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" PREFACE

For many decades, man has collected and analyzed remotely
sensed data 1in order to learn more about the earth's surface.
Since the development of the multispectral scanner in the 1960s,
such remotely sensed data increasingly has been collected and
stored in the digital format of the multispectral scanner. This
digital format makes it convenient to enlist the computer as an
analysis aid. In fact, with the 1large volume of data produced
since 1972 by Landsat and other satellite-based multispectral
scanners, the computer has become a necessary part of the
analysis process simply because of the amount of data involved.
We would still want to use the computer, though, even if the
volume of data were not a consideration. A computer can help an
analyst more effectively exploit the full information content of
the data. :

Several computer-assisted analysis techniques are based on
statistical pattern recognition. This workshop introduces you to
these statistical pattern recognition techniques through a series
of exercises that simulate an analysis of multispectral scanner
(MSS) data. The purpose of this workshop is NOT to train you to
be analyst, but rather to give you an overview and understanding
of how MSS data are analyzed. You will gain this understanding
through learning about MSS data characteristics and statistical
pattern recognition techniques and by working through the
decision process used by an analyst.

Each chapter in this manual consists of a general discussion
of a particular analysis step followed by a specialized case
study which illustrates the processes described in the general
discussion. The case study analysis problem is a computer-
assisted analysis of MSS data selected from several available
case studies. This case study is presented as an example of how
numerical analysis might be performed on a particular data set.
It should not be thought of as the only way the analysis could
have been done.

While Landsat data is mentioned frequently in this manual,
the general discussion is written so as to apply to multispectral
scanner data from any source, though slanted towards satellite-
based sources. The featured case study may be based on Landsat
data or data from another type of multispectral scanner.
Whenever there are special considerations associated with a non-
Landsat data set, these are noted in the appropriate case study
sections.

The case study featured in this manual was performed using
the LARSYS numerical analysis system. Also, several LARSYS
processors are described in the general discussion sections as
illustrations of analysis procedures. We use LARSYS here only as
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an example of a numerical analysis system. Similar analyses can
be carried out using any of several other remote sensing analysis
packages.

You will not actually use a computer during these workshops.
Someone else has already run the required computer programs to
analyze the data. But you will 1look at the computer inputs and
outputs from an entire analysis sequence and learn to make the
necessary analysis decisions. Your instructor will provide you
with a binder containing computer printouts of the case study
analysis.

The intended audience for this workshop are persons who have
a basic background in remote sensing. This remote sensing
background can be gained by means of the following educational
materials or their equivalent:

"An Introduction to Quantitative Remote Sensing,"

by J. C. Lindenlaub and James D. Russell,

LARS Information Note 110474, Laboratory for Applications of
Remote Sensing, Purdue University, West Lafayette, Indiana
47907.

Fundamentals of Remote Sensing Minicourse Series¥*, In
particular, the following units:

-Remote Sensing: What Is It?
-The Physical Basis of Remote Sensing

-Spectral Reflectance Characteristics of Vegetation
-Spectral Reflectance Characteristics of Earth Surface
Features

-Multispectral Scanners
-Interpretation of Multispectral Scanner Images

-Pattern Recognition in Remote Sensing
-Typical Steps in Numerical Analysis

Introduction to Quantative Analysis of Remote Sensing Data
Videotape Series*., In particular, the following units:

-The Remote Sensing Information System
-The Role of Pattern Recognition in Remote Sensing

* The Minicourse Series and the Videotape Series may be obtained
from Continuing Education Admininstration, 116 Stewart Center,
Purdue University, West Lafayette, Indiana 47907.
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A basic background may also be obtained. by studying the
introductory portions of one of the following texts: '

Remote Sensing of Environment
J. Lintz, Jr. and D. S. Simonett, eds.
Addison and Wesley Publishing Company, Reading, MA, 1976.

Remote Sensing: The Quantitative Approach,
P. H. Swain and S. M. Davis, eds.,
McGraw-Hill Book Company, New York, NY, 1978.

Remote Sensing and Image Interpretation
T. M. Lillesand and R. W. Kiefer,
John W1ley and Sons, New York, NY, 1979

These texts are also useful supporting references for this
workshop manual..

This workshop manual is based upon materials presented in
Workshop Series on Numerical Analysis of Remotely Sensed Data by
Ronald K. Boyd and John C. Lindenlaub. The authors wish to thank
Shirley M. Davis, Joan S. Buis and Roger M. Hoffer for their
‘thoughtful editorial comments and content suggestions throughout
the development of this manual.




CHAPTER I. INTRODUCTION

The numerical analysis of multispectral scanner (MSS) data is
a dynamic process which requires interaction between man
(analyst) and machine (computer). The process involves meshing
the experience and insights of the analyst with appropriate
computer programs to extract the maximum amount of information
from the data. Numerical analysis techniques allow detailed
study of digital data and have been shown to be cost effective in
many cases. A typical analysis sequence is shown in Figure I-l.
Even though it is shown here as a 1linear process, all of the

steps are interrelated. At any step in the analysis, an

interpretation of the results of that step can lead to a return
to a previous step for revision of the procedure.

Numerical analysis of MSS data is to a large extent an art.
While there are several general analysis guidelines, there is no
single set procedure that must be followed for all data sets.
Each analyst will analyze a particular data set in a slightly
different way than another analyst would. In addition, different
data sets will be analyzed somewhat differently even by the same
analyst, depending on the characteristics of the data set and
what information is desired as output from the analysis.

Chapters II through VI discuss each analysis step in turn.
Before we can discuss these analysis steps, though, we should
first review certain general characteristics of MSS data.

A multispectral scanner (MSS) gathers radiance data in
various sections of the electromagnetic spectrum (wavelength
bands). The number of these wavelength bands and the coverage of
the electromagnetic spectrum depend on the particular scanner.
For example, the Landsat MSS has four wavelength bands covering
most of the visible and near infrared spectrum. The MSS aboard
the Skylab space station had 13 wavelength bands covering most of
the visible, near infrared and middle infrared spectrum, and a
portion of the far (thermal) infrared spectrum.

Each MSS has a particular spatial resolution, i.e., for each
scanner there is a limit to the smallest object that can be
detected.  This spatial resolution, which is determined by the
scanner's optics and altitude, controls the resolution cell size
or ground area coverage of each picture element (pixel) in the
data. The Landsat MSS resolution cell is approximately 56m by
79m. The Skylab MSS had a spatial resolution close to that of
the Landsat MSS. The Thematic Mapper aboard Landsat D has a
resolution cell of 30m by 30m.
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MSS Data Selection,
Step I Correlation with Reference Data
and Training Sample Selection

Y

Step 1II Statistical Definition of the
(Spectral) Training Classes

Y

Step III Classification of the
Entire Study Area

Y

Step IV Pictorial and/or Tabular Display
of the Classification Results

Y

Step V Evaluation of the
Classification Results

Figure I-1. Flowchart of analysis steps for classification of
multispectral scanner data. '

Calibration signals. are recorded with each scan line
collected by MSSs. A separate set of calibration signals is
recorded for each MSS detector. These calibration signals are
used for removing inconsistencies in the MSS electronics during
data collection and for converting the data into radiometric
units. Data values which are converted to radiometric units can
be compared across wavelength bands and can be compared to data
collected at a different time, whether or not it is collected by
the same sensor. In the visible and near infrared spectral
regions, calibration is often provided by the black background of
the interior of the scanner, a reference lamp and sunlight. For
thermal infrared wavelengths, calibration is provided by standard
cold and hot thermal plates. The Landsat MSS uses only
background and incandescent lamp references for calibration. The
calibration of  the Thematic Mapper is provided by three tungsten
lamps which are switched on and off so as to provide eight
calibration levels from background to full-scale illumination.
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The above description of the ' spectral, spatial and
radiometric characteristics ~of MSS data is intended only as a
brief review of multispectral scanners. It is by no means.
comprehensive. For a more complete description of MSS data and
systems see sections 2.6, 2.7 and 2.8 of Swain and Davis, Remote
Sensing: The Quantitative Approach.

|
|
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CHAPTER II. MSS DATA SELECTION, CORRELATION WITH
REFERENCE DATA AND TRAINING SAMPLE -SELECTION

Upon completion of this chapter, you should be‘able to:

1. State at least one reason why the quality of the data
being considered for analysis must be evaluated.

2. Name at least two sources of data quality information.

3. Name at least three data quality problems that might
hinder analysis.

4. Describe two types of geometric corrections that might
aid in the analysis of Landsat data.

5. State one reason for correlating multispectral scanner
data with reference data.

6. List at least four types of reference data.

7. Describe the correlation of ground features apparent in
the multispectral scanner data with the same features in
reference data.

