIES ACCORDING
TO THE HISTORICAL PROPORTION OF WHEAT.

(4) CLASSIFY AND MAKE A STATE ESTIMATE BY AGGRE-
GATING THE COUNTY ESTIMATES.
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SysTEMATIC RANDOM SAMPLING

(1) DETERMINE THE SAMPLE SIZE REQUIRED TO
OBTAIN ACCEPTABLE PRECISION AND COST,

(2) FOR EACH COUNTY, SYSTEMATICALLY ALLOCATE
THE SAMPLE (I.E. RANDOMLY SELECT A START-
ING POINT AND SAMPLE AT A FIXED INTERVAL
THEREAFTER) , |

(3) CLASSIFY AND MAKE A STATE ESTIMATE, AGGRE-
GATING THE COUNTY RESULTS.
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ADVANTAGES AND DISADVANTAGES

o SIMPLE RANDOM SAMPLING
- MoST EASILY UNDERSTOOD BY PUBLIC
- LESS CONVENIENT AND LESS PRECISE

o STRATIFIED RANDOM SAMPLING

- ADMINISTRATIVE CONVENIENCE OF DIVIDING THE
WORK BETWEEN SEVERAL INDIVIDUALS OR FIELD
OFFICES

- ABILITY TO ACHIEVE KNOWN PRECISION FOR SUB-
DIVISIONS OF THE POPULATION

- INCREASED PRECISION

o SYSTEMATIC RANDOM SAMPLING

- EASIER TO DRAW SAMPLES AND EXECUTE WITHOUT
MISTAKES

- SOMETIMES CONSIDERABLY MORE PRECISE THAN
STRATIFIED RANDOM SAMPLING

- AvoID SIX SCAN LINE NOISE BY SELECTING LINE
AND COLUMN INTERVALS FOR SAMPLING AS RELATIVELY
PRIME TO O AS POSSIBLE
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SAMPLE S1ZEs

o SAMPLES CAN BE TAKEN EITHER AS SEGMENTS (BLOCKS
OF AREA SUCH AS 5Xb6 NM) OR AS INDIVIDUAL PIXELS.

o SYSTEMATIC SAMPLES OF PIXELS DISTRIBUTED THROUGHOUT
A COUNTY HAVE BEEN SHOWN TO PRODUCE ACCURATE AND
PRECISE AREA ESTIMATES.,

o PIXELS ARE NOT ALWAYS APPROPRIATE; FOR EXAMPLE,
INDIVIDUAL PIXELS USED AS TRAINING FIELDS ARE IN-
FEASIBLE.

MMM KM MMM NN
MU M KN MMM KN
MMM MMM MM N X
MoK MM KM XXX
MoMoM MMM MMM N
MM X M MMM MK N
MM R X K MM MMM

R I R T I
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C. STRATIFICATION

STRATIFICATION FROM THE STATISTICAL VIEWPOINT:

~ DiIvISION OF THE POPULATION OF INTEREST
INTO RELATIVELY HOMOGENEOUS SUBGROUPS
(STRATA) .

STRATIFICATION FROM THE REMOTE SENSING VIEWPOINT:

DIVISION OF THE SCENE INTO SUBGROUPS WHICH
ARE RELATIVELY HOMOGENEOUS SPECTRALLY,

USED TO PERMIT TRAINING STATISTICS DEVELOPED
FOR ONE PORTION OF THE SCENE TO BE SUCCESS-
FULLY USED TO CLASSIFY OTHER AREAS IN THE
SCENE.,

THE TRAINING STATISTICS MUST ADEQUATELY
REPRESENT THE VARIABILITY IN THE AREA TO
BE CLASSIFIED.

FACTORS WHICH MAY CONTRIBUTE TO THE DEFINITION
OF STRATA INCLUDE SOIL TYPE, ATMOSPHERIC
CONDITIONS, LAND USE, AND CROPS PRESENT,

STRATIFICATION FROM THE SAMPLING VIEWPOINT

- ALLOCATION OF AREAS TO BE CLASSIFIED FOR AN
ESTIMATION PROBLEM IS DONE ACCORDING TO THE
PROPORTION OF A CROP HISTORICALLY PRESENT,

- THIS MAY NOT BE REALLY NECESSARY FOR ACCURATE
AND PRECISE ESTIMATES IF A GOOD TRAINING SET
IS FOUND.
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DATA PREPROCESSING

(¢}

o

TECHNIQUES

- GEOMETRIC CORRECTION

- MULTITEMPORAL REGISTRATION
- ANCILLARY DATA REGISTRATION
- RADIOMETRIC CORRECTION

BAsIs FOR SELECTION AND USE OF TECHNIQUES
GeoMeTRIC CORRECTION

- REQUIRED FOR MAP PREPARATION

- HELPFUL FOR INTERFACING WITH DATA

MULTITEMPORAL REGISTRATION

- REQUIRED IF SINGLE DATE IS INADEQUATE TO
ACHIEVE REQUIRED ACCURACY

- REQUIRED FOR CHANGE DETECTION

ANCILLARY DATA REGISTRATION
- HELPFUL FOR INTERFACING WITH DATA
- MAY BE USED AS A FEATURE FOR CLASSIFICATION
- MAY BE USED TO TABULATE CLASSIFICATION
RESULTS FOR SPECIFIED AREAS
RADIOMETRIC CORRECTION

- REQUIRED IF COMPARISONS OF RESPONSE FROM
TIME TO TIME OR PLACE TO PLACE ARE NEEDED
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DATA ANALYSIS

o RELATION OF DATA ACQUISITION, SAMPLE DESIGN, AND
PREPROCESSING TO ANALYSIS

o THE FOLLOWING POINTS MUST BE CONSIDERED IN
SELECTING AN ANALYSIS PROCEDURE:
- SCANNER TYPE OR RESOLUTION
-~ QUALITY oF MSS pATA
- QUANTITY (VOLUME) OF DATA
- AVAILABILITY AND QUALITY OF REFERENCE DATA

= RESOURCES AVAILABLE IN TERMS OF PERSONNEL
AND COMPUTER TIME

= SKILL AND EXPERIENCE OF PERSONNEL
~ PREPROCESSING TECHNIQUES
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SCANNER TYPE OR RESOLUTION MAY INFLUENCE
- METHOD OF OBTAINING TRAINING SAMPLES
AND CALCULATING STATISTICS
=~ CLASSIFIER

EXAMPLES

- SUPERVISED CLASSIFICATION IS EASIER
WITH AIRCRAFT DATA THAN WITH LANDSAT
DATA BECAUSE TRAINING FIELDS ARE
GENERALLY LARGER AND EASIER TO FIND.,

- AN ECHO CLASSIFIER WILL GIVE GREATER
BENEFITS OVER A POINT CLASSIFIER IN
AREAS WITH LARGER OBJECTS.
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o SPECIAL ANALYSIS PROCEDURES MAY BE REQUIRED
TO OFFSET POOR DATA QUALITY

o EXAMPLES:

- IF MULTITEMPORAL DATA IS AVAILABLE WHERE
CLOUDS DO NOT OCCUR IN THE SAME LOCATION
ON BOTH DATES, MULTITEMPORAL ANALYSIS OR
THE USE OF A LAYERED CLASSIFIER CAN OVER-
COME CLOUD PROBLEMS.,

- DBAD DATA LINES CAN BE "“REMOVED” BY THE SAME
TECHNIQUES,
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o THE QUANTITY (VOLUME) OF DATA HAS GREAT IMPACT
ON THE COSTS OF ANALYSIS IN TERMS OF PERSONNEL
AND COMPUTER TIME. THIS EFFECT CAN BE MITIGATED
BY JUDICIOUS CHOICE OF ANALYSIS PROCEDURES,

o ExAMPLES:

- SUPERVISED TRAINING ON LANDSAT DATA CAN BE
MORE COSTLY AND DIFFICULT THAN UNSUPERVISED
TRAINING DEPENDING ON THE AREA OF INTEREST
AND THE REFERENCE DATA AVAILABLE,

= TRAINING SAMPLES CAN BE USED TO ACCURATELY
CLASSIFY LARGE AREAS IF THEY ARE GEOGRAPH-
ICALLY DISPERSED TO REPRESENT THE SPECTRAL
VARIATION IN EACH COVER TYPE,
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o THE AVAILABILITY AND QUALITY OF REFERENCE DATA
AFFECTS THE QUALITY OF TRAINING STATISTICS.

