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GLOSSARY

ADP — automatic data processing

ASCS — Agricultural Stabilization and Conservation Service
of the U.S. Department of Agriculture

CCT — computer-compatible tape
CIP — crop identification performance, the quantitative
assessment of crop inventories in specified areas using

remote sensing, photointerpretation, and ADP technigques

CITARS — Crop Ildentification Technology Assessment for Remote
Sensing

EOD - Earth Observations Division of the Lyndon B. Johnson
Space Center, NASA

ERIM — Environmental Research Institute of Michigan

ERIPS — Earth Resources Interactive Processing System

ERTS5-1 — the first Earth Resources Technology Satellite, which
was launched in June 1972, orbits the Earth 14 times a day
from an altitude of 915 kilometers and scans the same

scene every 18 days (renamed Landsat-1 in January 1975)

IR — infrared

ISOCLS — Iterative Self-Organizing Clustering System, a com-
puter program developed by the EOD, which uses a cluster-

ing algorithm to group homogeneous spectral data



JSC — Lyndon B. Johnson Space Center, NASA

Landsat-1 — the first Land Satellite launched in June 1972
(formerly called ERTS-1 and renamed in January 1975)

LARS — Laboratory for Applications of Remote Sensing of
Purdue University

LARSYS — a system of classification programs developed at
the LARS

MLA — mean level adjustnment

MSS — multispectral scanner

MSP — multitemporal processing

NASA — National Aercnautics and Space Administration

Pixel — a picture element which refers to one instantaneous
field of view as recorded by the ERT5-1 MSS and covers
the equivalent of 0.44 hectare (1.09 acres)

PSP — preprocessing and standard processing

rms — root mean square

SP — standard processing

USDA — U.S. Department of Agriculture
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1.0 INTRODUCTION

In 1973, the Crop Identification Technology Assessment
for Remote Sensing (CITARS) was undertaken by the Earth
Observations Division (EOD} of the Lyndon B. Johnson Space
Center (JSC) of the National Aeronautics and Space Admini-
stration (NASA), the Environmental Research Institute of
Michigan (ERIM), the Laboratory for Applications of Remote
Sensing of Purdue University (LARS), and the Agricultural
Stabilization and Conservation Service (ASCS) of the U.S.
Department of Agriculture (USDA). The primary goal of this
joint task was to quantify crop identification performances
(CIP's) resulting from the identification of corn, soybeans,
and wheat by remote sensing, using automatic data processing
(ADP) techniques developed at ERIM, LARS, and EOD. The ADP
techniques were automatic in the sense that subjective human
interactions with the classification algorithms were mini-
mized by specifying the steps required for an analyst to
convert a multispectral data tape to a classification result.

The remotely sensed data were acquired by multispectral
scanner (MSS) onboard NASA's Earth Resources Technology Satel-
lite (ERTS-—l)l and high-altitude aircraft. Six 8- by
32-kilometer segments in Illinois and Indiana were selected
for data gathering during six periods from early June
through early September 1973. Concomitantly with the space-
craft and aircraft data, ground truth was acquired by a
combination of ASCS field visits and interpretation of

large-scale aerial photographs. The major crops of corn,

lrhe ERTS-1 was redesignated the first Land Satellite
(Landsat-1) in January 1975 and now bears the name Landsat-1l.



soybeans, and wheat were classified for the six periods
during the growing season for both of the following
conditions:

1. Local recognition: Crop signatures for classifier
training were obtained from the geographic region in
which the crops were identified.

2. Nonlocal recognition: Crop signatures for classifier
training were obtained from a geographic region other
than the one in which the crops were identified.

An additional category "other" was established for the
classification of ground features other than the three major

Crops.

The classification results from the MSS data and ADP
techniques were compared to the ground-truth data to estab-
lish the CIP. The CIP's resulting from several basic types
of ADP techniques were then compared and examined for sig-
nificant differences. Once the CIP was established for
each of the ADP techniques for local and nonlocal recogni-
tion, differences in the performances of these techniques were
examined as functions of geographic location, time of the year,

and other pertinent factors.

This concluding volume of the final report presents the
major results of CITARS and discusses their significance. The
first results from the experiment were described in an earlier
paper {(ref. 1); and the final report, which includes all vol-
umes of the CITARS (ref. 2), contains complete descriptions of

the various aspects of the experiment and their results.



2.0 OBJECTIVES

The overall objective of CITARS was to quantify the

CIP resulting from the remote identification of corn, soy-

beans, and wheat using ADP techniques developed at EOD,

ERIM, and LARS. The ADP techniques were evaluated on this

data set for local and nonlocal recognition. Specific

objectives included performance comparisons to answer the

following questions.

1.

How do corn, soybeans, and wheat CIP's vary with time

during the growing season?

How does the CIP vary among different geographic loca-
tions having different soils, weather, management prac-
tices, crop distributions, and field sizes?

Can statistics acquired from one time or location be

used to identify crops at other locations and/or times?

How much variation in CIP is observed among different

data analysis techniques?

Does use of radiometric preprocessing extend the use of

training statistics and/or increase the CIP?

Does use of multitemporal data increase the CIP?



3.0 EXPERIMENTAL PROCEDURES

3.1 TEST SITE SELECTION

The test sites were chosen over a large geographic area
in order to include a wide variety of conditions. It was
recognized that much variation in soils, weather, agricul-
tural practices, and crop distribution occurs in the Corn
Belt and that all of these factors are related to its geo-
graphic location. The goal, then, was to obtain the best
measure of the effects of these factors by including as many

test sites as possible over as large an area as possible.

To increase the probability of obtaining cloud-free
data for each ERTS-~1 cycle, six test sites were selected
within the four overlap zones of five passes over Indiana
and Illinois. The areas shown in figure 1 included many of
the different conditions which could be expected to be

enéountered in the Corn Belt. (See section 4.3.1.)
3.2 SELECTION QF SEGMENTS AND SECTIQNS

The segments, 8 by 32 kilometers in size, were chosen
at random within each of the six selected counties. This
segment size provided a limited area for field visits and
yet an adequately large area for a representative sample of
agriculture within a county. Within each segment, 20 sec-
tions and 20 quarter sections were chosen at random in a
manner such that the selected guarter sections were spatially

separated from the selected sections (ref. 2, vol. I, pp. 11-13).



3.3 FIELD OBSERVATIONS FOR CROP IDENTIFICATION

From May to September 1973, every 18 days and coincident
with ERTS-1 passes {table I), ASCS personnel visited the
20 quarter sections in each segment and recorded the crop
type and other descriptive information for each field.
Atmospheric optical depth measurements and subjective assess-
ments of cloud cover and weather were also recorded during
the ERTS-1 overpasses.

3.4 PHOTOINTERPRETATION FOR CROP IDENTIFICATION

To obtain a more accurate estimate of the CIP, the
field observation data from the 20 guarter sections were sup-
plemented by photointerpretation of the 20 sections chosen

in each segment.

The photointerpretation effort used large~scale color
infrared (IR) aerial photography acquired three to five
times and large-scale metric photography acquired two times
during the growing season. In this manner, proportions of
ground-cover classes and other agricultural parameters were
established within each of the 20 sections in each segment
(ref. 2, vol. IV). The crop type and other information col-
lected by the ASCS from 16 of the 20 gquarter sections were
used by the three interpreters for training. The informa-
tion from the other 4 quarter sections was concealed from
the interpreters while they interpreted the 20 sections and
the 4 sections which contained the concealed quarter sections.
At the conclusion of the photointerpretation subtask, the crop
identifications and area measurements for the four concealed
quarter sections were compared to the data collected by the
ASCS. A summary of these results is shown in table I1I.
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While the photointerpretation accuracy was not

100 percent, it was considered sufficiently high to allow
evaluation of ADP classifications. The accuracy for acres
was higher than for individual fields, indicating that
interpretation accuracy was lower for small fields. Since
pixels from small fields were not included, this was not a
problem in evaluating field-center classification results.
The effect of evaluating small fields, however, would have
been included in the proportion estimates for entire sec-
tions. Yet, errors in the crop types used to evaluate the
classification results probably accounted for 5 percent or

less of any misclassification.
3.5 ERTS-1 DATA PREPARATION

The ERTS-1 data preparation for CITARS consisted of
(1) data quality evaluation, (2) geometric correction and

registration, and (3) section and field coordinate location.
3.5.1 Data Quality Evaluation

The ERTS-1 data quality evaluation included examination

for cloud cover and electronic data quality checks (ref. 2,
vol. IIT). The satellite passed over each of the six test
segments twice (on successive days) during each 18-day
period. Since seven periods were of interest, from early
June to late September 1973, a total of 84 data sets were
available for potential processing and analysis. Cloud
cover problems were identified by reference to the ERTS-1
data catalog and by visual inspection of available imagery.
Of the 84 possibilities: cloud cover on 53 sets was severe
enough to cause their outright rejection; no data were col-

lected for two sets: and several others were eliminated for



other reasons. A total of 26 sets were selected for anal-
ysis, and, upon detailed examination, several of these were
found to have cloud-cover problems. Thus, roughly 70 percent
of the data sets were eliminated because of excessive cloud
cover., (See table III1.)

A majority of the selected data were of good quality.
A few problems which affected data analysis procedures
and/or results were observed.

1. Occasional erratic data were present throughout individual

scan lines or portions of lines.

2. Differences existed among the mean values obtained from
the six detector channels that comprised each spectral
band as averaged over a large sample of the data.

3. Differences were observed in the variances from the

detector channels over the same data sample.
3.5.2 Geometric Correction and Registration

The digital form of the ERTS-1 data [computer-compatible
tape (CCT)] contains several geometric distortions, including
scale differential, altitude and attitude variations, Earth
rotation skew, orbit velocity change, scan-time skew, non-
linear scan sweep, scan-angle error, and frame rotation.

The scale and skew errors were the most significant, with
rotation to north-orientation highly desirable. A two-step
process was developed by LARS to geometrically correct ERTS-1
data over small areas. It was applied to all data for CITARS
(ref. 3). The output form used for CITARS is such that when
the data are printed on an 8-line-per-inch, 10-column-per-inch

computer line printer the resulting scale is approximately



1:24,000 and the image is north-oriented (ref. 2, vol. V).
Comparisons made using topographic maps indicated a scale
error of approximately 1 to 2 percent. Haying geometrically
correct and scaled data greatly facilitated the task of
locating section and field coordinates.

Registration of multiple images of the same scene was
accomplished through use of the LARS image registration
system (ref. 4). A measure of registration error was
obtained from the checkpoint residuals of the least squares
polynomials used in the image correlation. This statistic
averaged less than 0.5 of an image sample (pixel), and in
practice additional checkpoints were located whenever the
root-mean-square (rms) error for either lines or columns
exceeded 0.5,

3.5.3 Determination of Section and Field Coordinates

Determining section and field coordinates was a major
preparatory task to classifying the ERTS-1 data. PFirst, a
manual method for locating fields displayed the ERTS-1 data
as single-band, gray-scale, line printer maps (ref. 2,
vol. V). After manually locating all fields and sections
in the ERTS-1 data, the precision was determined to be
inadequate to meet the maximum error requirement of one
pixel. Therefore, a previously developed, computer-assisted
method of transforming map coordinates to ERTS-1 data was
employed by ERIM to locate section corners and define coor-
dinates for sections {ref. 5). Final standard errors of
estimate for control points were less than 0.5 and typically
between 0.2 and 0.4 of an ERTS-1 pixel; that is, 15 to
30 meters (49.5 to 99.0 feet) on the ground.



10

3.6 ADP TECHNIQUES FOR MSS DATA PROCESSING

The basic ADP techniques were grouped into three
divisions: (1) standard processing (SP) techniques, (2) pre-
processing (PSP) techniques, and (3) multitemporal processing
(MSP) techniques. The term "standard" refers to an ADP tech-
nigue for classifying single-pass data which have not been
radiometrically preprocessed.