8. State why a training sample is needed.

9. Contrast the supervised and nonsupervised approaches to
obtaining a training sample.

10. Name at 1least two considerations that affect the
selection of training areas in the hybrid approach to
training sample selection. :

The first step in multispectral classification begins with
the selection of the MSS data set. The data set must be of
sufficient quality and must be from an appropriate time of year
so that the land cover classes of interest can be identified with

the desired accuracy. Otherwise, no matter how carefully the
ensuing analyses are carried out, we will not be able to produce
the desired results. Next we must locate our study area in the

MSS data and correlate our MSS data with the available reference
data. Once this is done, we can use the reference data to help
select a representative training sample from the MSS data. This
training sample will be used later to statistically define the
(spectral) training classes that will be used for training the
classifier.
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SELECTING THE DATA SET

Before we can select our MSS data set, we must consider
characteristics of the land cover <classes of interest that might
limit our selection of data sets. Certain land cover classes may
appear only during certain times of the year, and other land
cover classes are easier to spectrally distinguish from other
land cover classes in certain times of the year than other times.
For example, agricultural crops can only be detected during the
period from planting through harvest, coniferous trees can be
identified most easily during the winter (when deciduous trees
are leafless), and soils may be studied most easily during fall
(after harvest and before the snows) and during spring (after the
snow melt and before crop emergence).

After we have limited our MSS data selection by time of year,
we must consider the general quality of the remaining data sets.
This includes the actual radiometric quality of the data as well
as possible problems with snow and cloud cover in the imagery.

A rough idea of data quality and cloud coverage for Landsat
data sets from any specified geographic area can be obtained by
scanning computer listings provided by the EROS Data Center
(Sioux Falls, South Dakota). The EROS Data Center examines all
the Landsat data received at the facility and rates the channel-
by-channel quality of each data set on a scale of 0 to 9, with 9
indicating the highest quality. Rough estimates of the
percentage of cloud coverage are also included. If you are using
non-Landsat data, inquire about the availability of similar
computer listings. With this type of information we can choose,
for closer examination, data sets of acceptable quality and cloud
coverage from the time of year most suitable for discriminating
among the cover types of interest in our study area.

Once we have eliminated the most obviously unsuitable data
sets from consideration by the above process, we can perform a
more refined evaluation of the remaining data sets by directly
examining the data in pictorial form. For Landsat data, we can
obtain from the EROS Data Center black-and-white photographs made
from each band of each data set to be examined. 1If you are using
a non-Landsat data source, inquire about the availability of
similar photographs made from the data sets of interest.

Gross data characteristics, including cloud cover, are
obvious in a pictoral representation of the data. Figure II-1
shows an example of a photographic image made from a Landsat data
set from the Chicago, 1Illinois area. Cloud cover shows up
clearly over the eastern portion of this image. This image also
points out a problem with the cloud cover percentage estimates
given by the EROS Data Center computer listings. If we want only
to study the immediate Chicago area, this image has an effective
0% cloud cover. The cloud cover ' percentage given by EROS for
this scene is 20%.
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Figure 1II-1. Landsat scene over Chicago, Illinois and the
surrounding area with clouds obscuring the east side of the
scene.

A dramatic example of a data quality problem is shown in
Figure II-2. In the Landsat scanner system, six lines of data
are collected in each wavelength band each time the scanning
mirror oscillates. A separate set of detectors is used for each
of these scan lines. If these detectors and their associated
electronics are not properly matched or calibrated, a striping
effect such as shown in Figure 1II-2 may be noticeable 1in the
imagery of one or more bands. The table below Figure II-2 shows
the mean and standard deviation of the output of each of the six
Band 4 detectors over the entire image shown in Figure 1II-2.
Notice that the mean value for detector 3 is very low compared to
that of the other detectors. Apparently a malfunction occurred
in the detector electronics, resulting in the striping
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Figure II-2. Striping effect in imagery.

Standard

Detector Mean Deviation
1 2139 3.21
2 21.8 3. 07
3 7.0 2l dLE]
4 21055 313
5 2019 2l
6 AL e, 3503

illustrated in Figure II-2. Other data quality problems

sometimes encountered are dropped, bad or noisy data lines, also
usually caused by malfunctions in the detector electronics.
These data quality problems can be compensated for by various
computer image restoration techniques. Presently the EROS Data
Center processes most Landsat data to compensate for these
radiometric and geometric problems.

After we have examined a pictorial representation of each
candidate data set for data quality and cloud coverage, we can
order computer compatible tapes (CCTs) for one or more of the
data sets for computer analysis. Note that we do not have to
obtain the relatively expensive CCTs until after we select the
data set(s) which we will use in the analysis.
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Now that we have our CCT for our MSS data set, we will want
to display all or portions of the data in pictorial form. We do
this to double-check data quality and to assist in the rest of
the data analysis process. We can display our data by using a
cathode ray tube device (CRT digital display), a line or dot-
matrix printer/plotter, or an optical film writer.

LOCATING A STUDY AREA AND CORRELATING IT WITH REFERENCE DATA

Now that we have chosen the best available data set for
analysis, we need to locate the study area within the data and
correlate any reference data we may have (aerial photography,
maps, etc.) with the multispectral scanner (MSS) data. This
process 1is made easier by using MSS data which have been
geometrically corrected and scaled to allow overlaying directly
on any map-like reference data.

Imagery generated by uncorrected Landsat data exhibit a
phenomenon where rectangular objects on the ground appear as
skewed parallelograms. This skewing is caused by the rotation of
the earth beneath the satellite. Since the Landsat orbit is not
oriented exactly over the north pole, an uncorrected Landsat
image also is rotated from a north and south orientation (about
12 degrees at 40 degrees north latitude). Both skew and rotation
can be corrected by a geometric transformation of the data
performed by a computer. An example of this is shown by Figure
IT-3 where Landsat data are displayed in image form both before
and after geometric correction.

Figure II-3. Landsat image data before and after processing to
remove the effects of the earth's rotation.

During geometric correction, the data may also be rescaled.
The MSS data can be scaled to correspond to USGS topographic maps
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(1:24,000) or any other scale desired to allow the MSS data to be
overlaid on map reference data. While the uncorrected data are
adequate for some analysis tasks, using geometrically corrected
data simplifies the analyst's job of 1locating ground features
since the data can be overlaid on map reference data and more
easily compared with map-like reference data. Comparing map or
map-like reference data with geometrically corrected MSS data is
a convenient and effective way to locate the study area in the
MSS data set.

Map-like reference data can come in several different forms.
One such form of reference data is aerial photography.
Photography can be collected at various altitudes, resulting in
reference data at a range of mapping scales. In general, as a
plane flies higher (or as the camera focal 1length decreases),
each photograph will cover a larger area, but less detail will be
discernible. Another variable in aerial photography is film
type. Black-and-white panchromatic or infrared film, color and
color infrared film all provide different kinds of information
about a ground scene and can serve as reference data for an
analyst who understands how to interpret photographic images.

Aircraft multispectral scanner data can also serve as map-
like reference data for an analyst working with satellite data.
Data collected by aircraft often provide more detailed
information about the spectral characteristics of portions of a
scene than the satellite data. For example, on aircraft-borne
sensors there may be more spectral bands available and the data
may be available at greater spatial and spectral resolution.

It should be noted that aerial photography and aircraft MSS
image data may have significant distortions from strict map
quality. At the lower altitudes these data are collected at
features such as high-rise buildings and mountains distort the
image away from map quality. In addition, aircraft multispectral
scanner data will have distortions caused by unwanted aircraft
motions such as pitch, roll, yaw, cross-path translations, and
variations in velocity and altitude. We must be careful to allow
for these problems when using these kinds of reference data.

Maps (e.g., county highway maps or U. S. Geological Survey
maps) and historical records (e.g., past crop yields or weather
patterns) can be useful to an analyst in providing information
about an area and its characteristics.

Another source of information is observation at the scene by
the analyst or other personnel. This 1is usually referred to as

"field checking"™ or "ground truthing." Ground truthing may

include collection of soil moisture samples, identification of
crop varieties, determination of biomass, or other detailed
observations. - These observations can provide the key to
successfully relating the spectral responses in the data to the
cover types on the ground.




