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I. DESCRIPTION Of :ITUUY

A. Introductor Statementtatement

In forestry, as in many other discipline ,areas involving land manage-
1 

ment, there exists a distinct need for timely, reliable information con-

cerning the resource base with which one is working. The synoptic view

that can be obtained through data from spacecraft altitudes is proving to

be of considerable value in developing resource bases, particularly where

information over extensive geographic areas is needed, as is the case in

management of the world's forest resources. The launch of Landsat-1 in

IW 2 initiated a new era for land managers by proving that high-quality

data can be obtained from satellite altitudes at reasonably frequent in-

tervals for nearly any portion of the earth's surface. However, the

ability to collect data from satellite altitudes far surpasses existing

cap&bilities to ana^„,ze and interpret the data in a timely, reliable

manner. As the demand and potential for more effective utilization of

Landsat data have developed, many questions have been raised concerning the

accuracy, reliability and limitations of various analysis techniques to

extract pertinent information from the masses of satellite data.

Many studies have been conducted at Purdue University/LARS and else-

where using Landsat and Skylab multispectral scanner data and various

computer-aided analysis techniques; these studies have clearly shown the

value of this combination of numerical data and quantitative analysis

techniques. Several of these studies were directed at mapping forest

cover types, but they involved study sites where topographic relief is

minimal. Even a cursory examination of small-scale aerial photos or Land-

sat imagery indicates that slope and aspect have considerable influence on

the spectral reflectance characteristics of forest cover. Furthermore

since much of the forest land in the U.S. and elsewhere in the world is in

areas of significant topographic relief, it is important that research not

be confined to areas where topographic relief is minimal.

It has been, and continues to be, our belief that if computer-aided

analysis techniques are to be effectively utilized in conjunction with MSS

satellite data on a routine, operational basis, it is important to define

the most effective analysis techniques and to determine the level of detail
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and the reliability of information that can be obtained with such techniques.

It is towari these goals that the current project is directed.

B. Background and Rationale

In 1974, the U.S. Congress mandated the U.S. Forest Service to inven-

tory, every ten years, the extent and condition of all forest and range-

land resources throughout the United States (Renewable Resources Act of

1974). NASA and the U.S. Forest Service are both keenly interested in the

potential application of remote sensing technology for meeting the require-

ments of this Act. The development of such techniques will in turn enable

resource management personnel and agencies (such as the U.S. Forest Service)

to obtain accurate and reliable forest cover type maps that are vital for

effective resource management.

Prior to this project, a series of investigations had been conducted

at the Laboratory for Applications of Remote Sensing (LARS), Purdue Univer-

sity, which indicated many of the capabilities and limitations of various

analysis techniques for classifying and mapping forest cover in regions of

significant topographic relief:

First, Landsat-1 investigation had been conducted in the San

Juan Mountains of southwestern Colorado--an area of rugged mountain

ter:^ain and complex vegetative cover types. The results of this

investigation (Hoffer, 1975a) indicated that deciduous and coniferous

cover, as well as other major cover types, could be classified and

mapped with a reasonably high degree of accuracy (80-85%); the

classification and mapping accuracies for individual forest cover

types, however, were much lower. Detailed statistical analyses of

spectral responses led to the conviction that if satisfactory

accuracies were to be obtained for individual forest cover types,

there would need to be developed analysis techniques which account

for topographic variability of spectral response.

Second, an investigation using Skylab data had been carried

out in the same general portion of the San Juan Mountains used for

the Landsat-1 investigation (Hoffer, 1975b). One phase of the

Skylab investigation had involved the development of a digital over-

lay procedure to geometrically correct Landsat and Skylab data and
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overlay them with digital elevation data on a single data tape.

Analyses of the combined topographic data and spectral satellite

data with conventional analysis techniques indicated that utilizing

data vectors that included both spectral and topographic data in a

standard, maximum-likelihood classifier would not consistently in-

crease classification accuracy.

Third, during a Landsat72 investigation carried out in con-

junction with the Institute of Artic and Alpine Research (INSTAAR),

University of Colorado, and the U.S. Fc-rest Service, Region 2, a

series of cover type classifications had been generated for large

portions of the San Juan, Rio Grande, and Carson National Forests

(Krebs et al., 1976). In addition, a set of software had been

especially designed and developed to combine spectral Landsat classi-

fication maps with digital topographic data to create products use-

ful in various management decisions. This software allows the gener-

ation of products on a 7'-minute quadrangle-by-quadrangle basis in

formats suitable for meeting the specific requests and needs of Forest

Service personnel. The major limitation of these combined cover-

type/topographic-parameter maps was the level of cover type detail

which could be accurately and reliably classified. It was concluded

that variation in spectral response due to topography and forest stand

density significantly reduced the capability to reliably classify in-

dividual forest cover types when using Landsat spectral data alone.

Based upon the results of these Landsat and Skylab investigations and

the associated field work, it was clear that th-, occurrence of different

forest cover types was significantly influenced by elevation and aspect and

furthermore, that the aspect, slope, and stand density all have a significant

influence on the spectral response of the various forest cover types. We

concluded, however, that the influences of topography on species composition

could be quantified, and that computer-aided analysis techniques could be

used to combine the topographic data with the Landsat spectral data in the

classification procedure, to provide more accurate, reliable forest cover

type maps for forest management purposes. This led to the development of a

proposal to NASA which resulted in the funding of the current project. This

report summarizes the results of the first year's activities and findings.
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During the second year, the research will involve refinement and definition

of a recommended analysis technique, testing this technique on a data set

from a totally different geographic location, and preparing a final report.

C. Objective

The objective of this research is to develop, test, and document a

digita l processing technique for using Landsat MSS data in combination with

topographic data (elevation, slope, and aspect) to accurately and reliably

map individual forest cover types in regions of mountainous terrain.

D. Approach

The first year of this project has been devoted to the development and

evaluation of different techniques for using a digital data base of Landsat

MSS and topographic data to increase the accuracy of mapping forest cover

ty pes. Two different approaches for using topographic data in conjunction

with Landsat data have been developed and evaluated. Th ose are referred to

as the topographic distribution model approacl, and the reflectance geometry

correction model approach.

The topographic distribution model involves the development of a quanti-

tative description of the distribution of each of the forest cover types in

the study site as a function of elevation, aspect, and slope. The model pro-

vides a quantitative probability of occurrence for each species for all topo-

graphic locations. Statistical characterization of the topographic distri-

bution of the various cover types can then be combined with the statistical

data d p 5cribing the spectral characteristics of the various cover types.

This provides the basis for the training data necessary for the classification

of the combined spectral/topographic data set. Many different approaches

can be followed in developing the training statistics, and many different

classification algorithms can be used for the actual classification process.

In this study, two different techniques were used to develop the training

statistics and two different procedures were used in the classification step.

Additional variations on these basic classification procedures were also

tested. The various combinations of different training and classification

procedures resulted in a set of twelve classifications being obtained; com-

pared, and evaluated. The results are discussed in detail in Section III.
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The reflectance geometry correction model involves the ^° ^:orrection"

of the reflectance values contained in the Landsat scanner data in order

to remove spectral variations resulting solely from topographic effects.

Knowledge of the geometric relationships between the positions of the sun,

the ground, and the satellite was used to "correct" the spectral data by

calculating correction coefficients to remove the effects of the topographic

position of the spectral values. The "corrected" spectral data then re-

presents the responses of a hypothetical, horizontal surface, and all re-

mainin9 spectralectral differences are, in theory, a function of the earth sur-
d

face materials present. This approach is discussed in detail in Section IV.

The project was designed to generate several products that will have

significance in the future development and use of computer - aided analysis

techniques for forest inventory. The most significant of these are:

a. a topographic distribution model that qua,i titatively defines the

relationship between the occurrence of forest cover types in the

study area and their topographic position (elevation, aspect, and

slope);

b. documentation of a tested technique for computer-aided analys=

of Landsat data that uses topographic data to improve classifi-

cation accuracy and reliability.
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II. STUDY AREA DESCRIPTION AND DATA CHARACTERISTICS

A. Study Area Description

This first phase of the two-year study invnlved fourteen 711-minute

U.S.G.S. quadrangles within the San Juan Mountain study area, an area of

approximately 34 x 43 miles in the center of the rugged San Juan Mountains

of southwestern Colorado (Figure 1). The area straddles the continental

divide and includes portions of two National Forests, the San Juan National

Forest and the Rio Grande National Forest.

The study area is characterized by a diverse and complex mixture of

land forms and vegetation types. Elevation within the area ranges from

approximately 2200 meters (7,200 feet) at the town of Pagosa Springs to

4000 meters (13,000 feet). The climate in this area is typical of the

Colorado Rockies, with very low relative humidity, abundant sunshine, cool

summers with frequent afternoon showers and heavy winter snows. Wide daily

temperature fluctuations are normal. The annual precipitation varies with

elevation and ranges from 30.5 to 127.0 centimeters (12-50 inches) per

year. More than half of this falls as snow during the winter months, re-

maining on the ground well into June in fairly extensive areas at the upper

elevations and year around in some small areas.

The study area consists primarily of Tertiary volcanics with the

topographic expression of a maturely dissected plateau, further modified by

extensive valley glaciation. This area is characterized by numerous glacial

lakes, meadows, and commercial stands of spruce and fir. Narrow strips of

aspen or Gambel oak extending down the side of a mountain often mark the

paths of former landslides or avalanches. Extensive areas of mine tailings

are evidence of the former importance of the area as a mineral-producing

region, particularly for silver. At the higher elevations, steep slopes,

rugged peaks, and rock outcrops are frequent. This rugged topography and

the related local climatic regimes within the San Juan Mountains result in

a diversity of vegetation and wildlife communities within a relatively small

geographic area.

The San Juan Mountain area has long been grazed by both cattle and

sheep. Because cattle have a tendency to feed on certain palatable grass

species, over-grazing of the area removes these grasses and encourages the
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` growth of unpalatable forbes or the invasion of sagebrush and Gambel oak.

Over-grazing by sheep above the timberline seriously increases the erosion

potential.

In areas where man, animals, fire, landslides, or other influences

have not caused major changes in the vegetative cover, the naturally

occurring vegetation is not only influenced by but is, in fact, determined

by a complex interaction of edaphic, topographic and climatic factors. For

example, at the higher elevations the soil mantle is thin and very poorly

developed, air temperatures are generally low, and the growing season is

very short. This combination of factors creates an environment suitable

only for the short-season grasses and forbes found in tundra areas.

Climatic conditions in particular are influenced by differences in

elevation. As elevation increases, the mean annual air temperature de-

creases and, in general, precipitation levels increase. Similarly, a com-

plex relationship also exists between elevation and the quantity and quality

of the solar radiation. While there is some tendency at high altitudes

toward increased cloud cover, the solar radiation that is received at the

earth's surface is of greater intensity and has a larger component of the

high-energy shorter wavelengths than is found at lower elevations, since

there is less atmospheric attenuation at the higher elevations. Both the

aspect and the steepness of a slope influence the micro-climatic conditions

of a particular area and, therefore, also have a distinct impact on the

vegetation occurring there.

The result of this interaction among the edaphic, topographic and

climatic influences is a distinct distribution of vegetative cover types

within various elevation ranges. Figure 2 graphically displays the generalized

distribution of cover types in the S.W. United States as a function of

elevation. Within a single elevation range, the frequency with which a

species may appear is affected by the aspect and slope characteristics of

the area. The following paragraphs describe in a general way the attitudi-

nally defined vegetation zones within the San Juan Mountains of Colorado.
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Alpine Tundra. The Alpine area occurs above the timberline, at

about 3400 meters (11,000 feet) and above. Because of the short

frost-free growing season and the possibility of frost at any time

of the year, the vegetation is limited to short grasses and sedges,

hardy forbes, alpine willows, and other low shrubby plants.

Spruce/Fir. The spruce/fir zone extends from approximately 2700

meters (9,000 feet) to the timberline, with the dominant tree

species being Engelmann spruce (Picea engeZmannii), subalpine

fir (Abies Zasiocarpa), and aspen (PopuZus tremuZoidee). Aspen

is often an indicator of a disturbed site; areas burned within the

previous 50 years frequently have dense aspen stands, often with a

coniferous understory which will eventually overtop and shade out

the aspen.

Engelmann spruce and subalpine fir form the most extensive conif-

erous forest in the study area, extending from the timberline down

to the Douglas-fir/white fir zone. At timberline, Engelmann spruce

forms a dense climax cover as krummholz between the forest and

alpine tundra. Here the growth is very stunted and twisted by the

harsh weather conditions. At the lower elevations, however,

Engelmann spruce and subalpine fir are very valuable timber re-

sources and are logged extensively. Interspersed among the spruce

and firs are numerous subalpine wet mountain meadows and grassland

areas which characteristically are rather park-like with lush growths

of grasses and grass-like plants and forbes.

Douglas-fir/White fir. Below the spruce/fir zone is an elevation

belt dominated by Douglas-fir (Pseudotsuga menziesii) and white

fir (Abies concoZor). Dense stands containing both species are

found on north-facing slopes at the lower ranges and in all as-

pects at higher elevations. Aspen continues as the dominant hard-

wood, forming pure stands and mixtures with the Douglas-fir/white

fir throughout the zone on all aspects. White fir, sometimes a dis-

turbance indicator, and Douglas-fir are commercially harvested.
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Ponderosapine. The ponderosa pine (Pinus I)onderocu) zone extends

from an elevation of about 1800 meters (6,000 feet) to 2900 meters

(9,500 feet), mixing with Douglas-fir at the upper extent of this

range and with the pinion/juniper cover at the lower extent. Stands

of ponderosa pine seldom have more than 70% crown closure and are

characteristically rather open with grass or mixtures of brush

forming the understory of vegetation. Aspen generally occurs on

northern slopes in small patches, interspersed among the ponderosa

pine or in pure stands. Gambel oak (Quercus gambelii) appears in

mixture with the ponderosa pine and in large, sparse, shrubby standsi
at the lower elevations.

Pinion/Juniper. The elevation belt immediately below the ponderosa

pine contains pinion pine (Pinus eduZis) and juniper, especially

the Utah juniper (Juniperus osteusperna), Rocky Mountain juniper

(Juniperus sccoutorum) and one-seed juniper (Jun-'wrus monosI)erma).

These semi-arid areas are much lower, dryer and warmer and have

more sparse understory vegetation. Pure Gambel oak stands and

mixed shrub stands are found on all aspects within this elevation

zone.

B. Characteristics of Landsat and Topographic Data

The spectral data used in this investigation were Landsat MSS data

which had been geometrically corrected and re-scaled to a 1:24,000 line-

printer scale through LARS' preprocessing routines (Anuta, 1973). A de-

tailed description of the data set is shown in Table 1.

Digital elevation data were obtained from the Topographic Center of

the U.S. Defense Mapping Agency (DMA), Washington, D.C. To produce these

data, DMA used a table digitizer to manually digitize the contour lines of

a 1:25n,000 scale U.S.G.S. map having contour intervals of 61 meters

(200 feet). Since it was necessary to produce a uniform grid of elevation

data, the values for cells through which no contour line passes were inter-

polated. The resulting digital elevation data has a cell size of 64 meters

square. These DMA elevation data were registered with the Landsat data at

LARS, using a nearest-neightbor fit, and then added to the Landsat data
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Table I. Location and description of spectral and topographic data.

Spectral Data Topographic Data

Source Landsat Scene Defense Mapping
Number 1407-17193 Agency

(Rescaled at LARS at
which time the as-
pect and slope
channels were gen-
erated)

Date Collected 3 September 1973 --

Tape/File Number 2634/1 2629/1

LARS Run Number 73034309 73034311

Lines/Interval 1 - 1398/1 1 - 1398/1

Columns/Interval 1 - 1512/1 1 - 1512/1

(1) 0.5-0.6 um (5) elevation (10-
Channel (2) 0.6-0.7 um meter contour
Descriptions (3) 0.7-0.8 um intervals)

(4) 0.8-1.1 um (6) slope (0-900 in
1 increments)

(9) aSpest (0-3600
in 1 increments)

k
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tape as channel 5 (Table 2 ). (See Appendix A for additional details).

Figure 3 is a gray-level printer display of a portion of this elevation

data.

Since the data analysis process required slope and aspect information

on a pixel-by-pixel basis, the elevation data were numerically differentiated

to produce an estimate of the gradient vector at each pixel location. The

magnitude of the vector defines the slope angle, and the direction defines

the aspect angle. These data added two channels to the data tape, channel

6 for slope and channel 9 for aspect. Figures 4 and 5a are gray-level repre-

sentations of the slope data in channel 6 and the aspect data in channel 9,

respectively. Channels 7 and 8 were added in order to express the aspect

information in a different format: 0 - 180 0 , and a 0-1 flag indicating

direction (0 = East aspect, 1 = West aspect). Figure 5b represents this

data.

x
H

 

 The representation of the actual topographic character of the scene by

this topographic data set is limited in several ways. The mountain tops

that extend above contour lines but do not reach the next higher contour

are truncated to the elevation of the contour line they reach; second, in

areas where the elevation changes rapidly within short distances, a large

number of pixel locations are defined as contour-line elevations and rela-

tively few fall at gradations between the lines. These attributes of the

data are a direct result of the procedures used to digitize the elevation

information and the size of the grid cells used in creating this digital

elevation data set. Details describing the procedures for elevation inter-

polation, registration, and derivation of slope and aspect data are in-

cluded in Appendix A.

C. Reference Data

The reference data used in this project consist of 7h-minute U.S.G.S.

topographic maps, color infrared aerial photography, and forest cover type

maps. Topographic maps were used to assess the characteristics and quality

of the DMA data and of the interpolated topographic data. The aerial photo-

graphy used is color infrared photography at a scale of 1:120,000 obtained

by NASA's WB-57 on August 4, 1973. This photography iF of excellent quality
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MM

'able 2. Characteristics of combined spectral and topographic data set

used in analysis.

