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Summary

In an earlier study, Swain et al.1 reported
on two statistical separability measures which
for multiclass feature selection were shown
experimentally to be more reliable than
divergence. However, the empirical results of
that study together with the best theoretical
results in the literature left open some
practical questions regarding the quantitative
characterization of these separability
measures. This paper is concerned with an
empirical study aimed at answering such
questions. It has been possible to further
substantiate that the Jeffreys-Matusita
Distance and a saturating transform of
divergence are effective feature selection
criteria for remote sensing applications. In
fact, an explanation as to why this should be
the case has now been made apparent.

Introduction

The feature selection problem in pattern
recognition may be stated as follows: Given a
set of N features (e.g., measurements on an
object to be classified), find the beat subset
consisting of k features to be used for
classification. Usually the objective is to
optimize a trade-off between classification
accuracy (which is generally reduced when
fewer than the N available features are used)
and computational speed and cost (fewer
features require fewer computations and hence
less time).

Ideally this problem would be solved by
computing the probability of classification

error associated with each k-feature subset and
then selecting the subset yielding minimal
error. However, it is generally not practical to
perform the required computations; even
under the simplifying assumption of Gaussian
statistics, the numerical integration required to
compute the errors is impractical to carry out.
Alternative methods have therefore been
sought for feature selection.

An approach which has been widely
investigated2 depends on the concept of a
measure of "statistical distance" between the
probability densities characterizing the pattern
classes. Intuitively one would like to have a
distance measure with the property that if the
distance between two class densities were
greater for feature set α  than for feature set β,
then the error probability obtained for set α
would be less than for set β.

Unfortunately, none of the distance measures
which have been proposed can be shown to
have This property exactly. However several,
including the distance measures discussed 2
herein, have the following weaker property

For feature sets α and β and distance
measure d(∗ ), if d(α) > d(β) then there exists a
set of prior probabilities ! for the pattern
classes such that

P Pe eα π β, ,( ) < π( ) (1)

where Pe(α ,!) is the probability of error
associated with feature set α  under the
assumption of prior probability set !; similarly
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for Pe(β,!). Distance measures having this
property have been found quite useful for
feature selection.

Candidate Distance measures

Divergence is a distance measure long
ago proposed for this purpose.3,4 The
divergence D for two densities pl(x) and p2(x)
is defined as
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where the integral is taken over the entire
feature space. If the pi(x), i = 1, 2, are
multivariate Gaussian densities with Ui and
covariance matrices ∑i then
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where trA denotes trace of matrix A, A-1 is the
inverse of A, and AT is the transpose of A.

Although divergence only provides a
measure of the distance between two class
densities, its use is extended to the multiclass
case by taking the average over all class
pairs.4 If Dij is the divergence between classes
i and j, then the multiclass feature selection
criterion is
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Even for the 2-class case, the relationship
between divergence and classification accuracy
is highly nonlinear (in fact, divergence
increases without bound as class separability
increases, whereas probability of correct
classification must "saturate" at 100 percent),
and it is found that widely separable classes
make too much of a contribution to DAVE as
compared with less separable classes. As a
result, in problems involving a wide range of
class separabilities, DAVE is not a reliable
criterion for feature selection.

Swain et al.1 have shown experimentally
that a separability measure referred to as the
Jeffreys-Matusita Distance (JM-distance)+

provides a much more reliable criterion,
presumably because as a function of class
separability it behaves much more like
probability of correct classification. For two
densities pl(x) and p2(x), the JM-distance J is
given by

J p (x) p (x) dx1 2

X
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which can also be written in the form J=2(1-p)
where

p = ∫ p (x)p (x)dx1 2

X

(6)

If pi(x), i = 1, 2, are multivariate Gaussian
densities as above then ρ=e-α and J=2(1-e-α),
where
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and
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In Eq. 7, det A means the determinant of
matrix A. Since 0<e-α<1, J ranges from 0 to 2
with 2 corresponding to the largest separation.
It was observed by Swain et al. that this
"saturating" behavior of J is responsible for its
utility as a feature selection criterion in
multiclass problems. If Jij is the JM-distance
between classes i and j, then the multiclass
feature selection criterion is taken as
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+ In Swain et al.1 this is referred to as
B-distance because of its relationship to the
Bhattacharyya coefficient. However other
works have attributed this distance measure to
Jeffreys and Matusita.
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Since in this case Jij increases with separability
in a saturating fashion (rather than in an
unbounded fashion as does divergence), widely
separable classes do not make an undue
contribution to the average separability
criterion. Thus the average separability
criterion better reflects the overall
classification accuracy which will be attained.