SELECTION OF THE TRAINING SAMPLE

The next step in this analysis of multispectral scanner data
is the selection of the training sample. In order to understand
what a training sample is and why it is needed, we need to review
some pattern  recognition concepts. The pattern recognition
algorithms we will deal with require that examples of typical
data from each class of interest be supplied to the computer
programs. These data, called a training sample, are used to set
certain parameters for the pattern recognition algorithms, in
effect "training" the computer to recognize the classes of
interest. When the classification operation is carried out by
the pattern recognition algorithms, each data point to be
classified is "compared" to the training sample for each class,
and the pixel is assigned to the class it most closely resembles.

There are two major methods of obtaining a training sample.

The first, referred to as the supervised approach, involves
locating regions of pure pixels, each region representing a
single cover type. We locate in the reference dJdata several of

these regions for each cover class, and find the corresponding
regions in the multispectral data. The training sample for each
class is formed by grouping together the data from all regions
identified in the multispectral data as belonging to that ground
cover class. The second, referred to as the nonsupervised
approach, does not utilize reference data to select pixels to
form the training sample. Rather a systematic or random sample
of pixels is selected from the study area. This sample is then
analyzed to identify groups of pixels that are spectrally
similar. The cover type identity of each pixel group is
established by comparing the pixels in each group to the
reference data.

To summarize, in the supervised approach we specify the
ground cover classes of interest and locate a sample of each of
these classes in the multispectral data. In the unsupervised
approach we analyze a systematic or random sample of the
multispectral data to identify spectrally similar classes. We
then assign ground cover class labels to these spectrally defined
classes.

The supervised approach has as its sttength the guarantee

“that ground covers and regions of most interest are represented

in the training sample. We can assure this representation
through strategic selection of the regions of pure pixels. A
problem with this approach is that even a carefully selected
training sample may not reflect the true spectral variability of
each ground cover class. Classification accuracy may be reduced
if our training samples aren't truly spectrally representative of
each ground cover class. Another problem is that, for most data
sets, many of the pixels are not from pure cover classes. When
using the supervised approach, we may not be able to produce an
accurate classification when a substantial number of mixed pixels
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occur in a data set since the computer is not trained to identify
mixed pixels with this approach.

The nonsupervised approach has as its strength the ability to
group spectrally similar pixels regardless of their spatial
positions. This can be advantageous when working with a
heterogeneous scene in which the 1likelihood of observing several
adjacent pixels of similar spectral response is low. An example
of such a scene would be an area of mountainous terrain with many
combinations of slope, aspect, elevation and vegetation. A
problem with the nonsupervised approach is that important but
infrequently occurring cover types could be missed by the
systematic or random sample used in this approach.

A common mistake 1is to assume that because points are
spatially adjacent and belong to the same cover type, they are
spectrally similar. This 1is not necessarily the case. If we
think of a corn field, experience tells us that within that field
there may be low spots where the corn is greener and has greater
ground cover and high spots where there is slight moisture stress
and the corn is therefore thinner and more soil is "seen" by the
remote sensing system. (In exceedingly wet years, the reverse
effect may occur.) There are many other reasons for spectral
variability within a cover type, and many cover types may be
represented by two or more groups of pixels that are spectrally
different. We can use the nonsupervised approach to identify
this spectral variability in each ground cover class.

There 1is another approach to obtaining a training sample
which combines aspects from both the supervised and nonsupervised
approaches. As in the supervised approach, the training sample
is defined by selecting regions of pixels as guided by reference
data. However, in this hybrid approach these regions, called
training areas, are selected to contain several cover types.
Once the training sample is defined in this way, the sample is
analyzed, as in the nonsupervised approach, to identify groups of
pixels that are spectrally similar. The cover type identity of
each pixel group is established by comparing the pixels in each
group to the reference data. _

The hybrid approach allows us to take advantage of the
strengths of both the supervised and nonsupervised approaches
while avoiding the problems inherent in these approaches. We can
choose the training areas so that all cover types and regions of
interest are included in the training sample, as in the
supervised approach. But since the training areas are then
processed to identify spectrally similar pixels within the area,
as in the nonsupervised approach, spectral variability within
particular cover types is also identified.

The first step 1in obtaining a training sample in the hybrid
approach here is the selection of training areas. Experience
has indicated that the task of identifying spectral groups of
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pixels is made easier by choosing large training areas since this
facilitates correlation with the reference data. The computer
system being used, however, puts an upper ‘limit on the size of
the training areas. For LARSYS the 1limit is 25,000 pixels for
one channel data or 40,000 pixels -~ divided by the number of
channels - for multichannel data. For example, four channel data
have a limit for a single training area of 10,000 pixels, or a
square 100 lines by 100 columns.

A common procedure for selecting the training areas is to
use 1in the available reference data to identify areas that
contain the information classes of interest. These areas are
then also identified in imagery formed from the multispectral
scanner data. With this information in mind, we then select three
to six training areas (five to ten in highly variable data sets)
so that each area includes more than one cover type, and every
cover type is included in at least one (preferably two or more)
training areas.. If only three training areas are selected, each
area should be as large as possible given the constraints of your
computer system. If more training areas are selected, each area
can be a 1little smaller. An additional useful criterion is to
include identifiable landmarks in each training area to
facilitate correlation between the image data and the reference
data. To help ensure that the training sample is representative,
the training areas should be distributed somewhat uniformly
throughout the area to be classified; however, this may not be
possible if reference data is limited.

Self-Check

1. Explain in your own words why examination of data quality is
necessary.

2. Name at least two ways in which the we can examine data
quality.

3. Name at least two types of data quality problems we might
find in Landsat data.

4. Wwhat two types of geometric correction aid in the analysis of
Landsat data?

5. State one reason for correlating multispectral scanner data
with reference data.

6. List at least four kinds of reference data.

7. State why a training sample is needed.

8. Name two considerations that should go into the selection of
training areas in the hybrid approach.
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CHAPTER III. STATISTICAL DEFINITION
OF THE (SPECTRAL) TRAINING CLASSES

‘Upon completion of this chapter, you should be able to:

1. Describe at least two tasks a clustering algorithm can
perform.

2. State the rule-of-thumb used to determine the number of
clusters to request and give the reason behind it.

3. State why an analyst associates cluster classes with
information classes.

4. Given printed cluster maps and available reference data,
describe how to associate cluster classes with
information classes.

5. Give an example of when we should augment the candidate
training classes obtained from clustering the training
sample.

6. Describe at least one method of visualizing the spectral
characteristics of candidate training classes.

7. Describe the location of water, green vegetation, and
bare soil on a bi-spectral plot.

8. Given two pairs of one-dimensional density functions,
identify the pair which 1is separated by the larger
statistical distance.

9. Name the two characteristics of Gaussian probability
density functions which determine the statistical
distance between the density functions.

-10. Name two desirable characteristics of training classes.

11. Given a separability diagram and a 1list of the
identities of each spectral class, describe how to
select a set of training classes to use in the
classification.

"12. Discuss the wutility and limitations of statistical
distance measures for predicting the accuracy
classifying with any set of training classes.
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In the previous chapter we described how to select a training
sample by using either the supervised, nonsupervised or hybrid
approach. Now we will discuss how to use this training sample to
define (spectral) training classes.

Under the supervised approach, the training classes are
automatically defined through the process of selecting a training
sample for each ground cover (information) class. All we need do
before we classify the study area is characterize the training
classes so that our classification algorithm can use them.
Depending on the type of classifier used, this characterization
is usually in terms of the mean vector and covariance matrix of
each training class, or just the mean vector. The mean vector is
composed of the averages of the data values in each wavelength
band. The covariance matrix is a multivariate generalization of
variance and is used to characterize the multidimensional
"spread"” or dispersion of the data in each training class sample.

Under the nonsupervised and hybrid approaches, we must
analyze the training sample to find groups of pixels that are
spectrally similar and that can be used as spectral training
classes. First we cluster the training sample to define
candidate training classes. (In the hybrid approach each
training area is usually clustered separately.) Then we
associate each candidate training class with an information
class. If we find that there are information classes that are
not represented by at least one candidate training class, we may
augment our candidate training classes at this point by adding an
appropriate training sample for each such information class using
the supervised approach. Next we study the candidate training
classes to see how they are related to each other spectrally. We
can do this by plotting the statistical characteristics of the
candidate training classes and by calculating statistical
distances between the classes. Final spectral training classes
are then defined by deleting and/or pooling the appropriate
candidate training classes. All these steps are described in
detail in the following sections.