Source: Landsat MSS and DMA di ital topographic data
(described in Table 11

Tape/H l e Number 4827/3

LARS Run Number 73057711

Lines/Interval 1 - 1398/1

Columns/Interval 1 - 1512/1

Channel (1) Landsat 0.5-0.6 um
Descriptions (2) Landsat 0.6-0.1 um

(3) Landsat 0.7-0.8 j,m

(4) Landsat 0.8-1.1 pm

(5) Elevation (in 10-meter contour intervals)

(6) Slope (0 - 900 in 1 0 increments)

(7) 1(1 - 1800 in 1 0 increment.:)
(8) Aspect l(0 or 1; e.g., E or W)

(9) Aspect 0 - 3600 in 1.41 0 increments)

(10) Inverse of reflectance geometry correction
factor

(11) Corrected spectral values for 0.5-0.6 um channel

(12) Corrected spectral values for 0.6-0.7 um channel

(13) Corrected spectral values for 0.7-0.8 um channel

(14) Corrected spectral values for 0.8-1.1 um channel
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and provided the data needed to verify the accuracy of the forest type maps

and to identify cover types at individual selected pixels. These identifi-

cations were needed both for training the computer and for evaluating the

classification results.

The forest cover type maps, available for 14 quadrangles, had been

produced by INSTAAR, University of Colorado, using WB-57F color infrared

photography and field checking. Four of the 14 quadrangle maps are located

in the Rio Grande National Forest; ten are located in the San Juan National

Forest. All contain information at the "sub-series" level as defined in

Table 3. While the series level of detail defines the informational classes

desired, many of these series-level cover types actually occur in mixtures.

Therefore, the cover type maps and the test pixel identifications use cover

type classes that are more detailed than the series level. These detailed

cover type classes will be referred to as Level IV or sub-series classes.

An example of one of the type maps from the San Juan National Forest is

shown in Figure 6. Appendix 8 lists the code numbers and corresponding

cover types shown on the type maps developed by INSTAAR; the original code

designations were modified in the summer of 1978 by the field team working

on the current project.

In general the INSTAAR cover type maps were reasonably accurate in

stand identification, but some boundaries between cover types were inaccu-

rate. These naps were refined during this project through field checking.

D. Training and Evaluation Quadrangles

As part of the reference data described in the previous section, maps

of the forest cover were available for 14 quadrangles within the study area.

Seven of these were designated as "training" quadrangles and were used to

develop the topographic and spectral statistics used in the classifications.

The remaining seven quadrangles were designated "evaluation" quadrangles

and were used to evaluate the accuracy of the classifications.. The pro-

cedure for sub-dividing the quads used an alternating selection with



Table 3. Levels of mapping detail.
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Region or Level II

Coniferous Forest

Deciduous Forest

Herbaceous

Non-Vegetated

Series or Level III

Spruce-Fir (SF)

SF/DWF

Douglas & White Fir (DWF)

DWF/PP

Ponderosa Pine (PP)

PP/PJ

Pinyon-Juniper (PJ)

As pen

Oak

Alpine Willow

Tundra

Grassland

Barren

Urban

Water

Sub-Series or Level IV

SF
SF/Aspen
SF/DWF
SF/DWF/Aspen
DW F
DWF/Aspen
DWF/ PP
DWF/PP/Aspen
PP
PP/Oak
PP/PJ
PP/PJ/Oak
P,J
PJ/Oak

Aspen

Oa k

Alpine Wiilow

Xeric Tundra
Mesic Tundra
Hydric Tundra
Xeric Grassland
Mesic Grassland
Hydric Grassland

Exposed Rock and Soil

Urban

Water

i

g
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Figure 6. Cover type map at the series and sub-series level for part of

the Vallecito Reservoir quadrangle. The area shown is a portion

of 'the area in Figure 3, corresponding approximately to lines

752-840 and columns 680-790. Identification of cover type code

numbers appears in Appendix B.
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i a random start. Figure 7 shows the location of the quadrangles within the

study area, and Table 4 lists the line and column coordinates for each

quadrangle.

Table 4. Line and column coordinates for the 14 quadrangles used in the

investigation.

Lines Columns
Training quadrangles (first &last) (first & last)

Howardsville 205-386 610-790

Little Squaw Creek 387-569 1154-1334

Vallecito Reservoir 752-934 610-790

Bear Mountain 752-934 973-1153

Pagosa Peak 752-934 1335-1506

Baldy Mountain 935-1117 791-972

Chris Mountain 935-1117 1154-1334

Evaluation quadrangles

Finger Mesa 205-386 973-1153

Weminuche Pass 387-569 973-1153

Granite Peak 752-934 791-972

Oakbrush Ridge 752-934 1154-1334

Ludwig Mountain 935-1117 610-790

Devil Mountain 935-1117 973-1153

Pagosa Springs 935-1117 1335-1506

i

l j
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III. TOPOGRAPHIC DISTRIBUTION MODEL APPROACH

As previously stated, the overall objective of this study is the

development and testing of techniques which utilize both digital topographic

data and spectral data in order to map forest cover types at a greater level

of mapping detail and with increased accuracy. To meet this objective, a

key requirement was the development of a procedure to quantify the topo-

graphic data and then utilize it in the classification. This was a two-

phase process.

The first phase was the development of the statistical description of

the distribution of each forest cover type in terms of topographic variables

(i.e., elevation, slope and aspect). This was in essence, the development

of the digital forest topographic model. The second phase was the utiliza-

tion of the information derived from the topographic distributions (model

results) in a pattern recognition procedure for classifying multivariate

digital topographic and spectral data. This section (III) of the report

discusses these two phases.

A. Background and Literature Survey

Prior to this work, there existed no statistical, quantitative descrip-

tion of the distribution of the forest cover in the San Juan study area.

The available literature contained qualitative descriptions of the elevation

strata, as summarized in Table 5. The need existed, however, to describe

quantitatively the complete topographic distributions of species and to

assemble more information on the probability of occurrence of any cover type

at a given combination of elevation, slope, and aspect.

Ecological studies in the western coniferous forests have demonstrated

the existence of vegetational gradients with changes in altitude, soil

moisture, parent material, climate, and other ecological factors. These

factors create a gradual sequence of changes in forest composition and

structure, as well as some relatively abrupt transitions from one community

to another. Topography alone influences plant distributions indirectly

through its control of many environmental parameters including insolation,

g temperature, atmospheric pressure, precipitation, relative humidity, wind
E

velocity, evaporation, and soil characteristics. Daubenmire (1943)

recognized these relationships and pointed out that topographic position

r
R r
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4

accounts for most of the climatological and vegetative deviations from the

ideal attitudinal gradient. He concluded that rigidly defined altitudinal

belts do not exist throughout the Rocky Mountains, but rather one finds a

regularly repeated series of distinct vegetation types, each of which bears

a constant altitudinal or topographic relationship to contiguous types.

Many researchers have described the location and characteristics of

various vegetation zones in the Rocky Mountains. Daubenmire (1943) evaluated

the existing descriptions and distinguished six major vegetation zones: the

Alpine tundra zone; the Engelmann spruce/Subalpine fir zone; the Douglas-

fir/White fir zone; the Ponderosa pine zone; the Pinyon/Juniper zone; and

the Oak/Mountain mahogany zone.

The literature previously summarized in Table 5 indicates that the

major forest communities in the Rocky Mountains do not seem to vary consider-

ably in their elevation ranges from central Colorado south to northern Arizona

and New Mexico. Each vegetation type has a characteristic elevation range

which is adjusted locally by a combination of slope and aspect. Several

authors did differentiate between two distinct classes, northern exposures

and southern exposures. The warmer, drier southern exposure raises the

elevation range of a species whereas the cooler and moister northern expo-

sure lowers the elevation range. However, it must be notad that with the

exception of Fleming et al. (1975a), none of these studies is specific to

the San Juan Mountains and thus none can serve as a definitive statement of

species distributions in that location. Furthermore, the 1975 work by

Fleming et al. (1975a) which is specific to the San Juan Mountains, has been

modified through the current study.

B. Development of the Topographic Distribution Model

The topographic distribution model is a mechanism for combining point-

by-point information about forest species, elevation, slope, and aspect to

describe quantitatively the topographic positions of the major forest cover

types; The input used to develop the model for this study was information

obtained from the forest cover type maps, the aerial photography, and topo-

graphic data tapes. The output from the model is a quantitative characteri-

zation of the topographic distribution of each major forest species in terms

of means and variances; these data and statistics can be presented graphically

T
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as histograms, polar plots, regression line plots, and normal distribution

curves.

This section of the report describes the procedures used to develop the

topographic model and the techniques developed for displaying the results.

Section IIIC and Appendix C present graphically the topographic distribution

of each major species in the San Ouan study area. These characterizations,

however, are specific descriptions of the vegetation of the San Juan area

and cannot be said to describe the topographic distribution of the forest

cover in other mountainous areas of the North American continent or even of

the entire Rocky Mountain region. However, the basic techniques used to

develop these plots can be applied to other mountainous areas for which

cover type maps and elevation information are available.

1. Stratification to define topographic positions. The procedure for

developing the topographic distribution model involves: a) stratifying the

test site into 300-meter elevation zones (resulting in a total of 7 strata

for the San Juan site); b) stratifying each elevation stratum into three

slope zones (1-70 , 8-170 , and 18-700 ) and a "zero slope" zone; and c) strati-

fying each point with a non-zero slope into one of four aspect zones

(N,S,E,W). This process provides for the definition of 91 (7 x [(3 x ') + 1])

distinct topographic positions for the study site.

2. Sampling procedure for the topographic model. Selection of a statistically

valid sample of data points was the next step in constructing the model.

The first consideration was to define the size of the sampling unit. In

this study units corresponding to single Landsat pixels were selected because

of sampling efficiency and simplicity in handling. An additional advantage

of using single-pixel cells over groups of pixels is the minimization of

many of the edge effect problems inherent in using the larger cells.

In order to represent equally each of the 91 topographic positions in

the study area, 50 randomly defined X-Y coordinates were selected in each of

the 91 topographic positions. It had been estimated that 50 points would

provide an adequate representation of each topographic position. The points

were allocated among the training quadrangles as a function of the proportion

of the 91 positions present in the quadrangle. This yielded a total of 4,550

-stratified random sample points (50 x 91). Selection of these stratified r
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randow points was carried out through three computer programs developed as

part of this project: EXTRACT, RANDOM, and SELECT. EXTRACT is a program

that, in essence, classifies the elevation, slope, and aspect channels of

the data base, assigns each pixel to one of 91 topographic position classes

and then lists the X-Y coordinates of all the points in each of the 91

topographic position classes. RANDOM is basically a random-number generator

that provides a set of random numbers to SELECT which uses them to select

the desired number of points (in this case 50) from among all the points in

each topographic position class. Detailed descriptions of these programs

appear in Appendix D.

3. Identification of sample points. Each of the 4,550 selected points was

initially identified using the available cover type maps. This identification

was then verified through photointerpretation of color infrared photography.

In addition, 20-30% of the selected training points were checked on the

ground. Sample points that fell on cover type boundaries and therefore

could not be defined as belonging to any single cover type class were ex-

cluded from the sample, as were points that could not be reliably identified.

Non-forest points that fell on water or bare rock wr-; n also excluded from

the model data. This resulted in a total of 3,379 se,.nple points that were

actually utilized in development of the topographic distribution model of

cover types. The comparison of type maps, aerial photos, and field checking

insured a high degree of accuracy in the identification of the data used to

develop the model.

It should be noted at this point that the 3,379 training sample points

actually utilized in the model served simply as representatives of the 91

topographic classes. After the cover type for each of the points had been

identified, the topographic information from the data tape was used to

define the actual elevation, aspect, and slope for each sample. These data

describing the actual topographic position were then utilized in the develop-

ment of the final topographic distribution model for each cover type. In

summary, while a stratification procedure had been used to obtain a sample

of all topographic positions present, the model itself was developed using

the actual topographic location of each of the sample points.

4. Statistical characterization of the distributions. Regression analyses

of the samples were run to describes statistically the topographic distribution

1
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of each cover type. The frequency of the various species along an elevational

gradient can be easily plotted to show the basic shape and characteristics

of the distribution. Examples of these plots appear in the next section.

To simplify the distribution of the species as a function of aspect as well

as elevation, the aspect data was collapsed to a linear scale (north = 0,

south - 180, with east and west both 90). A regression analysis was also

conducted on the three slope classes (1-7 0 , 8-170 , and 18-700 ) for each

species.

5. Procedures for displaying the distributions. The distributions of the

various cover types relative to topographic position can be presented

graphically in a number of ways, and during this project, computer software

was developed to accomplish this. Figures 8, 9, 10 and 11 are examples of

four of these formats: a histogram that shows the distribution of cover

types as a function of elevation; polar diagrams that shows the distribution

as a function of elevation and aspect, or of slope and aspect; and a re-

gression line that combines elevation and aspect to present in another way

the distribution of each cover type. In Figurc 8, the elevation is divided

into 50-meter zones, and in each zone the number of pixels assigned to each

major species is counted. Examination of the histograms reveals the degree

of normality of each distribution. The polar plots, which display distribu-

tion as a function of elevation and aspect or slope and aspect, indicate

the extent that the "typical" elevation range varies for each species as a

function of aspect or slope. The polar diagrams also serve to verify that

the model contains a good representation of the sample points for the full

range of aspects and slopes. The regression line (Figure 11) displays the

key information about the two most significant variables, elevation and as-

pect, in a format that clearly shows their relationships.

C. The Model for the Topographic Distribution of Forest and Herbaceous

Cover Types in the San Juan Stu_X Area.

1. Graphical characterization of the to o rz hic distribution of forest-land

cover types. One of the products of this study is a quantitative descrip-

tion of the distribution of each of the three major coniferous species, the

three major deciduous species, and the two major herbaceous cover types in

the San Juan study area Figures in Appendix C display those distributions

i

9
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Figure 8. Sample histogram graph showing the distribution of.Engelmann

spruce/subalpine fir as a function of elevation.
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Figure 9. Sample polar plot displaying the distribution of Engelmann

spruce/subalpine fir as a function of elevation (in meters)
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spruce/subalpine fir as a function of slope and aspect.
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Figure 11. Sample regression line plots showing the relationship between

elevation and aspect for spruce/fir, Douglas/white fir, and

ponderosa pine for all slopes.
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for each species relative to elevation, slope, and aspect. The normalized

curves of the distribution of the various cover types as a function of

elevation are shown, by group, in Figures 12, 13, and 14. From these figures i

it is evident that the various species have statistically different mean

elevations but also that some overlap of elevation ranges does exist between

the species, creating transition zones.

As compared to previous information concerning the topographic position 9
and distribution of the various cover types (as shown in Figure 2), the

figures appearing in Appendix C and statistically summarized in Figures 12,

13, and 14 represent the actual distribution of the various cover types, based

upon the information generated through the topographic distribution model.

Previous information has been largely qualitative, whereas these figures

quantitatively characterize the topographic positions and ranges of the

various cover types. This approach has shown some differences in the ele-

vatioir range of some species as compared to the information available in

the literature. For example, the topographic distribution model data shows

that the spruce/fir cover type extends to a higher elevation than previously

thought.

In comparing the histogram data shown in Appendix C with the normalized

data summary displayed in Figures 12, 13, and 14, it was noted that the

elevation distribution for each species is generally normal, except for

ponderosa pine and Gambel oak. The apparent skew in the original data for

` these species was -used by t1he deficiency in sample po nts below 2,225

meters. The topographic distribution model had been truncated at the lower

` elevations due to the range of elevation existing in the study site.

(Ponderosa pine as well as pinyon/juniper cover types are present at lower

elevations in southwest Colorado outside of the test site area.) It could

also be noted that the histogram data for grassland shown in Appendix C

displays a broad range of elevations without a distinct single mean. It is

possible that this is because the data shown summarizes data for many

different species of grass, each of which may in fact have distinct elevational

distributions. However, the fact that the normalized curve for grassland

shown in Figure 14 displays a more pronounced mean than the original data

displayed does not indicate a need to separate grassland into sub-groups

having different elevational ranges. Because the major use of the elevation

s
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f
data for grassland was to separate grassland from tundra, the topographic

distribution model data does clearly show that grassland can be separated

i from tundra as a function of elevation.
i

Figure 11 (shown previously), Figures 15 and 16 show the regression

line plots for the three coniferous cover types, the three deciduous, and

the two herbaceous cover types, respectively. As one would expect, the

average elevation is significantly higher on the southern aspects than on
t

the northern. The data also show that there is very little difference in

average elevation between east and west aspects. Average elevation for each

species varies as a function of aspect by approximately 70 meters (225 feet),

with Douglas-fir and white fir having the greatest aspect-dependent varia-

tions among the coniferous species. In addition, analysis of the data showed

that slope is not a significant factor affecting the distributions of any of

R
the forest species. This is indicated for the coniferous forest cover types

in Figure 17, which is an example of the results of the regression analyses

of the three slope classes.

2. Analysis of the topographic distribution model. A further analysis of

the results was conducted to determine statistically which variables are

significant in distinguishing among the various species and the accuracy of

using topographic data alone to distinguish among the species within each

major cover type group. To carry out the discriminant analysis, the vegeta-

tive cover types were grouped into the three Level II categories (i.e., coni-

ferous forest, deciduous forest, and herbaceous), and the SPSS discriminant

function (Nie et al., 1975) was run on each category. (In general terms,

this involved a principal components transformation of the data, followed

by a maximum likelihood classification.) To double-check the results of the

previous regression analysis of the topographic data, topographic variables

for all sample points in each Level II category were input to the discriminant

analysis function. The processor was allowed to select the significant vari-

ables and perform the classification of the sample points.

Table 6 shows the results of classifications of the sample points in

the three categories when (1) equal a priori probabilities were assigned to

each class and (2) when the probabilities were weighted. In the former case,
i
 

the range of accuracies for the various species is from 70.8% for aspen to

100% for grass, with the average near 89.5%. In all cases, species in the

5
t

1



5

39

N ASPECT S

Figure 15. Sample regression line plots showing the relationship between

elevation and aspect for alpine willow, aspen and oak.
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Figure 16. Sample regression line plots showing the relationship between

elevation and aspect for tundra and grassland.
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Table 6. Training sample discriminant analysis results when using only topo-
graphic data.

No. of
Cases' Equal Probability Weighted Probabilityl

Actual Coniferous
Spruce/ Doug- Ponderosa 'Spruce/ Doug- Ponderosa

Groups
fir white pine fir white pine

fir fir

Spruce/Fir 806 729 77 0 740 66 0
90.4% 9.6% 0.0% 91.8% 8.2% 0.0%

Douglas & White 617 21 513 83 24 526 67
Fir 3.4% 83.1% 13.5% 3.9% 85.3% 10.9%

Ponderosa Pine 440 0 39 401 0 43 397
0.0% 8.9% 91.1% 0.0% 9.6% 90.2%.