Each of these ADP techniques consists of a computer-
implemented software system and a method or procedure by
which an analyst can convert multispectral data into ground-
cover, class-identification information on a pixel-by-pixel
basis,

The CIP of ADP techniques is sensitive to the manner
in which the classifier is trained, the types of MSS data
input (such as preprocessed and multitemporal), and the
spectral bands used for recognition. At the beginning of
CITARS, most of the procedures used generalized analysis
algorithms and required decisions on the part of the analyst
which could significantly affect the CIP. To permit guanti-
tative evaluation and meaningful comparison of techniques,
subjective processes had to be held to a minimum; therefore,
only well-defined and repeatable procedures were followed
for CITARS. Each of the ADP techniques was documented in
detail, and the documented procedures were followed rigidly
(ref. 2, vol. I, pp. 33-39).
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3.6.1 TLARS ADP Techniques

The analysis techniques used by LARS utilized the
LARSYS 3 multispectral data analysis system. Its theo-
retical basis and details of the algorithm implementation
are described by Swain (ref. 6) and Phillips {(ref. 7).

The analysis procedure was described in detail by Davis

and Swain (ref. 8) and NASA/JSC (ref. 2, vols. I and VI).
The procedures were designed to provide repeatable results,
inasmuch as variation caused by analysts is minimized. The
analysis procedures are described briefly in the following
subsections.

3.6.1.1 Class definition and refinement.- Four major

classes — corn, soybeans, wheat (for selected missions), and
all other ground covers — were defined. These major classes
were divided into subclasses where spectral variability
within a class was so great as to result in multimodal proba-
bility distributions for that class. Subclasses were isolated
by clustering quarter-section field centers. All four ERTS-1
bands were used for clustering. A systematic method which
minimized the total number of subclasses and avoided multi-
modal subclass distributions was used for interpreting
information on the separability of subclasses (ref. B}.

3.6.1.2 Classification.- Each data set was analyzed

using two versions of the maximum likelihood classification
algorithm. Gaussian probability density functions were
assumed for both procedures. The first classification
method, LARS/SP1l, was the maximum likelihood classification
rule assuming equal prior probabilities for all classes

and subclasses. This rule has been in common usage for
remote-sensing data analysis for some time.
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The second method, LARS/SP2, used class weights pro-
portional to the class prior probabilities. This appreoach
is more nearly optimal in that the Bayesian error criterion
(minimum expected error) is preferred. Class weights may
be based on any reasonably reliable source of information.
In CITARS the class weights were computed from county acreage
estimates made by the USDA the previous year. Class weights
were divided among the subclasses in proportion to the number
of points in each subclass as determined by the clustering
procedure.

3.6.1.3 Display and tabulation of results.- The results

of the classification were displayed using a discriminant
threshold of 0.1 percent. This low threshold eliminated
only the data points which were very much different from
the major class characterizations. Thresholded points were
counted in the category "other." A computer program gen-
erated results tabulations for training fields, test fields,

and test sections in both printed form and on punched cards.
3.6.2 ERIM ADP Techniques

The digital data processing and analysis procedures
defined by ERIM for use in the CITARS study reflected con-
cern for the calculational efficiency of recognition proc-
essors, the need for extending recognition signatures from
training areas to other geographic locations and/or obser-
vation conditions, and the CITARS requirement for minimizing
the need for analyst judgment (ref. 2, vol. VII). The fol-
lowing subsections give a brief summary of the procedures,
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3.6.2.1 Training.- The training of the processor
(that is, the establishment of class signatures for recog-
nition) was a crucial step in MSS data processing. Although
multimodal signatures frequently have been employed, the use of
one signature per major class was selected for CITARS proc-
essing because of simplicity, processing efficiency, and
the fact that a combination of individual field signatures
could result in a single signature that encompasses more of
the variability of the class than is represented by a multi-
modal signature. An objective, reproducible procedure
based on a chi-squared test was devised to reject anomalous
"outlier" fields before the formation of a combined signa-
ture, in order to develop signatures representative of healthy
crops at a reasonable stage of maturity for the time of
season. Signatures for classes other than the major ones
were included only if they were found to be confused with

the major crops on preliminary recognition runs over training
data.

3.6.2.2 Recognition without preprocessing.- Two types

of decision algorithms were used: a linear rule, ERIM/SP1;
and a more conventional quadratic (Gaussian maximum likeli-
hood) rule, ERIM/SP2. The linear decision rule was chosen
because: it requires substantially less computer time for
recognition c¢alculations; it has been used successfully in
many applications at ERIM; and it has been found to provide
comparable recognition accuracy in previous tests {ref. 9}.
Use of the quadratic rule permitted another comprehensive
comparison of the two rules. Both rules apply a threshold
test (0.001 probability of rejection) based on a quadratic
calculation for the signature of the prevailing class;
points failing the test would be classified as being other

than the major crops considered.
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3.6.2.3 Recognition with signature extension pre-
processing.~ It was recognized that changes in atmospheric
and other local conditions could cause changes in the signal
levels received by the MSS for different areas and at 4if-

ferent times. The region of signature applicability could
be extended beyond the region used for training by employing
signature-extension preprocessing techniques (ref. 10). Non-
local recognition denotes recognition performed on segments
other than those from which signatures were extracted. Non-
local recognition was carried out once before and once after
preprocessing corrections for signature extension had been
applied for both linear (ERIM/PSP1l) and quadratic decision
(ERIM/PSP2} rules. The preprocessing method used on the
CITARS project was a mean-level-adjustment (MLA) procedure
derived from an average over diverse ground covers within
the local segment for signature extraction and a comparable
average within the nonlocal segment to be classified.

3.6.2.4 Summarizing results.- The results obtained

with each procedure were summarized in a standardized form
for subsequent analyses of variance. Separate summaries

were made for field-center pixels and for entire sections.
3.6.3 EOD ADP Techniques

The EOD evaluated two techniques: one for single-pass
data, EOD/SPl (ref. 2, vol. VIII, parts 1-6), and another
for multitemporal MSS data, EOD/MSP1 (ref. 2, vol. VIII,
part 7).

For single-pass data the EOD utilized the Iterative
Self-Organizing Clustering System (ISOCLS, ref. 11) imple-

mented at JSC and a Gaussian maximum likelihood classifier
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to generate the class and subclass statistics. The training
fields for corn, soybeans, and wheat were submitted to inde-
pendent runs using the ISOCLS routine to generate class and,
if necessary, subclass statistics (for example, corn 1,

corn 2, corn 3}. The training fields for class "other" were
then submitted to the same clustering scheme to generate
¢lass and subclass statistics for all other ground cover.
The training fields, test fields, and test sections were
classified with the Gaussian maximum likelihood classifi-
cation algorithm using the statistics previously generated

from the clustering process.

Multitemporal data were constructed by combining the
data from two or more ERTS-1 passes over a site to form
additional features; for example, with ERTS-1 passes in
periods I and II, the four features from pass 1 were com-
bined with the four from pass 2 to produce an eight-channel
observation vector., Once the multitemporal observations
were formed, 11 fields were deleted because of clouds, and
processing was performed using the standard EOD procedure
(EOD/SP1).

3.7 STATISTICAL ANALYSIS OF CROP IDENTIFICATION PERFORMANCE

The basic questions proposed in the objectives were
answered by a series of analyses of variance and blocked-
rank tests. The CIP of the ADP techniques was characterized
in two different ways: field centers (commonly called test
fields) and whole areas (entire sections). The analyses
for field centers considered the elements of the performance
matrix, eij + the estimated probability of classifying a
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nonboundary (field-center) pixel from class J as class 1i.
For whole areas, the analyses examined the differences
between the estimated proportion of class i and its true
proportion. The analyses were performed for both local
and nonlocal recognition data sets. 1In this section the
analyses of variance are discussed in detail, followed by

a brief discussion of the nonparametric or blocked-rank test.
3.7.1 Analyses of Variance

The analyses of variance fall into two main categories:
overall analyses and specific, or section-by-section, anal-
yses. The analyses are further divided into analyses con-
cerning: local recognition of corn, soybeans, and "other";
nonlocal recognition of corn, soybeans, and "other"; and
multitemporal recognition.

Overall analyses of variance were run for the purpose
of comparing procedures over all the data sets for local
and nonlocal field centers and whole areas. The experimental
unit was a combination of each data set and procedure; that
is, results were aggregated over all sections within a data
set (ref. 2, vol. IX, appendix A).

In order to compare procedures for specific counties
or times, or to compare counties, times, types of nonlocal
recognition, and so forth, the size of the experimental unit
had to be reduced; thus, a section was chosen as the basic
unit. Appropriate interactions between sections and other
factors were then used as estimates of error in the analysis-
of-variance F-tests (ref. 2, vol. I, p. 42).
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In each analysis of variance, as many sections as
possible were used. Sometimes sections were removed for

one or more of the following reasons.

1. Cloud cover or bad data lines prevented accurate pro-

portion estimation.

2. The ADP processing results were not available.
3. Photointerpreted proportions were not reliable.

4. Maintenance of a balanced design was desirable.

The sections used for a given segment were consistent
within an analysis but were not necessarily the same for

all analyses.

To evaluate the classification accuracy on the field-
center data, the estimated performance matrix was computed
for each section in a segment (specific analyses) and for
all sections of a segment together (overall analyses). The
average of the diagonal elements of the matrix is the

average conditional class accuracy.

To apply the analysis of variance in comparing classi-
fication accuracy, a single measure of classification per-
formance is needed. One measure of error is the sum of the
off-diagonal elements of the performance matrix; that is,
the total errors of both commission and omission. One of
the major assumptions of analysis of variance is that the
variance of the dependent variable in a particular treatment
combination is independent of the mean of that combination.

Since the elements of the estimated performance matrix can be
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considered to be binomially distributed, it can be shown
(ref. 12) that the transformation matrix,

h.. =
1]

SN

arc 51n1{eij (1)

stabilizes the variance of the hij ; hence, the sum of the
off-diagonal elements of the transformed performance matrix

is more suitable for analysis of variance than the corre-

sponding sum of the eij . The transformation is monotonic
so that low/high values of hij correspond to low/high
values of eij - Furthermore, the use of hij tends to

prevent extreme results on a few sections from dominating

a treatment mean. The dependent variable used in the
analyses of variance which compare classification accuracy
was the sum of the off-diagonal elements of the transformed
performance matrix. An average interclass error of 10 per-

cent in the three~class case is an average conditional class
accuracy of B0 percent.

In the case of whole areas, the proportion estimation
accuracy ¢q was measured by examining differences between
the photointerpreted (true) and computer-estimated propor-
tions. This simple difference or bias describes performance
for individual crops, whereas the rms error is indicative of
overall performance.

(ﬁi - Pi)2
K (2)

>

K
i=1
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For the measure of area estimation accuracy given in equa-
tion (2), K is the number of classes, ﬁi is the estimated
proportion of crop i, and Pi is the photointerpreted pro-
portion of crop i. These measures were calculated for all
analyzed sections of a segment and also for their aggregate.

Along with the true proportions, the bias of the pro-
portion estimate obtained by counting pixels classified as
a particular crop must be considered, where the bias'depends
on the matrix of conditional probabilities of classifying
a pixel as one crop when it is of another crop (or mixture
of crops) and, as well, on the true proportions present. For
this reason, the mms error might be questioned as a reliable
measure of accuracy for a procedure, inasmuch as the true pro-
portions and the matrix of conditional probabilities for a
particular procedure could be such that the bias is very large
or, conversely, almost zero, thus making the procedure appear
very lnaccurate or very accurate.