CLUSTERING THE TRAINING SAMPLE

The first step in defining spectral training classes from the
training sample 1is clustering, i.e., identifying natural
groupings of pixels in the sample. Each pixel in the training
sample has a location in the multispectral measurement space
relative to all of the other pixels. Pixels naturally tend to
occur in groups or clusters 1in this space as illustrated in
Figure III-1.

Natural clusters can be visually detected only for data sets
which are one-, two- or three-dimensional. To cluster higher
dimensional data, and to save us from a possibly tedious task
otherwise, we need to use a computer.
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Figure III-1. Typical plot of the spectral responses of water,
soils, and vegetation in Landsat bands 5 and 6. Note how the
spectral responses of each one of these major ground cover types
form "clusters" ‘around a common center.

How can a computer cluster the training sample? In LARSYS,
the CLUSTER processing function uses the following approach for
clustering the training sample (or each training area): The
analyst specifies the number of clusters desired and the
processor designates the location of each initial cluster center
in multidimensional space (see Figure III-2). Then the processor
calulates the multidimensional Euclidean distance between each
data point in the training sample and each cluster center, and
assigns each pixel to the cluster with the nearest cluster
center. New cluster centers are then determined by the processor
by calculating the mean vector for the data points assigned to
each original center. The computer then recalculates the
multidimensional distance between each data point and the new
cluster centers and reassigns each sample to the closest newly
defined cluster center. The computer continues the cycle of
calculating the cluster centers and reassigning data points until
the percentage of data points that are not reassigned to a new
cluster center reaches a value known as "convergence."
Specifying a convergence value 1less than the default value of
1008, for example 98.5%, will result in a significant saving of
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Figure III-2. Sequence of clustering iterations: (a) Initial

cluster centers, (b) and (c) Intermediate steps, (d) Final center
configuration.

computer time without seriously affecting the clustering results.
See section 3.10 of Swain and Davis for more details.

A clustering algorithm such as CLUSTER is called a
nonsupervised classifier because it groups pixels strictly on the
basis of their multi~channel data values. Neither the location
of the pixels relative to one another (spatial information) nor
ground cover type is considered in determining the clusters.
Rather, such an algorithm groups those pixels with similar
spectral response values in the multiple channels. These natural
groupings in the training sample are called cluster classes or
spectral classes. In the nonsupervised and hybrid approaches, we
use these cluster classes as our original candidate training
classes.
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When data from a ground scene are clustered, there is a
tendency for the data points within each cluster class to be
distributed in a Gaussian fashion. Figure III-3 shows a typical
Gaussian function in one dimension -- commonly called a "bell-
shaped” or "normal”" curve. Figure III-4 shows a two-dimensional
Gaussian density function. The fact that clusters in remotely
sensed data tend to be Gaussian is important because several of
the classification algorithms used are based upon a Gaussian
assumption, i.e., that the distribution of the data values within
each of the classes to be classified can be approximated by a
Gaussian density function.

Pix| Pix4, X2l

0] X X1

Figure III-3. Gaussian density Figure III-4. Gaussian density
function in one dimension. function in two dimensions.

Often more than one Gaussianly distributed cluster is
necessary to represent an information (ground cover) class. As
an example, an agricultural crop might exhibit a multimodal

distribution (more than one peak) due to different soils,
moisture content, planting dates, crop density, seed varieties,
or a combination of these factors. If necessary to satisfy the

Gaussian assumption, the multimodal non-Gaussian density function
in Figure III-5 could be decomposed into two Gaussian components
by clustering, as shown in Figure III-6. These components are
commonly referred to as "spectral subclasses." The subclass
concept is an important one as it allows us to use a
classification algorithm based upon a Gaussian assumption even
though the information class distributions may be non-Gaussian.
This 1is because the classification algorithm is based on the
spectral classes rather than the information classes.

- When using the CLUSTER processing function, we must specify
the number of clusters that the data is to be grouped into.
Experience has indicated that most cover types contain at least
two subclasses. A rule-of-thumb is for us to request at least two
times the number of information classes present. If our
information classes are very general, we should request at least



ITI-6

Pc IxI
4] X
Pix) Pcalx]
0 X 0) X
Figure III-5. Multimodal non- Figure III-6. Multimodal
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three subclasses per information class. If we request an
insufficient number of clusters, the cluster class variances will
be very high and the resulting training classes will be difficult
to separate. If too many clusters are requested, cluster class
variances will be small, but the resulting training classes may
be difficult to identify. However, the situation of having too
many clusters can be remedied by deleting and/or pooling
clusters, whereas when too few clusters are obtained, often the
entire clustering process must be repeated. A "good" number of
clusters, such as 1is suggested by the "2X" rule, will usually
optimize these trade offs. However, 1in some cases it will be
evident after examining the output that a different number of
clusters is needed.

The CLUSTER processor prints the mean values and variances
for each cluster class. The variances indicate the spread or
dispersion of the data in each channel. If some classes have
very high variances relative to other classes, it may be
advisable to recluster the data requesting a larger number of
clusters.

The CLUSTER processor provides another analysis tool for
determining whether the resulting clusters are reasonable: a
histogram. Each histogram shows the distribution of the data
values of each channel for each cluster class. If the
~classification . algorithm to be used is based upon a Gaussian

assumptions, it is important to examine these histograms to make
sure the Gaussian assumption is at least approximately satisfied
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by the data. This can be done by noting whether or not each
histogram has a roughly Gaussian shape.* If a substantial number
of histograms significantly violate the Gaussian assumption, we
should consider reclustering the data with more cluster classes.

When calculating statistical parameters to describe classes,
we must take care to ensure that a sufficient number of training
observations are available upon which to base the calculations.
This means that we must be certain to have a sufficient number of
pixels in each cluster class. For each cluster a minimum of one
more pixel than the number of wavelength bands in the MSS data is
required. However, to be sure that the pixels are statistically
representative of the class being characterized, at least 10
times as many pixels as the number of wavelength bands is usually
suggested as the minimum number to characterize each cluster.

ASSOCIATING THE CANDIDATE TRAINING CLASSES
WITH INFORMATION CLASSES

A map can be printed showing the cluster class to which each
pixel was assigned by the clustering process. Pixels assigned to
the same cluster are represented by the same symbol. Thus, areas
in the scene that are spectrally homogeneous ( in the wavelength
bands used) will be displayed with the same symbol. In this way
the cluster processing function accomplishes boundary
enhancement, allowing us to identify spectrally homogeneous areas
from the clustered data more easily than from single-channel
data. Cluster maps will be used in this section to help
establish associations between the cluster classes (candidate
training classes) and information classes.

There is not necessarily a one-to-one correspondence between
information classes and cluster classes. Remember, an
information class is a distinct cover type of interest as noted
above, while a cluster class is a group of pixels which are
spectrally similar. As shown in Figure 1III-7a, there may be a
one-to-one correspondence between the two. It is more likely
that several cluster classes will represent the same cover type
(information class) as shown in Figure III-7b. Sometimes several
information classes will be associated with the same cluster
class (Figure III-7c). The latter situation indicates that the
cover types are spectrally similar. It may be possible to
separate the classes into different clusters by requesting a

* A subtle point here is that the density functions portrayed by

the histograms are marginal density functions. There is no
guarantee that, even if each marginal density is reasonably
Gaussian, the joint density function is Gaussian. If a marginal

density function is non-Gaussian, however, the joint density
function is also non-Gaussian.
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larger number of clusters.

To identify the clusters obtained, we make maximum use of all
available reference data so that the cluster classes can be
reliably identified. Note that if incorrect identifications are
made in this step, they will be carried through to the
classification step, resulting in incorrect maps and acreage
estimates. The association of cluster classes and information
classes is difficult and time consuming, but this step is most
important for ensuring that the classifier is correctly trained.

Reference data often include aerial photography. An overhead
projector can be used to superimpose a 9" x 9" transparency on
the printed cluster maps. By varying the projector-to-wall
distance, it is possible to project the transparency to the scale
of the printout, and if the data have been geometrically
corrected, a match can be obtained. A better match can be
achieved with a 2" x 2" slide and slide projector.

U.S. Geological Survey quadrangle maps of the area are also
useful for location purposes. This 1is especially true when
working with lineprinter output of data that have been
geometrically corrected and rescaled to the scale of the
quadrangle maps. Lineprinter output can be directly overlaid
onto the 7 1/2-minute maps and viewed on a light table.