STATISTICS OBTAINED FROM A SMALL AREA
WILL NOT PRODUCE AS ACCURATE A CLASSI-
FICATION AS THOSE OBTAINED FROM GEO-
GRAPHICALLY DISPERSED SAMPLES,

GIGO, 1.E. IF THE REFERENCE DATA CONTAINS
MISTAKES, THE CLASSIFICATION WILL MAKE
MORE MISTAKES.

IF THE REFERENCE DATA IS OLDER THAN THE
DATA TO BE CLASSIFIED, CHANGES IN THE
SCENE WILL CAUSE ERRORS TO OCCUR.
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o PREPROCESSING TECHNIQUES WITH APPROPRIATE ANALYSIS
PROCEDURES CAN AID IN CLASSIFICATION BY:

- INCREASING SPECTRAL DISCRIMINABILITY THROUGH
THE USE OF MULTITEMPORAL DATA.

- INCREASING THE AREA THAT CAN BE ACCURATELY

CLASSIFIED WITH THE SAME TRAINING SET BY
USING RADIOMETRIC CORRECTIONS,
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DEFINITIONS OF STATISTICAL TERMS

o ACCURACY

= LOW ERROR RATE

= UNBIASEDNESS

LET X BE AN ESTIMATE FOUND FROM A
SAMPLE. THE EXPECTED VALUE OF X IS

E(XX) = £ R P(X=R)
R

WHERE THE SUM EXTENDS OF ALL POSSIBLE
VALUES R OF X.

X WILL BE unBIASED IF E(X) 1s EQUAL
TO THE QUANTITY BEING ESTIMATED.

o PRECISION

Low VARIANCE

V0 = EL(xE[N)Y
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o [LLUSTRATIONS OF PRECISION AND ACCURACY

/
VS

/

[

%

ACCURATE
NoT PRECISE

X

NoT ACCURATE
NoT PRECISE

\
i
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NOT ACCURATE (BIASED)
PRECISE

ACCURATE
PRECISE



As RELATED TO REMOTE SENSING:

o PRECISION

- DOES NOT ALWAYS NEED TO BE
CONSIDERED

- NEEDS TO BE CONSIDERED WHEN
A SAMPLE IS TAKEN FOR AREA
ESTIMATE

o  ACCURACY

- ALWAYS NEEDS TO BE CONSIDERED
=~ ASSESS WITH TEST FIELDS
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IMPACT oF OBJECTIVE oON EVALUATION

o Map oF Cover TYPES

= FEW ERRORS IN IDENTIFICATION AND
LOCATION

= EVALUATE ERROR RATE

o AREA OR PROPORTION ESTIMATION

= UNBIASED ESTIMATES
= PRECISE ESTIMATES

- CLASSIFICATION MUST ALSO BE ACCURATE
IN THE SENSE OF “LOW ERROR RATE”
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AssesSING CLASSIFICATION AND MAP ACCURACY

o COMPLETE EVALUATION OF SCENE

- REQUIRES "WALL-TO-WALL"” "GROUND-
TRUTH"” WHICH IS RARELY AVAILABLE

- IF IT IS AVAILABLE, WHY IS THE
AREA BEING MAPPED?

© AGE OF REFERENCE DATA

© SCALE OR TYPE OF REFERENCE
DATA
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AsSESSING CLASSIFICATION AND MAP AcCCURACY

o EVALUATION OF SAMPLE OF SCENE
- TWO TYPES ARE COMMONLY USED:

o TRAINING SAMPLES (FIELDS)
o TEST SAMPLES (FIELDS)
o TRAINING SAMPLES

- ARE USUALLY AVAILABLE

= GIVE A BIASED ESTIMATE OF ACCURACY



AssesSING CLASSIFICATION AND MAP AcCCURACY

o TEST SAMPLES CAN FORM A BASE FOR
STATISTICAL EVALUATION IF:

= TEST SAMPLE IS OF SUFFICIENT
SIZE

= TEST SAMPLE REPRESENTS ALL VARIA-
TION PRESENT IN AREA

= PROBABILITY SAMPLING IS USED
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MeTHODS OF CHOOSING TEST SAMPLES

o ANALYST SELECTED

o RANDOM SELECTION OF TEST SAMPLES

- TEST AREAS OR SECTIONS
- HOMOGENEOUS CELLS
- GRID INTERSECTIONS

Th7-8



ANALYST SeELECTED TeST FIELDS

o “HALF TRAIN, HALF TEST”
o "TYPICAL" SET
o "RANGE OF VARIATION"

ANALYST SELECTED TEST SETS HAVE INHERENT BIAS.
CARE MUST BE TAKEN TO ENABLE SUCH TEST SETS TO BE USED
IN CALCULATING CONFIDENCE INTERVALS AND IN STATISTICAL
TESTS.,



RANDOM SELECTION OF TEST SAMPLES

o TEST AREAS OR SECTIONS
-  PROCEDURE:

1. THE AREA FOR WHICH REFERENCE DATA IS
AVAILABLE 1S DIVIDED INTO SUBAREAS,
SAY SECTIONS.

2. A RANDOM SAMPLE OF THE SECTIONS IS
CHOSEN,

3, ALL FIELDS IN THE SECTIONS ARE USED
AS TEST FIELDS.

- A FORM OF "CLUSTER SAMPLING”

- ExampLe: CITARS

hZ-10
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RANDOM SELECTION OF TEST SAMPLES

o TEST AREAS OR SECTIONS

- ADVANTAGES:

SAMPLING SCHEME IS EASY TO SET UP AND
CARRY OUT, GROUND CHECKING OR PHOTO-
INTERPRETATION CAN BE USED EFFECTIVELY.

- DISADVANTAGES:

IF THE SECTIONS ARE LARGE RELATIVE TO
THE ENTIRE AREA, THE TEST SET MAY NOT
BE REPRESENTATIVE.

rha- 12



RANDOM SELECTION OF TEST SAMPLES

o HOMOGENEOUS CELLS
- PROCEDURE:

1. A GRID IS ALIGNED OVER THE ENTIRE AREA,
WITH EACH BLOCK IN THE GRID AS ONE
SAMPLE UNIT.

2. A RANDOM SAMPLE OF BLOCKS IS CHOSEN.

3, EACH BLOCK IN THE SAMPLE IS IDENTIFIED;
NON-HOMOGENEOUS BLOCKS ARE REMOVED,

- ExAMPLES: ‘FORESTRY APPLICATIONS
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SYSTEMATIC

1. SimpLE 2,

3,

STRATIFIED SIMPLE

4,

5. ANALYST SELECTED

Thi—
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RANDOM SELECTION OF TEST SAMPLES

o HOMOGENEOUS CELLS

-  ADVANTAGES:

SAMPLES ARE UNBIASED, REPRESENTATIVE, AND
HOMOGENEOUS .

