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ABSTfu1CT

1
s The CITARS task design and objectives are reviewed and finalresults

are presented, together with conclusions and recommendations. /it was found
f that several factors hada significant effect on crop identification per-

formance: (a) crop maturity and site characteristics, (b) which of several
i ,different single-date automatic data processing procedures was used for

local recognition, (c) nonlocal recognition, both with and without prepro-
cessing for the extension of recognition sioratures, and (d) use of multi-'

i date-(multitemporal) data. It also was fours that classification accuracy
for field center pixels was not a reliable indicator of proportion estimation
performance for whole areas, that bias was present in proportion estimates,
and aining data and procedures strongly influenced crop identification j

i performance.

J 1. INTRODUCTION AND OBJECTIVES

CITARS (Crop Identification Technology Assessment for Remote Sensing) was a joint task to
quantify the crop identification performance (CIP) achievable with several automatic data process-
ing (ADP) techniques operating on remote sensor data. It was conducted from April 1973 t-c April
1975. Participants were the Earth Observations Division (EOD) of the Johnson Space Center,'the

f Environmental Research Institute of Michigan (ERIM), the Laboratory for Applications of Remote
Sensing (LABS) of Purdue University, and the Agricultural Stabilization and Conservation Service
(ASCS) of the U.S. Department of Agriculture. The CITARS `;task .design was presented in Ref. 1 which
also includes objectives, analysis methodology, experimental procedures, description of ADP pro-
cedures, and first results of CITARS. A more extensive description and documentation of the entire
project can be found in Ref. 2. The remainder of this section presents a brief overview of the
CITARS task design and objectives.

The principal assessments made were of crop identification performance for corn and soybeans
in six sites in 1111nois and Indiana. The remote sensor data analyzed were collected by the ERTS-1
(now called LANDSAI1'-1) multispectral scanner (MSS) periodically throughout the 1973 growing season.
The ADP procedures compared were predefined at LOD,;ERIM, and LARS in such a way, as to mini.mi.ze
subjective analyst judgment and intervention in the crop identification process.' -

Specific objectives of CITARS :included performance camparisons to answer the following
questions: _

A

'

* `Proceedings of the Tenth International Symposium on Remote Sensing of
Environment, Ann Arbor, Michigan, October 6-10, 1975.
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1. How does corn and soybean identification performance vary with time during the growing
season?

2. How does crop identification performance vary among different geographic 'locations
having different soils, weather, management practices, crop distributions, and field
sizes?

3. How much variation in crop identification performance is observed among the different
data processing procedures?

4. Can signal statistics acquired from one tinx- or location be used to identify crops
a

at other locations and/or times?

5. Does use of radiometric preprocessing extend the use of training statistics and/or
increase nonlocal crop identification performance?

6. Does use of maltitemporal data increase crop identification performance?

To accomplish the objectives, five major 'tasks had to be completed. These were: (1) acqui-
sition and preparation of an ERTS data set with ancillary data sufficient to support the experi-
mental objectives and design, (2) computer-aided processing of this data set with the selected
classification algorithms and procedures, (3) quantification of the crop identification perfor-
mances in a manner which would permit a quantitative evaluation of the ability of these procedures
to satisfy agricultural applications requirements, (4) a statistical analysis to quantitatively
evaluate the impact of major factors known to affect crop identification performance, and (5) an
interpretation of the results to ascertain the underlying physical factors responsible for the
results, to draw inferences as to the status of the technology as it relates to agricultural
applications, and to make recommendations as to where the technology must be strengthened.'

2. KEY TECHNICAL ACCOMPLISHPiENTS

As reported earlier (1] an ERTS data set with oupporting ancillary: data was acquired and pre-
pared which met the requirements of the'CITARS experimental design, except for completeness of
ERTS coverage. Assembly of the data setincluded:- (1) acquisition of crop identification and
other agronomic ground truth data by ASCS, (2) acquisition and interpretation of color infrared a j
aerial photography to extend the field identification data acquired by ASCS to additional fields, 3
(3) registration and geometric, correction of multitemporal ERTS MSS data for the test segments,
and (4) location of field and section coordinates in the ERTS data. In addition, repeatable,
analyst-independent ADP procedures had to be defined and documented and measures of crop identi-
fication performance had to be determined.