An instrument that makes this alignment task even easier, a
zoom transfer scope, uses a lens system to adjust the scale of
two images or maps to match each other. We can view a cluster
map and aerial photography superimposed on one another and
identify each cluster reliably and quickly.

There are several points to remember. One is that if a
single cluster appears to correspond to more than one information
class, it should be identified that way. Another point is that,
in the hybrid approach, each training area 1is clustered
separately. Thus, the symbols in the cluster map for one
training area do not necessarily correspond to the same
information class in another training area.

AUGMENTING THE CANDIDATE TRAINING CLASSES

Upon completion of the cluster-class/information-class
associations, it is important to check that all information
classes known to be in the scene are represented. If we are
using the nonsupervised approach, our systematic or random sample
could have missed an infrequently occurring information class.
Or, in the hybrid or supervised approach, we may have missed
information classes, such as clouds and cloud shadows, which may
occur frequently in our MSS data, but do not appear in our
reference data.
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Even if we aren't really interested in identifying pixels
associated with such "other" classes, we must include training
classes to represent them. If we don't, our classifier will be
forced to err in classifying pixels belonging to these "other"
classes. For example, a cloud shadow might be classified as
water if we do not have a training class for cloud shadows. This
could be a serious error if the classification results will be
used to map bodies of water.

We can define training classes for missed information classes
by using the supervised approach. In LARSYS, the statistical
description of classes defined by the supervised approach can be
obtained by the STATISTICS processor. This processor requires as
input the 1line and column coordinates of the areas for which
statistics are to be calculated. The algorthm reads the data
values of the pixels within the coordinates specified and
calculates the means and the covariances of those pixels without
clustering.

In the hybrid approach, we could have selected our training
areas to include all "other" classes as well as all information
classes of interest. Then we would not have had to use the
supervised approach to define training classes for these
additional classes. However, when such an "other" class is
spectrally very unique, which is usually the case with clouds, it
is best to use the supervised approach to characterize the class.
When cloud pixels are clustered with pixels of vegetation
classes, the CLUSTER processor tends to identify several clusters
spectrally between clouds and vegetation, each having very few
pixels and not readily associated with any information class.

Another consideration may also lead us to augment our
candidate training classes. We may find that certain clusters
represent more than one information class. As mentioned earlier,
this implicates that those information classes are spectrally
similar. To remedy this we could recluster, requesting a larger
number of clusters. In some cases, however, we need not
recluster all of the training sample to split up the cluster in
question. If pixels corresponding to this multi-information-
class cluster are readily identified in the MSS data, we can
select only pixels in that cluster for reclustering. For
example, we may have noticed that deciduous forest and coniferous
forest are spectrally similar and were clustered into one cluster
class. If we can readily identify pixels of forests in the MSS
data, we can cluster only those pixels to obtain separate cluster
classes for deciduous and coniferous forest.
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VISUAL REPRESENTATION OF CANDIDATE TRAINING CLASSES

We now should have a representative set of candidate training
classes for our MSS data set. Several of these candidate
training classes may be spectrally similar. If the spectrally
similar classes represent the same information class, we usually
will want to combine them together into one training class. If
they represent different information classes we will usually want
to judiciously delete some of the candidate training classes in
order to avoid confusing our classifier. Generally, we want to
reduce the number of training classes to a minimum, because this
will save computer time and simplify interpretation of results.

In doing so, therein, we must be careful that our final training

classes are still representative of our MSS data set.

To begin reducing the number of candidate training classes,
it is useful to visualize the spectral characteristics of all
candidate training classes at one time. The MERGESTATISTICS
processing function has as one of its output products a two-
dimensional plot known as a coincident bi-spectral plot. Plotted
on one axis are the class mean values in one channel for each
candidate training class. On the other axis are plotted the
class mean values for another channel. Alternatively, in order
to use information from more than two channels in the bi-spectral
plot, the class means for a set of channels can be averaged and
plotted on one axis, and the class means for another set of
channels can be averaged and plotted on the other axis. For
example, with Landsat data the average class mean values in the
infrared channels are usually plotted against one axis. The
average class mean values in the visible channels are usually
plotted against the other axis. The rationale for averaging the
means in this way is based on the observation that responses in
the two visible bands are highly correlated, as are responses in
the two IR bands. (This may be observed by comparing the two
visible gray scale images and the two IR gray scale Landsat
images). Whatever combination of channels is used in the bi-~
spectral plot, information from a multi-dimensional measurement
is displayed in two dimensions in this way. The final output is
a plot providing a visual comparison of the means of all
candidate training classes.

Another way to visually represent the candidate training
classes is a plot of calibrated spectral mean curves. This plot
can be used with equal effectiveness for both lower dimensional
data such as Landsat MSS data (four bands) and higher dimensional
data such as Skylab MSS data (thirteen bands). In contrast, it
becomes difficult to effectively use a bi-spectral for data with
higher dimensionality than Landsat data. Before a calibrated
spectral mean curve can be generated, the class mean values in
each wavelength band must be calibrated so that a particular
radiance value in each band produces the same class mean value.
Once this calibration is completed, the class means can be

plotted against the wavelength bands as shown in Figure III-8.
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Figure III-8. | Calibrated spectral mean curves for a Landsat

training area located in Monroe County, Indiana.
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CALCULATING STATISTICAL DISTANCES BETWEEN
THE CANDIDATE TRAINING CLASSES

Although at this point it is possible to visualize and
compare all candidate training classes, the comparison is on the
basis of the means of the classes only. Before any decisions can
be made about which classes to merge or delete, we will find it
useful to consider the amount of dispersion or variability each
class has.

The second major reason for considering the dispersion of
each class 1is to give us some indication of the probability of
correct classification in advance of doing the classification.
If there appears to be considerable confusion among information
classes, we may do more clustering on the areas already used,
asking for a different number of clusters. Alternatively,
additional training areas could be selected (in the hybrid
approach) in an effort to get improved distinction among classes,
instead of trying to combine the cluster classes we already have.

Calculating the "separability"™ of the cluster classes can
help determine which cluster classes are similar and can serve as
an indicator of probability of correct classification.

To explain how this is accomplished, we must first discuss
the concept of "statistical distance." Figure III-9 shows two
examples of one-dimensional density functions. Intuitively we
know that the "distance" between the density functions is greater
in case B than in case A. The distance between two Gaussian
probability density functions depends not only on the distance
between the mean values, but also on the "spread" of the data.
Figure III-10 illustrates this point. The distances between the
mean values are equal in both of the cases shown, but the smaller
variances (smaller "spread") in case B of Figure III-10 result in
a larger statistical distance between the two density functions.

In two dimensions the density functions may be represented by
ellipses (Figure III-11). In three or more dimensions, as with
four-channel Landsat data, the density functions are represented
by ellipsoids (blimp-like surfaces of equal probability in the
measurement space). As in the one-dimensional case, the
statistical distance in two or more dimensions is an estimate of
the overlap of the density functions. As shown in Figure III-11,
the overlap is greater due to the slight shift in the orientation
of one ellipse. Therefore, we would anticipate the
classification accuracy in case B to also be less.

Transformed divergence (D) is a multivariate measure of
statistical distance. There are other such measures of
statistical distance, but transformed divergence performs

performs well in estimating the probability of correct
classification between pairs of classes. Experimental results of
plotting probability of correct classification versus transformed
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Figure III-9. Two pairs of one-dimensional density functions.

The statistical distance between the density functions in case A
is less than in case B.

§ Case A B | Case B
Q
5 5
E Pi(A) P,(A} = P3lAl  P,A)
3 3 |
o o
° S
d (J
2 2
Response in Band A Response in Band A
Figure III-10. Both pairs of distributions shown above have

equidistant means, but the smaller variances of P3(A) and P, (1)
cause this pair to have larger statistical distance.

divergence for training data are shown in the graph in Figure
III-12. Notice that class pairs with larger transformed
divergence values (D.) also achieved a higher classification
accuracy (Po) although the relationship is not perfectly linear.
This graph “can help in determining what the minimum acceptable
transformed divergence value between pairs of classes should be.
According to Figure III-12, to achieve 85% accuracy, we see that
the final training classes should have transformed divergence
values between about 800 and 1800. Classes with transformed
divergence of 800 would achieve 85% accuracy only infrequently.
On the other hand at 1800, 85% accuracy could almost always be
obtained. Although one might be tempted to require a very high
threshold, as higher and higher transformed divergence values
are required, only the more general (i.e. "agriculture" rather
than "corn," "soybeans," "wheat," etc.) classes will remain
distinct. Therefore a balance must always be struck between the
level of detail desired and the minimum allowable transformed
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Figure III-11. Ellipses representative of training classes.

divergence value, one at which acceptable accuracy will be
obtained most of the time for classes of the desired
informational content. More information about statistical
distance measures can be found in sections 3.7 and 3.8 of Swain
and Davis.