- DiISADVANTAGES:

TEST SAMPLE SELECTION AND LABELLING MORE
DIFFICULT AND TIME CONSUMING. THE REQUIRE-
MENT FOR HOMOGENEITY OF A BLOCK REDUCES THE
SAMPLE SIZE.

Thz- 15



RANDOM SELECTION OF TEST SAMPLES

o GRID INTERSECTIONS

- PROCEDURE:

1. A GRID IS PLACED OVER THE AREA FOR
WHICH REFERENCE DATA IS AVAILABLE.

2. A RANDOM SAMPLE OF THE GRID INTER-
SECTIONS IS CHOSEN,

3, EACH GRID INTERSECTION IS LABELLED,
USING ADDITIONAL INFORMATION FROM
THE SURROUNDING POINTS,

- ExampLe: LACIE PHase III

7h 416



RANDOM SELECTION OF TEST SAMPLES

o GRID INTERSECTIONS

- ADVANTAGES:

GREATER RELIABILITY OF IDENTIFICATION BY
USE OF SURROUNDING PIXELS. SAMPLES ARE
UNBIASED AND REPRESENTATIVE. THERE IS NO
RESTRICTION ON OBJECT SIZE.

- DISADVANTAGES:

ACTUAL NUMBER OF POINTS IN SAMPLE IS SMALL.

THIS PROCEDURE CAN BE TIME CONSUMING. QUES-
TIONS CAN ARISE CONCERNING MIXTURE OR BOUND-.

ARY PIXELS.
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IMPACT oF REFERENCE DATA
QUALITY ON ACCURACY

o INACCURATE REFERENCE DATA WILL LEAD TO ERRORS
IN MEASURING CLASSIFICATION ACCURACY.

o ERRORS IN REFERENCE DATA MAY EXIST DUE TO:

- AGE OF THE REFERENCE DATA RELATIVE TO THE
MSS paTA,

- THE METHOD OF OBTAINING “GROUND TRUTH".

- PHOTO-INTERPRETATION
- IMAGE INTERPRETATION, OR
- GROUND CHECKING.,
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o

IMPACT oF REFeReENCE DATA QuaLiTy
ON ACCURACY

THE REFERENCE DATA MAY BE FROM THE PROPER DATA
AND HAVE NO ERRORS IN IDENTIFICATION BUT STILL
BE OF POOR QUALITY,

THE GEOGRAPHIC LOCATION AND DISPERSION OF REFER-
ENCE MAY LIMIT ITS USEFULNESS IN ASSESSING ACCURACY,

7hi- 19



TEST CLASS PERFORMANCE

CLASSIFIED AS:

TOTAL CORN SOYBEANS OTHER
CORN 981 853 9 119
SOYBEANS 893 y 876 13
OTHER 1397 296 93 1008

AVERAGE PERFORMANCE: 85.8
OVERALL PERFORMANCE: 83.7

PERFORMANCE:  CORN 853/981 = 8&7.C
| SOYBEANS  876/893 = 98,1
OTHER 1008/1397 =

72.2

7h%-5q



CONFIDENCE INTERVALS FOR CLASSIFICATION ACCURACIES
Accuracy P 1S DISTRIBUTED BINOMIALLY, AS A PIXEL IS
EITHER CORRECTLY OR INCORRECTLY CLASSIFIED,

PT = ARCSINYP IS DISTRIBUTED NORMAL WITH A STANDARD
DEVIATION SP ={821/N , WHERE N IS THE NUMBER OF
OBSERVATIONS,

A 957 CONFIDENCE INTERVAL FOR PT IS

CPr-te 0,055 # Pr* e 0,055 )

A 957 CONFIDENCE INTERVAL FOR P 1s

([SIN(Pr-to g 05Sp)1 % ISINCP #t,, o (5S.)1)

7Thi-21



ExAMPLE OF AccuracYy CONFIDENCE INTERVAL

OveraLL PERFORMANCE 83.7
BASED ON 3271 TEST PIXELS

P=0.837

= ARCSIN Y P = 66,19
WITH A STANDARD DEVIATION ~/821/3271 = (0,501

Py

A 957 CONFIDENCE INTERVAL FOR PT IS

(66,19-(1.96)0,501,66,19+(1,96)0,501)
(65,22 , 67.17)

A 957 CONFIDENCE INTERVAL FOR P 1Is

( 82,4, 84,9)
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ANALYSIS OF VARIANCE

- A PROCEDURE FOR PARTITIONING THE TOTAL VARIATION IN
A SET OF DATA ACCORDING TO THE VARIOUS SOURCES OF
VARIATION PRESENT,

*8 . .0

(DISINTEGRATION TIME)

A B C D
(TYPE)

1-
™3
v

Thi-23



DF:

EX:

o
-~

SST = SSM + SSB + SSE

24 =1 + 3 + 20
(SST-SSM) = SSB + SSE
1141,0-1027.0 = 46,5 + 67.5

114,0 = 46.5 + 67.5

Thav oy

e

v



ANOVA

SOURCE

BETWEEN
WITHIN

ToTAL

F(3,20,.

FSS 1s F
3 46,5 15.5 4.6
2 6.5 3.4
23 114.,0
05) = 3.1

AssumpTIONS FOR ANOVA

- NORMALITY OF THE OBSERVATIONS

- HOMOGENEITY OF THE VARIANCES OF THE
SUB~-POPULATIONS

- No RESTRICTIONS ON RANDOMIZATION IN THE
DESIGN
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April 13, 1978

The following material has been taken from:

Landgrebe, D. A, 1976. Final Report,
NASA Contract NAS9-14016. Laboratory
for Applications of Remote Sensing,
Purdue University, West Lafayette,
Indiana 47906 (NAS9-14016, T-1039,
MA-129TA).

Major contributors to this section were J. Berkebile, presently with the
Indiana Department of Natural Resources, and R. Mroczynski, of LARS.

Evaluation of Classification Accuracy

The objective of this task was to develop procedures to statistically
evaluate the accuracy of computer-assisted LANDSAT classifications. Results
reported in "Analysis of Aircraft MSS Data for Timber Evaluation" (Mroczynski,
et.al., 1976), and in the FAP final report for CY75 indicate the suitability
of statistical evaluation of classification accuracy for large geographic
areas. A necessary requirement for performing this evaluation is that the
analyst have good ground reference data available. Without current ground
reference data, either aerial photographs and/or detailed ground cover maps,
the evaluation cannot be as meaningful.

Unfortunately, our experience has been that accurate ground information
is not always available for forested test sites. Forest type maps generally
indicate the age, size and merchantable status of a forest stand. These qua-
lities may not relate to the stands spectral characteristics which are the
basis for the statistical evaluation, so therefore may or may not be meaning-
ful ground reference information.

Providing suitable ground reference information is available, a syste-
matic sample grid can be aligned with the classification. The analyst then
interprets these fields with the aid of the ground reference information.
When the fields have been interpreted, various statistical tests can be
applied to the results and inferences can be drawn about the classification
accuracy for the entire site. This section will emphasize the statistical
test procedures.

Figure 2.7-1 outlines the steps in the statistical evaluation procedure.
An underlying assumption in this figure is that there exists a well-defined
analysis objective. After obtaining the preliminary classification, the ana-
lyst should question how well it meets the analysis objectives. If the ana-
lyst is confident in his results there may be no need for further evaluation.
Undoubtedly, the data analyst is not the ultimate user of the classification
information. The statistical evaluation may be used to capture the user's
confidence and therefore may be performed even if the analyst was confident
in his results.

7h % 2



The essential steps in the evaluation are:
-- List the cover types to be tested

-- Locate potential test fields by systematic sampling
with random start

~- Interpret and label the acceptable test fields

-~ Perform the analysis of variance (including in-
vestigation of interaction for 2-factor Analysis
of Variance) and range test calculations.