Each of the six 5x20-mile (8x32-1an) sites was located in an overlap zone of ERTS so that
coverage was available on two successive days on each 18-day ERTS'cycle. Of 72 potential data
sets from late June through late September, 'only 15 were sufficiently cloud free for use in the
analysis (See 'Table 2):

Periodic crop observations of fields used to train the classifiers were Trade by '=
throughout, the growing season. These fields were found in 20 quarter sections (0.80.8 km), each
located randomly within a lx5-mi (1.6x8-km) ,strip in the site. Photointerpretation of multidate
aerial photography was successfully used to increase the size of the data base. The photointer- j

pretation data in 20 full sections (1,6x1.6 Ian), randomly selected throughout the site, were used
to evaluate ERTS data classification accuracy in fi'_eld centers. Tn addition, crop area proportion
measurements were made from the aerial photography and used to evaluate proportion estimates-
derived from pixel-by-pixel classification of ERTS data. Tlie accuracy of photointerpretation was
tested in 223 ASCS-visited fields 'which were not revealed to the photointerpreters. The results,
^tirrnarized in Table II, were judged to be of sufficient accuracy to warrant use of the photo-
interpreted field identifications for evaluation of the ERTO data processing results. <

Multiple passes of' ERTS data were registered with an average root mean square (rim) error of
less than one-half pixel, enabling multitemporal classifications of the data and eliminating the
need to locate field and section coordinates in each ERTS scene.

6 The need to maximize the number of pure pixels selected from the relatively small-sized`
fields present in several of the segments made selection of field coordinates more difficult than
expected. Manual methods were found to be inadequate for the job and a, computer-aided method of
transforming digitized photomap coordinates to ERTS line and column coordinates was used [1). The
use of the latter method is recommended for future projects requiring precise definition of ERTr
data coordinates,
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A key task prior to the start of ERTS data classifications was to define and document data
analysis procedures which were repeatable, easily followed, and yet incorporated the ,judgmemt and
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 skill of experienced analysts. Although there was concern that crop identification performance
might be reduced by restricting w-ualyst decisions, it was necessary that variability due to
analysts be minimized if meaningful comparisons of results were to be made. Limited test" with
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 the LABS ADP procedures indicated that, for the CITARS data set, the procedures used produced
results comparable to those obtainable using procedures with considerably rrwre analyst interaction.

To evaluate crop identification performance, three categories or classes of data were defined.
The first two were the rrjor crops, corn and soybeans, while the third, called "ether", included
all other ground covers. Analysis of wheat recognition early in the year was attempted, but the
amount of wheat in the segments was too small and the reliability of its photointerpretation too
low to support meaningful conclusions.

i
An important accomplishment of CITARS was the use of quantitative measures of crop identifi-

cation performance and statistical evaluation of results. 'The statistical analyses consioted of4

 

 
analyses of variance and blocked rank tests for comparisons involving factors such as ADr pro-
cedures, location, acquisition date, and use of preprocessing, Two variables, average conditional
classification accuracy of "pure" field center pixels and the rms error of proportion estimates

I

 

 for entire sections, were used as measures of classification performance. Section-to-section
variability was used in analyses of variance to determine if differences among ADP procedures,
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 segments, times, etc. were significant. The analyses of variance revealed several significant
differences, but the power of many of the significance tests was limited due to missing data, the

j

 

 amount of variability present, and the failure of the dependent variable to adequately describe
performance for a section independently of the composition of that section, despite the use of a

{ dtiCifinormalzing transormaton.' Continued use and development f th tol fo rmt ssiof  tools r remote sensingI i,.
i experiments are recommended.

3. RESULTS AND DISCUSSION

The statistical analyses provided a key to the quantitative assessment of remote sensing
1 ! technology for crop identification, for both .field center pixels and crop area estimation. Pre-

vious result;; were confirmed in some instances, while in others unanticipated results led to
reconsiderat.ons and new insights into certain aspects of the technology. This section summarizes
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 the major results from the CITARS experiments, as related to the six specific objectives which
were expressed as questions regarding the effects of various factors on crop identification per-

r formance.
: 

3.1 EFFECTS OF TIME DURING THE GROWING SEASON
{

The time of ERTS data acquisition during the growing season was round to be an important
factor influencing crop identification performance. because of the phenological development cycles
or crop calendars of the major ground covers. Thy' peak accuracy for field center classification
was 75-80% correct in mid-August, as shown in Fir,;. 1. At this time, the variability within the
major crops (corn and soybeans) was low and the amount of ground cover was high.

a
' The solid line in Fig. l represents the expected performance for the average of all single-

date procedures, assuming no interaction between the factors: site and time. The use of a non-
j interactive moael for computing expected performance as a function of time was necessitated by the

fact that only one site had ERTS data for more than two of the six time periods. The individual