Percent of "grouped" cases
88.19% 89.26%

correctly classified

Actual Deciduous Alpine Aspen Oak Alpine Aspen Oak
Groups Willow Willow

Alpine Willow 232 219 13 0 213 19 0
94.4% 5.6'% 0.0% 91.8% 8.2% 0.0%

Aspen 432 51 306 75 36 373 23
11.8% 70.8% 17.4% 8.3% 86.3% 5.3%

Oak 111 0 1 110 0 8 103
0.0% 0.9% 99.1% 0.0% 7.2% 92.8%

Percent of "grouped" cases
correctly classified 81.94% 88.90%

Actual Herbaceous Grass Meadow Tundra Grass Meadow Tundra
Groups

Grass 99 99 0 0 99 0 0
100% 0.0% 0.0% 100% 0.0% 0.0%

Meadow 108 17 87 4 17 81 10
15.7% 80.6% 3.7% 15.7% 75.0% 9.3%

Tundra 787 0 30 757 0 19 768
0.0% 3.8% 96.2% 0.0% 2.4% 97.6%

Percent of "grouped" cases-
correctly classified 94.87% 95.37%

1 Number and percentage of sample points in each group assigned to each class.
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middle elevation ranges (Douglas-fir/white fir, aspen, and meadow) were

classified less accurately than the other two classes in the group, mainly

because each middle class is flanked by transitional zones. To help refine,

the training procedure, the sample size for each class was used as a weight

in the classification, a Baysian-type classifier. These results for the

weighted classification are shown on the righthand side of Table 6. In each

category the overall classiM cations are slightly improved, although indi-

vidual species classification accuracies were decreased in some cases. The

lowest percentage for any species was raised from 70.8% (aspen) in the un-

weighted classification to 75% (meadow) in the weighted classification with

most percentages tending to be much closer to the average of 90%.

Care must be taken when interpreting these results since they indicate

only the ability to distinguish among the various species within each of the

major categories, using topographic data alone. Also it must be emphasized

that the points classified in this test were solely training data. There-

fore, it is not expected that these accuracy figures would be representative

of those obtained in the final classifications when Level III categories and

species would be differentiated using both spectral and topographic data.!

The results do indicate, however, that the topographic data should be help-

ful in distinguishing among the various species (Level III) within one

category (Level II) -- a differentiation which could not be accurately

accomplished using spectral data alone (Hoffer et al., 1975a).

D. Techniques for Using the Topographic Distribution Model in Conjunction

with Spectral Data.

Prior work in analysis of satellite multispectral scanner data revealed

that the simple addition of topographic channels to the spectral data vector

for each pixel and multivariate analysis of the augmented data set did not

result in consis-It ent, significant improvements in classification accuracy

(Hoffer et al., 1975b). A major part of the work completed under the current

project has been the development and evaluation of a wide range of procedures

for conducting analyses using topographic data a: ancillary informal-Jon in

the analysis of spectral data. Various methods for developing training

statistics are discussed first; these are followed by a discussion of several

classification strategies.
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1. Development of training statistics. In developing the training statistics

for use in classifying a combination of spectral and topographic data, a

primary consideration is that two very different types of data are involved

in the analy;:is: spectral data and topographic data. Consideration must be

given to the development of one set of training statistics that is appropriate

for the spectral data, and perhaps an independent set of training statistics

must be developed which is appropriate for the topographic data. In previous

work with the Skylab MSS data (Hoffer et al., 1975b), the modified cluster

technique had been used to develop the training statistics. Although these

training statistics did characterize the spectral characteristics of the

various cover types present, they did not define their topographic character-

istics. The result was that the addition of topograhic data increased

classification accuracies for some of the cover types but lowered them for

some others. Therefore, it was determined that for the current study two

sets of training statistics would need to be developed, one to define the

spectral reflectance characteristics of the cover types and one to define the

topographic characteristics of the cover types. Two different techniques for

creating the training statistics have been developed and tested in the current

study. These will be referred to as the "MCB" (Multi-Cluster Blocks) and

the "TSRS" (Topographic Stratified Random Sample) techniques.

The MCB techniquel  (Fleming and Hoffer, 1978) was used to develop the

spectral training statistics only. In this technique, Landsat color composite

imagery and small-scale color infrared aerial photography of the area were

used to select a number of relatively small blocks in the data. In this

study, two such blocks were defined in each of the seven training quadrangles.

Each block was approximately 40 x 40 pixels in size and contained a diversity

of spectral characteristics. (Careful selection of these training blocks

enables spectral data characterizing all cover types in the entire area to

be included in the training sample.) Each training block was clustered in-

dependently into 16 spectral classes, and the cover type associated with each

cluster class was identified. Spectrally similar cluster classes for the

different training blocks were then pooled to produce a single set of training

statistics to describe the spectral characteristics of the cover types present.

4

j-/Previously referred to as the modified cluster technique, Fleming et al.,
1975b.

r
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In this study, there were fifteen spectral classes in the final set of

training statistics.

Previous work with Landsat and Skylab data had indicated that it was

very difficult to get an effective set of training statistics that would

spectrally discriminate among some of the individual forest cover types

present in the San Juan Mountains. This was particularly true for spruce/fir

and Douglas/white fir. Preliminary analysis of the data used in this study

again verified that training statistics could not be developed on the basis

of spectral data alone which would reliably separate individual forest cover

types in this area of complex topographic and vegetative characteristics.

Therefore, the MCB technique was used to define spectral training statistics

only for major cover types (i.e., Level II groupings). It was hypothesized,

however, that if the various species and forest cover types were distributed

as a function of their topographic position (particularly elevation), one

could use the spectral data to identify major cover types (i.e., coniferous

forest, deciduous forest, herbaceous vegetation, rock and soil, and water)

and then depend upon the topographic characteristics to separate and classify

individual forest cover types.

A TSRS (Topographic Stratified Random Sample) technique had been

used earlier in the study to develop the Topographic Distribution Model,

which characterized the topographic distribution of the various cover types.

Since the cover type as well as topographic characteristics of each of the

pixels used to develop the model had been determined, it was apparent that

the same data set could be used to define the topographic training statistics.1/

As previously described, the TSRS (Topographic Stratified Random

Sample) technique involved stratifying the site into numerous (i.e., 91)

topographic positions, followed by selecting and identifying an equal-size

sample of single pixels (i.e., 50) from each strata. The result was a

statistically valid sample which described, quantitatively, the topographic

L/Whereas spectral training statistics quantitative^y describe the spectral
characteristics of each cover type of interest, topographic training
statistics were required to quantitatively describe the topographic charac-
teristics of each cover type. Therefore, development of the topographic
training statistics required input data which would statistically describe
the various cover types as a function of their topographic position rather
than their spectral response.
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distribution of each vegetation type.

In addition to using the TSRS technique to define topographic training6 3

statistics, it was also apparent that this technique could be used to define

spectral training statistics, since the cover type of each of the pixels

sampled had been determined. Because the data had been stratified by topo-

graphic position, every slope and aspect combination was represented for

each vegetation type. Therefore, all variations in spectral response for

each cover type due to topography should have been represented. Also, the

sample size for each cover type was thought to be large enough that any

variation in density would also be represented in the sample. (This was not

true for the water class which occupied a very small percentage of the

study area.) Although the TSRS approach requires considerable effort to

identify the loce-tion and the cover type associated with the relatively

large sample of pixels, once the data set is developed, it can be used to

generate training statistics for both the topographic data and the spectral

data.

It should be noted that any statistically defined random sample of data

pints could have been used to provide a set of X-Y coordinates for developing

the spectral characteristics of the individual forest cover types. Since

the topographic distribution model data was available and had been developed

using an appropriate statistical sampling design, use of this data set

eliminated the requirement to photo-interpret and field check an additional

set of X-Y coordinates which would be used only for developing the training

statistics.

A key point to note is that the TSRS procedure enabled the spectral

characteristics of individual forest cover types to be determined. The

multi-cluster blocks approach, on the other hand, could be used to effec-

tively describe only major cover types because it determines the natural

groupings of spectral characteristics in the study site.

2. Approaches to classifying combined spectral and topographic data. The

objective of the classification step is to integrate the spectral and topo-

graphic distributions into a logical classification sequence. Once the

statistical distributions (training statistics) have been developed, the

classification of the data set can be accomplished by any one of several
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different approaches. The ma jor difficulty encountered is that the spectral

classes and topographic classes do not necessarily match the information

classes. In other words, there is not always one topographic class and one

spectral class for each information class. (Informational classes could be

considered to be individual forest cover types, for example.) The purpose

of the classification step is to logically combine the spectral and topo-

graphic data to define the desired informational classes.

The classification procedure can vary in several ways depending on the

mathematics, the logic, and the type of data used by the algorithm. In this

study, two basic types of algorithms were used: single-stage and multi-

stage (or layered) classifiers. Both are msximi;°  likelihood per-point

classifiers which differ only in the logic for in, fng the classification

decisions. The single-stage classifier is the commonly used "standard"

LARSYS algorithm known as *CLASSIFYPOINTS (Phillips, 1973). The layered

classifier has been developed over the last several years at LARS by Wu,

Swain, Landgrebe, and Hauska (Wu et al., 1974; Swain et al., 1975).

In addition to the different procedures that can be used in the classi-

fication process, different combinations of data can be used by the classi-

fication algorithm. Although many combinations are possible, the three major

variations compared in this study are: (1) the spectral data only; (2)

spectral data plus elevation; and (3) spectral data plus all topographic data

(elevation, slope and aspect). The classification using only the spectral

data was the "baseline" classification, against which the other classifi-

cations were compared. It was anticipated that results from the "baseline"

classification would be comparable to previous studies in this area in which

only the Landsat spectral data had been utilized to classify cover types.

The spectral-plus-elevation-data classification would indicate the improve-

ment in results that could be achieved from using the elevation data in

combination with the spectral data. The spectral-plus-all-topographic-data

classification would indicate the maximum accuracy achievable when using

Landsat spectral data and DMA topographic data.

To combine (a) the two different methods for defining training statistics

(MCB and TSRS), (b) the two types of training statistics (spectral and topo-

graphic), and (c) the two different classification algorithms (single-stage

and layered), the current study defined and evaluated two different analysis
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techniques. These are referred to as "Analysis Technique A ll and "Analysis

Technique B."

Analysis Technique A involved spectral training statistics developed

using the MCB approach and topographic training statistics obtained using

the TSRS approach. A layered (or multi-stage) classifier was then used in

the classification. The first stage of the classification utilized only the

spectral data and classified only Level II cover types; it was followed by

the second stage in which only the topographic data was used in attempting

to identify Level III Forest Cover Types.

Analysis: Technique B used topographic training statistics obtained by

the TF"S a^,P roach and spectral statistics obtained from the same set of

X-Y coordinates. A single-stage classification involving both the spectral

and topographic training statistics was used in attempting to identify

Level III Forest Cover Types.

Both the layered and single-stage classifiers are capable of using

weighting factors in the classification process, thereby resulting in a

Baysian type of classifier. For purposes of this study, we therefore

evaluated (a) the technique used to combine the spectral and topographic

data (i.e., Analysis Techniques A and B), (b) the use of weights in th-

classification step and (c) the impact of using the topographic data in

addition to the spectral data. Thus, results obtained from twelve different

classification sequences were compared: (1) layered classification, with

(a) equal and (b) weighted probabilities of occurrence, and (2) single-stage

classification, with (a) equal and (b) weighted probabilities of occurrence.

Each of these four combinations was classified using (a) only spectral

data, (b) spectral plus elevation data, and (c) spectral plus elevation, slope,

and aspect data. By way of a summary, Table 7 shows a matrix of the possible

data combinations and classification procedures that were involved in this

study. For ease in communication, a classification number was assigned to

each coinbiiation, as shown in the table.

As indicated in the above discussion, Analysis Technique A uses the

layered classifier. A critical aspect in using the layered classifier is

the aevelopment of the decision tree. For this study, the decision tree

which is based upon use of both spectral and topographic data by the layered
t
r
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Table 7. Numerical designations of various classification procedures used.

Analysis Technique:

AV By

 Type of Equall/ Weighted Equal Weighted

 

Data Used Probabi 1 1 ti es Probabilities

Spectral Only

Elevation only

Spectral and

 

Topographic 9 10 11 12

Aspect & Slope

YAnalysis Technique A utilizes spectral statistics derived using the Multi-
Cluster Blocks (MCB) procedure and topographic statistics obtained
using the Topographic Stratified Random Sample (TSRS) procedure. The
classifications involve the Layered Classifier in which the first stage
utilizes only spectral data and classifies only Level II cover types and
the second stage utilizes only topographic'data in attempting to identify
Level III Forest Cover Types.

YAnalysis Technique B utilizes topographic statistics obtained using the
TSRS procedure and spectral statistics are obtained from the same set of
pixels (matching training pixel locations). The classifications involve
a singel-step classification based on both the spectral and topographic
training statistics (if called for) to identify Level III Forest Cover

Equal (i.e., unweighted) or weighted probabilities of occurrence of the
individual cover types. Weights were generated using data derived from
the Topographic nistribution Model.

_
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classifier, is shown in Figure 18. The input data tape contains both spec-

tral and topographic data in an overlayed "database" format. At each decision

node the type of data that provides the best information for making a

particular decision can be used. For example, as indicated by Figure 18,

spectral data alone was used to distinguish between the five primary ground

cover types present in the study area: coniferous forest, deciduous forest,

herbaceous cover, barren areas, and water. Based upon the discriminant

analysis results using only topographic data to separate individual forest

cover types (shown in Table 6), it was thought that the sub-division of the

major forest cover types into the individual forest cover types present in

the study area could be effectively accomplished through the use of topo-

graphic data alone.

As previously mentioned, the Multi-Cluster Blocks approach was utilized

to develop the spectral training statistics for the layered classifier. The

cluster classes from the fourteen training blocks defined by the analyst

were pooled, resulting in the final set of fifteen spectral/informational

classes. As indicated in Figure 18, five of these spectral classes were

identified as belonging to the coniferous forest cover type, three as

deciduous, three as herbaceous, three as barren, and one as water.

The next stage in the multi-stage classification involved the utilization

of topographic data to divide the major cover types into individual forest

cover types. In this sequence, an attempt was made to define specific cover

type groupings which had been identified by the U.S. Forest Service as being

of interest. Therefore, five individual forest cover types were distin-

guished within the coniferous group, three within the deciduous forest cover

type, and two herbaceous classes were separated. The alpine willow class was

combined with the tundra class to identify a single group which should be

identified as alpine. In developing the decision tree, it was also found

that some areas in the spruce-fir cover type were being misclassified as water

on the basis of spectral data alone. Since water would logically occur only

in topographic positions having a 0% slope, at the second level in the

decisiontree, pixels which had initially been classified as water were

divided into two groups, based upon slope. If the slope was 0% in the topo-

graphic data, the pixel remained identified as water, but if it was not 0%,

the pixel classification was changed to spruce-fir. These examples indicate

how the spectral and topographic data can be used in combination to more

4
i
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i

effectively identify individual forest cover type groups of interest to the

Forest Service. One could attempt to differentiate among crown closure

percentages of a single species as a third stage in a layered classification

process, using spectral information alone, but that level of detail was not

attempted in this phase of the project.

It should also be noted that a major programming effort was necessary in

this part of the project in order to refine the layered classifier so that

the algorithm would accept both spectral and topographic training statistics

decks and also would allow weights to be used in the classification.

3. Evaluation procedures for comparing the classification results. In

order to compare quantitatively the results of the various classifications

and strategies, a test data set was developed. Because of the complexity

of the test site and the ensuing complexity of statistical sampling procedures,

it was decided that the best approach would be to use individual Landsat

pixels for the test data set. In order to estimate the overall classifi-

cation performance for each quadrangle within + 5% at the 95% confidence

level, it was determined that 200 test pixels would be required for each

quadrangle. To be sure that a minimum of 200 test pixels would be available

in each quadrangle after the photointerpretation and field work, an initial

set of 300 pixels per quadrangle was randomly selected, giving a total of

2100 pixels over the seven test quadrangles. The location of these pixels in

the test quadrangles was then plotted by computer as a line-printer output.

Next, a three-step process was used to identify the cover type associated

with each test pixel. First, a tentative identification was made for each

of the pixels using the INSTAAR cover type maps of the test quadrangles,

and the tentative identifications were compared to the aerial photos. Next,

the July 1978 field trip was used to locate and field check as many of the

test pixels as possible; approximately 20% were checked during the time

available in the field. Following the field work, detailed photointerpre-

tation was undertaken to establish positive identification of all test

pixels. The areas which had been field checked were used to establish

confidence in the photointerpretation activity. The photointerpretation was

conducted by using the Zoom Transfer Scope to align 1:24,000 printouts of

each quadrangle on which the test pixels had been plotted with the color in-

frared photos of the same area. The X-Y coordinates of each test pixel were
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then located on the aerial photo and interpreted. Stand deiisit,y as well w.

cover type were recorded for each of the test pixels. During the photointer-

pretation process, pixels which were located too close to borders between

two cover types to allow positive identification were excluded from the test

pixel data set (i.e., the population being considered), thus reducing the

inference space of the accuracy estimates. Also pixels that fell on clouds

or cloud shadows on the aerial photography were excluded. This resulted in

a decrease from the 2100 potential test pixels to 1539 pixels actually

defined as the test data set. This test sample size was still sufficient

to achieve a + 5% error of estimate at the 95% confidence level in evaluating

the overall classification accuracy by quadrangle.
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IV. REFLECTANCE GEOMETRY CORRECTION MODEL APPROACH

The spectral response of forest cover types in areas of rugged terrain

is influenced not only by the intrinsic spectral properties ( reflectivity)

of the cover types themselves, but to a large extent by their relative topo-

graphic position. The relative topographic position of the terrain with

respect to the position of the sun and the location of the sensor system

affects the spectral response of forest cover types as the result of

differential insolation rates. A simple observation of a Landsat scene

collected over rugged terrain clearly reveals the effects of differential

insolation rates. The surfaces directed towards the sun appear lighter in

tone and those directed away from the sun appear darker in tone up to a

critical position in which a complete topographic shadow is produced.