The tables which follow illustrate the Analysis of Variance procedures
and are set up in the general form of 1) verbal description of step, and 2)
numerical example. These tables are applicable in any situation by substi-
tuting values and performing the new evaluations based on the new values.

Analysis of Variance Tests

Remote sensing MSS data are fundamentally binomial in nature. Pixels
in computer classifications are either identified correctly or incorrectly,
hence their binomial distribution. As a result, the arcsin 4/p transformation
should be applied since, according to Steele and Torrie (1960):

"The data can be transformed or measured on a new scale of
measurement so that the transformed data are approximately
normally distributed. Such transformations are also in-
tended to make the means and variances independent, with
the resulting variances homogeneous. This result is not
always attained."

The importance of making the means and variances independent and the variances
homogeneous is tied into the fact that these basic assumptions are made when
performing an analysis of variance.

Regarding the effect of sample size upon homogeneity of variances, we
recommend that at least 50 to 100 observations (one pixel = one observation)
be obtained for each cover type to be tested. This removes the need for ap-
plication of corrections to small sample sizes (50) as recommended by Snedecor
and Cochran (1967). For sample sizes ranging from 50 to 1000, the compari-
sons among the percentage accuracy of cover type identification may be some-
what influenced by unequal variances. But for most studies an adjustment or
weighting by the actual sample size is very seldom needed to obtain reason-
ably good comparisons. Especially if the range is from 100 to 500 samples,
the assumption of homogeneity of variances is not usually violated enough
to warrant a weighted transformation before running an ANOVA.

The main advantages of the angular (arcsin.{§3 transformation are that
the error variance of the resulting observations (in degrees) is approxi-
mately constant, has infinity degrees of freedom (= df), and is equal to
821/n ("n"; sample size). The transformation is used as the unbiased esti-
mator of the mean square error. Since sample sizes will vary among cover

Th3< 5



types, the harmonic mean (Table 2.7-7) which averages the different numbers
of obsegvations per accuracy mean, should be used according to Steele and
Torrie.

Two analyses of variance which will be encountered most often in LANDSAT
applications are: 1) one-factor ANOVA, and 2) two-factor ANOVA. The one-
factor ANOVA would be used to test for significant differences among cover
types of a single classification or among overall accuracies of different
classifications of the same data (e.g., wavelength band studies). The model
for the one-way ANOVA (assuming transformed accuracy means) is:

Yi =u + Ci + E(1)
where
Yi = the overall accuracy (in degrees) of the ith classification
or cover type
B = true overall accuracy mean
Ci = effect of the ith classification or cover type
E(i) = random error of the ith classification or cover type

The best estimator of E(1) is assumed to 821/n (n = harmonic mean of sample
sizes). This estimator is used as the mean square error (denominator, with
infinity degrees of freedom) in the F test for significant variation (Tables
2.7-2 and 2.7-3).

A two-factor analysis of variance would entail testing for significant
differences among different classifications of the same data set (e.g., wave-
length band studies) and, at the same time, among cover types in the same
data set. Thus, both factors (classification and cover type) are tested
simultaneously. The model for a two-factor ANOVA is:

Yij =u+c, 4+ Tj + C'rij + E(ij)
where

Yij = classification accygacy (in degrees) of the ith classi-
fication for the j cover type

u = true overall accuracy mean

Ci = effect of the ith classification

Tj = effect of the jth cover type

CTij = effect oftﬁhe interaction between the ith classification

and the jJ cover type
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E(ij) = random error, which is normally and independently
distributed with mean = 0 and variance - ©

If the interaction effect, CT,.,, is found to be nonsignificant, E(ij) (which
equals 821/n) provides the erfdr mean square for the denominator of the F
test. Again, it has infinity degrees freedom, thereby enabling a powerful

F test.

Since interaction can occur between classifications and cover types,
the interaction must be investigated to determine whether it is a "signi-
ficant" source of variation. Essentially, an attempt is being made to find
the best estimator of the error mean square for the F test. The interaction
investigation proceeds as follows (and Table 2.7-6):

A) If (CT,,/df)/821/n) is not significant at o = .25 (F test),
conclu&é there is no significant interaction and use 821/n
for all F tests.

B) 1If it is significant at the .25 level, this may be due to
the 821/n being too small because error other than binomial
to normal is not included in 821/n. Hence, obtain the mean
square for non-additivity with one degree of freedom from
Anderson and McLean (1974).

1) 1If the residual mean square is not significantly
different at a = .25, using 821/n as the denomi-
nator in the F, then use 821/n with infinity df
for all tests.

2) If the residual mean square is significant at
o = .25, use the residual mean square for all
tests. This mean square has finite degrees free-
dom and provides a less powerful test than 821/n
with infinity df.

The Newman-Keuls Range Test is an appropriate test for discerning which

accuracy means are significantly different (Table 2.7-7). For this and pre-
ceding ANOVA's, we recommend that the level of significance be set at 90%
(0.1 alpha). Thus, the tests will be quite "liberal" in the sense that if any
significant differences exist, they will probably be detected. Theoretically,
this means that the beta (B) error is made low (error of not detecting a sig-
nificant difference when it truly exists) at the expense of raising the alpha
error (error of denoting significant differences when not truly present).

Test

The one-factor analysis of variance test was applied to results obtained
for the Sam Houston National Forest. Table 2.7-8 shows the calculations and
the Newman Keuls Range Test for five different cover types. The conclusions
drawn from this test is that at the 907 level there is no significant difference
between classes one and four, or non-forest and pine. In other words, these
classes would be difficult to separate, whereas the remaining classes would be
more easily separable. However, the percent of the pixels correctly identified
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in each class is not high. One would expect better accuracy results consi-
dering the species composition of the area.

What this example typifies is a situation where sufficient ground ref-
erence data were not available for the analyst's evaluation. Given the in-
formation that was available only a limited number of systematic fields could
be evaluated as indicated by the small number of pixels in each class. If a
complete set of aerial photographs were available for the entire Sam Houston
Test Site, the results of the statistical evaluation might be different.

REFERENCES

1. Snedocor, G. W. and Cochran, W. G. 1967. Statistical Methods,
Chapter 11. Ames: Iowa State University Press, 593 pp.

2. Steele, R. G., and Torrie, J. H. 1960. Principles and Pfocedures
of Statistics, Chapters 8 and 13. New York: McGraw-Hill, Inc.,

481 pp.

3. Anderson, V. L., and McLean, R. A. 1974. Design of Experiments:
A Realistic Approach, Chapter 2. New York: Marcel Dekker, Inc.,

418 pp.
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Table 2.7-2 One-factor analysis of varilance and Newman-Keuls Range Test,

three different cover types from the same computer classifi-

cation.
PROCEDURE EXAMPLE
Apply arcsin Vp COVER TYPE NUMBER OF PIXELS ACCURACY (%) TRANSFORMATION
transformation to Agricultural (A) 150 88.7 70.3
cover type classifi- Forest (F) 70 81.4 64.5
cation accuracies Water (W) 80 98.8 83.6
Calculate cover type SST = [(70.3)2 + (64, 5)2 &+ 83 6)%»1
sum of squares [(70.3 + 64.5 + 83. 6)
= 191.9
Determine cover Mean Square {(i.e., MST) - SST/ (Number of means -1)
type mean square M, = 191.9/2 = 96.0
. +*:

Calculate F test A) F = 96.0/ [821/89.77) = 10.5 (significant)
and determine
whether significant B) Tabular F *+ o 2.20

(90% level, d - 0 1)
Arrange transformed W) (a) (F)
means in descending 83.6 70.3 64.5
order
Calculate standard = Verror mean square/number obs. per mean
error of mean = V[821/89. ﬂ /1

= 3.03

Determine tabular Number-of-means range = (Studentized Range (df-oo)*)(sy) 2 3

ranges (Newman-
Keuls Range Test)

Ry = (2.902)(3.03) = 8.8

.05=2.772 3.314
= (2.326)(3.03) = 7.0 05=2.772 3.3

a = 0.1

Draw bars between
means with ranges
less than the
corresponding
tabular ranges

(W) (A) (F)
83.6 70.3 64.5
(Hence, classification accuracy of water is
significantly better than that for agriculture
and forest)

*These values can be found in the Appendices of most scacistics texts,

+0Observations per accuracy mean = 1.