I 1 
points marked on the graph represent actual performances by the various procedures. Me varia-
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 bilJ,ty present is an indication that factors other than time also influenced field center classi
fication performance.

i A similar expected performance timeprofile also was calculated for proportion estimates over.
the aggregation of whole test sections. This profile showed roughly the sane rms proportion error
for all time periods, except mid-duly when the error was substantially greater. In mid-July, the
variability among corn fields and among soybean fields was high, and the amount of ground cover

! was low. We do note, however, that variability in performance among procedures at any given time
i was much greater for proportion estimation than in the case of field center classification.'

c 
C 3.2 EFFECTS OF SITE
r

Missing data again hampered the analysis when comparisons were made between sites. Never-
( theless, proportion estimation accuracy was found to be much more site dependent than was field

center classification accuracy, when expected responses were computed. The only major site a
characteristics which were found to be correlated with proportion estimation accuracy were average

j.
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t field size and proportion of corn and soybeans in the segwnt. As shown :in Fig. 2, proportion
estimation errors were smallest for the site with the largest average field size. Similarly, the

- proportion estimation error was found to be smallest for the site with the greatest percentage of
corn and soybeans among its ground cover types, r

The correlation of field size and the accuracy of crop propt)rtlon estimates is attributed I
Primarily to the decrease in the percent of pixels con t aining mixtures of crops au field size 9increases. In addition, it has been observed that large fields tend to be more uniform, and 6reas
having larger fields have relatively fewer fields of "other" covers. The Influence of these
factors on crop identification perform-ice will be discussed further in Sec. 3.3.

3.3 EFFECTS OF ADP PROCEDURE ON LOCAL RECOGNITION WITH SINGLE-TIME DATA
EOD, ERIM, and LABS each defined a principal ADP procedure which was used for the major cones

parisons of crop identification performance using data from single ERTS passes; alternate pro-
cedures also were defined and tested by ERIM and LAR.5. In this section these procedures are com-
pared for local recognition, that is, when the test data were located in the same site and ERTS
pass`as the training data. Nonlocal recognition is considered in Sec. 3.4. Identical training
field, test field, and test section coordinates were used with all procedures.

3.3.1 PRINCIPAL PROCEDURES, Major differences were found in results for the three principal
ADP procedures. Local performance results with these procedures are sumnarized in 'Table III,
where overall average performance figures are given, as well as the number of specific analysis
of variance (ANOVA) comparisons for which significant differences were detected ( gut of a. total
of ten comparisons). The ERIM/SP1 procedure was best for field center classification, while
LARS/SP1 was the most'consi.otc-nt for whole area proportion estimation and had the lowest average
rms proportion error. These results indicate that field center classification of pure pixels
which has cormnly been used to evaluate crop identification performance is not a reliable indi-
cator of the accuracy of ,proportion estimates for whole areas.

Primary differences between the ADP procedures lie in the training procedures and decision
rules used. Yet, there are some characteristics which they share that can contribute to the
observed results.

First, there is inherent bias in proportion estimates based on aggregated counts of maximum
likelihood pixel-by-pixel classifications. Bias exists ",because the expected performance of a
classifier depends on the true crop proportions present, as well. as on its performance matrix for
individual pixels. As can be seen in Table III, all three principal procedures consistently
underestimated the proportion of "other" in the test data., Furthermore, the expected rms error
in proportion estimation was found to be correlated with 0'p percent of other in a test site.

Second, the whole areas included boundary pixels which contain mixtures of two or more ground
covers. Mixture pixels were determined to be a major source of biased proportion estimates by„a
special analysis, as well as by the fact that expected proportion errors tended to be largest in
segments with the smallest average field size (Fig. 2) and, therefore, with the greatest number of
mixture pixels.

The three principal procedures tested differed in two ways. Both LAPS/SP1 and EOD/SPl used
a clustering procedure to define training statistics (usually several classes for each major crop)
and employed a quadratic decision rule.  ERIM/SPl, on theother hand, formed a single signature s
for each'nijor crop, used a variable *number of signatures for "other", and used a linear decision
rule. The differences in performance among the three procedures were determined. <to be due to the
method of training rather than the decision rule used since similar results (high ranking for
field center recognition and low ranking for whole area proportion estimates) were obtained for
ERIM/SP2, a quadratic decision rule classifier, which used the same; signatures as ERIWSP1. It
was observed that the disparity between rankings for the two types of performance for the ERIM
procedure tended to be reduced or eliminated when within-corn and within-soybean' variations were
smallest and the procedure selected greater numbers of other-class signatures.