In order to use the spectral information contained in the Landsat data

to discriminate more accurately among different ground cover types, it

would be desirable to eliminate, as much as possible, the topographic

effects which cause differential insolation rates. In other words, one

should normalize the relative spectral response of each Landsat spatial

resolution element ( pixel) to that of a flat surface. To accomplish this

normalization, a simplified model of the reflection geometry was used to

calculate the appropriate correction factor for each Landsat pixel.

A. Development of the Co rrection Model

The intensity of radiation reflected by a surface at a given wave-

length (R^) is essentially controlled by two factors, i.e., the intrinsic

spectral reflectance characteristics of the surface (p a ) and the amount of
incoming spectral radiation flux (Q), which is defined as the total amount

of radiant energy at a given wavelength (or wavelength band) that crosses a

unit area of an intercepting surface per unit time. This functional rela-

tionship is expressed by Equation (1).

R X = f(oxQ)
 

Equation (1)

In remote sensing ap plications, the ideal situation would exist when

the reflected radiation is a function of the s pectral characteristics of
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the cover type only, that is, when the term Q in equation (1) is a constant.

This situation could be reached only by the normalization of the incoming

radiation, and thus equation (1) would become:

RX = Q[f(p X )] Equation (2)

where Q would be a constant for all pixels in the scene, regardless of the

topographic position of the different ground cover types. Therefore, let

us consider now in detail the term Q, which is for all practical purposes

entirely composed of the solar radiation intercepted by the earth. At a

given instant in time and at a particular geographic location, the amount

of solar radiation incident on the top of the atmosphere (Q s ) can be de-

scribed as a function of the solar azimuth angle and the solar zenith

angle. The solar radiation intercepted by the earth-atmosphere system will

be either absorbed or returned to space by scattering and/or reflection.

According to Sellers (1972), the disposition of the solar radiation Q s can

be described by the following mathematical expression:

Qs = C r + A  + (Q + q ) p + Ca + A  + (Q + q )(1 - p) Equation (3)

where Cr = radiation reflected and/or scattered by clouds

A  = radiation reflected and/or scattered by air molecules, dust, or

water vapor

Ca = solar radiation absorbed by clouds

A  = solar radiation absorbed by air molecules, dust, or water vapor

Q = direct incoming solar radiation

q = diffuse incoming solar radiation

p = reflectance characteristics of the surface

This expression indicates that the solar radiation incident on a horizontal

surface at the top of the atmosphere can be reflected and scattered back to

space by clouds (C r ), by dry air molecules, dust and water vapor (A 
r
)or by
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the earth's surface ((Q + q)p), where Q and q are respectively the direct

and diffuse solar radiation incident on a horizontal area at the ground and

P is the reflectance characteristic of the surface. Alternatively, this

solar radiation can be absorbed by clouds (Ca ), by dry air molecules, dust

and water vapor (Aa ), or by the earth's surface ((Q + q)(1 - p)).

Since the satellite multispectral scanner system will record the in=

tensity of radiation being reflected by the "earth-atmosphere" system, all

the absorption terms in Equation (3) can be deleted. Similarly, since the

Landsat scene utilized in this study is cloud-free, the term C r in

Equation (3) is therefore zero. Thus, Equation (3) is greatly simplified

and can be rewritten as follows:

R = A r + (Q+q)p
Equation (4)

= (A r + qp ) +Qp

where R is the amount of energy reflected by a surface on the earth.

In this study, the term (Ar + qp) in Equation (4) will be considered

constant and relatively small in comparison to the term Qp. In practice it

will be calculated from areas within complete topographic shadow, that is,

in areas with absence of direct incoming solar radiation. This term is, in

essence, the amount of radiation reflected or scattered by the atmosphere

plus the diffuse radiation being reflected by the target surface. This

amount of non-direct radiation is subtracted from the actual radiation mea-

sured by the Landsat scanner before the correction for topographic effects

is applied to the direct reflectance of each spatial resolution element

(pixel) in the scene.

To simplify the model and consequently the calculations of the

reflectance geometry correction coefficients, the reflecting features on

the earth's surface will be assumed to be perfectly diffusing surfaces

(Lambertian surfaces). Struve et al. (1977), who have also studied the

effects of topography on the spectral response of earth-surface features,

have indicated that this assumption is not completely valid; they stated,

however, that in the absence of definitive data, non-Lambertian effects
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could not be included in their calculations. Therefore, the reflectance

characteristics of earth-surface features can be simplified from this

complex, non-Lambertian expression:

P = f(a, a, s)
 

Equation (5)

where a and S are respectively the angles between the position of the sun

and the position of the sensor system with respect to the normal to the

reflecting surface, to a more simple, Lambertian expression:

P = f(a)
 

Equation (6)

which indicates that the reflectance characteristic p is a function of wave-

length only. This simplification is very important in that it allows one to

disregard the position of the sensor system (satellite position and look-

angle). Therefore, from this point on, only the positions of the sun and

that of the reflecting surfaces will be considered for developing the re-

flectance geometry corrections.

Since the amount of direct solar radiation reaching a surface and con-

sequently reflected by the surface is a function of the position (slope and

aspect) of the surface with respect to the direction of the incoming

radiation, the intensity of the direct solar radiation illuminating surfaces

sloping at different angles and oriented in different directions can be

described by the cosine law of spherical trigonometry as illustrated by

Figure 22 and described by Equation (7):

Qi = Qn cos Z'
 

Equation (7)

= Qn(cos Z cos i + sin Z sin i cos (a - a'))

where Qi is the amount of direct solar radiation reaching a given surface

with slope i. Z is the solar zenith angle, a is the azimuth angle of the

sun, and a' is the azimuth angle of the normal to the surface (aspect);

Qn is the intensity of direct solar radiation on a surface normal to the

sun's rays, and Z' is the angle between the incident solar rays and the
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South

Figure 19. Relation of the solar zenith angle Z to the energy incident on

a sloping surface. (After Sellers, 1972.)
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perpendicular to the sloping surface. For the particular cases of repre-

senting the intensity of direct solar radiation on a horizontal surface

(Qh) and on a vertical surface (Q;), Equation (7) can be simplified into
the following expressions:

Qh = Qn cos Z
 

Equation (8)

Qv = Qn 
sin Z cos (a - a') Equation (9)

It is not difficult to see that Equations (8) and (9) are obtained directly

from Equation (7) if one remembers that a horizontal sur face has a slope

angle (i) equal to zero and that a vertical surface has a slope angle (i)

equal to 900 , and finally that cos 00 = 1, sin 00 = 0, cos 900 = 0, and

sin 90
0 = 1.

In order to normalize the direct incoming solar radiation reaching any

surface on the ground to that of a horizontal surface (flat pixel), one has

to substitute Qn of Equation (7) into Equation (8). This substitution

yields Equation (10):

_ cos Z
Qh Qi ( cos Z') 

Equation (10)

which simply gives the amount of radiation reaching a horizontal surface

(Qh) as a function of the amount of direct radiation reaching a surface with
a certain slope (i) and a certain aspect (a') times a correction (normal-

ization) factor ( cos Z=).
cos Z

rrom Equations (2) and (4) it becomes evident that the reflectance of

a surface is equal to the product of the incoming direct solar radiation Q

times the intrinsic spectral characteristic (reflectivity, p) of the re-



60

And furthermore, the reflectance of a horizontal surface would be:

Rh = Qh P

Equation (12)

= Qi o (Cos Z -)

where Qi in this case is the amount of direct incoming radiation reaching

the surface, which in practice is essentially the total radiation measured

by the Landsat scanner minus the background non-direct radiation (A r + qp);

p is the intrinsic spectral characteristic of the surface, and

cos Z
(
cos Z') is the correction factor needed for normalizing the reflectance of

each Landsat spatial resolution element to that of a horizontal surface.

In the next section of this report, the actual calculations of the

correction coefficients for the particular Landsat data set used in this

study are described in detail.

B. Calculation of the Correction Coefficients

The primary aim of this part of the investigation is to normalize the

spectral response values measured and recorded by the Landsat MSS system in

order to eliminate the variations resulting from topographic effects. These

altered spectral response values were then analyzed and classified using

the LARSYS system, and the resulting classification compared with a baseline

classification of the same but unaltered Landsat data set.

To calculate the radiation geometry correction coefficients ( cos Z^)
cos Z

for the particular Landsat data set used in this study, Equation (7) had to

be solved. This Landsat data set had been collected over an area located

at a latitude of 37 0 35' and a longitude of 107 0 15', at 17 hours and

19.3 minutes Greenwich Mean Time (GMT). From this information one can cal-

culate the solar zenith angle (Z) and the solar azimuth angle (a).

To calculate the solar zenith angle (Z), we first calculated the solar

elevation angle (E), which is in essence the complementary angle of Z and is

given by the following formula (from Doan and 1anford, 1970):

E = sin - 1 (sin L sin D + cos L cos D cos H) Fquation (13)

s:
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where D is the solar declination, L is the latitude, and H is the local

hour angle (in degrees).

The solar declination D was obtained

year 1973, which for this particular case

the latitude is known to be L = 37°  35' o

H = -270 18.3' or -27.308° . Substituting
yielded the solar elevation E = 50°  59.6'

the complementary angle of Z, then Z = 90

from the nautical Almanac for the

is equal to 70 25.5' or 7.43° ;

P 37.53° , and the local hour angle

these values in Equation (13)

= 51° . Since by definition E is

- E=39° .

Calculation of the solar azimuth angle (a) was also accomplished using

the formula given b y Doan and Sanford (1970):

a = Cos - 1 (sin D - sin E sin L/cos E cos L). Equation (14)

Substituting the appropriate values in Equation (14) yielded the solar

azimuth angle a = 133
0
 42.3' or 133.70 .

Substituting Z = 390 and a = 133.70 in Equation (7), one could easily

calcualte the differential insolation rate (which is described by cos Z')

for any given slope (i) and any given aspect (a'). Table 8 shows the values

of cos Z' for several combinations of slopes (from 0°  - 850 ) and aspect

angles (00 - 3600).
To rsrmalize the reflectance values of every spatial resolution element

of the Landt;at scene used in this study, a series of procedures were

followed:

1. Calculate the correction coefficients (Cos 2-) for every pixel incos Z
the scene.

2. Calculate the non-direct reflectance (background radiation) from

areas within complete shadows.

3. Subtract this non-direct reflectance (assumed constant for the

entire test site) from the actual Landsat data values to obtain

the direct reflectance values.

4. Multiply the direct reflectance value of each pixel by its

appropriate correction factor.

5. This normalized (corrected) data set is then classified using the

LARSYS processing and analysis techniques.
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V. RESULTS AND DISCUSSION

A. Results of Using the Topographic Distribution Model

. Testinq and evaluating the usefulness of the topographic distribution

model involved a number of different classifications, as previously shown

in Table 7. In this section, the classification results are examined and

the major variables affecting these results are evaluated individually.

These variables include:

1. level of detail of the classification;

2. method of developing training statistics and classifying the MSS

data;

3. use of elevation data and use of topographic data (elevation +

slope + aspect) in conjunction with spectral data;

4. use of a priori probability;

5. computer time required for each technique; and

6. use of different data sets for evaluation of classification results.

A brief description of the key elements of each classification is given in

this section, followed by a more detailed discussion of the significance and

implications of these results in Section V-B.

Initially, it is desirable to estimate the accuracy that can be obtained

using only the spectral information to classify the area. Table 9 contains

the "baseline" classification results for the test data set. In this classi-

fication, the Multi-Cluster Blocks approach was used for developing the

training statistics that resulted in the definition of 15 spectral classes +

describing the spectral characteristics of the five major cover types

(level II) present in the test site. Previous work and further analysis of

the spectral data during the current study indicate that there is consider-

able spectral similarity among individual forest cover types within the

coniferous or deciduous categories. Conditions of stand density or topo-

graphic position can cause a similar spectral response to be obta'ned from

different species, as well as distinct differences in spectral reapons: from

a single species or cover type. For these reasons, the MCB technique was

used to classify only Level II major cover types when only spectral data was

involved.



Table 9. "Baseline" classification test results and error matrix for Level II

cover types, using the MCB technique.

(Classification No. 111 : Spectral data only; Spectral
training by Multi-Cluster Blocks; Equal weights; Only the
first stage of the Layered classification sequence was
involved, resulting in a Level II degree of detail.)

No. Samples Classified As:
Percent

Sample Correctly Conif- Decid- Herba-
Cover Type Size Classified erous uous ceous Barren Water

Coniferous 917 80.2 735 115 42 20 5

Deciduous 252 55.2 74 139 35 4 0

Herbaceous 279 51.6 35 77 144 23 0

Barren 86 46.5 10 5 31 40 0

Water 5 60.0 2 0 0 0 3

Total 1539

Overall
Performance?/ 68.9%

6

1/ As indicated on Table 7.
k`

No. Correctly Classified Samples in Each ClassOverall Performance =

 

 x 100, i.e.,
Total No. Test Samples

735 + 139 + 144 + 40 + 3 x 100 = 68.9%
1539

s

. ..........:_. .  ,.. .... ,, ....::.wm..«.+,a,aww..6e'Vk4..a-xm:v.:ma+aaro.wr .•.r"a -^
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As Table 9 indicates, the coniferous cover type was classified with

approximately 80% accuracy. However, among the other cover tapes there

was considerable spectral confusion. The fact that over 25% (7 h, samples)

of the deciduous forest cover was classified as coniferous is attributable

to the vegetative complexity of the area since many of the deciduous stands

contain significant numbers of coniferous trees. It is suspected that

topographic influences on the spectral response of the deciduous forest

cover also contributed to the misclassifications into coniferous forest.

The misclassification of coniferous forest cover into deciduous is believed

due to the presence of aspen in many of the coniferous stands. The random

selection of 200 test samples per quadrangle resulted in only five test

samples in the water class, which is not an adequate sample to effectively

evaluate the classification performance. Two of the five water pixels were

incorrectly classified as coniferous forest, suggesting a spectral similarity

between the water and the very low response of coniferous stands on northern

aspects and in topographic shadows.

The overall performance of the "baseline" classification is 68.9%,

considerably lower than the classification results for major cover types

previously reported under the Landsat-1 investigation [Hoffer, 1975a]. It

is believed that the difference in accuracy is largely the result of using

a more statistically reliable method of defining the test data set in the

current investigation, thereby minimizing the human bias which we now suspect

may have been present in the development of the test data sets used during

the earlier study. The overall accuracy reported here is comparable to that

reported during the Landsat Follow-on investigation of the San Juan Mountain

area for data obtained in early August (Krebs et al., 1976). That study also

utilized a statistically defined set of test data for evaluating the Landsat

classifications. Therefore, although the classification results shown on

Table 9 appear low, they are generally similar to the previous classification

performance figures when only spectral data obtained in August was used and

when the evaluation was based on a statistically defined test data set. Use

of data from earlier in the summer might have improved the classification

performance, but most of the higher elevation areas were still snow covered

in the data sets that were available.

Table 10 summarizes the classification results of the "baseline classi-

:
q,
5r-
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fication" for individual forest cover types using only spectral data. In

this case, the Level-III degree of detail was achieved by developing training

statistics using the TSRS approach. The cover types of the pixels initially

used to develop the topographic distribution model had been identified, so

spectral training statistics for each of the forest cover types could be

calculated. This resulted in what was basically a "supervised" classifi-

cation procedure, in which the analyst utilized a set of spectral statistics

for individual forest cover types, even though such cover types could not

be reliably separated on the basis of spectral response.

Table 11 summarizes the classification results shown on Table 10 at

a Level-II degree of detail. This allows us to compare (in Tables 9 and 11)

the impact of the two methods used for developing training statistics. The

classifications summarized in Tables 9 and 11 both used only spectral data,

but the former was based on the Multi-Cluster Blocks method of developing

training statistics whereas the latter represents the Stratified Random

Sample method of developing training statistics. It is worth noting that

while the overall classification performance is slightly tower for the TSRS

approach, the accuracy of some cover types is significantly lower with this

approach. For example, there was a decrease of about 80 in classification

accuracy for deciduous forest cover and of approximately 200 for the barren

class when the training statistics were developed using the Stratified

Random Sample approach.

Tables 12 and 13 contain some of the key results of the investigation

and show the impact of adding elevation and topographic data to the spectral

data to improve classification performance. Table 12 summarizes the results

on a quadrangle-by-quadrangle basis, whereas Table 13 summarizes the results

over all the quadrangles on the basis of the individual forest cover types.

The results in both tables are based upon use of the Stratified Random

Sample training approach. Both Table 12 and 13 show that the addition of

elevation data to the spectral data improved the classification performance

considerably (i.e., about 150). However, the use of all topographic data

(elevation + aspect + slope) did not improve the classification performance

beyond that achieved using just the elevation and spectral data, although

the classifications vary from quadrangle to quadrangle and from cover type

to cover type.
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Table 11. "Baseline" classification test results and error matrix for

Level II cover types, using the TSRS technique.

(Classification No. 3; Spectral data only, based on
Stratified Random Sample training; Equal weights; Single-
stage classification.)

r

No. Samples Classified As:

Sample Conif- Decid- Herba- a
Size Accuracy erous uous ceous Barren Water

Coniferous 917 82.3 755 93 61 8 0

Deciduous 252 49.6 78 125 47 2 0

Herbaceous 279 47.0 40 100 131 8 0

Barren 86 26.7 14 3 46 23 0
i

Water 5 60.0 1 0 0 1 3

Total 1539

Overall
Performance 67.4%
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Table 12. Classification test results showing impact of topographic data

for Level III forest cover types, by quadrangle.

(Classifications 3, 7, and 11: Training by Stratified
Random Sample; Equal weights; Single-stage classifier.)

Percent Correct Classification of Test Pixels

Spectral Spectral
Spectral + +

Sample Data Elevation Topographic
Quadrangle Size Only Data Data

Oakbrush 199 43.7 50.8 56.3

Finger Mesa 214 38.6 67.0 63.7

Granite Peaks 202 56.9 79.7 80.2

Pagosa Springs 237 49.6 66.4 63.9

Devil Mountain 233 51.9 60.5 65.7

Weminuche 212 59.0 73.6 74.1

Ludwig Mountain 242 45.9 59.5 55.4

To to 1 1539

Overall
Performance 49.4% 65.6% 65.9%
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Table 13. Classification test results showing impact of topographic data

for Level III forest cover types, summarized over all quadrangles.

(Classifications 3, 7, and 11: Training by Stratified
Random Sample; Equal weights; Single-stage classifier.)