@Number of accuracy means.

**Harmonic mean = number of means/Z(1/cbservations per mean)= 3/(1/150 + 1/70 + 1/80) =~ 85.7.
++Number of accuracy means -1 = degrees freedom.
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Table 2.7-3 One-factor analysis of variance and Newman-Keuls Range Test,

three different classifications of same data set.

PROCEDURE

EXAMPLE

Apply arcsinYp
transformation to

overall classifi-
cation accuracies

CLASSIFICATION OVERALL ACCURACY (%) TRANSFORMATION (DEGREES)

1 88.3 70.0
2 80.7 63.9
3 8%.7 76.3

Calculate
classification
sum of square

55, = [70.002 + (63.9)2 + (11.3)71"-
= [70.0 + 63.9 + 71.3)%/3*]
- 31.2

Determine
classification
mean square

Mean Square (i.e., MS.) = Sum square (i.e., $S.)/ (Number of
means -1)
MS. = 31.2/2 = 15.6

Calculate F test and
determine whether
significant

A) F = 15.6/ (821/300@) = 5.7 (significant)
B) TABULAR F++= 2.30
(2 ]

(90%)

Arrange transformed
means in descending
order

» @ @
71.3  70.0 63.9

Calculate standard
error of mean

Sy = “Verror mean s uare/number observations per mean
= "V[B21/300 @i /1

= 1.65

Determine tabular
ranges

Number-of-means range = (Studentized range)(df_oo)(sy)

(90%) R, = (2.902)(1.65) = 4.8
R, = (2.326)(1.65)= 3.8

Draw bars between
means with ranges
less than the corre-
sponding tabular
ranges

3 W (2)
71.3 70.0 63.9

(Hence, the second classification is significantly
different from the first and third.)

*Observations per accuracy mean = 1,

+Number of accuracy means.

@There are 300 test pixels (observations).
+tlusber of accuracy means -1 = degrees freedom.
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Table 2.7-4" Arcsinﬁrﬁ transformation of classification results.

This

transformation changes the binomial nature of these values
(pixels are correctly or incorrectly identified) to a new
scale of measurement so that the assumptions necessary for

analysis of variance can be made.

The transformed data

should be approximately normally distributed, means and
variances independent, and the resulting variances homoge-

neous (4).
NUMBFR OF PERCENTAGE COR- ARCSIN Vﬁ
CLASSIPICATION COVER
TYPE | OBSERVATIONS | RECT CLASSIFICA= | (degrees)
TION, p
Agriculture (A) 150 86.7 8.6
1 Porest (F) 70 85.7 67.8
Water (W) 80 93.7 75'5
Agriculture 150 80.0 63.4
2 Forest 70 74,2 59.5
Water 80 87.5 69,3
Agriculture 150 88.6 70.3
3 Porest 70 81.5 64,5
Water 8o 98.8 83.6
Table 2.7-5 Calculation of sums of squares.
CALCULATION
CATEGORY CALCULATION
*
Correction CT = (68.6 + 67.8 +...+83.6) 2/9
term, C.T. = 43,056.3
Classification S, = [(68.6 + 67.8 + 75.5)2 + (63.4 + 59.5 + 69.3)% +
(70.3 + 64.5 + 83.6)F3* - c.T.
= 124.0
Cover type ssy = [(68.6 + 63.4 + 70.3)? +)és7.a + 59.5 + 64.5)2 +
(75.5 + 69.3 + 83.6) ¥/ - C.T. -
= 236.7
Total SSqor = [(68.6)2 + (67.8)2 +...+ (83.6)2] -c.T.
= 43,456.9 - 43,056.3
= 400.6
Interaction SSINT/ER = SSTOT - ( SST + 5S¢)
and/or = 400.6 - (236.7 + 124.0)
error "= 39.9
Set up ANOVA source of degrees of sum of mean
table variation freedom (df) squares (SS) square (SS/df)
Classifi- (Classifications 124.0 62.0
cation -1) =2
Cover type |(Cover types =1) 236.7 118.4
. -2
Interation 8-(2+2) =
and/or error 4 39.9 10.0
TOTAL Accuracy means-1
= 8 400.6

* Number of means {cells).
+ Number of cover types.
@ Number of classifications.
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Table 2.7-6 Investigation of Interaction.

PROCEDURE EXAMPLE

*
A) Test for significance (75% level,” F = Interaction and/or error mean square/[821/n_]

of interaction- «= .25) = 39.9/[821/89.7]

STOP HERE if not = 4,3 (significant)

significant-use

821/n for all tests tabular F’&twa 1%

B) Obtain the mean square 1) Produce following tables

for Non-additivity COVER TYPES 04 | ROW Mrrdi- (RCA MaAN~-

fren | degree of CATEGORY %G FOR _ VAT MEANS | OVERALL MEAN | OVERALL MEAN)Z
c1, 1 68,6 67.8 75.5 70,63 1,56 2,13
Cl, 2 63.4 59.5 69,3 b4, 07 ~5.10 26,01
Cl, 3 70,3 64,5 H83.6 72,80 3.63 13,18
Col, x 57,43 63,93 76,17 = Z= 41,32
Col, X- x = 69.17
overall x-1,74 -5,24 6,96

(")¢  [3.03 27,46 48,44 == 78,93

2) Calculate mean square (i.e,, sum of aquares/1)=
[(68.6)(1.46) (=1,74)+(67.8)(1.46)(~5.24)+(75.5 ) (1.46)(6.96)+
(63.4)(=5,1)(=1.74)+(59.5)(~5.1) (=5.24)(69.3)(~5.1)(6.96 )+
(70.3)(3.63)(=1.74)+(64.5)(3,63) (=5.24)+(83.6)(3.63) (6.96)] 2/
(u1 032)(78o93) = 13-81

B1) Test residual mean 1) MS = Interaction and/or Error SS - Non-additivity Ms/
N res
square for signif- residual degrees freedom
icance- STOP HERE =[39.9- 13.81] /3
if not significant- = 8,7
use 821/1\ for all 2) P= 8.7/[821/11*] (75% 1ele)
tests = 8.7/9.2

= 0,9% (not significant)
tabular l"‘)@, o= 1.37

B2) Use residual mean

square for all tests Msres = 8,7, df = 30

*Harmonic mean = number of accuracy means/Z(1/observations per mean) = 9/(1/150 + 1/150
+ ...+ 1/80) = 89,7, ’

+Degrees of freedom for interaction and/or error mean square,

@Degrees of freedom for residual sum of squares = degrees freedom for interaction and/or
error S8 - 1, ’
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Table 2.7-7 Tests for significance using best estimator of error
mean square, as determined by investigation of inter-

action.
SOURCE OF DEGRIES OF 3UM OP MFAN P TEST TADULAR P
VARIATION FHREEDOM SQUARES SQUARE ~ (90%)
Classification|(Classificae
tions= 1)= (signif,)
2 124,0 62,0 6.7 Py o 2.0
1
Cover Type (Cover types-
1)m (aignif,)
2 236.7 118.4 [ 12.9 P, & 2.0
2
Error oo o 827/89, 71
= 9,2

*
The residual mean square was found to be nonsignificant, If significant, the
residual mean square would be used in place of 821/n for all tests,

+Hamonic mean,

Table 2.7-8 Newman-Keuls Range Test for classifications and cover types.