An attempt was made to correct for classifier bias in proportion estimates by using the per-
formance matrix for field-center pixels, but the attempt was unsuccessful both on a section-by-
section and an aggregated segment basis: x

3.3.2 ALTERNATE PROCEDURES, A linear, decision rule optimized on a class-pairwise basis was i
used in ERIM's principal procedure and a quadratic decision rule, similar to those of_LARS/SPI and -
EOD/SPI, in its alternate procedure. It was found that the accuracy of results with the linear
rule were equal to or better than those with the quadratic rule using the same signatures.
Resource Anstraints of CITARS did not permit simila?.comparisons with signature sets obtained by
a different procedure, but such or similar comparisons are recommended.
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Another CITARKS result which, on the surface, seems surprising is the lack of improvemn t of
LARS/SP2 (non-equal major class prior probabilities) over I.AfS/oP1 (equal prior probabilities),
Theoretically, apart- from boundary pixels, the Wyesian clasni.f er should produce its minimum
error rate when "correct" values for the frequency of uc urr(,mcu of each spectral class ":ale
utilized as parameters in the classification rulte. I,A1tSV3F2 included a procedure for l l otimating
the prior probability of each spectral class based oit existing agricultural statistics, For
CITARS alasssificatLons the TARS/S1 12 procedure utilising unequal prior probabilities did not pro-
duce an improvement over assuming them to be equal. ̀MIL; is attributed in part to tre , fact that
the used werecounty

 
20 percent

fromathe`true  test
 

subsets  county  not  randomly
located within it. Boundary pixels are another possible cause. t,.'e do not believe thatuse of
prior probabi.lity information in the form of clawweights should be discouraged, based solely on
the CITARG amdysio since it does not constitute a definitive test, arstoad, it is recomreuded
that further tests be made to determine the sensitivity of maximum likelihood classifier to
class weights.

In other experiments LAN:, showed that significant differences in olassificat ion performance l
can be obtained with different training sets and that training set size alone doeo not determdne
the adequacy of a training set. These results and results discussed earlier point out the
dependence of crop identification performance on the development of training statistics, 's

3.4 EFFECTS OF NONLQCAL RECOGNITION AND PREPROC&SSINC,

In nonlocal recognition, the training statistics are used to recognize data from a different
location and/or a different ERTS pass. Such procedures are desirable and/or necessary in order
to reduce the cost of obtaining ground identification information 'for training classifiers In
operational applications. The effect of nonlocal recognition on performance with the single-time
procedures was evaluated for 20 pairings of the 15 data sets.

Comparisons of classification performance indicated that avera^;: field center performance for
the three principal pr.,.`cedures in nonlocal recognition was reduced by 22 percent of that obtained
locally. For whole area proportion estimates, the average rms error of nonlocal estimates was
23 percent greater than that for local estimates, 11'he degradation associated with nonlocal classi-
fication performance was shown to be correlated (r = -0.77) with differences in atmospheric opts-
cal depth (a measure of haze level) between the training and recognition segments, Other differ-
ences present in the data sets were those of soil type, agricultural practice, crop maturity,
scene composition, training data selection, and 1ASS scan ax le, all of which can affect the
representativeness of signatures. The results cleanly indicate problems in successfully applying
training statistics to different locations and/or ERPC passes.

One way of extending the realm of applicability of signatures is to transform them radiomet-
rically so they better represent observation conditions at recognition segnents. Preprocessing
with -a mean level adjustment algorithm (ERIf4/PSP1),_a relatively simple preprocessing algorithm,
was found to be of some help in improving nonlocal recognition performance. Overall, the pre-
processing procedure ranked above the three principal procedures for both whole area proportion
estimation and field center classification; this ranking was statistically significant for field
centers but not for whole areas. Preprocessing cut roughly in half the degradation in man field
center performance and substantially reduced the correlation between optical depth differences

' and field center performance (from r - -0.77 tor , = -0.28), but was not consistent in its per- ?,
fox'ma.nce, especially for whole areas, a

' The mixed results obtained in specific analyses.of variance indicate that differences i.n'com--
position of training and test areas also are important factors affecting nonlocal recognition.
Additional research is required to improve upon the sislature adjustment algorithm tested and. to y

better account for spectral variability due toscene composition.- A limited test of a more com-
plex signature extension algorithm at ERIM, in an effort supplementary to CITARS, indicated that

' inproved results are' possible.