Percent Correct Classification of Test Pixels

Spectral Spectral
Spectral + +

Forest Cover Sample Data Elevation Topographic
Types _Size Only- Data Data

SF 313 70.9 88.2 88.5

SF /DWF 156 66.7 70.5 75.0

DWF 39 71.8 61.5 48.7

DWF/PP 144 47.2 68.1 72.9

PP 265 54.0 71.3 71.3

Aspen 110 21.8 39.1 35.5

Oak 97 33.0 46.4 39.2

Alpine 79 25.3 82.3 78.5

Grassland 245 38.0 47.3 51.4

Barren 86 26.7 41.9 37.2

Water 5 60.0 60.0 80.0

Total 1539

Overall
Performance 49.4% 65.3% 65.5%
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An Analysis of Variance (ANOVA) was performed on the aresin square root

transformation of the data in Table 12 and in Table 13 (Landgrebe, 1976) and

are summarized in Appendix F. The results indicated a significant difference

between the different combinations of topographic data used, a significant

difference between quadrangles and a significant difference between cover

types. A Newman-Keuls multiple range test indicated that the inclusion of

topographic data - either just elevation, or elevation, slope and aspect -

significantly increased the classification accuracies over using just the

spectral data. There was, however, no significant difference between using

only elevation or using all three topographic parameters. We can conclude

that the use of elevation data in conjunction with spectral data significantly

improves classification performance over that obtained using spectral data

alone.

The difference in classification performances among the various quad-

rangles (Table 12; merits additional attention. When only spectral data is

used, classification performance differs by over 20% (Finger Mesa vs.

Weminuche quadrangles). The addition of elevation data increased the classi-

fication performance for the Finger Mesa quadrangles by almost 30% but only

by 7% for the Oakbrush quadrangle. However, there are still differences of

as much as 19% between quadrangles when elevation data is used in conjunction

with spectral data (Granite Peaks vs. Oakbrush). Thus, classifications

carried out and evaluated ever limited test areas may be significantly

influenced by the vegetative and topographic characteristics of the particular

area, and may not, in fact, be representative of the classification per-

formance that can be expected over a larger geographic region. Therefore,

a person should be cautious concerning the conclusions drawn from a classi-

fication obtained over a relatively limited geographic area, particularly

in regions of complex topography and vegetative cover.

The classification results in Table 13 indicate that most of the

individual cover types can be classified with a much higher degree of

accuracy through the use of elevation data in conjunction with the spectral

data. The only decrease is in the Douglas/white fir class, a result which

may be due, in part to the rather small number of training and test pixels

in this cover type. While the addition of slope and aspect to the spectral

and elevation data brought improvement in some of the individual forest
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cover types, it also caused a decrease in performance for others. One

interesting point shown in Table 13 is that one of the test pixels for water
t

that had been incorrectly classified when only the spectral data was used

was correctly classified through the use of the topographic data in conjunc-

tion with the spectral data. When using spectral data alone, the sample had

been classified as coniferous forest. Use of the slope data helped in the

classification, since water does not occur on slopes other than 0%.

Tables 14 and 15 show the impact of using a rp iori probabilities of

occurrence (i.e., weights) in conjunction with the classification. If no

weights (a priori probabilities) are specified to the classification algorithm,

each spectral class is considered to have an equal probability of occurrence.

The use of weights allows the classifier to favor those classes known to

cover a larger areal extent. Table 14 shows very little change in performance

of individual quadrangles, and less than a 1% difference in overall classi-

fication performance between the weighted and unweighted test results.

Table 15 shows that the use of the weights did have an effect on the classi-

fication performance for certain cover types. In particular, the use of

a priori probabilities seems to cause some of the mixed deciduous and conif-

erous stands to be classified as coniferous rather than deciduous. Thus,

the classification accuracy for both the spruce fir and the spruce fir/Douglas

white fir categories were increased through the use of the a r^ iori probabil-

ities, largely at the expense of the aspen and oak cover types. The use of

weights increases the classification performance for grassland rather

signif' r-antly (i.e., about 9%), whereas the classification accuracy for the

barren class was decreased. In general, the use of a priori probabilities

tended to increase the classification fov , cover types that are found over

extensive areas (larger weights). An ANOVA of the data in Table 14 and in

Table 15 is summarized in Appendix F. The results indicated no significant

difference between using a priori probabilities and using equal weights.

However, significant difference between quadrangles and between cover types

was again indicated. In summary, it does not appear that the use of weights

is particularly beneficial in improving overall classification performance.

Tables 16 and 17 also contain key results from the investigation. They

compare results from the two major procedures used for developing the

training statistics and classifying the data. An ANOVA of the data in

G



Sample
Quadrangle Size

Oakbrush 199

Finger Mesa 214

Granite Peaks 202

Pagosa Springs 237

Devil Mountain 233

Weminuche 212

Ludwig Mountain 242

Total 1539

Overall
Performance

73

Table 14. Classification test results showing impact of using ar̂ iori

probabilities (i.e., weights) fur level III forest cover types,

by quadrangle.

(Classifications 11 and 17: Spectral + Topographic DataY;
Trainingby Stratified Random Sample; Single-stage classi-
fication.)

Percent Correct Classification
of Test Pixels

Equal Weights With
(i.e., Unweighted) Weights

56.3 59.3

63.7 63.3

80.2 77.7

63.9 63.1

657 61.8

74.1 741

554 53.7

65.5% 64.4%

11 Topographic Data = Elevation + Aspect + Slope



_-

74

Table 15. Classification test results showing impact of a priori

probabilities (i.e., weights) for Level III forest cover types,

summarized over all quadrangles.

(Classifications 11 and 12: Spectral + Topographic
data; Training by Stratified Random Sample; Single-stage
classification.)

Forest Cover Type
(Level III)

SF

SF/DWF

DWF

DWF/PP

PP

Aspen

Oa k

Alpine

Grassland

Barren

Water

Percent Correct Classification
of Test Pixels

Sample Equal Weights With
Size (i.e., Unweighted) Weights

313 88.5 93.0

156 75.0 82.1

39 48.7 51.3

144 72.9 51.4

265 71.3 69,1

110 35,5 25,5

97 39.' 28.9

79 78.5 75.9

245 51.4 60.0

86 37.2 33.7

5 80.0 60.0

Total
 

1539

Overal l
Performance
 

65.5% 64.4%
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Table 16. Classification test results showing impact of training and

classification procedures, for Level III forest cover types,

i
 by quadrangle.
i 

(Classifications 9 and 11: Spectral + Topographic
data; Equal weights.)

Percent Correct Classification of Test Pixels

Analysis Technique AY

57.3

64.5

78.2

60.3

53.6

73.6

54.5

63.6%

Analysis Technique BY

56,3

63.7

80.2

63.9

65.7

74.1

55.4

65.5%

Sample
Quadrangle
 

Size

Oakbrush
 

199

Finger Mesa
 

214

Granite Peaks
 

202

Pagosa Springs
 

Z37

Devil Mountain
 

233

Weminuche
 

212

Ludy- i g Mountain
 

242

Total
 

1539

Overall
Performance

!/Spectral training statistics developed by the Multi-Cluster Blocks
technique; Topographic training statistics developed using the Stratified
Random Sampling approach; Layered classification.

Stratified 
'
Dandom Sample approach used to develop training statistics

for both spectral and topographic data; Single-stage classification.
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Table 17. Classification test results showing impact of training and

classification procedures, for Level III forest cover types,

summarized over all quadrangles.

(Classifications 9 and 11: Spectral + Topographic
data; Equal weights.)

Percent Correct Classification of Test Pixels
Forest Cover Type Sample

Analysis Technique Al/ Analysis(Level III) Size Technique B—

SF 313 89.1 88.5

SF/DWF 156 58.3 75X

DWF 39 46.2 48.7

DWF/PP 144 80.6 72.9

PP 265 60,0 71.3

Aspen 110 43.6 35.5

Oak 97 46.4 39.2

Alpine 79 70.9 78.5

Grassland 245 50.6 51.4

Barren 86 46.5 37.2

Water 5 60.0 800

Total 1539

Overall
Performance 63.6% 65.5%

t
/Spectral training statistics developed by the Multi-Cluster Blocks
technique; Topographic training statistics developed using the Stratified
Random Sampling approach; Layered classification.

?/Stratified Random Sample approach used to develop training statistics
for both spectral and topographic data; Single-stage classification.

{

i•
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Table 16 and in Table 17 are summarized in Appendix F. The results indicated

no significant difference between the two analysis procedures, but again a

significant difference between quadrangles and between cover types. Table 16

shows that for most quadrangles, similar classification performances were

achieved with either method. The exception was Devil Mountain quad, which

shows approximately a 12% decrease in classification performance with Analysis

Technique A. This indicates that the training statistics developed using the

Multi-Cluster Blocks approach may not be completely representative of the

spectral characteristics of this particular quadrangle. The Stratified

Random Sample approach to developing training statistics produced slightly

less variation among quadrangles, thereby indicating the merit of using a

topographically stratified random sample set of training data.

Table 17 indicates the differences in classification performance among

the individual forest cover types for each analysis technique. In some

cases, classification performance is considerably better using the Analysis

Technique A (which is based on the Multi-Cluster Blocks approach for

developing training statistics) and in other cases the reverse is true.

Analysis Technique A did somewhat better for the deciduous forest and barren

classes but did not do as well for the alpine cover types. Performance for

coniferous forest cover types tended to vary considerably. Therefore,

neither technique can be defined as "best" on the basis of the classification

performance of this data set.

Table 18 indicates that the layered classification approach requires

considerably less computer time than single-stage classifications. At any

stage during the multi-stage classification relatively few spectral classes

are involved, making the classification procedure relatively efficient. The

layered classification, using either the elevation-plus-spectral or the

topographic-plus-spectral data sets can be completed in about the same amount

of CPU time as the single-stage classification using only the spectral data

and random sample r, •ning statistics. 'she single-stage classification

using spectral-pl..,.-elevation data required considerably more CPU time, and

the use of the spectral-plus-topographic data, even a larger amount of CPI,1

time. Thus the efficiency of a multi-stage classifier could be important

when classifying large geographic areas utilizing both topographic and

spectral data, particularly since (as shown in Tables 16 and 17) the classi-
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Table 18. Comparison of computer CPU time (in seconds) required for each

classification.

Computer Time Required (seconds) 2
Analysis Technique A Analysis Technique S

Type of (Layered Classifier) (Single-Stage
Data Used Classifier)

Without With Without With
Weights Weights Weights Weights

Spectral Only l/ 1/ 55.5 50,1

Spectral
+ 50.9 51.0 169.6 156.4

Elevation

Spectral
+ 50.6 53.7 211.1 200.6

Topographic

I/CPU times for these two classifications are not included in the comparison
since they involved only Level II major cover types and only the first
stage of she classification sequence.

CPU time in seconds for the classification only (i.e., time to develop the
training statistics is not included in this comparison).
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fication performance is similar for the two classifiers tested. Use of

weights did not significantly change the amount of CPU time used by either

of the classification approaches.

Table 19 represents an additional evaluation of the classification

results beyond those originally planned. Since the initial classification

performances based upon spectral data alone were somewhat lower than we had

expected, we decided to evaluate the impact of using randomly selected,

individual test pixels instead of analyst-selected test fields, particularly

since the latter is such a commonly used procedure and was the method used

in the Landsat-1 investigation (Fleming et al., 1975a). There are at least

three possible reasons for differences in classification performance due to

the method of selecting test data. First, in using the test field method,

the analyst often tends to select relatively pure, homogeneous test areas to

represer,t the various cover type classes, causing a bias in the test data

set which generally results in a higher classification performance than may

truly be representative of the entire study area. Second, the ability to

define the precise location of individual Landsat test pixels on the aerial

photography is critical and difficult. If there is a slight misregistration

between the location of a pixel on Landsat data and on the aerial photos, it

is possible for the photo-interpreter to incorrectly identify the one-acre

cell as belonging to an adjacent category. For example, a slight shift in

apparent location could cause a mixture of deciduous and coniferous forest

to be identified as primarily aspen or, if (lightly more conifer and less

aspen occurred, as coniferous;. These problems tend to be minimized when one

identifies a larger block of cover types. By using a larger area, slight

variations in stand composition on any one-acre cell are not as significant

nor is the slight misregistration in the location of a particular individual

pixel. In this study, we attempted to minimize such misregistration of

individual pixels by requiring a one-pixel buffer strip of the same cover

type to be present around the designated test pixel. The third reason in-

volves possible misregistrations between the Landsat and topographic datia

and also the passible errors in designating the elevation, slope, and aspect

of individual pixels. Because both spectral and topographic data were

used in the forest cover type classifications, it would seem that an in-

correct designation of the topographic characteristics of a particular



Random Pixels/Forest Cover Type
(Level III)

Percent Percent
No. Correctly of Total

Pixels Classified Pixels

3152 97.3 23.8

1737 85.8 13.1

240 76.3 1.8

695 77.0 5.2

2096 79.2 15.8

979 56.6 7.4

633 39.2 4.8

405 81.2 3.1

2504 53.6 18.9

573 59.3 4.3

248 58.1 1.9

Test Sample

Percent PercentY
No. Correctly of Total

Pixels Classified Pixels

313 88.5 20.3

156 75.0 10.1

39 48.7 2.5

140. 72.9 9.4

265 71.3 17.2

110 35.5 7.1

97 39.2 6.3

79 78.5 5.1

245 51.4 15.9

86 37.2 5.6

5 80.0 0.3

SF

SF/DWF

DWF

DWF/ PP

PP

As pen

Oa k

Alpine

Grassland

Barren

Water

Manually Selected Fields2/
Test Sample

Table 19. Comparison of classification performance based on different test

data sets, for Level III forest cover types.

(Classification No. 11: Training by Stratified Random
Sample; Spectral + Topographic data; Equal weights; Single-
stage classification.)

Total 1,539 99.8% 13,262 99.9%

Overall
Performance 65.5% 74.6%

I/Statistical sample, based on 300 samples per quadrangle, located using a table
of random numbers. Points falling on a cover type boundary and therefore not
belonging to any single cover type class were excluded from the sample.

?/Test fields defined by the commonly used procedure of locating areas (i.e.,
fields) of individual cover types on aerial photos and/or type maps, and then
locating the same area in the Landsat data prior to the classification. In
using this procedure, the total number of pixels in each cover type should be
limited to approximately the proportion of that cover type in the study area.

3/Since a statistically defined random sampling procedure was used, these
percentages should be fairly representative of the amount of each of these
cover types throughout the test site.



pixel or a slight misregistration of the data sets could cause classifi-

cation errors of the individual pixels.

Table 19 shows that there is a marked difference in the assessment of

classification performance, depending on whether randomly selected test

pixels or manually selected test areas are used. Overall performance is

approximately 9% higher when test fields were used to evaluate the classi-

fication. The classification of oak was the same: using both sets of test

data, but for all other cover types, with the exception of water, the

performance was higher when test fields were used. The water test areas

indicated a classification performance of only 59%; the reason for this

apparently poor classification performance is not clear and is being

investigated. It is known, however, that the use of the topographic data

is causing most of the classification errors in the water class, since these

same water test fields had a 91.1% correct classification performance when

only the spectral data was used.

It is also important to note from Table 19 that the percentage of

pixels in each of the individual forest cover types was approximately the

same for the two test data sets. The test field data provided a signifi-

cantly larger number of pixels, but from a statistical standpoint, the

sample size (i.e., the number of test locations--either pixels or fields)

is much larger when using individual pixels. It was for purposes of achieving

maximum statistical validity that the individual pixel test data set was

initially defined and used for evaluating the classification results

throughout this study.

Table 20 is a comparison of the classification performance of major

cover types for 1) the training data, 2) the test data set based on randomly

selected pixels, and 3) the test data set based on manually selected test

fields. There are several key elements to be observed. First, the percentage

of pixels used for developing the training statistics varies from one class

to the next but these differences are not directly related to differences

in the areal extent of the various cover types, since the sample was strati-

fied by topographic position rather than cover type class. However, the

number of test pixels belonging to each of the cover type classes should be

a good representation of the actual areal distribution of cover types within

the test quadrangles, since this test data set was obtained by randomly
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selecting 300 pixels in each of the seven test quadrangles. (Border and

indeterminate pixels were eliminated, thereby resulting in the final sample

of approximately 200 samples per quadrangle.) Thus, one sees on Table 20

that approximately 25% of the training pixels were used to define the alpine

cover type class, but only 5% of the single test, pixels represent alpine.

On the other hand, 7.8% of the training pixels were used to define the

deciduous forest cover, whereas 13.4% of the single test pixels belong to

the deciduous class. These differences between the training and test data

sets may be due in part to the fact that a different set of quadrangles

were used for developing the training and the test data sets.

The second key point to be observed on Table 20 is that, for both the

random pixel and the test field approach for defining the test sample, the

Level II overall classification performance is approximately 5% higher than

was achieved for Level III (as shown on Table 19). Since alpine, grassland,

barren and water classes were treated the same for both Level II and Level

III, the difference between Level II and Level III overall classification is

due only to the classification performances of the deciduous and coniferous

forest cover types.

A third observation from Table 20 is that the test field results are

higher than the jraining pixel results for both the coniferous and deciduous

forest cover types, as well as for the barren class. Such a result may

indicate some peculiarities in the training data set or may be indicative of

a bias in the test field data set. This question is also being investigated

further. We believe, however, that the use of test fields tends to give an

upward bias to the classification results. Use of randomly defined test

pixels is statistically much better than analyst-selected test fields, but

use of individual pixels may have resulted in some errors in the test data

set, as discussed above. In this case, the classification results based on

individual pixels could be somewhat lower than is actually the ca"e. Thus,

the true classification performance is probably somewhere between the values

obtained on the basis of test fields and individual test pixels.
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B. Results of Using the Reflectance Geometry Correction Model

Another potential application of digital topographic data is to spec-

trally "correct", the MSS data to remove the variation in spectral response

due to topography. Two classifications were compared to evaluate the

"correction" model, one using the original MSS data and the second using

the "corrected" MSS data. In both classifications the TSRS data were used

to calculate the statistics for each cover type and the single-stage

classifier was used to classify the spectral and topographic data. The

classification results showing the effect of the reflectance geometry

correction model on the Landsat data are summarized by quadrangle in

Table 21 and by Level III cover type in Table 22.