It is true, however, that the bias tends to decrease
as the accuracy of the classifier increases. Also, on a
section-by-section basis, the true proportions vary con-
siderably; if a procedure does well on most or all sections
in a segment, one cannot attribute the result to classifica-
tion errors canceling one another, Instead, it must be

concluded that the procedure is in fact accurate.

For this reason, computing the mean square errors on a
- section-by-section basis and averaging them over a data set

| should be a reliable indicator of performance.
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In the actual specific analyses of variance, it became
necessary to transform the mean square error in each section
because the variance of the q2 values were approximately
proportionate to their mean. To reduce the effect of this
relationship, the following transformation was chosen
{ref. 13}.

y = log(l00Kq® + 0.2) (3)

The lowest possible value of y is -1.609, representing
complete agreement between the computer-estimated and the
photointerpreted proportions.

Within three classes, a y-value of 1.0 corresponded to
an absolute error of about 0.09 in each class; a y-value of
3.0 represented very poor estimation — an error of about
0.25 in each class.

3.7.2 Nonparametric Tests

The relative ranks of the procedures for each data set
were used to test for an overall significant difference
between procedures. To do this, a form of blocked-rank test
{ref. 14) was utilized.

In this test, the null hypothesis Ho is that for each

data set the ranks are randomly assigned. The test is
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performed by computing the (m - 1)-by-1 vector R which

contains the average rank for each procedurel and then
calculating

= D - l-l___
qg = (R RO) K (R RO) (4)

where m 1is the number of procedures, and R0 and K are

the mean vector and covariance matrix, respectively, for R
under HO . (It can be shown that R0 and K are simple

known functions of m and the number of data sets.) If HO
is true, then q should have approximately a chi-square

distribution with m - 1 degrees of freedom.

lone procedure nust be left out so that K is non-

singular; however, the value of q does not depend on which
procedure is left out.
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TABLE I.— ERTS-~1 COVERAGE SCHEDULE FOR TEST SEGMENTS

ERTS-1 . bate of overflight along track
cycle Month Period
L M N 8 P
18 June I 8 9 10 11 12
19 June 1T 26 27 28 29 30
20 July IT1 14 15 16 17 18
21 August v 1 2 3 4 5
22 August v 19 20 21 22 23
23 September VI 6 7 8 9 10
24 Sentember VII 24 25 26 27 28
25 October VIII 12 13 14 15 16
- L/M M/N N/O o/P
Counties covered: ‘ - —— — s

Huntington White
and Shelby County,
Counties, Indiana
Indiana

\

Livingston Lee County,
and Fayette Illinocis
Counties,

Illinois
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ERTS-1 ' RN w0 e N NN ,
passes: O/P N/O M/N L/MY

N S ! JTRN
N,

ne segment:

0
8 x 32 km
{

/

One section:
256 hectares
{640 acres)

Study Area Counties:

Data Acquisition Pe
Indiana Illinois 1 — 6/08-12/73
Huntington 4. Livingston 11 — 6/26-3G/73
Shelby 5. Fayette 11T — 7/14-18/73
White 6. Lee IV — 8/01-05/73

Ground Truth:
ASCS — 20 guarter sections {white} each ERTS-1 pass

Photointerpretation - 20 sections {black) each ERTS-1

5,800 hectaresgs
64,500 acres) F

—"

ERTS-1
overlap

riods:

V — 8/19-23/73
VI — 9/06-10/73
VIl — 9/24-28/73

pass

Figure 1.— Technclogy assessment data set,

June through September 1973,
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4.0 RESULTS AND DISCUSSION

Performance data obtained with the several recognition
processing procedures were studied to determine their
respective abilities to recognize the major crops of the
CITARS sites. Analysis of variance was used to investigate
the effects of several experimental factors on recognition
performance. Comparisons were made, both for local and
nonlocal recognition. (See ref. 2, vol. 1IX, appendixes A and
B, for tabulations of data performance and summaries of the
analyses of variance.)

Many of the performance measures developed for the
analyses of variance used in these comparisons have lower
values than are potentially attainable from the CITARS
data. For example, times of year and situations when
recognition was poor were sometimes averaged with the best
performances in establishing overall performance measures
for an ADP procedure. Also, as discussed earlier, repeat-
ability and removal of analyst judgment from the ADP pro-
cedures were emphasized, which may have reduced some

performance levels.

The experimental factors of interest included effects

of segment characteristics, observation conditions, effects

- of crop maturity or time of year, and comparison of perform-

ances for field centers and entire sections. The majority
of the analyses were made with corn and soybeans as the
major crops. Wheat was present in early June but in such
small amounts that results with it as the major crop are
not considered reliable and are not presented here.
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4.1 COMPARISON OF ADP PROCEDURES FOR LOCAL RECOGNITION

The majority of analyses compared one standard procedure
from each organization. Additional analyses were made to
compare alternative procedures: use of prior probability
information by LARS, linear-versus-quadratic decision rules
by ERIM, and the use of multitemporal data by EOD.

4.1.1 Comparison of Standard Procedures

One of the major CITARS objectives was to determine if
significant differences existed in local recognition per-
formance among the three standard procedures: LARS/SP1,
ﬁRIM/SPl, and EOD/SP1l. The results are summarized in
tables IV, VvV, VI, and VII.

The overall analysis of variance on segment aggregates
of data for all time periods showed significant differences
(alpha level 0.05 unless otherwise specified) between the pro-
cedures, as well as different performance rankings for field-
center and whole-area recognition (ref. 2, vol. IX, pp. 19-34).
The ERIM/SP1 performed significantly better than either
LARS/SP1 or EOD/SPl on the field-center data. On the other
hand, LARS/SP1l performed significantly better than ERIM/SP1l
on proportion estimation for whole areas. Differences between
EOD/SP1 and the other two procedures were not significant for

proportion estimation.

Significant differences between the procedures were
found also in the specific analyses of variance that were
conducted. In seven of ten specific analyses, differences in

field-center classification accuracy were significant, with
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ERIM/SP1 ranking first in six of these seven and EOD/SP1
ranking third in five. For proportion estimation in whole
areas, eight of ten specific analyses indicated significant
differences between procedures; LARS/SPl was most consist-
ent, ranking first in one analysis and second in all others,
while EOD/SP1 and ERIM/SP1 alternated between first and
third with EOD/SP1l ranking first four times.

One overall measure of proportion estimation perform-
ance is the rms error of proportions in the aggregation of
pixels in each data set. The LARS/SPl had the smallest
average rms error (0.095) over the 15 data sets, followed
by EOD/SP1 with 0.108 and ERIM/SP1l with the largest at 0.150,
as shown in table VI. These tabulations indicate the best
performance on proportion estimates when averaged over all
data sets was by LARS/SP1l, and the worst was by ERIM/SP1.

As can be seen from tables V and VII, all procedures
overestimated corn and soybeans proportions and under-
estimatea the proportion of "other." This overestimation
of major crops was consistent, even on a section-~by-section
basis within each segment. Certain parameters might be
adjusted within these procedures to reduce that bias (see
section 4.5), or a bias correction scheme could be applied
to the classification result. Thus, since the performance
numbers include both bias and variance, the procedures
should not be judged too harshly against the whole-area

comparisons.

Table IV suggests a possible source for these consistent
overestimates of corn and soybeans proportions. In this
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instance, field-center pixels for "other" have the lowest
average rates of correct classification. This suggests that
other ground covers were more frequently misclassified as
corn or soybeans than corn or soybeans were misclassified as
"other," thus leading to consistent overestimates of corn
and soybeans proportions. The poorer recognition results
for the class "other" may have resulted from the fact that
the proportion of training samples available for "other"

was low in relation to corn and soybeans; hence, a poorer
representation of variability for the class "other" by

the training statistics resulted (table VIII). In addition,
proportion estimates obtained by classified pixel counts
were biased and the magnitude of the bias is dependent upon
both the actual proportion of the crop and the matrix of
conditional probabilities of classification.

The procedure which obtained the highest average rate
of correct classification of field-center pixels — in this
instance ERIM/SPl1 — did not, on the average, achieve the
best proportion estimation as determined from counts of
classified pixels. The ERIM/SPl did rank first in the spe-
cific analysis which compared proportion estimation perform-
ances at the best time of year for field-center recognition
(late August; see section 4.4).

The ERIM/SP1l procedure differed from the other two
procedures in two major ways: It used a different decision
rule, and it used a different training procedure to estab-
lish recognition signatures. Since ERIM/SP2 used a quad-
ratic decision rule (like EOD/SP1l and LARS/SP1l) but still
performed more like ERIM/SP1l (see section 4.3), the training
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procedures were examined and compared for possible explana-
tions of the opposite performance rankings of the procedures
on field-center and whole-area data. Proportion-dependent
bias and other considerations are discussed in section 4.6.

During training, EOD and LARS employed clustering to
establish multimodal major crop signatures, whereas ERIM
established a single-recognition signature for each major
crop and additional signatures only for selected subclasses
"other." The selection of these other subclasses was based

-on field-center statistics and recognition of training data.

In one instance, as many as eight signatures for "other"
were used, while in two instances only one was used. An

analysis of results showed a relatively high negative corre-

- lation between the number of other signatures used and over-

all rms error in proportion estimation (fig. 2). That is,

the fewer the signatures used, the greater the rms error
tended to be. Correspondingly, the overall proportion of
"other" tended to be more underestimated with fewer signatures.
Another useful test would be to use LARS/SP1 and/or EOD/SP1
signatures with the ERIM/SP2 linear rule to permit a direct
comparison of results for different training procedures with
the linear decision boundaries.

4.1.2 Use of Prior Probability Information

The LARS/SPl1 procedure used a maximum likelihood Gaussian
classifier which assumed that the frequency of occurrence of
each class was the same for all classes. The Lars/SP2 pro-
cedure used prior probability information in the form of

' Class weights and was designed to maximize overall correct

classification. Theoretically, the use of the correct values
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for the frequency of occurrence of each class would maximize
overall performance for field-center pixels.

The overall results of the equal and unequal prior
probability procedures were compared statistically. The
result indicated that the use of historical data as a basis
for prior probabilities did not affect whole-area or field-
center performance significantly for either local or non-
local recognition. However, in interpreting this result,
it must be remembered that LARS/SP2 was an attempt to maxi-
mize overall performance, and the results for field centers
have been measured by average classification accuracy. 1In
addition, the quality of the prior probabilities used must
be examined.

The unequal prior probabilities were based on the 1972
Crop acreage estimates made by the Statistical Reporting
Service, USDA, for each county. While it was anticipated
that the probabilities derived from these figures would not
be the true probabilities for 1973, no major change was
expected.

The USDA figures were available only on a county basis,
whereas CITARS examined only an 8- by 32-kilometer segment
of each county. Furthermore, performance was examined on
only 20 of the 100 sections in the segment. The crop pro-
portions varied significantly from section to section;
therefore, crop proportions based on county estimates may
‘not apply.
|

! It was concluded that while prior probability informa-

tion in the form of class weights should be used when available
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(because such usage has a sound theoretical basis) it may not
in practice provide much, if any, improvement in performance.
Further tests are recommended to determine the sensitivity of
the classifier to class weights.

4.1.3 Linear-Versus-Quadratic Decision Rule

The ERIM employed both the linear and quadratic decision
rules on the CITARS test data. No evidence was found in the
results to indicate that the quadratic procedure was better
than the linear one; if anything, the linear classification
procedure gave slightly better results at approximately one-
third the computational cost for the implementations used.
These results agree with previous comparisons by Crane and
Richardson (ref. 9).

More specifically, for local recognition of crop pro-
portions in whole areas, the linear procedure (ERIM/SP1)
had an average rms error of 0.150 over 15 local data sets,
compared with 0.187 for the quadratic procedure (ERIM/SP2).
Furthermore, the linear procedure had the lower rms error
in 11 of the 15 data sets.