3.5 EFFECTS OF KMTl:1'gMPORAL DAl2A

One CITARS segment (Fayette) had :aeveral clear LRTS overpasses which were spatially regi-
stered and then analyzed and processed multitemporally with the EOD/MSFI,procedure. Significant
increases in crop identification performance were obtained, compared to the best single-date per-
formance. Use of multitemporal data increased field center classification accuracy from 81 per- .,
cent to 89 'percent correct and halved the rms error in proportion estimation. These substantial µ
improvements in performance were obtained for this one segment by using basically the same data
analysis procedures as for single-date data; nevertheless, new analysis procedures taking into

' account the increased complexity of multitemppral scene=s will need to be researched and developed.

' L
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Although use of multitemporai data requires a more complex data processing system (registration,
increased data base size, and more complex data analysis procedures), the Increased complexity
may well be justified by increased performance.

I

3.6 RELATION CP CROP AND SENSOR CHARACTERISTICS

Two key factors Influt:nclnr, crop identification with remote senzur data are (1) the natr;re
of the spectral variation among and within the classes to be ldcrntitied and (2) the capability of
the sensor to ^^^_ he spectral variation. An understanding of xhf relation hip of these
factors may help explain the levels of crop identification performance obtained in CITARS. In
several instances it was found that accurate identification of corn, soybeans, and "other" was not
possible even when all the Yields analyzed were used to train the classifier, This may have been
due to a lack of differences in the spectral characterlsticz of the three classes or to an
inability of the ERTS MSS to resolve and precisely measure the differences present. The latter
is suspected to account for at least a part of the problem since crop classifications made during
the 1971 Corn Blight Watch Experiment [3] using MSS data with more spectral bands, narrower bands,
and greater sensitivity and dynamic range showed that these same cover types could be more accu-
rately identified, Additional comparisons of ERPS and aircraft-acquired MSS or other high spectral'
resolution data .such as will be available from the current JACIE' (Large Area Crop Inventory Experi-
ment.) field measurements project (4) will be noeded to verify this point.

4. CONCLUSIONS AND RECOMMENDATIONS

t{.1 CONCLUSIONS

CITARS has provided a quantitative assessment of 1973-era technology for remote identification
of major agricultural oropu. The use of quantitative measures of classification performance and
statistical evaluations of the results have been Important parts of the technology assessment.
The major, conclusiuns from the CITARS experiments are; i

 

1. Crop identification performance for corn and soybeans varied throughout the growing f
season, with field center classification accuracy being maximum in late August. S

1

2. ` The probability of correct classification of field center pixels was not well corre-
lated with and thus was not a reliable indicator of proportion estimation performance.

3. Proportion estimation accuracy was strongly correlated with both average field size
and proportion of major crops In the segment, but :'i.eld center classification accuracy
was 'not. Boundary pixels containing two or more cover types Caere determined to be
major contributors to the bias in proportion estimates.

4 The manner in which ground cover classes were ielected'aixi used to train the classi-
fier strongly influenced the amount of bias in proportion estimates.

5. 'Probability of correct classification and proportion estimation accuracy both were
deereas;id when training statistics developed for a different location or date were used.

6. A mean level adjustment algorithm for first order adjustniern,,s to training statistics
used for nonlocal classifications Increased the probability of sxxect classification
of field center pixels, but did not improve proportion estlmate: ' for whole 'areas,

7. The use of multidate data improved both proportion estimationiaccuracy and probability
of correct classification.

In addition -it has been shown that relatively automatic data analysis procedures can be
defined which produce repeatable results, are suited for processing relatively large data volumes,
and incorporate,_ to a large degree, the judgment and expertise or experienced analysts,

4.2 RECaW=ATIONS
CITARS provides valuable direction for future research and development of remote sensing

technology and guidelines for the design of operat9ri=il crop production survey systems utilizing
remote sensing technology. Recommendations from Cl'6':`P.S include:

1. Continued use and development of quantitative measures of crop; Identification per-
formance and statistical evaluation of classification results. `
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2. Continued development of improved methods for training classifiers.

3. Research and development of methods to improve the accuracy of proportion estimates
` for whole areas.r J

4. Further tests to determine the sensitivity of maximum likelihood classifiers to
the use of prior probability infoxmation and of the linear classifier to different
signature sets.

5. Additional research, development, and testing of two complementary approaches to
nonlocal recognition, (a) more sophisticated preprocessing algorithms and (b)

j stratification of areas based on their simila rity with respe9z to agricultural
factors.