An ANOVA of transformed (aresin square root) data in both tables

indicated that there is no significant difference between using the

"corrected" data and using the "original" Landsat data. The ANOVA also

indicated that there is a significant difference among quadrangles and a

significant difference among coves types, which is consistent with the

previous results. Although the results indicated no significant difference

between the "corrected" and "original" data, there was a slight decrease in

accuracy after the spectral data had been "corrected." The lack of improve-

ment in classification accuracy was surprising, especially since a quali-

tative evaluation based upon analysis of grayscale images of the "corrected"

and "original" data (Figure 20a and 20b) had indicated that the correction

model seemed to remove the topographic variations in spectral response in

the Landsat data. In some cases, differences in spectral response were

apparent and seemed to indicate that the model was not working. But the

variations which were apparently due to topography were actually differences

in cover types, caused by topography. As a result, in some areas the

correction model did not seem to be effective, but the variation in spectral

response was caused by differences in cover type instead of topography.

Overall, the variation in spectral response caused by topography does appear

to be reduced by application of the reflectance geometry correction model.

However, the quantitative evaluation of the classification accuracies did

not indicate any improvement due to the "correction" model.

There are several possible reasons for this result. One reason seems

to be caused by errors in the slope and aspect data for the individual pixels,
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Table 21. Classification test results for Level III forest cover types, by

quadrangle, showing impact of applying the Reflectance Geometry

Correction Model to the Landsat data.

('_Spectral + Topographic data; Training by Stratified Random
sample; Equal weights; Single-stage classification.)

uadrangle

Oakbrush

Finger Mesa

Granite Peaks

Pagosa Springs

Devil Mountain

Weminuche

Ludwig Mountain

Total

Overall
Performance

Uncorrected
(i.e., "Original")
Landsat Data

56.3

63.7

80.2

63.9

65.7

79.1

55.4

65.5%

"Corrected"
Landsat DataY

56.3

65.6

82.2

65.3

588

708

54.1

64J%

Sampl e
Size

199

214

202

237

233

212

242

1539

"Landsat data "corrected" prior to the classification using the Reflectance
Geometry Correction Model.

r



Overall
Performance 65.5% 64.1%

4
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Table 22. Classification test results for Level III forest cover types,

summarized over all quadrangles, showing impact of applying the

Reflectance Geometry Correction Model to the Landsat data.

(Spectral + Topographic data; Training by Stratified Random
sample; Equal weights; Single-stage classification.)

Forest Cover Type
(Level III)

SF

SF/DWF

DWF

DWF/PP

PP

Aspen

Oa k

Alpine

Grassland

Barren

Water

Uncorrected
Sample (i,e., "Original")
Size Landsat Data

313 88.5

156 75.0

39 487

144 72.9

265 71.3

110 35.5

97 39.2

79 78.5

245 51.4

86 37.2

5 80.0

"Corrected" J
Landsat Data

90.1

66.0

51.3

75.7

70.9

32.7

42.3

75.5

45.3

39.5

60.0

Total
 

1539

/Landsat data "corrected" prior to the classification using the Reflectance
Geometry Correction Model.

E
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caused by the characteristics of the DMA elevation data. The coarsely

defined steps in elevation cause inaccuracy in the slope data, particularly

in areas of lower relief. Also, the characteristics of the elevation data

caused a high percentage of the data to have North, East, South, and West

aspects. These problems with the topographic data were also evident in the

quantitative results; quadrangles with the ^ ughest terrain tended to be

classified better with the "corrected" data and the quadrangles with minimal

relief (i.e., higher probability of errors in the slope and aspect data)

ended to be classified less accurately with the "corrected" data.

A second problem with the "correction" model is the violation of some

of the model's assumptions, specifically the assumption of Lambertian re-

flecting surface and the assumption of no variation in spectral response

due to indirect radiation. Both assumptions, particularly the farmer, are

not completely valid and must be further evaluated.
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C. Discussion of Cla:.sification Results

In order to summarize the results shown in Section V. A., Table 23

shows the overall classification performance for each of the 12 classifi-

cations previously described in Table 7. The footnotes in Table 23 indicate

some of the key aspects of these classifications in terms of the training

and classification techniques used.

The most significant result shown in Table 23 is the fact that the use

of elevation data in addition to the spectral data causes a significant in-

crease in classification performance at the Level-III degree of detail. The

use of the aspect and slope data did not cause an increase in classification

performance over that achieved by using just elevation plus spectral data.

This latter result was somewhat surprising since aerial photos reveal that

aspect often has a distinct influence on cover type characteristics. It is

thought that the reason for the apparent lack of improvement in the classifi-

cation when aspect and slope data are included is largely due to the quality

of the topographic data. In evaluating these classification results, we did

some further evaluations of the characteristics of the topographic data and

found some interesting results. A key element affecting the DMA elevation

data involves the digitization and "Interpolation process. In doing the

digitization, the DMA used a 0.01-inch grid on the original 1:250,000 scale

USGS topographic maps. This is a relatively fine grid, but when applied to

maps having such a small scale it resulted in a cell size on the ground of

64 meters. In an area such as this test site in Colorado where there is a

significant amount of topographic relief, the 200-ft. contour intervals are

rather close in many places on the map. In the digitization process, if any

part of a map cell falls on the contour line, the entire cell is then coded

as having the elevation of that contour line. To define the elevation of

cells falling between contour lines, an interpolation process was used by

DMA in which the three closest cells to the point in question were used to

define the elevation of the unknown poin*. This procedure caused additional

cells to be "grouped" into 200-ft. contour levels. In evaluating the topo-

graphic data, a histogram was generated showing the number of digitized grid

cells occurring at each elevation level throughout the test site (Figure 21).

This histogram shows a significant increase in the number of cells at each

200-ft. or 64-meter contour line interval. In fact, approximately one-half

of the total data set is defined as being on a 200 ft. contour!

L _^
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Table 23. Summary for the matrix of twelve classifications

using different analysis
a

procedures.y

Type of Data
Analysis Technique A Analysis Technique B3/

Used Equal Weighted4/ E ua1 Weighted

Spectral Only No. 1 5/ No. 2 49.4% 42.9%

Spectral
+ 63.04 62.2% 65.3% 64.5%

Elevation

Spectral

Topographic 63.6% 59.1% 65.5% 64.4%
(elevation,
aspect and
slope)

I/ Compare to Figure 18. Figures shown in the table are the Overall Classi-
fication Performance values, based on Level III Forest Cover Type classi-
fications.

?/Analysis Technique A utilized spectral statistics derived using Multi-
Cluster Blocks Technique and topographic statistics obtained using the
Topographic Stratified Random Sample technique (i.e., independent training
data locations). The classifications involved the Layered Classifier in
which the first stage utilized only spectral data and classified only
Level II cover types and the second stage utilized only the topographic
data to identify Level III Forest Cover Types.

3/Analysis Technique B utilized topographic statistics obtained using the
Topographic Stratified Random Sample method, and spectral statistics ob-
tained from the same set of X-Y coordinates (matching training pixel
locations). The classifications involved a single-step classification
using both the spectral and training statistics to identify Level III
Forest Cover Types.

YEqual or Weighted probability of occurrence of individual cover type
classes.

5/Classification Nos. 1 and 2 involved only Level II (Major) Cover Types,
since only the spectral data was used in the first stage of the Layered
classification procedure, and individual forest cover type classes could
not be effectively defined using only the spectral data. All other classi-
fications (Nos. 3-12) did involve the Level III Forest Cover Type degree
of detail. 0., n rall classification performances were 68.9% and 69.9% for
Classification Nos. 1 and 2, respectively.
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To further check the quality of the elevation data, 341 X-Y coordinates

were randomly selected and located in the digital data. The locations of

the pixels were then determined on 7k-minute USGS topographic quadrangle

maps, and the elevation obtained from the 711-minute topographic map was

compared to the elevation given on the DMA data tape. Differences in

elevation between the two data sets were tabulated and are shown in histogram

format in Figure 22. As this figure indicates, the DMA data was within ± 25

meters of the elevation shown on the 1:24,000 scale maps for 128 out of the

341 pixels (37.5%), 217 pixels (63.6%) were within + 50 meters, and 285

pixels (83.6%) were within + 100 meters. It would therefore appear that the

elevation data on the DMA data tapes compares reasonably well with the

elevation defined for the same location on the 1:24,000 scale maps, and is

generally adequate for the purpose of differentiating individual forest

cover types.

The problem with the data occurs in the process of developing the

aspect and slope data files from the digitized elevation data. In this

process, a linear interpolation procedure is used. Because the digitized

cell size is relatively large and there is considerable amount of topographic

relief in the area, there are many areas where There may be only one or two

cells falling between the cells located on the contour lines. In such

situations the slope that is defined for those cells is much greater than is

actually the case, and the aspect is courser than it should be. This causes

the quality of the topograhic data to be relatively poor for many pixels.

In summary, it would appear that the 1:250,000 scale DMA data should be

primarily used for problems involving only elevation effects or where the

topography, is not as rugged. When slope and aspect data must be generated,

larger scale maps should be used for digitizing the elevation data, if at

all possible, using the smallest cell size possible. Where available,

digital data obtained during the production of orthophotos could be utilized.

Another key aspect of the results shown on Table 23 is that the use of

the weights (e.g., a priori probability of occurrence) did not significantly

influence the overall classification performance. The reasons for this are

not clear. For informational classes that are spectrally similar the use of

an accurate set of a rp iori probabilities should have improved classification

performance. However, since the training data were developed on one set of
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Figure 22. Histogram based upon a random sample of 341 pixels showing the

difference between elevation in the DMA digital data and on

USGS 7^' topographic maps.
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quadrangles and the test data came from a different set of quadrangles, if

there were significant differences in the areal extent of the cover types in

the training quadrangles as compared to the test quadrangles, such differences

could have affected the results. The overall results of the current study

would indicated that, at least in some cases, the use of the arp iori

probabilities is not particularly effective. Based upon these results, it

would appear that the time and effort involved in developing the a priori

probability values and applying them to the computer processing procedure

would not be warranted during the next phase of this study.

The other major result that I s indicated in Table 23 involved the

comparison between the training and classification techniques used to classi-

fy the data. Approximately the same overall classification performance

was obtained using each technique, but each approach has some distinct ad-

vantages and limitations. Of particular importance is the fact that the

Multi-Cluster Blocks procedure used in Analysis Technique A allows spectral

training statistics to be developed that are based on the natural spectral

groupings of the data. Previous work at LARS had indicated that the Multi-

Cluster Blocks technique is the most effective approach for developing

training statistics in terms of (a) analysis time, (b) computer classifi-

cation time involved, and (c) classification performance achieved (Fleming,

1977). The Multi-Cluster Blocks technique is particularly useful in

situations where the amount of reference data available at the beginning of

the analysis is very limited. Thus, in developing the spectral training

statistics, aerial photos obtained from a relatively few locations over the

test site can be used to relate spectral cluster classes to the informational

classes of interest. However, if knowledge concerning the cover type already

exists for a statistically defined array of data cells (which is the situa-

tion for the GRIDS data set in the state of Washington and for U.S. Forest

Service lands where Forest Survey plot locations have been defined and

typed), one of the biggest limitations in the use of a statistical array of

individual training data cells is covercome, and the amount of analyst time

involved in developing the training statistics becomes more reasonable. The

key to the potential effectiveness in utilizing such an existing data set

for developing training statistics involves the type and quality of the infor-

mation on each of the grid cell locations, and the ability to relate the

4
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location of the points from which the existing information was obtained to

the same location in the Landsat data. Thus, it would appear that the

choice of methods for developing training statistics would largely be a

function of the situation in which one is working, the amount of information

that is available to the analyst when he is starting to develop his training

statistics, and the geometric quality and characteristics of the data sets

available. Depending on the type and characteristics of the data sets and

information available, either the Multi-Cluster Blocks or a statistical

sample of individual data cells would be appropriate.

The layered classification procedure offers the distinct 4dvantage of

computational efficiency as compared to a single-stage classification. A

major factor of the layered classifier is that it is much simpler because

one is dealing with fewer spectral classes at any individual step in the

classification sequence. However, once a particular resolution element is

classified into a major cover type category, it remains within that major

cover type category in all subsequent levels of the classification tree.

Therefore, the accuracy of the initial classificatior into major cover type

groupings is very important.

The method of defining the test data set appears to have a significant

impact on the quantitative evaluation of classification performance. The

results in Table 20 appear to indicate that the use of manually selected

test fields does cause a bias in the classification performance. However,

as previously discussed, it is also possible that some of the individual

test pixels were not correctly identified or may have topographic character-

istics that were in error. Therefore, in considering the complexity of the

forest cover (stand size, density variations, and composition), and also

the geometric complexity of the data set (geometric correction of Landsat

data, plus a 900 rotation and overlay of the DMA data), and the coarse

resolution and other characteristics of the DMA data, it would seem that in

the future a statistically defined set of test areas rather than individual

pixels -.^!ould provide the best test data set to use for quantitative evalua-

tion of the classification results. However, for statistical purposes, each

test area would need to be treated as though it were a single pixel regardless

of the actual number of pixels present within the designated area. It seems
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clear that additional work is needed in defining effective and statistically

valid methods of defining test data sets.
a

The application of the Reflectance Geometry Correction Model to the

Landsat data does appear to be an effective approach for reducing the spec-

tral variability caused by topography. Evaluation of map display outputs

of the corrected and uncorrected data indicates that a significant amount of

topographic variation was removed through the application of the correction

model. In many areas, topographic characteristics still appear to be evident,

but much of this appearance is due to the difference in cover type classes

which occur in different topographic positions (e.g., North vs. South aspects).

However, the quantitative classification results did not show an improvement

in classification performance when the data had been corrected using the

Reflectance Geometry Correction Model. It is believed that the difference

between the qualitative evaluation of the uncorrected and corrected data sets

and the quantitative evaluation of the test data set reflects some of the

problems that may exist in the slope and aspect values for individual pixels

in the digital topographic data. Therefore, we feel further work should be

done with this Reflectance Geometry Correction Model approach, but if

possible, such work should be based upon topographic data that has been

generated from a more detailed and accurate data source than that involved

in generating the Defense Mapping Agency data tapes. Data sets such as the

digital topographic data generated by USGS in conjunction with producing

orthophoto quad sheets would be suitable, or the digitization of 1:24,000

scale 7'-minute quad sheets could provide a more detailed and useful set of

digital topographic data.

In discussing the overall results of this analysis effort, one additional

point that should be emphasized is that the TSRS procedure allowed the eco-

logical characteristics of the study area to be quantitatively characterized

and the Topographic Distribution Model to be developed. Figure 2 (p. 9)

showed a generalized relationship between elevation and cover type for the

Rocky Mountain region. As pointed out, however, this data was not suffi-

ciently accurate to characterize the relationships between elevation and

cover types in the San Juan Mountains. Figure 23 is a modified version of

Figure 2 in which the Topographic Distribution Model data were used to define

the relationship between elevation and cover type for the San Juan Mountains.

wv^l



giISO
us11

97

ILUa

a"w
I
ILU ImZ

 L
Uftz

zo
3

9Z so

c
 1.

c 
•

0
 M

•r-
0 

c

7
m

 c
4Jm

+j

4J  
0
 4J

•r
4
J
 0

 
:0,1

m
 

Uu
4ACL4J  

14

0
O

 0
. m

u
 0
 

w
4-0O 

4J 40-
4JS

. 
C

A
 c

4J 
Z

 
M

4A
V

 m

C 
Ln

0
 Z

 4J
.P.
4J 

C
 0

m
 0

 4
J

>
 • r-  

41
4J 

U
 

M
-r- 4J
4•

C
 I. u

W
 4

J W
w

 tn
 C

. rr
CA

IA

u.I-
'A

>
 
m

(
A

 CM
 4J

C
 0

 M
 m

0
0
 

W
4J 4

J
 
1
.

r 4
J
 i0

 c
n

cr U
-

LA-

A
ll



98

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The most significant conclusions to date from this spectral/topo-

graphic study can be summarized as follows:

1, Using topographic data in addition to spectral data does signifi-

cantly improve classification performance over using spectral data

alone. Elevation data is particularly important in improving

classification performance of individual forest cover types. In

this study, use of elevation data in conjunction with the spectral

data improved overall classification performance by approximately

15%. Aspect and slope did not appear to improve classification

performance, but this is believed to be related to the specific

characteristics of this topographic data set. Topographic data of

better quality and a modified approach to analyzing the data would

probably result . .i significant improvement in classification per-

'Wmance, particu',I arly with regard to aspect.

2. The Stratified Random Sample approach to developing the Topographic

Distribution Model data proved to be effective and provic,'zd a

statistically valid. quantitative description of the distribution

of cover types as a function of topography. This is believed to be

the first detailed quantitative attempt ever at describing the

topographic distribution of the various cover types. The Topo-

graphic Distribution Model data was essential for developing the

topographic training statistics. Once developed for a given geo-

graphic area, such data is relatively static, and so only spectral

training statistics are needed for classification of new Landsat

data from the same geographic area.

3. The Multi-Cluster Blocks procedure for developing the spectral

training statistics is recommended and the Layered classification

technique is recommended for the classification of combined spectral

and topographic data. The Multi-Cluster Blocks approach for

developing spectral training statistics is particularly helpful in

(a) minimizing the reference data required and (bj allowing the
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training statistics to be developed as a function of the spectral

rather than informational, classes present. The Layered Classifi-

cation technique reduces the complexity of the classification

process by :viding it into separate stages and therefore requires

considerably less computer time.

4. A Stratified Random Sample approach for developing spectral

training statistics appears to be effective, provided that an

adequately large sample of data points is used. A regularly

defined set of grid cells based upon random start could also be

utilized. Existing data sets (such as the U.S. Forest Service

Forest Survey sample plot data and the State of Washington GRIDS

data) may therefore be of value in developing spectral as well as

topographic training statistics. Data sets involving individual

pixels can be effectively utilized for developing spectral training

statistics only if the cover type associated with the pixel location

is already known, if the data set is of adequate size to spectrally

characterize the cover types of interest, and if the location of

the X-Y coordinates in the Landsat data can be accurately defined.

If such a data set is not available, time considerations would

suggest the development of spectral training statistics using the

Multi-Cluster Blocks approach.

5. The Maximum Likelihood algorithm is not an appropriate algorithm for

classifying over types that do not have a Gaussian distribution

as a function of elevation, e.g., water, exposed rock, or grasslands.

For these cover types, an algorithm such as contained in the Levels

Classifier would probably be more effective.