In some respects, divergence is easier to
compute than JM-distance, however, so that
the following observation is of interest:
JM-distance and divergence are related by the
inequality
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 (again assuming Gaussian statistics). This
relation provides the motivation for defining
a "saturating transform" of divergence, DT, as
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The transformed divergence varies from DT=0
(when D=0) to DT=2 (when D−>∞). Thus DT
is another candidate of potential utility for
averaging in the multiclass case.

Experimental Investigations

Experiments with remote sensing data
collected by airborne multispectral scanner
systems have demonstrated that the saturating
measures of separability are preferable to
ordinary divergence for multiclass feature
selection.1 In fact, the JM-distance yields
much more reliable results, with the
transformed divergence running a close
second.

However, these experimental results
taken together with the best available results
from the literature (both theoretical and
experimental) leave open some nagging ques-
tions; to wit:

1. Is it possible to characterize the
relations between the separability measures
discussed above and classification error in a

manner which more fully explains the superior
performance of the saturating separability
measures?

2. Given that at best only inequality
relationships between the separability
measures and classification error are available
(i.e. upper and/or lower bounds on error for a
given separability), what is the nature of the
distribution of performance for a given
separability?

To derive answers to these questions in
the remote sensing context, an experiment
was performed on a digital computer'. Based
on typical second order statistics derived from
real remote sensing data, 2790 sets of
Gaussianly distributed artificial data were
generated; each set contained 1000
observations for each of two pattern classes in
a feature space of dimensionality ranging from
1 to 6 (465 sets were generated for each
dimension 1,2,...,6). For each set the
divergence, transformed divergence, and
JM-distance were computed, and the actual
classification error for the 2000 observations
was taken as the associated probability of
error. The results are summarized in Figures 1
through 5, with Pc, the probability of correct
classification (1.0 - probability of error),
plotted against the respective distance
measures. Figures 1, 2 and 3 show the
superimposed results for all 2790 data sets.
Also shown are least-squares polynomial
approximations (of degree 3 for J and DT and
degree 10 for D), and the theoretically derived
bounds2 on performance as functions of
separability (a lower bound is available only
for J). Clearly, the relationship between
probability of correct classification and the
measure of separability is nonlinear in each
case. But for the range of classification
accuracy likely to be encountered in real
problems -- say, 75 percent to 100 percent --
divergence increases much more than linearly
with separability, which is precisely why well
separated classes have too much influence on
average divergence in the multiclass case. The
other two separability measures are, in this
sense, much more "well-behaved. "

For historical reasons plus the fact that
transformed divergence is slightly easier to
calculate than JM-distance (one less matrix
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inversion is required for each feature
combination evaluated), our work has been
mostly directed toward the former. As
mentioned earlier, however, our experiments
have shown the JM-distance to have a small
edge over transformed divergence with respect
to accurately predicting the best features for
multiclass recognition. Figures 1 and 2 provide
additional reasons for preferring JM-distance.
One reason is the lower bound on
classification accuracy as a function of
JM-distance; no such lower bound is available
for transformed divergence. Another reason is
the much tighter clustering of the
experimental results about the regression
curve for the case of JM-distance so that
performance is "much more predictable" as a
function of JM-distance.

Figures 4 and 5 show how the
experimental results vary as a function of the
number of features for the case of transformed
divergence. The principal effect is the
increasing difficulty of obtaining observations
at the lower end of the scale as more features
are added. Compounded with this, there may
be a tendency for the results to cluster
somewhat more tightly about the regression
curve. Practically speaking, however, the
same regression curve can be used for
1,2,3,4,5, or 6 features to approximate the
functional relationship between classification
accuracy and transformed divergence (a
similar conclusion applies for the
JM-distance).

Concluding Remarks

One cannot help but notice in Figures 1
and 2 the apparent looseness of the
theoretical bounds relative to the
experimental observations. This almost
certainly is at least in part the result of
characteristics of the remote sensing data
which were the basis for the artificial data
generation. We leave it to anyone needing a
more general result to repeat the experiment
with completely random selection of means
and covariance matrices.

As another extension of this
experiment, the multiclass case may be
investigated explicitly in order to verify the

inferences we have drawn relative to the
multiclass case. This would involve generating
a large number of randomly specified (though
presumably, but not necessarily, Gaussianly
distributed) multiclass data sets. Graphs similar
to Figures 1 through 5 could then be produced
to determine trends, empirical bounds, etc.
Does anyone have an idle computer at his
disposal?

In conclusion, our results have
reinforced and provided an explanation for
previous observations that JM- distance and a
saturating transform of divergence are highly
useful for feature selection in the multiclass
case. Although our experiments have been
limited to a very specific instance from
remote sensing, our general conclusions are
certainly applicable to a much wider range of
problems, since they depend only on the
functional behavior of the separability
measures discussed.
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