Average classification acéuracy in field centers for
local recognition was 0.639 for the linear procedure, com-
pared with 0.606 for the quadratic procedure. Again, the
linear procedure had the better performance in 11 of the
15 sets.

A quadratic decision rule is theoretically optimal
for minimizing the overall probability of misclassification

for Gaussian (normal) distributions with known parameters
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and the assumption of equal prior probabilities. Therefore,
it might be expected that the quadratic rule would outperform
a linear decision rule. Possible reasons for the equal or
better performance of the linear procedure are set out in the
following discussion.

Since identical signatures were used throughout for the
two decision procedures, there was no confounding effect
because of different training procedures. Thus, the only
reasons for performance differences are the different shapes
of decision surfaces defined by the two rules and their rela-
tionships to the test data. For equal covariance matrices,
the two rules would form identical decision surfaces. For
situations with different covariance matrices, the linear
decision rule that was utilized (ERIM/SP1l) adjusted its deci-
sion surfaces to minimize the average probability of misclas-
sification between each pair of classes, utilizing all
covariance information. However, the disparity between
linear and quadratic decision surfaces increases as the
dispersion patterns defined by the covariance matrices
become increasingly different in shape, orientation, and/or
size. For example, figure 3 is a hypothetical example which
illustrates a difference in space assigned to the less dis-
persed class A by the two decision lines based on the indi-
cated training data.

Both the procedure used to establish signatures and
the relative amounts of major crop and other training data
tended to give more dispersed signatures for the major
crops, especially during the early and middle parts of the
growing season. The effect of such a tendency would be to
have less of the decision space assigned to class "other"
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by quadratic decision surfaces; for example, consider class B
to be major and class A to be "other" in figure 3. 1In test
data (both field centers and whole areas), the quadratic rule
always, with but one exception, estimated less "other" and
more major classes than did the linear rule for the same sig-
natures, with the linear rule having a smaller magnitude of
bias for "other."

In field-center training data, the quadratic rule
slightly outperformed the linear rule in 12 of 15 cases
(ref. 2, vol. VII), the opposite of what occurred with test
data and what would be expected for normal distributions
with known parameters. The fact that quadratic performance
on training data was the better of the two reduces the
likelihood that several other possible explanations were
responsible for the equal or better linear performance on
test data. The first of these other possible explanations
is that the selection of other signatures was based on
linear calculations with training data. Second, the training
data may not have been normal. Finally, there can be a por-
tion of the signal space in which the decision of the linear
rule depends on the order in which signatures are considered
(in any such overlap region, those considered last, which
happened to be signatures for class "other" in CITARS, are
favored); yet, in one test where the order of signatures
was reversed, the results changed only slightly, and the

new linear results still were better than the quadratic.

The next consideration is that of how well the training
data represented the test data and the consequences of any
differences between them on recognition using the two rules.

The single signature for each major crop usually was based
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on pixels from 10 or more individual fields so that they
tended to represent much or most of the variability present
in major crop signals. In contrast, only a few samples
usually were available for each other class present; and,
frequently, other classes in the test data were not repre-
sented in the training data. Because the quadratic decision
surfaces in these cases tended to be closer bound to the
other signatures, they consequently were more sensitive to
differences between the statistics of other training and
test data and to the presence of data not represented by
the signatures used, including mixture pixels. The hypo-
thetical example of figure 3 illustrates these effects also.

In addition to recognition performancé, the relative
costs of implementation and processing are operational
performance considerations. Consideration of these latter
items was not an objective of CITARS; however, computational
efficiency was a major factor in ERIM's choice of the linear
rule (a factor of three faster than the quadratic rule) for
its principal procedure. The relative speeds of 'any two
computational procedures are implementation dependent; that
is, speed depends on both the machine used and the way the
calculations are carried out. The two ERIM procedures afe
reasonably well balanced in their programming sophistica-
tion and flexibility. Other procedures have been defined,
such as table look-up procedures (ref. 15), which are more
efficient for performing quadratic calculations and may be
only slightly less expensive than the comparable implemen-
tation of a linear rule. However, such procedures have
storage limitations which restrict the number of channels
that can be used practically. For instance, it might be
difficult to utilize them for processing multitemporal data

with more than four channels being used for recognition.
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Another type of implementation is with special~purpose proc-
essors such as the Multivariate Interactive Digital Analysis
System (MIDAS, ref. 12), to perform calculations at much
higher rates than are possible on general-purpose digital
computers.

To summarize, the linear decision rule performed as
well as, or better than, the quadratic decision rule for
the signature sets utilized. The relative dispersion
volumes of major and other signatures tended to cause
greater underestimation of the class "other" by the quad-
ratic rule. Comparison of the two types of rules on
CITARS signature sets obtained by another procedure, which
might yield more equal dispersion volumes and hence more
similar decision boundaries, would be a useful addition to
these results.

4.1.4 Multitemporal Analysis

The physical phenomena associated with MSS data acquired
Oon more than one date (multitemporal data) indicate that tem-
poral differences in the spectral signatures from one ground-
cover class to another should be many times larger than
spectral differences on any single date. 1In the development
of the CITARS task a key question was: Can multitemporal
data be used to improve classification performance? Actually,
the question has two parts:

l. Does the temporal dimension of multitemporal data provide
additional information useful for discriminating crops?

2. Can an ADP procedure be developed to extract the additional
information expected from the multitemporal data?
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To determine if multitemporal data processing improved
the CIP, the CIP for each of several combinations of times
for the Fayette County segment was compared to the CIP
obtained at any single time (ref. 2, vol. VIII, part 7).
Only the Fayette County segment contained sufficient cloud-
free data for multitemporal processing. This segment had
cloud-free data during periods I, II, III, and V.

Table IX compares the CIP's achieved for the several
combinations of multitemporal data with the best single-
pass results. Analysis-of-variance tests for significant
differences between multitemporal recognition and the three
standard procedures (LARS/SP1, ERIM/SP1, and EOD/SPl) showed
multitemporal classifications to be significantly better
than classifications using the three main procedures. (This
included both field-center recognition and crop proportion
estimation.) The results for the combination of time
periods I and II were significantly better than for period II
data alone. When periods II and IIT were combined, the
results were significantly better than for period III data
alone; and when data for periods I, II, III, and V were com-
bined, the results were significantly better than for period VvV
alone.

In summary, the CITARS task has shown that:

l. A procedure can be implemented to utilize multitemporal
data (in this case a simple modification of the standard
single-pass procedure EOD/SP1).

2. The overall CIP achieved by the use of multitemporal data

was superior to the single-pass results for the cases
considered.
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Additional classifications of different areas, crops,
and times will be required to test the adequacy of the ADP
procedure and to determine how much CIP can be improved using
multitemporal data. Finally, the benefits of improved CIP’
should be weighed against the cost of registering multitemporal
sets of ERTS~1 data and the increased classifiéation costs when
using additional features.

4.2 NONLOCAL RECOGNITION

In nonlocal recognition, the signatures used to classify
pixels in a segment were generated either from a different
segment or from a different satellite pass than the data being
classified. Nonlocal recognition performance proved to be
substantially poorer than local performance for both field
centers and proportion estimates of whole areas. Preprocess-
ing with an MLA procedure was found to improve average nonlocal

recognition performance.

4.2.1 Comparison of Local and Nonlocal Results

Using Nonpreprocessing ADP Procedures

Twenty nonlocal recognition cases were analyzed for the
three main ADP procedures. The average field-center CIP
obtained with nonlocal signatures was only 78 percent of that
obtained with local signatures, as shown in table X and
figure 4. A degradation also was observed for whole areas,
where the nonlocal average rms error of Crop proportion esti-

mates was 23 percent greater than that obtained locally.
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A blocked-rank test did not indicate any significant
difference between the main procedures for either nonlocal
whole areas or nonlocal field centers. However, differences
between procedures were considerable for some particular
analyses of variance. Although not consistently, EOD/SP1
tended to perform the best for whole areas with ERIM/SP1
tending to be the worst. On the other hand, ERIM/SP1l usually

was best for field-center analyses. The averages reflected
in table X show these tendencies.

Table X also shows comparisons of alternative ADP
procedures employed by ERIM and LARS. No significant
differences were evident for nonlocal performances. Using
identical signatures, the linear decision rule (ERIM/SP1)
had slightly better average nonlocal performances for field
centers and whole areas than did the quadratic decision rule
(ERIM/SP2). It ranked ahead of the quadratic in 12 of
20 whole-area cases and 13 of 20 field-center cases.

Average nonlocal performance, with ¢ priori crop
proportion information based on the previous year's harvest
in each county (LARS/SP2), was slightly worse than that
based on equal prior probabilities (LARS/SP1). The latter
ranked higher in 11 of 20 whole-area cases and 8 of

20 field-center cases. (Also, see sections 4.2.2 and 4.2.3.)

4.2.2 Comparison of Results Obtained With and

Without Preprocessing

Signatures from one segment and time may not accurately
recognize data from another segment or time because of the
following factors.
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1. Differences in crop characteristics between the segments
or between the sample used for training and the test seg-
ment data

2. Differences in observation (scan-angle and/or atmospheric

haze content)
3. Differences in sensor characteristics

Discussions of crop and atmospheric factors in the CITARS

data sets are presented in section 4.3. Their implications

for interpretation of nonlocal results are discussed in

section 4.2.3.

One straightforward preprocessing procedure, MLA, was
used in two CITARS procedures, ERIM/PSP1l and ERIM/PSP2.
Preprocessing increased average, nonlocal, field-center clas-
sification by 11 percent (table X) of the accuracy without it.

It also decreased the average rms error of proportion esti-

mates by 5 percent. Based on overall results for the 20 cases,

the average nonlocal performance ranking of the preprocessing
procedure ERIM/PSPl was higher than any of the three main
procedures.

The overall analysis of variance for whole areas did
not indicate a significant difference between ERIM/SP1 and
ERIM/PSP1l; however, ERIM/PSPl (the preprocessing technique)
exhibited better performance in 13 of 20 cases. In specific
analyses, MLA exhibited a significant but not consistent
effect; in four analyses, preprocessing was significantly
better, in two significantly worse, and in most not signi-

ficantly different. In five of the latter analyses, it was

observed that for those cases in which MLA preprocessing

performed better the other procedures performed worse, and
vice versa.
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The preprocessing method (ERIM/PSP1) produced better
overall results for field centers in 17 of 20 nonlocal cases,
a significant result at the 0.001 alpha level. 1In three
specific analyses, the addition of preprocessing made a
significant improvement, and it never significantly degraded

field-center performance in other analyses.

Nonlocal performances of linear and quadratic decision
rules with preprocessing were compared with the same situ-~
ation for local recognition, and the results were the same.
The average performance of the linear procedure was slightly
better for both field centers and whole areas (see table X).
Also, the linear procedure with MLA outranked the corre-
sponding quadratic procedure in 16 of 20 cases for whole
areas (a significant result at the 0.01 alpha level) and in
13 of 20 field-center cases. No specific analyses of vari-

ance were made comparing these two procedures.
4.2.3 Interpretation of Nonlocal Recognition Results

The nonlocal recognition results were analyzed for
trends or patterns relating to the combinations of training
and recognition segments and other factors which could have
caused differences in signals and signatures and led to the
unsatisfactory results obtained.

A fairly strong dependehce on the segment used for
training was found for whole areas. In specific analyses
for the July 14 through 18 time period, often it was found
that significantly better performance was achieved when
the signatures applied were from the same segment on another
day rather than from a different segment. This indicates
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that the variability in the test fields was better repre-
sented by training fields in the same segment than by those
in other segments. Signatures from two or more other seg-
ments produced inconsistent results on test data for a given
segment. Also, it was found that reversing the direction
(that is, exchanging the roles of training and test segments)
could make a significant difference in nonlocal recognition
performance. This further indicates variability in the
characteristics of training data and points to the importance
of having both an adequate sample for'training and appropriate
training procedures.