6. Use of a priori probabilities of occurrence (i.e.,"weights) did

not improve the classification„.Rerformance. The reasons for this

are not clear, but moy be related to differences in the areal ex-

tent of cover types iii the training and test quadrangles.

7. The Reflectance Geometry Correction Model did "correct" the Landsat

data for, topographic effects, if judged on comparison of map

printouts of the "corected" and "uncorrected" data; however, the
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tabular classification results did not indicate any improvement

from use of the model. This lack of improvement may have been

due, in part, to errors in the slope and aspect data which were

due to the characteristics of the DMA elevation data and the

interpolatior, procedures used.

8. The method used in selecting test data sets can significantly

influence the quantitative results of the classification. Manual

selection of "test fields" can cause significant upward bias in

classification performance figures. On the other hand, a random

statistical sample of individual test pixels can cause a downward

bias due to registration errors, between the Landsat and topo-

graphic data, in accuracies in the topographic data, and spatial

variability of the cover type. In addition, the use of randomly

defined individual test pixels required a great amount of analyst

time to accurately locate the pixel on the aerial photography and

identify the cover type. The best test data for quantitative

evaluation appears to be a randomly defined set of test fields.

This approach minimizes registration and identification problems

associated with a single test pixel and also minimizes analyst

bias by statistically defining the location of the test areas.

9. The Defense Mapping A eency . to ographic data has some limitations

due to the size of the digitized cell and the interpolation process

used for defining the elevation of cells located between contour

lines. An unproportionally large percentage of the cells were

placed at the 61-meter (200-foot) contour elevation levels, and

this distribution, in turn, caused errors in defining slope and

aspect. These errors in -.lope and aspect (e.g., as seen in

reservoirs) are believed to be the cause for the lack of improve-

ment in classification accuracy when slope and aspect data were

used.

10. This study represents a very detailed analysis of an area that is

very complex, from the standpoint of both vegetation and topo-

graphy. In this first phase of the work, many insights into

A
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analysis techniques and the complexities of relating spectral and

topographic data were ,gained. providing a base of knowledge for

more effective approaches in the next phase of this study.

I'A
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B. Recommendations

It is recommended that: 1) "Analysis Technique A" (i.e., Multi-Cluster

Blocks for developing the spectral training statistics, the Topographic

Stratified Random Sample for developing topographic training statistics,

and the Layered Classification procedure) be further tested and refined

during the next phase of this investigation; 2) "Analysis Technique B" be

modified to use a Layered classification approach rather than a single stage

classification; 3) both "Analysis Technique B" and the "Reflectance Geometry

Correction Model" be further evaluated on the new data set if time and

resources permit; 4) the Topographic Stratified Random Sample approach be

used to develop the Topographic Distribution Model for the new test site;

5) the new test site for Phase II be a 24-Township area in the west half of

the Okanogon quadrangle in north-central Washington.

A major reason for selecting this area is the existence of a data set

representing a 10% sample of the state-owned land. Information for each of

these "GRIDS" sample locations includes primary and secondary species of

forest cover, size-class, basal area, height, and many other characteris-

tics of the forest cover, as well as elevation, slope and aspect data.
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Appendix A

INTERPOLATION AND REGISTRATION OF TOPOGRAPHIC DATA

Digital elevation data for the San Juan site were obtained from the

U.S. Defense Mapping Agency (DMA), Topographic Center, Washington, D.C.

These data were derived from the 1:250,000 scale U.S.G.S. topographic map

of this area (NJ 13-7 W, Durango, Colorado) which has a contour interval of

61 meters (200 feet). The range of elevation in this particular study area

is from 1805 meters to 4344 meters. The contours were digitized by hand by

the DMA on a table digitizer, and the resulting data points were inter-

polated using a "planar" algorithm which fits a plane to a triangle of

three data points to define new points within the triangle (Noma, 1974).

In this manner, a uniform grid of elevation values was obtained from the

unequally spaced contour samples. The digitizing increment is .254mm in the

x and y directions. On a 1:250,000 map this corresponds to 63.5 meters.

The output grid cell was therefore defined as 64 meters square in order to

coincide with this sampling resolution.

The elevation data was written on tape in 16-bit words (15 bits plus

sign, or 2 15 = 32,768 levels). At LARS, the data was reformatted to LARSYS

format which uses eight-bit words. Therefore, the quantization level of the

original data is at best:

(4344-1805) meters 
= .08 meters.32,76-8—discrete levels

The actual range spread over these levels is unknown, but it will be

nominally in the range of 0.1 m per bin. The point here is that the

original quantization error is minor. In order to fit this range into

8 bits (0-255), the data had to be rescaled, resulting in a quantization

of:

(4344-1805) meters 
= 9.9 meters.256
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A significant quantization is thus introduced by the LARSYS representation

with respect to the contour interval of 61 meters; on a percentage basis,

however, this is only 0.4% for the 2539-meter range of elevation in the test
site, which is not an unreasonable error. The accuracy if the original

elevation data is not known, but since those elevations were interpolated

from contours having an interval of 61 meters, it seems reasonable that the

0.4% error is no worse than that obtained in the process of digitizing the

elevations from the original map.

Another reformatting consideration concerned the designation of rows

and columns on the DMA topographic data tape. The rows of the topographic

data were oriented north-south on the DMA tapes, and the row direction

(i.e. scan lines) in the reformatted Landsat data is east-west. Thus a

transposition of the topographic data array on the tape was required.

The final LARSYS elevation data tape contains one channel of eight-bit

values on a grid of 64 meters for the west half of the Durango quadrangle,

which covers a rectangle of one degree of latitude and longitude. In order

to retrieve the true elevation values from the eight-bit words, the lower and

upper limits of elevation (1805m and 4344m in this case) are stored in full

precision format on the tape identification record and used to rescale the

eight-bit data to the original range when the data is read from tape into

the computer. Thus, the elevations printed out by LARSYS are within the 0.4%

quantization error of the original elevations recorded by DMA. The DMA-

LARSYS elevation data then had to be registered or digitally overlayed onto

the Landsat data.

The normal procedure at LARS for the registration of two digital data

sets is to manually determine the approximate location of potential control

r points that are clearly recognizable on the images of both data sets. A

numerical correlation procedure is then used to define the precise X-Y

coordinates of the control points in the data ret!> to be registered. Manual

techniques are required for the initial phase of these registrations due to

the dissimilar nature of the data involved. The topographic data, in

general, will not correlate with theLandsat data, even when the Landsat data have

been rotated approximately 12  counterclockwise to a north-south orientation.

Therefore, matching points in each data set to be registered are defined
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visually using images from the LARS Digital Display and the computer line-

printer. The coordinates of these points are punched on cards and processed

by a least squares, bi-quadratic polynominal approximation program (Anuta

and Bauer, 1973) to define coefficients for use by the registration program.

The registration algorithm uses a nearest neighbor rule to define out-

put points which are required between existing input data points. Since

the topographic grid spacing is 64 meters square and the reference grid is

79 meters square, the registered topographic data will have position errors

which range from zero to 32 meters. This is an error characteristic of the

method used, but in all cases this positional error between the Landsat and

topographic data sets is less than one pixel.

In summary the topographic elevation channel registered to the Landsat

has two types of errors: value error and position error. The error in the

value of the elevation is due to:

1. Inaccuracy in the value of the contour line on the

original map.

2. Error due to the action of the planar interpolation

algorithm used by the DMA.

3. Quantization error on the DMA data set.

4. Quantization error due to representation in LARSYS

format.

Errors 3 and 4 have been shown to be small relative to the contour interval.

The errors due to 1 and 2 are unknown; however, it seems clear that between

contours the error could be no more than one-half the interval, i.e. + 100 ft.,

and at extreme points, peaks and sinks, the error could be as high as one

contour interval. Past experience with quantized and interpolated data sets
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t^

,3': indicated that these errors tend to h

tributed 'over the quantization interval.

case is Q//1-2 where Q is the quantization

staiviard deviation would be v = 200/3.46

on this assumption the standard deviation

A 7.62 + 9.92 = 20.2 meters.

ave zero mean and be uniformly dis-

The standard deviation for this

interval. For this case the

= 57.7 ft. or 17.6 meters. Based

of errors due to 2 and 4 would be

Previous work (Hoffer et al., 1975a) had indicated the desirability of

utilizing the slope and direction of slope (i.e. aspect) information as

part of the analysis process, if these data could be made available on a

pixel by pixel basis as additional registered channels on the data tape.

This requirement was met by numerically differentiating the topographic

data to produce an estimate of the gradient vector at each pixel location.

The magnitude of the vector is then used to derive slope angle, and the

direction is used as the aspect angle. The approximate gradient at line i

and column j is computed as:

titivZ I(z
i-i j -Zi+l'j + J zi ' j - 1 -Zi,j+1)

(A. 1)

where vZ is the gradient vector,

z ij is the topographic elevation value at i,j,

i,j are line and column coordinates, and

I and J are line and column unit vectors.

The slope angle is computed from the magnitude of gradient. The IvZI

value is the vertical change in elevation over one unit of pixel distance.
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Thus the slope is:

s  (z i-1,3 -z i+1,3 )2 + (z i j-1 -z i'J+l ) 2 (A.2)

Ad

where: s i3 is the slope angle at point i,3 with O<s<90 degree, and

Ad is the pixel spacing.

The aspect angle is derived from the vector direction of the gradient:

a = tan-1 (z i-1 - zi+1 ')
zzi,j -1 zi,3 +1

(A.3)

where a is the direction of slope. The actual implementation is more
complex than this formula indicates.

Since only positive values from 0-255 can be represented on LARSYS

format tapes, the aspect angle is recorded on a range of zero to 180 in

one channel to keep a resolution of one degree and an additional channel is

used which has only the values zero or one. If the slope,faces to the east

the zero-one channel will have a value of zero, and if the slope faces the

west the zero-one channel will have a value of one. Thus a pixel having a

slope facing toward the east will have an aspect value of 90°  and a flag

value of zero. The resolution of the slope and aspect angles is one degree.

A fourth topographic channel is included which contains aspect on a 0-360°

scaled so that 3600 equals a value of 255. Therefore, the aspect resolution

of this channel is 1.4
0 

.

The slope and aspect angle derivation was then implemented in a program

(SLOPE) which adds these channels to a data tape as four additional channels,

registered to the topographic elevation channel (and in this study, also

registered to the Landsat data on a pixel-by-pixel basis). The channels

containing the various Landsat wavelength bands and the topographic data

are summarized in Table 2 of this report.
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Appendix B

IDENTIFICATION OF CODES USED IN INSTAAR COVER TYPE MAPS

Number
Code Category

00. Non-vegetated

00. Exposed soil

01. Water

02. Urban

110 Grasslands

121 Colorado blue spruce

122 Cottonwood-willow

130 Montane/subalpine meadow

141 0-30% vegetative cover tundra

142 30-70% vegetative cover tundra

143 70-100% vegetative cover tundra

144 Graminoid wet meadow, us;jally tundra

145 Alpine shrub

151 Wet shrub

152 Dry shrub

153 Oak

211 Aspen

221 Pinyon pine/Rocky Mountain juniper

222 Ponderosa pine

222.1 Ponderosa pir%3 with shrub

223 Ponderosa pine/Rocky Mountain juniper

224 Ponderosa pine/Douglas fir

225 Engelmann spruce-subalpine fir

Zipatone Krummholz

225.1 Engelmann spruce/Douglas fir

226 Lodgepole pine

227 Limber pine/bristlecone pine

228 Douglas fir/white fir

229 Mixed coniderous (DF/WF/ESP/PP)

2;31 Douglas fir/Ponderosa pine/Aspen

232 Douglas fir/White fir/Aspen

233 Lodgepol e/As pen

3
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Number
Code
 

Category

234
 

Minced coniferous-deciduous

235
 

Engelmann spruce/Subalpine fir/Aspen

161
 

Pasture

162
 

Cultivated crop

163
 

Cultivated pasture

r

Al.
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Appendix C

QUANTITATIVE DESCRIPTION OF FOREST AND HERBACEOUS

COVER TYPES IN THE SAN JUAN STUDY AREA

The thirty figures that appear in Appendix C show graphically the

cover type distribution data assembled as part of this study. The cover

`ypes described are:

Coniferous cover types and cover type mixtures

Spruce/fir

Spruce/fir and Douglas/white fir

Douglas/white fir

Douglas/white fir and ponderosa pine

Ponderosa pine

Deciduous cover types

Aspen/willow

Aspen

Oak

Herbaceous cover types

Tundra

Grassland

For each cover type, a histogram is used to depict the frequency of occur-

rence of the class as a function of elevation. Polar plots for each cover

type are use°  to display the distribution as a function of aspect and ele-

vation, and also of aspect and slope.

The data represented by these figures is the only known quantitative

description of the distribution of forest and herbaceous cover types in the

F San Juan Mountains.

r[t[
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Elevation
Ranges No.

 

3950. Sena. 0

 

8900. 3950. 0

 

3850. 39e0. 0

 

3880. 3850. 0

 

3750. 3808. 0

 

3700. 3750. 0

 

3050. 3700. 3

 

3600. 3650. 13

 

3558. 3600. 23

 

3500. 3550. 36

 

3450. 3500. 47

 

3400. 34Se. 68

 

3350. 3400. 70

 

3380. 3350. 56

 

3250. 3300. 36

 

3200. 3250. 44

 

3150. 3200. 50

 

3100. 3150. 38

 

3050. 3100. 21

 

N 3000. 3050. 41

 

1 2950. 3000. 28

 

2900. 2950. 31

 

2850. 2900. 16

 

2600. 2850. 13

 

2750. 2800. 7

 

2700. 2750. 10

 

2650. 2700. 1

 

2600. 2650. 0

 

2550. 2600. 0

 

2500. 2550. 0

 

2450. 2500. 0

 

2400. 2450. 0

 

2350. 2400. 0

 

2300. 2350. 0

 

2250. 2300. 0

 

2200. 2250. 0

 

2150. 2200. 0

 

2100. 2150. 0

 

2050. 2100. 0

 

2000. 2050. 0

0 6 12 18 24 30 36 42 !8 52 60 66 72 78 84 90 98 102 108 114

Figure C.1 Distribution of spruce/fir as a function of elevation.
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Figure C.2 Distribution of spruce/fir as a function of elevation (in

meters) and aspect.
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Figure C.3 Distribution of spruce/fir as a function of slope and aspect.



116

3950. 4000. 0
3900. 3950. 0
3850. 3900. 0
3800. 3850. 0
3750. 3800. 0
3708. 3750. 0
3650. 3700. 0
3600, 3650. 0
3550. 3600. 0
3500. 3550. 0
3458. 3500. 0
3400. 3450. 0

f

3350. 3400. 0
3300. 3350. 0
3250. 3300. 0
3200. 3250. 0
3150. 3200. 0
3100. 3150. 1
3050. 3100. 5
3000. 3050. 23N

1 2950. 3000. 21
2900. 2950. 36
2850. 2900. 17E

R 2800. 2850. 35
2750. 2800. 40
2700. 2750. 47
2650. 2700. 31
2600. 2650. 39
2550. 2600. 34
2500. 2550. 30
2450. 2500. 27
2400. 2450. 4
2350. 2400. 3
2300. 2350. 3
2250. 2300. 14
2200. 2250. 0
2150. 2200. 0
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0

0 6 12 18 V 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114
FRECUENC Y O W OCCU.cRENCE

Figure CA Distribution of mixture of spruce/fir and Douglas/white fir as

a function of elevation.
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Figure C.5 Distribution of mixture of spruce/fir and Douglas/white fir as

a function of elevation (in meters) and aspect.
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Figure C.6 Distribution of mixture of spruce/fir and Douglas/white fir as

a function of slope and aspect.
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Elevation
Ranges No.

3950. 4000. 0
3900. 3950. 0
3850. 3900. 0
3800. 3850. 0
3750. 3800. 0
3700. 3750. 0
3650. 3700. 0
3600. 3650. 0
3550. 9600. 0
3500. 3550. 0
3450. 3500. 0
3400. 3450. 0
3350. 3400. 0
3300. 3350. 0
3250. 3300. 0
3200. 3250. 0

E 3150. 3200. 0
3100. 3150. 0q
3050. 3100. 0IT

N 3000. 3050. 0
1 2950. 3000. 1
EM 2900. 2950. 2
T 2850. 2900. 9

2800. 2850. 5
2750. 2800. 3
2700. 2750. 10
2650. 2700. 10
2600. 2650. 6
2550. 2600. 15
2500. 2550. 5
2450. 2500. 12
2400. 2450. 11
2350. 2400. 7
2300. 2350. 0
2250. 2300. 19
2200. 2250. 0
2150. 2200. 0
2100. ?150. 0
2050. 2100. 0
2000. 2050. 0
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FREQUENCY OF CCCURRENCE

Figure C.7 Distribution of mixture of Douglas/white fir as a function of

elevation.



E

)02C

rM

120 i

N

S

Figure C.8 Distribution of mixture of Douglas/white fir as a function of

elevation (in meters) and aspect.
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Figure CA Distribution of mixture of Douglas/white fir as a function of

slope and aspect.
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Elevation
Ranges No.