In LARSYS, the SEPARABILITY processor is used to calculate
the transformed divergence between pairs of training classes. An
analyst typically evaluates information from both the
SEPARABILITY processor and the bi-spectral plot by adding the
separability information to the bi-spectral plot. This is done
as illustrated in Figure III-13. A solid line is drawn between
two classes on the bi-spectral plot if the transformed divergence
between the pair of classes is less than 1000. A dashed 1line is
drawn between the symbols if the transformed divergence is
between 1000 and 1500. No line 1is drawn if the transformed
divergence is greater than 1500.

Separability information can also be used with calibrated
spectral mean curves in a similar fashion. In addition, the
shape of the spectral mean curves give further information about
the separability of the classes. Occasionally, the transformed
divergence between two classes may be quite low even though the
classes are actually well separated spectrally. When this
happens, the two classes will have calibrated spectral mean
curves with distinctly different shapes. For an example, see
Figure III-14.
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classification versus transformed divergence.

REFINING THE SPECTRAL TRAINING CLASSES

The final step in the definition of the spectral training
classes is to refine the candidate training classes into a set of
final training classes. So far, the definition of spectral
training classes has included clustering the training sample (or
training areas), associating cluster classes with information
classes (cover types), augmenting the cluster classes as
necessary, calculating statistics of the cluster (candidate
training) classes, calculating transformed divergence to get a
measure of the distance between pairs of clusters, and
summarizing these results on a bi-spectral plot. Next, we will
make decisions as to which candidate training classes should be
grouped to form spectral training classes, which candidate
training classes can be used directly as spectral training
classes and which should be deleted. In the example that
follows, we will  use a bi-spectral plot with cluster-
class/information-class associations and transformed divergence
values to help make these decisions. Later we discuss how the
calibrated spectral mean curves, and observations of the
normality of o¢lass histograms and the number of points in each
candidate training class can be used to help resolve
difficulties.
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Figure III-14. Example of calibrated spectral mean curves of two
well separated classes that have very low transformed divergence
between them.

There are a number of ways to approach the task of selecting
the final spectral training classes from the available candidate
training classes. The overall goal 1is to achieve training
classes that in total are representative of the information
classes present and which are separable from one another. We
will present two divergent philosophies for selecting the final
training classes and will offer guidelines for handling
difficulties.

The first philosophy or approach is the pooling approach. 1In
this approach candidate training classes whose interclass
statistical distances are 1less than a chosen minimum acceptable
value are pooled. The pooling approach tries on the basis of
transformed divergence alone to form all or nearly all of the
candidate training classes into groups of classes connected to
one another. .The identities of the classes are used to indicate
the portion of the plot (and thus the portion of multidimensional
space) that belongs to each information class.
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Although the identity of each candidate training class is
considered when deciding which classes to pool, it is not
required that the identities of the classes pooled be exactly the
same. For example, in Figure 1III-15 those class pairs whose
transformed divergence is less than 1000 have been connected by a
solid line, and those between 1000 and 1500 by a dashed line.
Two pools that might be chosen from that diagram are made up of
classes assigned to the symbols R, S, /, E and U (representing
forest), and +, D, T, =, N, F and A2 (representing agriculture).
Notice that although symbol N is labeled forest, it might be
pooled with agriculture since it is similar to and surrounded by
classes labeled agriculture. It may be that N was erroneously
labeled as forest; it is advisable to recheck the identity of
such seemingly anomalous classes. In many cases the conclusion
may be that such an "anomalous" class is really informationally
more like the classes it was pooled with than its identity would
suggest. However, if N is clearly a forest class, it would
generally not be a good idea to pool it together with agriculture
classes.

The second major philosophy or approach to selecting training
classes is the deleting approach. In the deleting approach,
groups of candidate training classes or individual candidate
training classes are chosen which minimize the variance of each
final training class. To accomplish this, classes on the borders
between information classes are deleted. Returning to Figure
III-15, the deleting approach might leave classes R, S, / and U

to represent forest, and classes +, D, T, = and F to represent
agriculture. Classes E , N and A2 would be deleted. As a result
of wusing the deletion approach, the training classes for

agriculture and forest are more separate and distinct from each
other and other classes. Carried to extreme, the deleting
approach leads to a larger proportion of more specific (but not
necessarily more representative) training classes. As another
example, classes R and S could be selected as a variety of forest
and class U as another variety of forest. Classes / and E would
be deleted.

The following logic can be drawn upon in deciding whether or
not to delete a class: The spectral characteristics of any
ground cover type are best described by a cloud of points rather
than a single point. When that cloud gets broken into subclasses
by clustering, one or more of the subclasses will be composed of
points near the edge of the cloud. These edge points, which are
not really very similar to the points in the center of the cloud
that best represent the cover type, may poorly represent the
information class in question. Further, it is likely that such
edge subclasses will be confused with some subclass(es) of a
different identity. When this is the case, deletion of such edge
subclasses from the training classes is reasonable and valid.

It could be said that the pooling approach is more concerned
with obtaining representative training classes while the deleting
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approach is more concerned with obtaining separable training
classes. In practice it is necessary to consider both
representation and separability. Often analysts will use pooling
and deleting in combination to get the best trade off between
representation and separability.

Up to this point we have considered relatively
straightforward nonproblemmatic examples. Unfortunately, almost
every analysis has some problems, and rarely is the decision
process simple. In the previous example of selecting training
classes for forest and agriculture, we needed to decide whether
or not class E should be retained or deleted. Under the pooling
approach we would retain class E and group it with classes R, S,
/ and U on the basis that deleting it would degrade the

representativeness of forest. With the deleting approach,
though, we would delete the class to enhance the separability of
the proposed groups. On the basis of the bi-spectral plot and

separability information it is difficult to decide which approach
to use. Fortunately, we can often draw on additional information
to help us decide whether to delete or pool a class. For
example, how many pixels are in class E? How firmly is its
identity established? How truly Gaussian is its distribution of
data values as shown by its histograms? How large are the
variances in each channel? The answers to such questions give a
measure of the quality of the class. Whereas we could feel
justified deleting a class with a small number of pixels, large
variances and whose identity was not completely clear, we should
feel uneasy about deleting a class with a large number of pixels,
small variances and unmistakeable identity.

Calibrated spectral mean curves can also be used to help
decide whether to pool or delete a class. For example, if the
plot for the forest class E has a shape distinctly different from
the nearby agricultural classes and is very similar in shape to
the nearby forest classes, we would be more inclined to pool
class E with the other forest classes than to delete it. If
class E has a shape inbetween that of the nearby agricultural and
forest classes, we would be inclined to delete the class.

Even more challenging situations may arise depending on the
information classes we are interested in and the data set being
analyzed. It may happen that informationally different classes
are extensively confused with one another. In Figure 1III-15,
classes §, M, C, V, O, L and G are all interconnected although O,
M and L are identified as residential and $§, C, V and G as bare
soil and agriculture. The first step in such situations is to
double check the identities of the classes. Presuming that they
are correct, we could expend some effort toward refining the
classes to enhance their separability. Such refinement would be
especially appropriate if several of the classes have very non-
Gaussian distributions, 1large variances or were difficult to
identify. The refinement could involve reclustering the same
training areas, requesting different numbers of clusters, or
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selecting additional training areas and clustering those. The
latter would be especially appropriate if the representativeness
of the training classes is in question. When problems are
encountered some refinement should be attempted. However, we
must recognize that if the digital brightness values of pixels
from different cover types are very similar, no amount of
refinement will make them less similar, and therefore, we cannot
expect the refinement process always to lead to greater
separability of cover types.

When the refinement is not successful, we should consider
what kind of classification errors might or might not be
acceptable. For example, assume that we are interested in
classifying an urban area and discover that a candidate training
class identified as wurban is similar to a candidate training
class identified as agriculture. We could decide that, for our
purposes, the error of classifying some agriculture data points
as urban would not be too troublesome, while the error of
classifying some urban points into agriculture would be
disastrous. 1In that case, we could choose to eliminate the class
identified as agriculture from any subsequent processing.