Another source of differences between data sets was in
the atmospheric conditions which existed at the times of data
collection. Substantial differences in haze level (measured
by optical depth) and in the path radiance and atmospheric
transmittance, which are dependent on haze level and on other
parameters, were noted for nonlocal recognition. Sensor scan
angle is another parameter which should not be discounted
(refs. 16 and 17). As discussed further in section 4.3.2, a
negative correlation existed between nonlocal field-center
recognition performance with the three main ADP procedures
and the difference in haze level between training and recog-
nition segments. 1In other words, an increase in the dif-
ference resulted in a decrease in performance.

The MLA preprocessing procedure counteracted the
atmosphere-dependent signal changes to a degree and reduced
the amount of correlation between differences in haze level
and recognition performance. The MLA procedure also took
into account other conditions which could cause the average

signals from each pair of segments to differ. To the extent
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that the averaged areas had the same types and proportions

of ground covers present, the procedure should have performed
at its best. Some of the interactions observed between pre-
processing and nonpreprocessing procedures were caused by
signature adjustments which were greater than differences
between local signatures. Although both additive and multi-
plicative changes are present in signals, MLA can affect

only the additive correction.

The ERIM carried out an analysis supplementary to
CITARS by applying a preprocessing signature-extension pro-
cedure (ref. 2, vol. VII) for Multiplicative and Additive
Signature Correction (MASC, ref. 18). The MASC procedure
employs an analysis of unsupervised clusters in each pair
of segments to develop a signature transformation. This
analysis is not exactly comparable to other CITARS results
(ref. 2, vol. IX, pp. 31-34), as a different form of the
data was utilized. (For instance, results for ASCS-visited
and photointerpreted fields in the nonlocal areas were
combined.) The results are presented here to illustrate
a potential technique for solving the signature extension
problem. The time period chosen was August 21, when maximum
field-center classification accuracy was obtained. Average
field-center accuracy was about 80 percent using ERIM/SP1l for
local recognition in the Fayette and White County segments.
Without preprocessing, nonlocal recognition accuracy between
the two decreased to about 40 percent in each direction. The
use of MLA preprocessing (ERIM/PSPl) increased average accu-
racy to 74 percent using Fayette signatures in the White seg-
ment but only to 46 percent using White signatures in the
Fayette segment. When the MASC preprocessing transformation
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was applied to the White signatures, field-center accuracy

increased to 80 percent, the accuracy achieved with local
signatures.

The results of the CITARS effort have manifested some
of the problems associated with nonlocal recognition; that
is, differences in scene condition, atmospheric state, and
sensor configuration can produce signal changes and seriously
degrade recognition performance in nonlocal areas. These
problems must be overcome for truly operational, remote-
survey operations. It is possible that a simple preprocess-
ing procedure potentially could improve nonlocal recognition
performance and that use of more sophisticated signature
extension techniques may produce further improvements. It
is noteworthy that this procedure is potentially capable of
compensating for effects such as haze but not necessarily
for on-the-ground differences such as the effects of various
stages of crop maturity.

4.3 SEGMENT EFFECTS ON CROP IDENTIFICATION PERFORMANCE

One of the CITARS objectives was to quantify and evalu-
ate segment or location effects on CIP. Segment effects
include both site characteristics and atmospheric effects.
Significant differences existed among the segments in the
CIP as measured by both classification accuracy of field-
center pixels and crop proportion estimates for whole areas.
These results are summarized by time period in tables XI
and XII. The segment effects, however, are difficult to
isolate since they are confounded with time period and crop
maturity; that is, data were not available for every seg-
ment for each time period. It is not possible with avail-
able data to describe quantitatively the effects of location
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on CIP without making further assumptions about these effects.
For example, simple averaging over time periods could not give
a meaningful figure for comparing segments since the segments
are not observed at the same time periods. It is possible,
however, to obtain estimates of expected segment and time
responses if one is willing to assume a noninteractive model
for the expected response; that is,

E(y,j) = o, + B, (4)

where E(yij) is the expected response (for example, CIP),
o, is the ith segment effect, and Bj is the jth time
effect. Under this model the expected response for the ith
segment (aVeraged over time) and the jtk time (averaged over
segments) can be estimated from the segment/time data in
tables XI and XII. (See ref. 2, vol. IX, appendix C, for
further details.) The results are shown in the margins
designated "expected segment response" and "expected time
response." Although little more can be done to separate
the effects of location from those of time period quantita-
tively, some of the major characteristics of the sites can
be described qualitatively and associated with the CID.

4.3.1 Site Characteristics

Site characteristics which might affect CIP include

soil type, field size, cropping practices, crop calendar,
and weather.

Soil type per se probably does not materially affect
CIP. (Note: 8Soil color could affect crop signatures and
subsequent CIP, especially early in the growing season.)
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However, it does affect several other factors which in turn
can influence CIP. For instance, soil type has a major
influence on the uniformity of an area. Similar soils
occurring over large areas are generally associated with
large fields, fewer crops, and uniform crop growth. 1In the
Corn Belt, corn and soybeans are the predominant cover types
in areas having uniform, productive soils. Of the CITARS
test sites, Livingston County had the fewest different soil
types, the largest field sizes, and most uniform fields.
Classifications of Livingston County were among the best in
CITARS.

At the other extreme are areas having very heterogeneous
and diverse soils. These areas are characterized by small
fields, a diverse set of cover types (such as small grains,
forages, and woods, in addition to corn and soybeans), and
less uniform growing conditions. (For example, a difference
in soil-moisture-holding capacity can significantly affect
Crop growth.) These characteristics describe the Huntihgton
County segment. The other four segments fall somewhere
between Livingston and Huntington in most of these site

characteristics.

The correlation of field size to CIP is shown in figure 5
and below.

Quarter Full

sections sections
Overall rms error -0.675% -0.633
Average rms error over sections -.519° -.536
Average conditional accuracy 112 .089

“Denotes significance at 0.05 alpha level.
bDenotes significance at 0.001 alpha level.
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Field size did not significantly affect the recognition of
field-center pixels (r = 0.089), but it was negatively cor-
related with proportion estimates for whole areas (-0.633

and -0.536 for overall and average over sections, respec-
tively). This indicates that the proportions of corn, soy-
beans, and "other" were estimated more accurately in segments
with larger fields than those with smaller fields. This
effect is attributed to:

1. The percentage of mixture pixels (that is, pixels
falling on field boundaries and containing two or more

cover types) is smaller in areas having large fields.

2. Large fields generally are associated with uniform soils
and crop growth.

3. The proportion of class "other" was higher in areas with
small fields, and indications were that proportion esti-
mation accuracy is negatively correlated with the amount
of class "other" present (see section 4.6.1).

The problem of mixture pixels would be reduced by
increasing the spatial resolution of the scanner system,
since there is no real assurance that mixture pixels are
classified in the same proportions as pure pixels or as the
cover types that occur in the area. This is one possible

source of bias in the proportion estimates.

The decreased performance associated with more hetero-
geneous areas with smaller fields is to be expected, and
there is no easy solution for this problem. It is clear,
however, that additional information is required to train
the classifiers so that the existing classes will be repre-
sented accurately.




49

4.3.2 Atmospheric Effects

A study was conducted to investigate the effect of
atmospheric haze level on CITARS classification accuracy.
The effect on local classification was investigated by plot-
ting the classification accuracy obtained at the various
sites as a function of the optical depth for the 0.5-micrometer
band. The effect on nonlocal classification was investigated
by plotting the classification accuracy as a function of the
difference between the haze levels at training and at test
sites. The values obtained for the optical depth at
0.5 micrometer for the various CITARS passes are shown in
table XITII.

Figure 6 shows plots of the accuracy of local classi-
fication as a function of optical depth. The correlation of
the data in figure 6 is -0.602. Since this figure contains
points corresponding to a number of sites and a number of
different passes, considerable scatter was expected to be
in the data. Up to an optical depth of 0.4 micrometer there
is little indication of dependence on haze level. If the
points for larger haze levels are included, a weak. negative
correlation seems to exist between optical depth and local
classification accuracy. (The correlation coefficient = -0.60
with significance at an alpha level of 0.05.) Previous theo-
retical calculations (ref. 13) and simulations (ref. 14) have
shown that uniform haze level would have little or no effect
on local classification. However, real haze is never per-
fectly uniform; therefore, some deteriorating effect on clas-
sification accuracy would be expected. The results shown in
figuré 6 must be interpreted with caution, as other possible
contributing factors (such as site effects and Sun angle)
have not been considered here.
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Figure 7 shows the classification accuracies obtained
for nonlocal classification as a function of the difference
in haze level between the training and the test sites, with
and without MLA preprocessing (table XIII). The correlation
coefficient for ERIM/SP1 and ERIM/SP2 (without preprocessing) -
was -0.769 (significant at an alpha level of 0.001) compared
to -0.280 (not significant) for ERIM/PSP1 and ERIM/PSP2 (with
preprocessing). These results indicate that differences in
haze levels between training and classification sites can
adversely affect CIP but that some of these effects can be
removed or adjusted by a preprocessing procedure such as MLA.

4.4 EFFECT OF CROP MATURITY ON CROP
IDENTIFICATION PERFORMANCE

It is well known that crop maturity stage affects the
remote identification of crops. Most previous studies have
been limited to one or two dates near the optimum time for
discriminating the crops of interest. One of the CITARS
objectives was to determine the effect of crop maturity on
CIP. The available results assessing the effect of time
period are summarized in tables XI and XII for recognition
of field-center pixels and proportion estimates for whole
areas, respectively. Again, the analysis is severely limited
by missing segments. Certain trends may be observed, how-
ever, in these expected values when computed using a non-
interactive prediction model (see section 4.3 for a discussion
of the model). The field-center CIP's increased from periods II
to V and then decreased significantly in periods VI and VII.
Proportion estimation errors, on the other hand, were approxi-
mately the same for all time periods (except for period III,

when they were greater).
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The peak CIP associated with the late August period is
attributed to two factors.

l. Prior to this time soybeans had not reached their
fullest vegetative growth and ground cover, thereby
increasing the probability of confusion with other
cover types having less ground cover and leaf area.

2. By late August all cornfields have tasseled.

Prior to late August, then, corn and soybeans are still
growing and developing, and there is more variability among
fields of both corn and soybeans. For example, in early
August some soybean fields may have almost complete ground
cover while others have only partial cover. Similarly, not
all fields of corn tassel at the same time; however, by late
August differences in growth and development equalize. The
rapid decrease in CIP in September is attributed to the onset
of senescence. Again, the variability among fields increases
during this time; and the amount of ground cover, particularly
for soybeans, decreases. By late September most soybean
fields will have lost all their leaves, causing soil to have

a major influence on the spectral response.

The peak of expected proportion estimation error in mid-
July corresponded with the greater variability among corn and
soybean fields at that time. It was noted, however, that
variability in performance among procedures at any given time
was much greater for proportion estimation than for field-
center classification.

One further note on the effect of crop maturity should
be made with regard to nonlocal training and recognition:
Crop maturity differences must be taken into account when
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an attempt is made to transfer training statistics from one
area to another some distance away. If the crops in the

two areas are not in nearly the same stage of maturity,

poor results can be expected. 1In particular, maturity dif-
ferences are most likely to exist in the north-south direc-
tion, since planting and growth of crops are highly correlated
with latitude.