Even if only one of two main factors is significant, the means
may be kept separate for the range tests.

PROCEDURE EXAMPLE

Arrange transformed (3-W)* (1-W) (3~A) (2-W) (1-A) (1-F) (3-F) (2-A) (2-F)
means in descending 83.6 75.5 70.3 69.3 68.6 67.8 64.5 63.4 59.5
order

Calculate standard Sy = "Verror mean square/observations per cell
error of mean - 9.2 1 = 3.03
Determine tabulax Number-of-means range = (Studentized range)(df+_‘~)(59)
ranges (90X Rg = (4.037)(3.03) = 12.2
level, Rg = (3.931)(3.03) = 11.9
0.1) Ry = (3.808)(3.03) = 11.5
Rg = (3.661)(3.03) = 11.1
Rg = (3.478)(3.03) = 10.5
Ry = (3.240)(3.03) = 9.8
Ry = (2.902)(3.03) = 8.8
Ry = (2.326)(3.03) = 7.0

Draw bars between
means with ranges 83.6- 75.5 70.3 69.3 68.56 67.8 64.5 63.4 59.5
less than appropriate
tabular ranges

*
Accuracy mean for water of third classification.

*Same degrees freedom as the error (residual) M3, If the residual MS in Table 5 had been
aignificant, the df for Studentized range would be 3,
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Table 2.7-9

PROCEDURE

EXAMPLE

~ apply arcein¥Yp

COVER TYPE NUMBER OF PIXELS ACCURACY (Z)  DEGREES

1 nou-forest 144 69.4 56.42
2 hardwood 56 82.1 64.97
3 mix 72 34,7 36.09
4 pine 348 59.2 50.30
5 dense pine 180 22.2 28.11
ss $S = [(56.42)2 + (64.97)2 + (36.09)2 + (50.30)2 + (28.11)21/1-
((56.42 +...+ 28.11)/5] .
= [3.83.2 + 4221.1 + 1302.5 + 2530.1 + 790.23}/1 - 11,128.8
= 12,027.1 - 11,123.8 = 888.3
MS 898.3/(5~1) = 224.6
F Test F = 224.6/0821/(5/(1/144 + 1/56 + 1/72 + 1/348 + 1/180))]
= 224.6/(821/106.0] '
= 29.0 (significant)
tabular Fj oo = 1.94 (90X level, a = 0.1)
37 s;, -V7.75/1

= 2.78

tabular ranges
(N-K)

Rg = (3.478)(2.78) = 9.67
Ry = (3.240)(2.78) = 9,01
Ry = (2.902)(2.76) = 8.07
Rz = (2.326)(2.73) = 6.47

2 @ ) (3) (5)
66.97 56.42  50.30 36.09 28.11 (0.1 90%)

82.1% 69.4% . 59.27  34.7%  22.2%

A ——

hariwood TCn-ilorest piile mix dense piue
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Purpose OF THE ANALYSIS: To FIND OUT IF THERE IS A
SIGNIFICANT DIFFERENCE IN ACCURACY DUE TO DIFFERENT
METHODS OF CLASSIFICATION,

OVERALL TRANSFORMED

ACCURACY VALUE
METHOD 1 88.3 70,0
METHOD 2 80.7 63.9
METHOD 3 89.7 76.3
SOURCE DF $S M F
MeTHOD 2 31.2 15.6 5.7
ERROR 821/300

wHERE 300 1S THE TOTAL NUMBER OF TEST PIXELS.

F(2,~,,10) = 2,30, sO THERE IS A SIGNIFICANT EFFECT OF
CLASSIFICATION METHOD ON ACCURACY,
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WH1cH METHODS ARE DIFFERENT?

o ARRANGE THE TRANSFORMED MEANS IN DESCENDING ORDER

76.3 70.0 63.9

o CALCULATE THE STANDARD ERROR OF THE MEAN

_ ERROR MEAN SQUARE

S-— - ol = l|65
Y NO. OF OBSERVATIONS

DETERMINE TABULAR RANGES BY THE NEWMAN-KEULS PROCEDURE

CONCLUSION: THE SECOND METHOD OF CLASSIFICATION IS
' SIGNIFICANTLY WORSE THAN THE OTHER TWO, BUT THERE
IS NO SIGNIFICANT DIFFERENCE BETWEEN METHODS 1 AND 3,
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AsSESSING CLASSIFICATION ACCURACY

WiTHOUT TEST SAMPLES

o TRAINING SET ACCURACY

- BIASED

- DOES NOT MEASURE REPRESENTATIVENESS OF
TRAINING

o PROBABILITY OF ERROR OVER THE AREA OF INTEREST

- MAXIMUM LIKELIgOOD GAUSSIAN POINT CLASSIFIER
CALCULATES A X' VALUE AFTER CLASSIFYING A
POINT.,

PR(X>Cy | Xew) = a

IN LARSYS, A CODE IS STORED TO INDICATE THE
VALUE OF o,
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CALCULATION OF PrROPORTION ESTIMATES
“"CLASSIFY AND COUNT”

AN ESTIMATE OF THE PROPORTION OF A CROP IN A COUNTY IS

-

A _ i _ ~
Pi - - = Pr(wl)
N
WHERE
Ni = NUMBER OF PIXELS CLASSIFIED AS CROP i

N = NUMBER OF PIXELS IN SAMPLE

P.(W.) = PROBABILITY THAT A PIXEL IS CLASSIFIED
AS CLASS i

THIS CAN BE REWRITTEN

A

p, =

1

N o

[y PeCi 1My PoG3)

We REALLY WANT TO ESTIMATE P(W;), THE PROBABILITY
THAT A PIXEL BELONGS TO CLASS i |
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"CLAsSIFY AND CounT” METHOD

o ADVANTAGES:

- STRAIGHT FORWARD

- IF A MAP IS REQUIRED, THIS ESTIMATE

IS VERY EASY TO GET AND HAS NO SAMPLING
ERROR, ‘

o DISADVANTAGES:

= BIASED ESTIMATE

- ASSUMES MIXTURE PIXELS ARE CLASSIFIED
INTO THE “PURE"” CLASSES IN THE SAME PRO-
PORTION AS THEY EXIST IN A MIXTURE PIXEL.
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B1Aas CORRECTION

o BIAS IN AREA OR PROPORTION ESTIMATES CAN BE REMOVED
IF CLASSIFICATION ERROR RATES ARE KNOWN,

- CLASSIFICATION OF KNOWN TEST FIELDS PROVIDES
W 0
W [®11 ©12
E=<
0 \ %1 ©2
- IF P DENOTES THE VECTOR OF TRUE PROPORTION,
THEN

A
P=ETP
/\
oRP=EDTP
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FOR A NUMERICAL EXAMPLE, CONSIDER CLoup CounTY, KANSAS
(.85 .15
E= {18 .8
ET - l85 l18
.15 .82

4 (12239 -.2687
ED-1 - (-.2239 l.2687>

~ (38,9
P=161.1

(12239 -.2687) (38.9) (31.2
P=\-2239  1.2687) |61.1) =\68.8

SRS LANDSAT LANDSAT
HARVESTED UNCORRECTED CORRECTED
31.6 38.9 31.2

SOME ADDITIONAL EXAMPLES OF THE BIAS CORRECTION

LANDSAT LANDSAT

COUNTY SRS UNCORRECTED CORRECTED
MONTGOMERY 14,7 34,0 13.8
McPHERSON 44,3 44.9 44,8
ALLEN 9.6 19.8 11.4
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o THIS TECHNIQUE FOR REMOVING BIAS HAS HAD MIXED RESULTS.