It is appropriate to say that the process of selecting
training classes is the process of deciding how portions of the
multidimensional space will be classified. In the previous
example, we chose to label the portion of the multidimensional
space in question as urban. Another criterion that we could use
is to examine which information class 1is preponderant in that
portion of multidimensional space. If the urban class being
confused with agriculture in the previous example had been
surrounded by other agriculture classes, a better decision might
have been to reject the urban class and keep the agriculture
class.

At times we might be tempted to retain a class that has less
than the practical minimum number of pixels because we feel the
class to be informationally important. However, we must think
carefully about retaining such a class, for it is unlikely that
the pixels in that class accurately represent the information
class. In addition, there is a good chance that the covariance
matrix for that class will be singular. If the covariance is
singular, the class cannot be used by many classifiers, and
deleting the class is unavoidable. A preferable alternative is
to pick some additional training area(s) 1likely to contain more
points which also represent this information class. If this is
not possible, the results of the classification including this
class should be closely scrutinized to be sure that the "ill-
conditioned" class statistics have not resulted in peculiarities
in the results. If we do note such peculiarities, we will have to
delete the class.

We previously had available the statistical descriptions of
candidate training classes which appear on the bi-spectral plot.
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Before we can perform a classification based on the new spectral
training classes obtained by pooling or deleting the candidate
training classes, we must obtain statistical descriptions of
these new classes. Since two of the classification algorithms we
will consider are based on the assumption that the training
classes can be represented by multivariate Gaussian probability
density functions (defined by mean vectors and covariance
matrices for groups of training samples), the same kind of
statistical description must obtained by recalculating the mean
vector and covariance matrix for each of these new groups of
pixels. When the group of pixels making up the new spectral
training class is a result of the pooling approach, we often call
this process "pooling the statistics" of the constituent
candidate training classes.

After obtaining the mean vectors and covariance matrices of
the new spectral training classes, we should check their
separability in order to get an indication of the probability of
correct classification resulting from using these training
classes. In LARSYS this is done by means of the SEPARABILITY
processing function.

We should note that satisfying a certain transformed
divergence threshold only ensures the degree to which the final
training classes are spectrally different and that there is a
- certain probability of distinguishing among them. This does not
ensure that they are representative -- as an analyst, we must do
that. Representativeness is a function of the training sample
selected, the accuracy of identification of cluster classes, and
the number of cluster classes (and the ground cover associations
of the cluster classes) which survive the selection step. Even
when we feel confident in the representativeness, separability,
and accuracy of identification of the classes, misclassification
can occur. We can only attempt to optimize all three, make the
classification and, based upon the results, determine the
acceptability of the classification.

In cases of unacceptable results, previous steps may be
repeated from the acquisition of scanner data through the
selection of training classes. As noted earlier, although the
analysis process appears to be a straight-line sequence of steps
up to this point, in reality it is a very iterative sequence
where the results of each step are closely scrutinized and the
steps are often repeated before proceeding. The training class
selection step is especially iterative in that the acceptability
of the training class selections is tested by examining the
separability of the newly formed training classes before
proceeding to make the classification. Typically, we will have
to make several attempts at selecting the training classes before
we can arrive at an acceptable set of training classes.

One point which should be apparent by now is that there is no
single correct way to progress through an analysis sequence. As
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your understanding of the pattern recognition concepts increases
and you gain experience in analysis, you may even develop new
procedures yourself.

Self-Check

l. Describe two tasks the cluster processing function can
accomplish.

2, State the rule-of-thumb used to determine the number of
cluster classes to request and give the reasoning behind the
rule.

3. State why cluster classes must be associated with information
classes.

4. Name the two statistical parameters which define multivariate
Gaussian distributions.

5. Explain why statistical descriptions of candidate training
classes are needed at this point in the analysis.

6. Name one difference between the supervised and nonsupervised
approach to the generation of training classes.

7. Describe one method of "seeing" the spectral characteristics
of candidate training classes.

8. 1Identify the regions of a bi-spectral plot belonging to major
cover types.

9. State two reasons why spectrally similar cluster classes are
combined.

10. Look at the two pairs of one-dimensional density functions
shown in Figure III-16. In which case is the statistical
distance between density functions larger?

11. Name the two characteristics of Gaussian probability density
functions which determine the statistical distance between
the density functions.

12. What is the value of knowing the statistical distance between
all possible pairs of classes?

13. How can the minimal allowable value of transformed divergence
be determined?

1l4. what are two desirable characteristics for final training

classes?
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Is the pooling or deleting method of training class selection

always preferred?

If transformed divergence values of 1less than 1500 (or any
threshold) between the newly formed training classes exist,
must previous steps be repeated, or can the analysis
continue?
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CHAPTER IV. CLASSIFICATION OF THE ENTIRE STUDY AREA

Upon completion of this chapter, you should be able to:

1. Name and briefly describe the decision rule implemented
in the CLASSIFYPOINTS processing function.

2. Briefly describe the ECHO classifier algorithm.

3. Briefly describe the minimum distance classification
algorithm.

Once a certain confidence in the training classes has been
established, a step of special importance in the analysis
sequence can be performed - classification. We may have only one
classification algorithm available to us or we may be in a
situation where we may select one from among several available.
For purposes of illustration and comparison, we will discuss
three different classification algorithms - maximum likelihood,
ECHO, and minimum distance.

A classification algorthm must be defined in a quantitative

way so that the computer can do the work. This can be
accomplished by defining a set of functions (mathematical
expressions) corresponding to the training classes. These

functions, which are called "discriminant functions,"™ are
contructed so that when the data values belonging to a pixel
being classified are substituted into them, the function having
the largest (or, alternatively, the smallest) value corresponds
to the class into which the pixel is to be classified.

The classification algorithm utilized by the LARSYS
CLASSIFYPOINTS processor is based upon the maximum likelihood
classification rule. Each pixel to be classified is "compared"
to each training class and assigned to the class it most likely
belongs to. The discriminant functions for the maximum
likelihood <classification rule are derived using statistical
decision theory so as to minimize the probability of making an
erroneous classification (see Swain and Davis, section 3.6 for
details). When the classes are assumed to be characterized by
multivariate normal density functions, the discriminant functions
are defined in terms of the mean vectors and covariance matrices
of the classes. The set of discriminant functions for the
maximum likelihood classifier are defined so that when the data
values belonging to a pixel are substituted into all of them, the
function having the largest value determines the class that the
pixel "most likely" belongs to.
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The CLASSIFYPOINTS processor uses only spectral information
in making classification decisions. The classification algorithm
utilized by the ECHO processor uses spatial information as well
as spectral information. ECHO is an acronym for Extraction and
Classification of Homogenous Objects. when processing a data
set, ECHO first divides the scene into rectangular cells. The
cell size is chosen by the analyst wusually on the basis of the
average object size expected in the scene. Figure 1IV-1
illustrates a portion of a data set divided into 3 X 3 cells.
The ECHO classifier examines the pixels within a cell and
performs a statistical test to determine whether or not the
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Figure IV-1l. Data set divided into 3 x cells by ECHO. Each dot
represents a pixel in the scene.

pixels within the cell are statistically similar. If they are,
they are 3judged to belong to the same "object"™ in the scene.
ECHO then examines a neighboring cell. I1f the pixels making up
this cell are statistically similar, a test is performed on the
two cells. If they both have similar statistical properties, the
cells are combined to form an object. This process continues,
cells are annexed to the object, until a cell is encountered
which is not statistically similar to the cells comprising the
object. This cell is then declared to belong to a different
object. Once the objects have been identified, all of the pixels
comprising the object are classified as a group by comparing the
estimated probability distribution of the pixels in the object to
the probability distributions of each of the training classes.
In that way all of the pixels in each object are classified at
one time as belonging to the most similar training class. If a
non-homogeneous cell is encountered (the cell pixels fail the
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statistical similarity test), each data vector in the cell is
classified individually using the maximum likelihood
(CLASSIFYPOINTS) decision rule. ECHO requires the same kind of
training class statistics as does CLASSIFYPOINTS: the mean
vector and covariance matrix of each training class.