4.5 EFFECT OF DATA PREPARATION ON CROP
IDENTIFICATION PERFORMANCE

4.5.1 Effects of Multitemporal Registration

To facilitate the classification of multitemporal ERTS-1
data without having to locate section and field coordinates
in each segment/date combination of data, the satellite passes
over each segment were registered as part of the data prepa-
ration phase (ref. 2, vol. V). An experiment was performed
to determine if registration had any effect on CIP and, if
so, the magnitude of the effect.

In the experiment, CIP's obtained with registered and
nonregistered forms of ERTS-1 data were compared. Both forms
of data were geometrically corrected. The coordinates of
sections and fields used for the registered data were the
same as those used in the CITARS classifications. The
coordinates from approximately the same fields were located

~in the nonregistered data by manually placing the photo-

overlays over the ERTS-1 imagery. A one-to-one correspond-

ence of fields in both data sets was not used because doing

'so would have eliminated fields which were required for

training. About 80 percent of the fields were common to

both data sets. The same procedure was used to select
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pixels from fields; that is, one "guard" pixel was selected
between a field boundary and any selected pixel. The same
classification procedures (that is, LARS/SP1 and LARS/SP2)
were applied to both the registered and nonregistered data
sets for all five segment/date combinations. Recognition
performances for fields and proportion estimates for sec-
tions were tabulated, and an analysis of variance was per-
formed to determine if any significant differences existed

between the registered and nonregistered data.

The results of the comparison of overall classification
accuracy for field-center pixels for the two forms of multi-
temporal data are summarized as follows.

Correct field-center
classification, percent
Segment Period Nonregistered Registered
(a) (a)

Fayette 11 42.1 51.7
Fayette ITI-1 72.5 52.8
Huntington I1I1 64.7 45.3
Livingston v 71.6 66.8
White \Y 77.2 75.7

% The figures depict the mean of the LARS/SP1 and
LARS/SP2 procedures.

The analysis of variance indicated that no significant
difference in classification accuracy existed between the
registered and nonregistered data. However, in two cases,
Fayette, period I1I-1, and Huntington, period III, higher
performance was obtained with the nonregistered data. This
may be attributed to having different samples of training
and test fields for ﬁhe two data sets. Other CITARS results




54

show that there were significant differences in recognition

for different selections of fields from the same segment

(see section 4.5.2). Problems with registration, if any,
would be expected to appear first in segments with small

| field sizes, such as those in Fayette and Huntington Counties.

The size of the sample of fields is considered the most likely

cause of differences, although in one case (Fayette, period II)

higher performance was obtained with the registered data.
4.5.2 Effects of Training Set Selection

One of the objectives of CITARS was to examine the
effect on CIP when the training set selection was varied.
Originally two training sets, each containing 10 quarter
sections, were to have been available for comparison. How-
ever, as training fields were selected, it became obvious
that 10 quarter sections would not provide an adequate train-
ing sample; thus, two sets were combined to provide a 20-
quarter-section training set.

To vary the training set for this experiment, 10 pilot
sections and 10 test sections were used to train the classi-
fier. The CIP for each of these training sets was compared
to the CIP for the 20-quarter-section training set. Since
the l0-section samples were twice as large as the 20-quarter-
section sets, it was possible to estimate the effect of

training set size as well as sample selection.

Ten data sets were classified using the 10 pilot sec-
tions as the basis for training the classifier (pilot as
train) and then classified again using the 10 test sections
as the basis for training (test as train). The analysis
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procedures were the same as for other classifications of
ERTS-1 data performed by LARS (that is, LARS/SP1 and LARS/
SP2).

The pilot-as-train classifications were compared to
the regular CITARS classifications (train as train) by
examining the overall CIP of field-center pixels from the
10 pilot sections (pilot as test). This method of comparison
was used to avoid biasing the CIP by testing samples which
were used to train the classifier. Analysis of variance was
performed on both overall classification accuracy and pro-

portion estimates.

The results of the various combinations of training and
test samples are summarized in table XIV. Using proportion
estimates as the dependent variable in the analysis of vari-
ance, training and test fields yielded significantly different
results. Since different sampling procedures were followed
in their selection, training and test sections could be from
two different populations. Analysis of the classification
accuracies showed that the test and pilot results were sig-
nificantly different. This result is attributed to variations
in sampling, either the size of the sample or bias in selec-
tion. Since random sampling was used to divide the sections
into test and pilot sections, the differences are attributed

to normal variations in sampling a population.

Table XIV shows the number of pixels in each training
set. In only four cases the number of pixels in the test or
pilot fields was approximately twice as great as in the

training fields; thus, the effect of training set size could
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not be fully evaluated. However, in those four cases the

presence of more training pixels did not cause significant
improvement in CIP.

The results of this experiment indicate:

1. Significant differences in CIP can be obtained with dif-
ferent samples of training fields.

2. Training set size alone probably was not the primary factor
that limited the accuracy of the CITARS classifications.

4.6 CLASSIFICATION ACCURACY AND PROPORTION
ESTIMATION

4.6.1 Comparison of Field Center Versus Whole Area

When the relative performances of the main procedures
on both field-center and whole-area data used for the
analyses of variance are surveyed, it becomes noticeable
that ERIM/SP1l tends to be the best procedure with respect
to field-center classification accuracy but the worst on pro-
portion estimation of whole sections.

In order to seek explanations of this épparent anomaly,
further studies were made on four data sets [LE(6), LI(5),
WH(11), and HU(13) ] exhibiting the property that ERIM/SP1
was the best procedure on field-center accuracy but the

worst on whole-section proportion estimation [see table XV (a)
and (b)].
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Four possible explanations for this behavior are:

1. Only the test sections were used in field-center anal-
yses, whereas all cloud-free test and pilot sections

were included in the whole-area comparisons.

2. The proportion estimation procedure based on counting
classified pixels is biased; hence, the bias may cause
ERIM/SP1 to have a larger mean—ééuare error on propor-
tion estimation even though it has a smaller average
probability of misclassification.

3. A procedure which classifies pure pixels accurately may
not necessarily give good proportion estimates when

mixture or boundary pixels are classified.

4. The proportions of class "other" in the whole areas were
usually larger than for field centers, which made ERIM/SP1l

appear to be worse for whole areas.

It is unlikely that factor 1 is the answer since, first,
the test pilot sections were selected at random; second, the
loss of a section because of clouds should be independent of
the theoretical performance of a procedure on that section;
and, third, analyses of variance involving the four data
sets showed the means for procedures to be significantly
different. (That is, even taking the random variation from
section to section into account under the hypothesis that
the procedures were equivalent on the average, it was unlikely
that the observed procedure means could have been diverse as
they were.) Furthermore, the blocking efficiency on the
White and Huntington data sets was so poor that at least as
effective a test could have been made by choosing sections

at random for each procedure instead of comparing procedures
for the same sections.
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If factor 2 were true, then ERIM/SP1l should have been
worst on proportion estimation using field-center pixels.
This was not the case, however. Table XV(c) shows the per-
”formance of the threerprocedures on field-center proportion

estimation using the same dependent variable as for whole
areas.

A comparison of tables XV(a) and XV(c) shows that except
for the case of HU(13), those procedures that were best for
field-center average probability of misclassification were
also best on field-center proportion estimation, and vice
versa. For this reason, it is suggested that factor 3 (mix-
ture pixels) and not bias is largely responsible for dis-
crepancies between proportion estimation and classification
accuracy results. Also, studies disclosed that factor 4
(actual proportion of class "other") was a probable con-

tributing cause of the observed performances.
4.6.2 Bias in Proportion Estimation

It is well known that if pure pixels are being classi-
fied and classified pixels are being counted to obtain an
estimate of crop proportions, the resulting estimate e is
biased; that is,

E(e) # o (5)

where

e the estimated proportion vector
o = the true proportion vector

E( ) = the expectation operator
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In fact, it is easily shown that E(e) = Pa where P = (pij)
is the matrix of conditional probabilities of classifying

a pixel from class j as class i.

Attempts were made to reduce biases in CITARS propor-
tion estimates by computing a corrected or inverted propor-

tion estimator & , which was the solution to the problem:

Minimize (e - P&)T(é - Pa) with respect to ¢

subject to the constraints z&i = 1 and &i >0

The matrix P was obtained from results of field-center clas-
sification of the test sections.

The whole-area proportion estimates from four data sets
were corrected for bias on a section-by-section basis, and
new values of the analysis-of-variance dependent variable V
were computed. Tablé XVI shows mean values of V to be con-
sistently higher (less accuracy) than they were in table XV-B;
that is, the known-to-be-biased method of pixel counting gave
much better results than the corrected estimator.

Two possible explanations are presented immediately:

1. A confusion matrix for whole-area (that is, mixture)

pixels is vastly different from one for pure pixels.

2. The section-to-section variation in Crop signatures is
SO great that one confusion matrix cannot be applied to
all sections.

To test assumption 2 independent of 1, the field-center
pProportion estimates as obtained from pilot sections were
corrected using the aggregated P-matrix obtained from test
sections. The result should be valid if the conditional
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probabilities of misclassification are assumed to be about
the same for all sections. An examination of table XVII
shows the assumption is probably false; that is, aésumption 2
is a likely explanation for the poor results obtained with a
corrected proportion estimator (compare with table Xv-C).

No data are available for EOD, since field-center pilot sec-
tions were not processed.

In order to reduce the section-to-section variation,
the correction procedure was applied to the whole-area esti-
mates aggregated over all sections in each data set. Poor
results indicated that assumption 1 is also true — that a
confusion matrix estimated from classifying pure pixels
cannot be effectively used to unbias a whole-area estimate.

Table XVIII shows the rms error before and after cor-~
rection where one aggrégated estimate is made for each data
set. Note that in almost every case, the uncorrected pro-

portion estimate was more accurate.
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TABLE IV.— MEAN FIELD-CENTER CLASSIFICATION
ACCURACY FOR THREE STANDARD PROCEDURES
AVERAGED OVER 15 DATA SETS

Procedure
Class LARS/SP1 | ERIM/SP1 | EOD/SP1
Corn 0.66 0.70 0.62
Soybeans .59 .68 .61
Other .50 .53 .46
Rms error .58 .64 .57

TABLE V.— OVERALL BIAS AND RMS ERROR IN
PROPORTION ESTIMATION FOR THREE
STANDARD PROCEDURES AVERAGED
OVER 15 DATA SETS

Procedure
Class LARS/SP1 | ERIM/SPl | EOD/SP1
Corn ] 0.063 0.064 0.025
Soybeans .033 .059 .081
Other -.096 -.124 -.106
Rms error .095 .150 .108




62

TABLE VI.— AVERAGE CONDITIONAL CLASSIFICATION ACCURACY
AND RANKINGS OF THREE STANDARD PROCEDURES

Procedure
Data set LARS/SP1 ERIM/SP1 EOD/SP1
(a) Accuracy | Rank Accuracy | Rank Accuracy | Rank
HU(6) 0.607 3 0.670 2 0.688 1
HU(13) .484 2 .555 1 .425 3
SH(12) .502 3 .536 2 .546 1
SH(13) . 384 3 .551 1 .492 2
WH(10) .742 2 .797 1 .607 3
WH(11) .609 1 .581 3 .590 2
LI(5) .588 2 .695 1 .579 3
LI(7) .700 1 .694 2 .611 3
FA(4) .544 3 .668 1 .572 2
FA(5) .538 2 .654 1 .500 3
FA(6) .620 2 .670 1 .605 3
FA(9) .797 2 .809 1 . 747 3
LE(5) .539 3 .566 1 .545 2
LE(6) .559 1 .547 3 .556 2
LE(8) .551 2 .597 1 .440 3
Mean over
all data 0.584 2.1 0.639 1.5 0.567 2.4
sets

aData sets:

HU is Huntington, SH is Shelby, WH is

White, LI is Livingston, FA is Fayette, and LE is Lee

County.
+ pass number .