FAVORABLE: LANDSAT CrRoPS - KANSAS
NORTHERN ILLINOIS

UNFAavorABLE: CITARS

WABASH VALLEY
LANDSAT CrROPS - INDIANA

o Keys 10 SuccessruL UsE:

- HieH OVERALL AcCCURACY
- HicH InDIVIDUAL CLASS ACCURACY
- RepPRESENTATIVE TeEST FIELDS

- No EasiLy ConFusep CLASSES
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CALCULATION OF PROPORTION ESTIMATES
“STRATIFIED AREAL ESTIMATE”

ALL PIXELS CLASSIFIED INTO CLASS i ARE CONSIDERED TO
FORM STRATUM i

TEST SAMPLES ARE USED TO FIND

ij ij

WHERE n NUMBER OF TEST SAMPLES IN STRATUM J WHICH

ij
BELONG TO CLASS i
Ny = NUMBER OF TEST SAMPLES IN STRATUM ]

AN ESTIMATE OF THE PROPORTION OF CROP IS

WHERE Nj= NUMBER OF PIXELS CLASSIFIED AS CROP 3]

N = NUMBER OF PIXELS IN AREA

THIS CAN BE REWRITTEN:

~ k
P ) - Z P . A A
1 j=1 r(WiIWj) Pr(Wj)
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"STRATIFIED AREAL ESTIMATE” METHOD

o ADVANTAGES:
- UNBIASED (IF NO ERROR IN TEST SAMPLES)
- RELATIVELY EASY TO OBTAIN

o DISADVANTAGES:

- MUST BE CAREFUL IN SELECTION OF TEST SAMPLES
= ASSUMES TEST SAMPLES ARE PROPORTIONALLY
ALLOCATED TO CLASSES
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CALCULATION OF VARIANCE ESTIMATES

“STRATIFIED AREAL ESTIMATE”

o VARIANCE OF P; FOR PROPORTIONAL ALLOCATION

™M

J

VAR (P,) = %I[ . Pr(wile)[1—Pr<wi|wj)wr<wj)]
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(o]

CALCULATION OF VARIANCE ESTIMATES

As EACH PIXEL IS EITHER CROP i OR NOT, THE BINOMIAL

DISTRIBUTION IS USED TO OBTAIN THE VARIANCE OF THE
BIAS CORRECTED ESTIMATE

V(P,) = Pi(t-Pi) (1-F)

WHERE F IS THE SAMPLING FRACTION.

EMPIRICAL TESTS SHOWED THAT THE BINOMIAL VARIANCE IS
NOT STATISTICALLY DIFFERENT FROM CALCULATED SAMPLE
VARIANCES,

IN SAMPLE FRACTIONS RANGING FROM 3 To 50% THE STANDARD
ERROR OF THE ESTIMATE RANGED FRoM 0.5% To 0,17,
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VARIANCE OF PROPORTION ESTIMATE

CLOUD COUNTY KANSAS

TOTAL WHEAT OTHER
21293 8283 13010
P =(38.9 p =(31.2
- 61.1 68.8
(p) = (31,.2)(68.8) (.9375
P 21293 )
= 0,0945
WHEAT 31.2 + 0.307
OTHER 68.8 + 0.307 %
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AsSESS THE ACCURACY ofF AREA EsTIMATES By
CompARISON To ReEFErRenNcCE DATA

CoMPUTE CORRELATIONS BETWEEN LANDSAT ESTIMATES
AND REFERENCE DATA,

FORMULATE A HYPOTHESIS ABOUT THE LANDSAT ESTIMATES
AND REFERENCE DATA AND TEST THE HYPOTHESIS USING
AN APPROPRIATE SIGNIFICANCE LEVEL (a-LEVEL),

COMPUTE A CONFIDENCE INTERVAL ABOUT THE REFERENCE
DATA ESTIMATE AND SEE WHETHER THE LANDSAT ESTIMATE
FALLS IN THIS INTERVAL OR NOT,
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TesTING HYPOTHESES WiTH REFEReENCE DaTA

HYPOTHESES: Hy: M1 = ¥ (ug-m, = 0)

Hyt ¥ = M,
DaTA: HectArRes oF CorN
CounTy SRS LANDSAT
BLACKFORD 9.3 15.2
DELAWARE 27.2 43,9
FAYETTE 14,5 13.3
HENRY 29.3 23,8
JAY 16.7 30.9
RANDOLPH 28,1 49,0
UNION 13,6 12.4
WAYNE 23.6 23,0
TesT STATISTIC:
_ X _ 6.1 -
= 1.25

ConcLusION: REJECT Hy

T2 52
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[

N =
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CONFIDENCE INTERVALS FOR PROPORTIONS

SupposSe SRS ESTIMATE 1S P = 36.9% WITH A STANDARD
ERROR OF 27%.

Pr(P-19s<p<p+1.96s) =.95
Pr(33.0 < p < 40.8) = ,95

SINCE THE LANDSAT ESTIMATE P = 38.9% FALLS IN THIS

INTERVAL, WE CAN SAY IT IS NOT SIGNIFICANTLY DIFFERENT
N

FROM THE SRS P ESTIMATE AT THE 5% LEVEL.
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FRIDAY
DATA TRANSFORMATION

AND
RESEARCH SURVEY

|. Data Transformation - Philip H. Swain

I1. Research Survey = David A. Landgrebe

Wi 1028
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Reference Papers for Short Course on Advanced Topics in the Analysis of Remote Sensing Data
Friday Session: Data Transformation and Research Survey
Decell, H.P. Jr, J.A. Quirein. (1973) “An Iterative Approach to the Feature Selection Problem”.

Proceedings of 1973 Machine Processing of Remotely Sensed Data Symposium, Purdue University, West
Lafayette, IN, October 16-18, 1973. https://docs.lib.purdue.edu/lars symp/19/.

McMurtry, G.J. (1976) “Canonical Analysis as a Preprocessing and Feature Selection Method for
Multispectral Data”. Presented at Second Workshop on Advanced Automation, University of Maryland,
October 28-29, 1976. (Have pdf but not sure okay to make available online.)
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DATA TRANSFORMATIONS

GEOMETRIC
RECTIFY, ENHANCE OR CHANGE CHARACTERISTICS

RADIOMETRIC
CALIBRATION (RELATIVE, ABSOLUTE)
FEATURE EXTRACTION
DIMENSIONALITY REDUCTION

EXAMPLES
RATIOS
LINEAR AND AFFINE TRANSFORMATIONS



SN

RATIOS

RATIONALE
NORMALIZATION
EMPIRICALLY DETERMINED ENHANCEMENTS

OBJECTIVES
REMOVE NON-TARGET INFLUENCES
ENHANCE IDENTIFYING CHARACTERISTICS
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NormaL|ZATION — EXAMPLE

TARGET PROPERTIES ! P15 Prrs Pn

MEARSURABLE ! 'p;=a(,¢,i:)4>; , L=02,.,nN
UNWANTED COMMON GAIN FACTOR

FEATURES
‘&L*— xi /‘Xm (=1,2,..., h=|
= api/apin
= b /P
depend. on target 01!7 (Nete less of
dimsima.u-(j )

ReMovE CoMMON BIAS BY UMNG DIFFERENCES
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SIMPLIFIED RADIATION TRANSFER HoDE L