The minimum distance classifier is a "point" classifier like
CLASSIFYPOINTS in the sense that each pixel in the scene is
classified individually. The classification algorithm is simpler
in both concept and implementation than either of the previous
two classifiers discussed. For each pixel in the scene, a
multidimensional distance between the data values belonging to
the pixel and the mean vector of each training class is computed.
These distances are used as the discriminant functions for this
classifier. The pixel is assigned to the nearest training class,
i.e., the class with the smallest discriminant function. While
computationally more efficient, the minimum distance classifier
is inherently less powerful than the maximum likelihood
classifier. However, the minimum distance classifier tends to
yield approximately the same results as the maximum likelihood
classifier when the training classes are generated in a way that
leads to a large number of training classes representing the full
range of spectral characteristics in the scene. The clustering
algorithm described earlier yields classes  with these
characteristics. The maximum likelihood tends to perform better
when the classes of interest have very similar or overlapping
spectral characteristics.

Self-Check

1. Name and briefly describe the kind of decision rule
implemented in the CLASSIFYPOINTS processing function.

2. With the aid of Figure IV-1l, briefly describe how the ECHO
classifier works.

3. Contrast the minimum distance c1ass1flcat10n algorithm with
the maximum likelihood algorithm.
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CHAPTER V. PICTORIAL AND/OR TABULAR DISPLAY
OF THE CLASSIFICATION RESULTS

Upon completion of this chapter, you should be able to:

1. Name the two major formats for displaying classification
results and give one reason for using each display

format.

After the completion of the multispectral classification, the
results can be displayed in several different formats according
to the user needs and specifications. There are two major types
of display formats: pictorial and tabular. For example, the
classified area could be displayed as a map of a certain scale,
projection, and minimum mapping unit. The different classes
(ground cover types) can be represented by (1) alphanumeric
symbols (Figure V-1), (2) graphic symbols (Figure V-2), (3) gray
levels (Figure V-3), (4) boundary lines (Figure V-4), or (5)

different colors. The classification results also could be
displayed in a thematic map format in which only one class is
represented.

The other major type of classification format, the tabular
format, can be utilized when a user requires only information
such as areal extent (acreage) or percentage of each one of the
different cover types present in the study site. The output in
this case is a table indicating the number of pixels classified

into each cover type. The area represented by each data point

multiplied by the number of data
the area per cover type. For
data scaled to 1:24,000 to match
topographic gquadrangle maps, the
per pixel. Thus if we find that
deciduous forest in a
calculate that the study area
forest.

Self-Check

1. What is the advantage

classification results?

When should we use a
classification results?

2.

classification of Landsat data,
contains 22,287 acres of deciduous

tabular

points per cover type will give
geometrically corrected Landsat
the U. S. G. S. 7 1/2 minute
conversion factor is 1.145 acres
19,465 pixels were classified as
we can

of a pictorial display of

format for displaying
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CHAPTER VI. EVALUATION OF THE CLASSIFICATION RESULTS

Upon completion of this activity, you should be able to:

1. Given an example of a class performance matrix, indicate
-pixels correctly classified, errors of omission and
errors of commission for a specified class.

For a multispectral classification to be of practical use, we
must determine its accuracy and reliability. Using the numerical
analysis approach, we can quantitatively assess the degree of
accuracy of a multispectral classification. Experience has shown
that the "test field performance" method is most effective in
assessing classsification accuracy. Test fields of known cover
types are selected and the computer determines the percentage of
correctly classified pixels. The size of each test field is such
that it contains only one cover type. Since the identity of the
pixels in each test field is known along with their addresses in
the data, a computer can locate these pixels in the
classification result (stored on tape), observe the class into
which each pixel was classified, and compare that result with the
ground truth identity of each pixel to determine whether the
pixel was correctly classified. Typically, several test fields
are selected for evaluating the classification accuracy of each
information class. The computer examines and tabulates the
classification decision for each pixel in each test field and
prints out a summary by field, by class (all test fields chosen
for an information class), or both, as specified by the analyst.
An example of tabular results for testing classifier performance
is shown in Table VI-l1. Such a table can be called a "test class
performance matrix."

No. of Percent Conif- Decid- Grass

Samples Correct erous uous land Bérren Water
Coniferous 9,634 94.6 9,110 22 53 21 428
Deciduous 1,475 87.5 113 1,286 76 0 0
Grassland 3,677 81l.2 49 129 2,988 510 1
Barren 35 97.1 0 0 1 34 0
Water 1,349 98.9 15 )] 0 0o 1,334
Totals 16,170 9,287 1,437 3,118 565 1,763

Table VI-l. Test class performance matrix
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What do the numbers in the performance matrix tell you about
the classification? Look first at the 9,634 samples (pixels) of
Coniferous forest. The table indicates that 9,110 of those
pixels, or 94.6%, were correctly classified. Looking across that
row, the table also indicates that 22 pixels which the analyst
knows to be Coniferous forest were incorrectly classified as
Deciduous forest, 53 were incorrectly classified as Grassland, 21
were incorrectly classified as Barren and 428 were incorrectly
classified as Water. That is, there were 524 errors of omission
for the 9,634 Confierous forest samples. Looking down for the
column labelled Coniferous, there were 187 errors of commission
for the Coniferous forest class. That is, 187 samples were
called Coniferous that should not have been.

The five numbers on the major diagonal of the matrix can be
summed and that total divided by the total number of samples is
called overall performance. For Table VI-1, the overall
perfomance is (9,110+1,286+2,988+34+1,334) /16,170 = 91.2%.

Often test fields are selected on the basis of what is
readily visible in the gray scale images. This selection of the
"center of the large, more homogeneous areas as the basis for
testing produces a bias in the classification accuracies
obtained. A statistical method has been defined which
practically eliminates this bias. Using this method we first
divide the area classified into blocks of either two or three
pixels on a side, such that a grid is formed over the data. Then
blocks are selected out of the data set using a random number
generator. The number of blocks selected usually corresponds to
a percentage (commonly 5%) of the total data set. The cover type
of each block is then identified from the reference data; mixed
blocks are rejected. Blocks of the same cover type are grouped
and used to evaluate the classification accuracy in the same way
the "supervised" test fields were used. Although this method of
selecting test fields requires more extensive reference data and
personnel resources, it is more apt to provide a representative
sample on which to base the evaluation.

Two additional guidelines for selecting test fields suggest
that test fields should not fall inside of training areas and
that they should together contain pixels for testing each cover
type in roughly the same proportion as the cover types occur in
the scene (the 1latter is relatively assured by the random
selection method). For example, consider a scene that contains
roughly equal amounts of forest and water.  Suppose we decide to
test with 100 pixels and choose 90 from water and 10 from forest
and find that 80 of the water pixels are classified correctly

while only one forest pixel is classified correctly. Is our
classification then 81% correct overall? No -~ we have a biased
estimate of classification accuracy. If we had chosen 50 water

pixels and 50 forest pixels for testing and had the same per
class accuracies for water and forest, we would have 45 water
pixels classified correctly and 5 forest pixels classified
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correctly. The unbiased estimate of classification accuracy is
only 50%. '

Self-Check

l. In Table VI-1, indicate the pixels correctly classified,
errors of omission, and errors of commission for soybeans.
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CHAPTER VII. - CLOSING REMARKS

You have now completed step-by-step a numerical analysis of a
MSS data set from the selection of the data set through the
evaluation of the classification results. We have presented the
analysis steps in a linear fashion. This linear presentation was
adopted only because of convenience - in a "real life" analysis
we would backtrack several times at various points in the
analysis.

The analysis procedure used in the case study is a typical
procedure based upon the experience of LARS researchers.
However, it must be emphasized that the workshop has introduced
you to an analysis procedure and not to the ultimate procedure.
The analysis procedure used in the workshop was developed by
making imaginative and intelligent use of available data
processing algorithms. Different applications, perhaps your
application, may well require a somewhat different approaches.

We now have classification results from our study area. The
classification results themselves are not usually the real
product of interest. Instead, an analysis is usually undertaken
ih order to gain information for use in such operations as forest
management or land use planning. For instance, the analysis
goals may involve learning where specific cover types are located
or what proportion of the area belongs to each cover type, so
that management and planning decisions can be made. To complete
the analysis, the original analysis goals must be reviewed, and
the desired information extracted.

Examples of results analysis and the extraction of useful
information from multispectral data classifications may be found
in several journals, including those listed here:

-Pattern Recognition

-Remote Sensing of the Environment

-IEEE Transactions on Geoscience and- Remote Sensing
-Journal of Soil and Water Conservation
-Photogrammetric Engineering and Remote Sensing
=Agronomy Journal

Samples can also be found in a number of LARS publications,
published proceedings of remote sensing conferences, etc.