=6 .

Number in parentheses =

Example:
Indiana, segment for period III, pass 2; [(3 -1) x 2] + 2

[ (period number - 1) x 2]
HU(6) is the Huntington County,
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TABLE VII.— RMS ERRORSa IN PROPORTION ESTIMATION AND
RANKINGS OF THREE STANDARD PROCEDURES
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Procedure
Data set LARS/SP1 ERIM/SP1 EOD/SP1
Error Rank Error Rank Error Rank
HU (6) 0.330 | 3 0.202 | 2 0.192 | 1
HU (13) .131 1 .252 3 .134 2
SH(12) .027 2 .040 3 .027 1
SH(13) .151 3 116 2 .096 1
WH (10) .065 1 .100 3 .083 2
WH (11) .057 1 .178 3 .070 | 2
LI(5) .004 1 .091 3 .022 2
LI(7) .013 1 .080 3 .028 2
FA (4) .115 2 .106 1 .133 3
FA(5) .144 1 .161 2 .178 3
FA(6) .154 1 .188 2 .191 3
FA(9) .158 2 141 1 .204 3
LE (5) .020 1 .232 3 .066 2
LE(6) .025 1 .239 3 .142 2
LE(8) .034 1 .118 3 .051 2
Mean over
all data 0.095 1.5 0.150 2.5 0.108 2.1
sets

aOverall data set estimates.
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TABLE VIII.— SUMMARY OF PLOT AND PIXEL COUNTS

[Ref. 2, vol. VII, table I]

TEST
NUMBERS OF PLOTS AND PIXELS
FAYETTE SHELBY HUNTINGTON WHITE LIVINGSTON LEE

DATE: 6/10 6/11 6/29 7/16 7/17 8/21 6/8  9/7 9/24 715 9/24 8/21 9/7 7/16 8/3 7117 7718 8/s
crop Pttt ———t— ——— —t+— | |—t
CORN 3 2864 28671 271%% 2863 28634 286 36 63876 63356 g3g 28 45728 459 74 6287% 628 %9 498°® 466 7 448" 454 454
SoY 46 35846 35844 34046 35546 35846 358 39 23739 23739 233 35 18975 189 61 52561 525 64 81999 772 48 57347 56947 569
VHEAT* 865 865 Bgs 8 658 658 45 S35 436 4 426 %26
TREE 12 3131 105t 110 10412 12312 113 10 Y10 210 57 057 Ly 1y 425 Y25 b gs
PASTURE 623 83 4y 6453 6,45 64y 3¢ 3¢ 36 516 16 9 103 ? 103 430 %10 10 gy 104y 10 ¢y
GRAIN 124912 49 93912 4912 ;912 4y 315 315 3 s Ly 1y 313 3 616 14 31y
CITY “100%8 %103%103% 103 % 103 353 353 35, i 388 > 164 b3 bg3 45
HAY g lg 1y 1y 14 14 T3 713
WDS/PAST 212 2y 2y 2y 24y 24, Las 1as 1gs 453 45 119 19
WATER b9 439
WEED 1‘{ llf
OTHER 15 55 15 55 15 5o 13 61217 612 Y48 s L, 1y Tas P49 T4
OATS 1, 1,
QUARRY Las 1y
R PARK 1 15

TRAINING

CORN %70 %64 %68 %70 %70 %70 24 1602 160%% 160 562 62 26 47424 424 13473t 473 14 32815 13115 133
soY 756 7 5615 11517 13118 13971 199 735 1 g5 11 o4 15 15915 359 19 51819 218 20 24820 348 11350t 130 130
WHEAT Y T4 Y 218 23 b 1o 1,
TREE 2106 2106 290 2104 2104 2 104 720 433 33 659 659 366 245 1y 1y 2 225 2 225 2 335
BARE 345 345 2ap 345 345 2 4 20 13 1,5 1,
BRUSH 13 13 145 145 1
CLOVER be 14 25 25 245 3 lg bqp 4 g
STUBBLE e 1 1, 1,
WATER 358 358 Isg 55 355 358 236 236
PASTURE 13 g5 12 g9 25 25 230 23 1, 1, Lg 23 24
FESCUE 1 2 1 ’
GRASS 1 141
OATS 1 1y 1 Za 2y 2p
WEED 345 110 1
OTHER Ya ta 1125 L a5 1gps
QUARRY 1o 1y 2oty
HAY 12 12 12

*We have serious doubts about the validity of 27 of the 65 test wheat pixels in Fayette; See Sec. 5.2.

**Upper number of each pair denotes number of plots; lower number is pixel count.

k¢
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TABLE XIII.— OPTICAL DEPTH MEASUREMENTS MADE AT THE TIME OF

ERTS~-1 OVERPASSES

Local recognition

Nonlocal recognition

Data Optical Recognition Difference in -
set depth (haze) (a) optical depth
HU(6) 0.3 1 FA(5) » FA(6) 0.04
HU(13) 1.1 2 FA(6) > FA(5) -.04
SH(12) .18 3 LE(5) » LE(6) —
SH(13) .99 4 LE(6) -~ LE(5) -
SH(10) .11 5 HU(6) - LI(5) -.13
WH(11) .12 6 HU(6) + LE(6) -.14
LI(5) .17 7 LE(6) - LI(5) -.27
LI(7) .28 8 LE(6) = HU(6) -.14
FA (4) No data 9 LI(7) - LE(8) .06
FA(5) .35 10 LE(8) » LI(7) .06
FA(6) .39 11 LI (5) > FA(5) .18
FA(9) .27 12 FA(5) > LI(5) .18
LE(5) No data 13 WH(11l) > SH(12) .06
LE(6) .44 14 SH(12) -+ WH(1ll) -.06
LE(8) .34 15 SH(13) = HU(13) .11
16 HU(1l3) - SH(13) -.11
17 FA(6) - HU(6) -.09
18 HU(6) - FA(6) .09
23 WH(10) > FA(9) .16
24 FA(9) - WH(10) -.16

a . .
The recognitions as shown are read:
Training segment pass -+ recognition segment pass.
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TABLE XV.— COMPARISON OF FIELD-CENTER CLASSIFICATION
ACCURACIES AND WHOLE-AREA CROP PROPORTION ESTIMATES

Data set

LARS/SP1

ERIM/SP1

EOD/SP1

(a) Mean values of dependent variable for field-center
classification error

LE(6)
LI(5)
WH (11)
HU(13)

1.341
1.142
1.111
1.139

0.999
1.012
1.035
1.113

1.149
1.206
1.238
1.369

(b) Mean values of dependent variable for whole-area
proportion estimation

LE(6)
LI(5)
WH(11)
HU(13)

1.125
0.596
1.538
1.351

2.212
1.314
2.172
2.823

1.659

.462
1.074
1.644

(c) Mean values

of dependent variable for field-center
proportion estimation

LE(6)
LI(5)
WH(11)
HU(13)

2.281
2.024
1.711
1.154

1.777
1.722
1.493
2.080

2.057
2.123
2.400
2.799
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TABLE XVI.— MEAN VALUES OF V FOR CORRECTED WHOLE-AREA
PROPORTION ESTIMATES

Data set LARS ERIM EOD
LE(6) 2,201 2.680 2.234
LI(5) 2.182 2.168 2.152
WH(1l1l) 2.013 2.262 2.035
HU(13) 2.421 3.052 3.128

TABLE XVII.— MEAN VALUES OF V FOR CORRECTED
WHOLE-AREA PROPORTION ESTIMATES —
FIELD-CENTER PILOT DATA

Data set LARS ERIM
LE(6) 3.116 3.060
‘LI (5) 2.152 1.097
WH(11) 2.458 2.148
HU(13) 3.863 2.516
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Figure 2.— Effect of number of signatures used on full-section
proportion estimation by ERIM/SPl on CITARS data.
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Figure 3.— Illustration of a situation where a linear
decision rule would outperform a quadratic decision
rule on test data.




100

e LARS/SP1
X ERIM/SPI1
80 — o EOD/SP1

60

40

20

Percentage correctly classified,
nonlocal recognition

0 20 40 60 80 100

Percentage correctly classified, local recognition

Figure 4.— Comparison of local and nonlocal recognition
performance on field~center pixels.
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5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The overall objective of the CITARS was to quantify the
CIP resulting from the remote identification of corn, soy-
beans, and wheat using ADP techniques developed at EOD, ERIM,
and LARS. The ADP techniques were evaluated for local and
nonlocal recognition. Specific objectives (section 2.0)
included performance comparisons to determine if and how
CIP's varied (1) with time during the growing season,
(2) among different geographic locations, and (3) among the
different data analysis techniques. Additional objectives
were to determine (4) whether nonlocal signal statistics
could be used successfully for crop identification, (5) if
the use of radiometric preprocessing could extend training
statistics and improve nonlocal performance, and (6) whether

the use of multitemporal data could increase the CIP.

To accomplish the objectives, five major tasks had to
be completed.

1. Acquisition and preparation of an ERTS-1 data set with
sufficient ancillary data to support the experimental
objectives and design

2. Computer-aided processing of this data set with selected
classification algorithms and procedures

3. Quantification of thé CIP's in a manner which would per-
mit quantitative evaluation of the ability of these pro-
cedures to satisfy the requirements of agricultural
applications

4. Statistical analysis to evaluate quantitatively the

impact of major factors known to affect CIP
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5. Interpretation of these results (a) to ascertain the
underlying physical factors responsible for the results,
(b) to draw inferences as to the status of the technology
as it relates to agricultural applications, and (c) to
make recommendations as to where the technology must be
strengthened.

This section briefly summarizes the results of the
several key technical tasks which had to be performed to
accomplish the scientific objectives. The results are sum-
marized for the six major CITARS objectives, and conclusions

and recommendations are presented.
5.1 KEY TECHNICAL ACCOMPLISHMENTS

As discussed in section 3.0, an ERTS-1 data set with
supporting ancillary data was acquired and prepared. Except
for completeness of satellite coverage (two-thirds of the
ERTS-1 scenes were unacceptable because of excessive cloud
cover) and insufficient amounts of wheat in some sites, the
data set met the requirements of the CITARS experimental
design. Assembly of the data set included:

l. Acquisition of crop identification and other agronomic
ground-truth data by the ASCS

2. Acquisition and interpretation of color IR aerial photog-
raphy to extend the field identification data acquired
by ASCS to additional sections

3. Registration and geometric correction of multitemporal
ERTS-1 MSS data for the test segments

4. Location of field and section coordinates in the ERTS-1
data.
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In addition, repeatable, analyst-independent ADP procedures
had to be defined and documented, and measures of CIP had to
be determined.

Periodic crop observations of fields used to train the
classifiers were made by the ASCS throughout the growing
season. Photointerpretation of multidate aerial photography
was successfully used to increase the size of the data base.
The photointerpreted data were used to evaluate ERTS-1 data
classification accuracy in field centers. 1In addition, crop
area proportion measurements were made from the aerial pho-
tography and used to evaluate proportion estimates derived
from the pixel-by-pixel classifications of the ERTS~1 data.

Multiple ERTS-1 passes were registered with an average
error of less than one-half pixel. This made multitemporal
classifications of the data possible and eliminated the need
to locate field and section coordinates in each ERTS-1
scene.

The need to maximize the number of pure pixels selected
from the relatively small fields in several of the segments
made selection of field coordinates more difficult than
expected. Manual methods were found to be inadequate, and
a computer-aided method of transforming digitized photomap
coordinates to ERTS-1 line and column coordinates was used.

" The latter method is recommended for use in future projects

requiring precise definition of ERTS-1 data coordinates.