Rr,-_ = Ei. Ke; T + by

where

Rr. = radichien redd tn band
R = wradiakion W baud i

T = atwesspheric MnSM|s€}v3{7
b, = backscatter ¢ peth radiance

?( = object reFlec.tiuN-\I w bavd L
ONLY TARGET CHRARACTERISTIC

T#: RS;T‘ % Ry, Tiy, omd b, % b,

+hen: |
Re, ‘Rr,_ _ R Ry T+ by, - PoRs. To = by

Rr, -RG Q’-R%.Tz by = ?‘5 Rﬁggrz B b"s |
g £ fe |
C--Q> |
a “?urdju +mr3&'t chavacterishe

Fre




LINEAR TRANSFORMATIONS

Y=CX

l&": C"‘Xl +C'7—11 + v+ Q‘\Wx_h

"51—‘ CouZ) +Cpa Xy 2+ Cap Xy

YUkh= Gy Ky +Cpp %o + 1 + Gy X,

(C, isa Rxn watriy )

y—axes are vrotated :
X2

AN e
\
}/ ﬁ')
7 I\ \\ Lro'\'u,-t{on y & |

7
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PRINCIPAL COMPONENTS ANALYSIS

APPROACH

- COMPUTE THE SAMPLE COVARIANCE MATRIX FOR THE IMAGE
DATA (BETWEEN CHANNELS)

- FIND THE LINEAR TRANSFORMATION Y = CX SUCH THAT THE
COORDINATE AXES IN THE TRANSFORMED SPACE ARE
" ORTHOGONAL AND THE COVARIANCE MATRIX 1S DIAGONALIZED

COMPUTATION
- AN "EIGENPROBLEM”

= ORDER THE COORDINATES BY DECREASING EIGENVALUE;
DELETE THE LEAST IMPORTANT

APPLICATION

- = EMPHASIZES VARIABILITY AS A MEASURE OF INFORMATION
CONTENT

= NOT SENSITIVE TO APPLICATION-SPECIFIC CHARACTERISTICS



AN ITERATIVE APPROACH TO
FEATURE SELECTION *

IDEALIZED OBJECTIVE: DETERMINE LINEAR TRANSFORMATION
Y = BX FROM N-DIMENSIONAL SPACE TO K-DIMENSIONAL
SPACE TO MINIMIZE PROBABILITY OF ERROR

ALTERNATIVE: OPTIMIZE AN INDIRECT MEASURE OF ERROR
PROBABILITY, SUCH AS AVERAGE PAIRWISE DIVERGENCE
BETWEEN CLASSES

* 4. P, DECELL, J. A, QUEREIN : PROC. SYMP. MACHINE
PROCESSITg %F REMOTELY SENSED DATA, PURDUE UNIV.,
OCTOBER 1973,
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AP\?rvaclq:
w; ~ NW; ;) =), it=t2,..,m

PMC : prbability of misclassification (min.)

Y=8BX: w; ~ N(Bu;, BLy; B")

PMCq > PMC

Feature extraction C‘se(ecl-im”) : For a.givu\
R, find a kxn watrix B of rewke k
Sud{L Hat PMCS = mwn PMC’B

s




“$q>o,m,\allc'+] to be ﬂau'vu;o\ "
let DG, = d(vu%emce. between classes L ¢ )

wm X Space |
'DB(t, &) Jweqm behocen classes Lt | J
| wm " space.
Then . |
. DLL,J ); D‘B (i,d ) \.V"FDTMQ.*!&'V\

D) -Dg (i) ) > (s lost

weasures W t be aa.‘kp( &

classes L
= .o ‘ave.
LQ/‘t _D—— M(M-l) Z' ZI D(“)J) d_{ug_ﬁm
—' d=L+l
B-ave. "
Db' w\cm-\) % 2 > u'J) chrsencc_ ‘
(,s' J.-UH T
Thewn
Prg€D every lex wd'ﬂy B,
: R=}z, 0.

Theorem @ T+ D =D,  then WCB= PMC
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Central Theorem !

() Each kxn watrir of voudk kR 'maximi?:n'«.a |
DB \musf SQ*IS“‘:J

T wA -
(Z=)-c LZ: [sie™- 2.8 (B2:87)’
(%;_BT)](BZ»LBT-)"- ='—(0)
, |
where € = Wowo1)

A T
J=! J
i*i

S;\" = U;-—U&

amd represacts +Re watrix
3 | |

.@_);9_] Let,2,.., R
'© by i=h e, W

| () There exists a kxn wmadvie B of rawk k
which waxwmizes DB'
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Moceduwre :

L For R=1,2,... wnkl (D-Dg) is swall, selve
@?;)-_—. (0) for kxn wetnx B WY'M‘%"“&DB-

2. Plet Dp /D versus k. Select k to $rade
Cmpu-*a:\'iu'n (l'vs dass‘:vffca.ha'v\ ) a?a.uw(' D/DB
(NCSum'a &efaro:h’m-'b- be —aa..\'wﬁd )
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CANONICAL ANALYSIS *

OBJECTIVE:
- DERIVE AN ORTHOGONAL LINEAR TRANSFORMATION TO
MAXIMIZE SEPARABILITY AMONG CATEGORIES IN THE
TRANSFORMED SPACE

- APPLY RESULT TO ACHIEVE DIMENSIONALITY REDUCTION
WITH MINIMUM LOSS OF CLASSIFICATION ACCURACY

AN EIGENVECTOR METHOD WHICH MAXIMIZES DISCRIMINABILITY

* G, J. MC MURTRY: CANONICAL ANALYSIS AS A PREEROCESSING
AND FEATURE SELECTION METHOD FOR MULTISPECTRAL DATA
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Metwod :
1. Cowstrawmd 0"/\ C: Le+t

W (2“ LZ:' (“t")z'(.

(Withm-set covaramce matriy )

Reguire: CW =T
3olve resui-l-h\j e|3em\>m‘\o'9\m.

2. Determine ? based o

— ivhrinsic &\\Menslmdﬂz
—CMf!d'mM demrend

3$ded‘ mewts based. e wax. diagewal
elewmeds -P CACT (variamces of
‘roms formed. veriables ).
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wav NW,E) tehzpn, m S

th U‘ [UI)U‘L)"') Um] ”

o N = we. of cbseryedimmy W c—(&ss L
Lo . Ny O ‘ N2
. | - N= O - . y WN=1
T | LT Om LPw

ol R

I A=U'NUT—‘§|—“-_—(U'!1)(U'VA_)T
, v Py L B

(am ong - classes covariance )

In the Y-space : | S
oWV N[CUg , C2; CT] \=1,2,.., M
avd the amony- class Coueriamee s

CACT,

-~ " EIND wateix C +o ewphasize the diferencs
‘ | awmemgq He ud'eaones.
| Fr~ 14
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A

|CaAL
. Linear classiher

2. Evaluakion of or\glv\al channels

3. ;Dlwewstwalibo reduction
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L e et

ITERATIVE METHOD

NUMERICAL OPTIMIZATION IS COSTLY IN TERMS OF COMPUTATION
OPTIMIZES AN ERROR-RELATED CRITERION

CANONICAL ANALYSIS

EIGENVALUE PROBLEM SOLUTION IS NONITERATIVE
OPTIMIZES A HEURISTIC GOODNESS CRITERION

LEADS TO A LINEAR CLASSIFIER

PROVIDES INFORMATION ABOUT ORIGINAL MEASUREMENTS

BOTH

USEFUL FOR DIMENSIONALITY REDUCTION

RESULT IN NORMALLY DISTRIBUTED VARIATES IF ORIGINAL DATA
WAS NORMALLY DISTRIBUTED
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