3950. 4000. 0
8£-:' 3. 3950. 0
8850. 3900. 0
3660. 3650. 0
3750. 3800. 0
3700. 3750. 0
3650. 3700. 0
3600. 3650. 0
3550. 3600. 0
3500. 3550. 0
3450. 3500. 0
3400. 345A.- 0
3350. 3460. 0
3300. 3350. 0
3250. 3300. 0
3200. 3250. 0

E 3150. 3200. 0
q 3100. 3150. 0

3050. 3100. 010 3000. 3050. 0
1 2950. 3000. 0

2900.EM 2950. 0
T@ 2850. 2900. 1
R 2800. 2850. 2

2750. 2800. 5
2700. 2750. 13
2650. 2700. 14
2600. 2650. 16
2550. 2600. 27
2500. 2550. 20
2450. 2500. 21
2400. 2450. 16
2350, 2400. 12
2300. 2350. 5
2250. 2300. 63
2200. 2250. 19
2150. 2200. it
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0

0 6 12 18 24 30 36 42 48 54 60 66 72 78 64 90 96 102 108 114
FREQUENCY OF OCCURRENCE

Figure C.10 Mixture of Douglas/white fir and ponderosa pine as a function

of elevation.
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Figure C.11 Mixture of Douglas/white fir and ponderosa pine as a function

of elevation (in meters) and aspect.
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Figure C.12 Mixture of Douglas/white fir and ponderosa pine as d function

of slope and aspect.
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- Ranges No.
3950. 4000. 0
3900. 3950. 0
3650. 3900. 0
3600. 3850. 0
3750. 3800. 9
3700. 3758. 0
3659. 3700. 0
3600. 3650. 0
3550. 3600. 0
3500. 3550. 0
3450. 3500. 0
3400. 3450. 0
3350. 3400. 0
9300. 3358. 0
3250. 3300. 0
3200. 3250. 0
3150. 9200. 0

t

E
3100. 3150. 0

i 3050. 3100. 0
N 3000. 3050. 0

2950. 3000. 0
2900. 2950. 0
2850. 2900. 0
2800. 2850. 0
2750. 2800. 0
2700. 2750. 1
2650. 2700. 3
2600. 2650. 6
2550. 2600. 5
2500. 2550. 6
2450. 2500. 9
2400. 2450. 30
2350. 2400. 25
2300. 2350. 10
2250. 2300. 168
2200. 2250. 29
2150. 2200. 14
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
FREQUENCY OF OCCURRENCE

Figure C.13 Distribution of ponderosa pine as a function of elevation.
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Figure C.14 Distribution of ponderosa pine as a function of elevation (in

meters) and aspect.
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Figure C.15 Distribution of ponderosa pine as a function of slope and
aspect.
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Ranges No.

3958. 4008. 0
3900. 3950. 0
3850. 3900. 4
3800. 3850. 39
3758, 3800. 22
3700. 3758. 16
3650. 3700. 31
3600. 3650. 25
3550. 3600. 23
3500. 3550. 11
3450. 3500. 7
3408. 3450. 1
3350. 3400. 2
3300. 3350. 2
3288. 3300. 2
9200. 3250. 2
3150. 3200. 1
3108. 3150. 2A7 3050. 3100. 0
3000. 3050. 0N
2950. 3000. 0

M 2900. 2950. 0
2850. 2900. 0
2800. 2850. 0
2750. 2800. 0
2700. 2750. 0
2650. 2700. 0
2600. 2650. 0
2550. 2600. 0
2500. 2550. 0
2450. 2500. 0
2400. 2450. 0
2350. 2400. 0
2300. 2350. 0
2250. 2300. 0
2200. 2250. 0
2150. 2200. 0
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114
FREQUENCY OF OCCURRENCE

Figure C.16 Distribution of alpine/willow an a function of elevation.
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Figure C.17 Distribution of alpine/willow as a function of elevation (in
meters) and aspect.
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Figure C.18 Distribution of alpine/willow as a function of slope and aspect.
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Elevation
Ranges No.

 3950. 4920. 0

 

3900. 9950. 0

 

3850. 3900. 0

 

3800. 3850. 0

 

3750. 3800. 0

 

3700. 3750. 0

 

3650. 3700. 0

 

3600, 3650. 0

 

3550. 3600. 0

 

3500. 3550. 0

 

3450. 3500. 0

 

3400. 3450. 0

 

3350. 3400. 0

 

3300. 3350. 0

 

3250. 3300. 1

 

EE 
3200. 3250. 4

 

3150. 3200. 6

 

3100. 3150. 7

 

3050. 3100. 13

 

N 3000. 3050. 9

 

2950. 3003. 12

 

M 2900. 2950. 12

 

E2850. 2900. 9

 

R 2800. 2850. 9

 

2750. 2800. 7

 

2700. 2750. 16

 

2650. 2700. 12

 

2600. 2650. 8

 

2550. 2600. 14

 

2500. 2550. 7

 

2450. 2500. 5

 

2400. 2450. 0

 

2350. 2400. 0

 

2300. 2350. 0

 

2250. 2300. 0

 

2200. 2250. 0

 

2150. 2200. 0

 

2100. 2150. 0

 

2050. 2100. 0

 

2000. 2050. 0

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114
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Figure C.19 Distribution of aspen as a function of elevation.
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Figure C.20 Distribution of aspen as a function of elevation (in meters)
and aspect.
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Figure C.21 Distribution of aspen as a function of slope and aspect.
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Elevation
Ranges _ No.

3950. 41100. 0
3900. 3950. 0
3850. 3900. 0
3800. 3850. 0
3750. 3800. 0
3700. 3750. 0
3650. 3700. 0
3600. 3650. 0
3550. 3600. 0
3500. 3550. 0
3450. 3500. 0
3400. 3450. 0
3350. 3400. 0
3300. 3350. 0
3250. 3300. 0
3200. 3250. 0

L 3150. 3200. 0
3100. 3150. 0R 3050.1 3100. 0

N 3000. 3050. 0
1 2950. 3000. 0
n 2900. 2950. 0

2650. 2900. 0
2800. 2850. 0
2750. 2800. 0
2700. 2750. 0
2650. 2700. 0
2600. 2650. 4
2550. 2600. 5
2500. 2550. 4
2450. 2500. 19
2400. 2450. 21
2350. 2400. 12
2300. 2350. 7
2250. 2300. 24
2200. 2250. 6
2150. 2200. 1
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0
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FREQUENCY OF OCCURRENCE

Figure C.22 Distribution of oak as a function of elevation.
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Figure C.23 Distribution of 
oak as a function of elevation (in meters)

and aspect.
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Figure C.24 Distribution of oak as a function of slope and aspect.



E1 evation
Ranges No.

3950. 4000. 50
3900. 3950. 106
3850. 3900. 71
3800. 3850. 146
3750. 3600. 50
3700. 3750. 49
3650. 3700. 45
3600. 3650. 36
3550. 3600. 42
3500. 3550. 32
3450. 3500. 18
3400. 3450. 13
3350. 3400. 11
3300. 3350. 1
3250. 3300. 3
3200. 3250. 1

E 3150. 3200. 0
3100. 3150. 0R 3050. 3100. 0

N 3000. 3050. 0
1 2950. 3000. 0

E 
2900. 2950. 0

T 2850. 2900. 0
^ 2800. 2850. 0

2750. 2800. 0
2700. 2750. 0
2650. 2700. 0
2600. 2650. 0
2550. 2600. 0
2500. 2550. 0
2450. 2500. 0
2400. 2450. 0
2350. 2400. 0
2300. 2350. 0
2250. 2300. 0
2200. 2250. 0
2150. 2200. 0
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0
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FREQUENCY OF OCCURRENCE

Figure C.25 Distribution of tundra as a function of elevation.
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Figure C.26 Distribution of tundra as a function of elevation (in meters)

and aspect.
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Figure C.27 Distribution of tundra as a function of slope and aspect.
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Ranges No.

3950. 4000. 0
3900. 3950. 0
3050. 3900. 0
3800. 3850. 0
33'50. 3800. 0
3700. 3750. 0
3650. 3700. 0
3600. 3650. 0
3558. 3600. 0

3550. 0
3450. 3500. 0
3400. 3450. 0

} 3350. 3400. 4
3300. 3350. 2

' 3250. 3300. 8
3200. 3250. 5

E 3150. 3200. 3
3100. 3150. 6

qq
T 3050. 3100. 5

3000. 3050. 17
1 2950. 3000. 11
M 2900. 2950. 15
€ 2850. 2900. 9
n 2800. 2650. 3

2750. 2800. 2
2700. 2750. 0
2650. 2700. 0
2600. 2650. 4
2550. 2600. 0
2500. 2550. 2
Zd50. 2500. 32
2400. 2450. 11
2350. 2400. 9

k 2300. 2350. 2
2250. 2300. 40
2200. 2250. 1
2150. 2200. 2
2100. 2150. 0
2050. 2100. 0
2000. 2050. 0
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Figure C.28 Distribution of grassland as a function of elevation.
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Figure C.29 Distribution of grassland as a function of elevation (in

meters) and aspect.
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Appendix D

SOFTWARE DEVELOPMENT AND MODIFICATION

To carry out the work in this project, programming activities were

completed which resulted in the creation of new software and modifications

in existing software. All programs were implemented on the IBM 310/148 at

LARS.

1. New Programs

Three programs were written in support of the development of the topo-

graphic distribution model: EXTRACT, RANDOM, and SELECT.

Program EXTRACT. This program reads standard LARS results tapes on

which classifications are stored. In this case, it read the tapes containing

the classification of the data into 91 topographic strata. The input para-

meters to this program are: 1) the class or group of classes of interest,

2) the area location (block description card), 3) the "minpoints" parameter

(see LARSYS Ver. 3.1 User's Manual for description of "minpoints"), and

4) the tape and file number in which the result classification is stored.

The output of this program is a listing of the coordinates of all the points

belonging to each one of the requested strata or classes. This output can

be in a disk file, punched card file, and/or printer file format.

Program RANDOM. This program is essentially a random number generator.

Once the coordinates for all the points in a stratum or class have been ob-

tained using the program EXTRACT, the program RANDOM generates a specified

number of random numbers between one and the number of points in the class

or stratum. The input parameters for this program are: the number of points

desired and the number of points in each stratum. The random numbers

generated by this program are subsequently used by the program SELECT.

Program SELECT. This program basically selects the desired number of

points (which in this study was 50) from all the points belonging to each

one of the topographic classes. The input parameters for this program are:

a list of random numbers and the list of points in the stratum. The output

is a list of coordinates for the 50 selected random points. A standard LARS
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field description format (LARS-12 format) is used to represent these

coordinates. This format is described in detail in the LARSYS Ver. 3.1

User's Manual.

2. Program Modifications

Modifications were made in several LARSYS processors to accommodate

the requirements of this project. Another major programming effort involved

modification of the *LAYERED CLASSIFY function to accept multiple statistics

decks, i.e., containing definitions of both spectral and topographic dis-

tributions. A second modification in the same - Nocessor was made to permit

classification with either equal or weighted pi ,3bilities.

The *TRANSFERDATA was modified to provide a more satisfactory output

format for meeting the requirements of this project, and the *PRINTRESULTS

processor was modified to allow printing (displaying) of a symbol to locate

each of the randomly selected points on a quadrangle-by-quadrangle basis.

The 4" symbol is used to represent single points and a "$" to designate

points that were selected randomly more than once (caused by the selection

with replacement).
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Appendix E

DETAILED TOPOGRAPHIC DISTRIBUTION AND

CLASSIFICATION RESULTS TABLES

This Appendix contains a number of tables that were not needed for

specific comparisons in the main body of the report, but which contain

results that should be included in the report in support of the evaluations

and conclusions.

s
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Table E-1. Classification test pixel results and error matrix for Level II

cover types.

(Classification no, 21/ : Spectral data only; Spectral'
training by Multi- Cluster Blocks; With weights; Only the
first stage of the Layered classification sequence was
involved, resulting in a Level-II degree of detail.)

No. Samples Classified As:

Percent
Sample Correctly Conif- Decid- Herba-

Cover Type Size Classified erous uous ceous Barren Water

Coniferous 917 82.0 752 101 50 10 4

Deciduous 252 52.0 78 131 40 3 0

Herbaceous 279 55.2 35 72 154 18 0

Barren 86 419 10 5 35 36 0

Water 5 60.0 2 0 0 0 3

Total 1539

Overall
Performance 69.9%



Table E-2. Classification test field results and error matrix for Level II

cover types.

(Classification No. 1: Spectral data only; Spectral
training by Multi-Cluster Blocks; Equal weights; Only the
first stage of the Layered classification sequence was
involved, resulting in a Level-II degree of detail;
Evaluation based on manually selected test fields.)

No. Samples Classified As:

Percent
Sample Correctly Conif- Decid- Herba-

Cover Type Size Classified erous uous ceous Barren Water

Coniferous 7920 80.6 6382 711 94 81 652

Deciduous 1953 66.8 294 1304 350 4 1

Herbaceous 2568 59.5 174 649 1528 217 0

Barren 573 66.7 21 15 155 382 0

Water 248 91.1 7 0 2 13 226

Total 13262

Overall
Performance 74.1%
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Table E-3. Classification results of training data based on Stratified

Random Sample.

(Classification No. 11 Training Data: Spectral + Topo-
graphic Data; Training by Stratified Random Sample; Equal
weights; Single Stage Classification.)

Percent Correct
Forest Cover Sample Classification of

Types Size Training Pixels

SF 682 90.3

SF/DWF 427 77.3

DWF 149 83.9
DWF/PP 283 75.3

PP 412 78.6

Aspen 162 37.0

Oak 135 57.0

Alpine 950 86.1

Grassland 214 57.5

Barren 364 53.0
Water 6 83.3

Total 3784

Overall
Performance 76.2%

r^

a

i

r,

F

t
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Table E-4. Classification test results showing impact of topographic data

for Level III forest cover types, summarized,over all quadrangles.

(Classification Nos. 5 and 9: Spectral training by Multi-
Cluster Blocks; Topographic training by Stratified Random
Sample; Equal weights; Layered classifier.)

Percent Correct Classification
of Test Pixels

Forest Cover Sample Spectral- +' Spectral +
Types Size Elevation Data Topographic Data

SF 313 88.5 89.1

SF/DWF 156 60.3 58.3

DWF 39 23.1 46.2

DWF/PP 144 83.3 81.6

PP
f

265 60.8 60.0

Aspen 110 42.7 43.6

r Oak 97 48.5 46.4

Alpine 79 72.2 70.9

Grassland 245 50.6 50.6

Barren 86 46.5 46.5

Water 5 60.0 60.0

Total 1539

Overall
Performance 63.6% 63.6%



Sample
Quadrangle Size

Oakbrush 199

Finger Mesa 214

Granite Peaks 202

Pagosa Springs 237

Devil Mountain 233

Weminuche 212

Ludwig Mountain 242

Total 1539

Overall
Performance

.:4j, j
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Table E-5. Classification test results showing impact of topographic data

for Level III forest cover types, by quadrangle, and using weights.

(Classification Nos. 4, 8, and 12: Training by Stratified
Random Sample; Weighted a ^^ior îi probabilities of
occurrence; Singe-Stage cl as^fier.)

Percent Correct Classification of Test Pixels

Spectral Spectral
Spectral + +

Data Elevation Topographic
Only Data Data

37.7 54.3 59.3

46.5 66.5 63.3

72.3 75.2 77.7

25.8 64.7 63.1

39.5 57.1 61.8

64.2 75.5 74.1

21.1 58.7 53.7

42.9% 64.5% 64.4%



Table E-6. Classification test results showing impact of topographic data

for Level III forest cover types, summarized over all quadrangles,

and using weights.

(Classification Nos. 4, tt, and V: Iraininq by SI-raI I Hed
Random Sample; Weighted a priori probabi I i fJo% of
occurrence; Single-stagecal- ss^fier.)

Percent Correct Classification of Test Pixels

Spectral Spectral
Spectral + +

Forest Cover Sample Data Elevation Topographic
Types Size Only Data Data

SF 313 89.8 91.7 93.0

SF/DWF 156 82.7 81.4 82.1

DWF 39 38.5 61.5 51.3

DWF/PP 144 11.8 41.7 514

PP 265 19.6 69.4 69.1

Aspen 110 26.4 32.7 25.5

Oak 97 8.2 36.1 28.9

Alpine 79 36.7 78.5 75.9

Grassland 245 33.5 57.1 60.0

Barren 86 19.8 39.5 33.7

Water 5 40.0 60.0 60.0

Total 1539

Overall
Performance 42.9% 64.5% 64.4%

F
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Appendix F

STATISTICAL EVALUATION OF CLASSIFICATION ACCURACIES

The tables included in this appendix summarize the 2-factor analysis-

of-variance tests for significant differences among classifications, and

at the same time, among quadrangles or cover types. Thus, two factors

(classifications and quadrangles or classifications and cover types) are

tested simultaneously. The different classifications evaluated include:

(1) the type of data Channels Utilized (spectral only, spectral + elevation,

and spectral + topographic), (2) the Analysis Approaches used to train and

classify the data (Techniques A and B), (3) the utilization of ar^ iori

weights, and (4) the spectral Data Source used (original and "spectrally

corrected"). The appropriate procedure followed to develop the ANOVA's

for this application is described in the 1976 SRT final report (Landgrebe,

1976).



ANOVA

df SS MS F

1 14.08 14.08 1.45

10 2606.01 260.60 26.84

10 97.13 9.71

21 2717.22

Source

DATA SOURCE

COVER TYPES

Interaction/error

Total

a=.10
Fcrit

3.29

2.32

t
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DATA SOURCE

Source

DATA SOURCE

QUADRANGLES

Interaction/error

Total

ANOVA

df SS

1 0.93

6 394.21

00 11.83

13 406.97

MS F

 

0.93 0.25

 

65.70 17.50

3.754*

a=.10
Fcrit

2.71

1.77

* residual mean square non-significant



MS

7.87

61.65

3.53

F

2.10

16.4!

a=.10
Fcrit

3.78

3.05

MS

12.53

213.98

20.39

F

0.61

10.49

a=J0
Fcrit

3.29

2.32
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ANALYSIS APPROACHES

ANOVA

Source

APPROACHES

QUADRANGLES

Interaction/error

Total

df SS

1 7.87

6 369.92

6 21.16

13 398.95

Source

APPROACHES

COVER TYPES

Interaction/error

Total

ANOVA

df SS

1 12.53

10 2139.77

10 203.94

21 2356.24
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WEIGHTS

z

ANOVA

a=.10
Source df SS MS F Fcrit

f
WEIGHTS 1 1.26 1.26 0.34 2.71

QUADRANGLES 6 339.41 56.57 15.07 1.71

Interaction/error 5.53 3.754*

Total 13 346.197

r

t ANOVA

a=.10
Source df SS MS F Fcrit

WEIGHTS 1 34.12 34.125 1.64 3.29

` COVER TYPES 10 3143.49 314.35 15.13 2.32

Interaction/error 10 207.77 20.78

Total 21 3385.39

x

* residual mean square non significant



MS

213.1
72.8

5.03

F

42.37
14.47

a=.10
Fcrit

2.81
2.33

r
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CHANNELS UTILIZEU

ANOVA

Source

CHANNELS

QUADRANGLES

Interaction/error

Total

df SS

2 426.27

6 436.61

12 60.42

20 923.30

Source

CHANNELS

COVER TYPES

Interaction/error

Total

ANOVA

df SS

2 611.17

10 2906.07

20 823.14

32 4340.38

(X=. 10
MS F Fcri t

 

305.58 7.42 2.59

 

290.61 7.06 1.94

41.16

® 3
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