A key task prior to the start of ERTS-1 data classifi-
cations was to define and document data analysis procedures

which were repeatable, easily followed, and yet incorporated
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the judgment and skill of experienced analysts. Although it
was recognized that restricting analyst decisions might
reduce the CIP, variability caused by analyst judgment had
to be minimized in order to make meaningful comparisons of
results. Limited tests were made using the LARS ADP proce-
dures. These tests indicated that, for the CITARS data set,
results produced by the ADP procedures used were comparable
to those obtainable using procedures with considerably more
analyst interaction.

An important accomplishment of CITARS was the use of
quantitative measures of CIP and statistical evaluation of
results. The statistical evaluation consisted of analyses
of variance and blocked-rank tests for comparisons involving
factors such as ADP procedure, location, acquisition date,
and use of preprocessing. Two variables, average conditional
classification accuracy of pure field-center pixels and the
rms error of proportion estimates for entire sections, were
used as measures of CIP. Section-to-section variability was
used in analyses of variance to determine if differences
among the factors were significant. The analyses of variance
revealed several significant differences; however, the power
of many of the tests was limited because of missing data, the
amount of variability present, and the failure of the depend-
ent variable to adequately describe performance of a section
independently of the composition of that section. Continued
use and development of these tools for remote sensing experi-
ments are recommended.

5.2 RESULTS AND DISCUSSION

The statistical analyses provided a key to the quanti-

tative assessment of remote sensing technology for crop
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identification in field centers and for crop area estimation.
Previous results have been confirmed in some instances,
whereas in others unanticipated results have led to recon-
siderations and new insights into certain aspects of the
technology. The remainder of this section summarizes the

major results and conclusions from the CITARS experiments.
5.2.1 ADP Procedures

Major differences were found in the results for the
three principal ADP procedures. The ERIM/SP1 was consist-
ently better in field-center recognition than the LARS/SP1
and EOD/SP1l procedures. However, for whole-area proportion
estimation, LARS/SP1l was the most consistent and had the
lowest average rms error. Possible reasons for this are
(1) the method of training and (2) the decision rule used,
both of which factors will be discussed below in more detail.
It also was found that all three principal procedures con-
sistently overestimated the proportion of major crops in the
segments. Possible reasons for this occurrence are (1) bias
in the proportion estimation method and (2) the presence of
pixels containing two or more cover classes. These results
indicate that field-center recognition of pure pixels, which
commonly has been used to evaluate CIP, is not a reliable

indicator of proportion estimates for whole areas.

The three main procedures tested differed in two ways.
Both LARS/SP1 and EOD/SP1l used a clustering procedure to
define training statistics (usually several classes for
each major crop) and employed a quadratic decision rule.

The ERIM/SPl, on the other hand, formed a single signature
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for each major crop and used a variable number of signatures
for "other" and a linear decision rule which was optimized
on a class-pairwise basis. The differences in performance
among the three procedures were attributed to the method of
training rather than the decision rule used, since similar
results (high ranking for field-center recognition and low
ranking for whole-area proportion estimates) were obtained
for ERIM/SP2, a quadratic decision rule classifier which
used the same signatures as ERIM/SP1l. The disparity in
rankings was minimized or nonexistent for late August when
inherent crop variations were the least and greater numbers
of other signatures were selected by ERIM. Thus, it was
concluded the major reason for the differences in rankings
for the two types of performance is the use by ERIM/SP1 and
ERIM/SP2 of single signatures to represent classes having
considerable variation.

It can be shown that proportion estimates based on
aggregated pixel classifications, as in CITARS, are inher-
ently biased because the expected performance depends on
the true proportions present, as well as on the performance
matrix of the classifier for individual pixels. It was
observed that the rms error in proportion estimation aver-
aged over all procedures was positively correlated with the
percentage of "other" in the test sections and negatively
correlated with average field size. The latter result is a
strong indication that field boundary pixels containing two
Or more cover classes were a major source of the biased
proportion estimates for whole areas. The evidence is that
conventional processing techniques using training based on
pure field-center pixels cannot be relied on to produce
unbiased proportion estimates for whole areas containing
mixture pixels.
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Another unexpected CITARS result is the lack of improve-
ment of LARS/SP2 (nonequal, major-class, prior probabilities)
over LARS/SP1 (equal prior probabilities). Theoretically,
apart from boundary pixels, the Bayesian classifier should
produce its minimum error rate when correct values for the
frequency of occurrence of each spectral class are utilized
as parameters in the classification rule. The LARS/SPl pro-
cedure assumed the likelihood that each spectral class would
occur equally in the scene. The LARS/SP2 included a proce-
dure for estimating the prior probabilities based on existing
agricultural statistics (see section 4.1.2). For CITARS
classifications, the LARS/SP2 procedure utilizing unequal
prior probabilities did not produce an improvement over
LARS/SP1l, which assumed them to be equal. This is attrib-
uted in part to the fact that the agricultural statistics
used were at the céunty level only (differing by as much
as 20 percent from the true proportions) and the test sec-
tions were subsets of the county and not randomly located
within it. Boundary pixels are another possible cause. The
authors do not believe that use of prior probability infor-
mation in the form of class weights should be discouraged
solely on the basis of the CITARS analysis, since it does
not constitute a definitive test. Instead, further tests
are recommended to determine the sensitivity of the maximum
likelihood classifier to class weights.

In other experiments, LARS showed that significant
differences in CIP can be obtained with different training
sets and that training set size alone does not determine the
adequacy of a training set. These results and those dis-
cussed earlier point out the dependence of CIP on the develop-
ment of training statistics.




ot

88
5.2.2 Nonlocal Recognition and Preprocessing

Comparisons of local and nonlocal performance indicated
that average classification accuracy of field-center perform-
ance for nonlocal recognition was reduced by 22 percent of
that obtained locally. For whole-area proportion estimates,
the average rms error of nonlocal classifications was 23 per-
cent greater than for local classifications. Haze level dif-
ferences between the training and recognition segments were
found to be quite well correlated (r = -0.77) with degradations
in nonlocal classification performance. Other factors, each
of which could affect the representativeness of signatures,
were regional differences in soil type, agricultural practices,
crop maturity, scene composition, training set selection, and
MSS scan angle. The results clearly indicate the problems in
extending training statistics over space and/or time.

Preprocessing with a relatively simple MLA algorithm
(ERIM/PSP1l) produced a slight but statistically significant
improvement over the three principal procedures in nonlocal
field-center recognition; however, no significant improvement
in proportion estimates for whole areas was evident. Pre-
processing substantially reduced the correlation between
field-center performances and differences in haze levels.
The inconsistent results with MLA processing are attributed
in part to differences in scene composition, for which the
technique does not account. Additional research is required
to improve on the signature adjustment technique tested and
to account better for spectral variability caused by scene
composition.
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5.2.3 Multitemporal Data Analysis

One segment with several clear ERTS-1 overpasses was
analyzed. The use of this multitemporal data (EOD/MSP1)
resulted in significant increases in CIP compared to single
date classifications. While substantial improvements in
performance were obtained for the segment analyzed using
basically the same data analysis procedures as for single-
date data, new analysis procedures should be researched and
developed, taking into account the increased complexity of

multitemporal scenes. The use of multitemporal data requires

a more complex data processing system (registration, increased

data base size, and more complex data analysis procedures) ,
but the increased performance may well justify the added
complexity.

5.2.4 Effect of Site and Crop Characteristics

Significant differences in CIP existed among the six
test segments. Field size was found to be correlated with
proportion estimation performance but not with field-center
recognition. The correlation of field size with the accuracy
of crop proportion estimates is attributed primarily to the
related decrease in the percentage of pixels containing mix-
tures of crops as field size increased. In addition, it was
observed that large fields tended to be more uniform, and
areas having larger fields had relatively fewer fields of

class "other." Both of these factors contributed to improved
performance.

The crop calendar was also an important factor influenc-

ing CIP. Field-center performance increased to a peak in late
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August when maturity differences among fields of a particular
crop (corn or soybeans) were least and the amount of ground
cover the greétest. Performance decreased rapidly in September
as the crops senesced. Whole-area proportion estimation
accuracy was about the same for all time periods except mid-
July, when it increased considerably because of greater dif-
ferences in crop maturity and ground cover.

5.2.5 Relation of Crop and Sensor Characteristics

Two key factors influencing CIP with remote sensor data
are (1) the nature of the spectral variation among and within
the classes to be identified and (2) the capability of the
sensor to measure the spectral variation. An understanding
of the relationship of these factors may help explain the
levels of CIP obtained in CITARS. In several instances it
was found that accurate identification of corn, soybeans,
and "other" was not possible even when all the fields ana-
lyzed were used to train the classifier. This may have been
caused by a lack of differences in the spectral characteris-
tics of the three classes or by the inability of the ERTS-1
MSS to resolve and precisely measure the differences present.
The latter is suspected to account for at least a part of the
problem. Crop classifications made during the 1971 Corn
Blight Watch Experiment [19] using MSS data with more spec-~
tral bands, narrower bands, and greater sensitivity and
dynamic range showed that these same cover types could be
more accurately identified. Additional comparisons of ERTS-1
and aircraft-acquired MSS or other high-spectral-resolution
data, such as those available from the current LACIE field

measurements project, will be needed to verify this point.




91

5.3 CONCLUSIONS

The CITARS has provided a quantitative assessment of the

1973-era technology for remote identification of major agri-

cultural crops. The use of quantitative measures of classi-
fication performance and statistical evaluations of the

results have been important parts of the technology assess-

ment. The major conclusions from the CITARS experiments are:

1.

The CIP's for corn and soybeans varied throughout the
growing season, with field-center accuracy being maxi-
mized in late August.

The probability of correct classification of field-center
pixels was not well correlated with, and thus is not a

reliable indicator of, proportion estimation performance.

Proportion estimation accuracy was strongly correlated
with both field size and the proportions of major crops
in the segment, but field-center classification accuracy
was not. Boundary pixels containing two or more cover
types were recognized as major contributors to the bias
in proportion estimates.

The manner in which ground cover classes were selected
and used to train the classifier strongly influenced the

amount of bias in proportion estimates.

Both the probability of correct classification and pro-
portion estimation accuracy were decreased when training
statistics for a different location or date were used.

An MLA algorithm for first-order adjustments to training
statistics used for nonlocal classifications increased
the probability of correct classification of field-center

pixels but did not improve proportion estimates for whole
areas.
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7. The use of nmultitemporal data improved both proportion
estimation accuracy and probability of correct
classification.

In addition, it has been shown that relatively automatic
data analysis procedures can be defined; these procedures can
produce repeatable results, are suited for processing rela-
tively large volumes of data, and incorporate (to a large

degree) the judgment and expertise of experienced analysts.
5.4 RECOMMENDATIONS

The CITARS provides valuable direction for future
research and development of remote sensing technology and
'guidelines for the design of operational crop production
survey systems utilizing remote sensing technology. Recom-
mendations from CITARS include:

1. Continued use and development of quantitative measures

of CIP and statistical evaluation of classification
results

2. Continued development of improved methods for training
classifiers

3. Research and development of methods to improve the

accuracy of crop proportion estimates for whole areas

4. Further tests to determine the sensitivity of maximum
likelihood classifiers to the use of prior probability
information and of linear classifiers to different
signature sets

5. Additional research, development, and testing of two

complementary approaches to nonlocal recognition: (a) more
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sophisticated preprocessing algorithms and (b) stratifi-
cation of areas based on their similarity with respect
to agricultural factors

Development of data analysis procedures which account for
the increased complexity of multitemporal data and reap

the benefits of the potentially greater information content
afforded by multitemporal data

Additionél comparisons'of ERTS-1 and other multispectral
data sources to determine the adequacy of the ERTS-1 MSS
in terms of the number, width, and placement of its spec-
tral bands, the signal-to-noise ratio, and its sensitivity,

dynamic range, and spatial resolution.
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