6. Development of data analysis procedures which avcount for the increased complexity
of multitemporal data and take advantage of its potentially greater information
content.

7. Additional comparisons of ERTS and other multispectraldata sources to determine
the adequacy of ERTS MSS in terms of the ;number, width and placement of its
spectral bands, signal/noise ratio, sensitivity, dynamic range, and spatial
resolution.
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TABLE I,'ERTS DATA SETS ACCEPTED FOR CITARS .PROCESSING

ERTS OVERPASS CYCLE

SITE. JUNE JULY AUG AUG SEPT SEPT

 

26-30 14-18 1-5 19-23 6-10 24-28

1, HUN TINGTON, . IiZ . B A

2 SHELBY, IND. B A

3. WHITE, IND. B. A
i 

4._LIVINGSTON, ILL, A A

5.- PAY ETTE, ILL. B A&B A

6, LEE, ILL. B _ g

,I

Key:. A = First Pass of ERTS Coverage of Site
i B = Second Pass of ERTS Coverage
i

iI
i

i
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TABLE 11 . COI fPAR1SON OF CROP TYPE IDENPTF1CATlONS WIDE BY
ASCS AND BY P116TOIN ERFPETATION

j

r 

PmnbIN11;TT IVIED

COVER TYPE STATISTIC ASC`L
TOTAL TnAL CORRECT

C W11SS10TI
ERROR

CORD! llwber of Fields in rl 46 5
Percentage: 300.0 1)2.0 h°.0j 10.0

j Number of Acres 1,181 -:• 1,197 L, 65 32
Percentage 100(0 101.3 98.6 2;7

SOYBEANS Number of Fields f5 " :1 66 61 5

Percentage 100,0 ,1 101.5 03.8 7.7 <:

Number of Acres 1,550 1,540 1,523 16
PercentaM 100.n,% 99.3 98.3 1.1

OTHER Number of Fields , ;x:18 106 99 7
Percentage 

., 
100.0 98.1 91,7 64

Number or Acres 879 874 836 36

Percentage 100.0 99.4 95.3 4.1

TABLE III. COMPARISON OF PRINCIPAL PROCi::DURES b YXI LOCAL RECOGNITIOTI
,

A. MEAN CLASSIFICATION ACCURACY FOR FIEhi CENTER PI)MS (15 CASES)

CLASS LARV/SP1 ERIWSP1 EOD/SPl

CORN 0.66 0.70 0.62 j
SOYBEANS 0.59 0.68 0.61

OTTER 0.!-T `r 0.53 0.46

OVERALL 0.58
F 

0.64 G.57
- 1

o FOR SEVEN ANOVA COMPARISONS MEM SIGNIFICANT DIFFERENCES WERE DETECIID
FOR FIELD CENTER PERFOR14ANCE, ERI t/SPI RATTA;D FIRST IN SIX.

B. MEAN PROPORTION ESTIMATION BIASES AND RlS ERROR- FOR WHOLE AREAS (15 CASES)

CLASS LARa/SP1 ERIM/SPl EOD/SPl

BIAS FOR; CORN
SOYBEANS
t7IYER

0.063 0.064 0.025
0 .033 0.059 0.081

-0.096` -0.1P4 '' -D.106
DO ERROR 0.095 1 0;150 7108

0 FOR EIGHT ANOVA COVARISONS W4Ek' SIGNIFICANT DIFFERENCES WERE DETECTED
FOR PROPORTION ESTITNITION, LARS/SPI RA10M FIRST IN ONE AND SECOND IN
SEVEN COMPARISONS, ERIM/SP1 FIRST IN TRREE CASES, AND EOD/SP1 FIRST IN
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ABSTRACT r

The CITARS task design, including obi;ectives, analysis
methodology and experimental procedures, is described and first
results from this effort are presented. The extensive ground
truth data set acquired for the CITARS task is described and
discussed in some detail. Results of the accuracy tests for
the photo interpretative CITARS ground truth are given. Results
of the assessment of the ERTS MSS data for cloud coven and
electronic quality are presented.' Sane results of the geometric
correction and registration of the time sequential CITARS ERTS
data are given. Finally, the field boundary selection problem {
is addressed and the results of the use of new technology for
boundary uelection are presented.

1.. INTRODUCTION AND OBJECTIVES

In 1973, the Earth Observations Division(EOD) of the Johnson Space Center (JSC), the Environ-
mental Research Institute of Michigan (ERIM), the Laboratory for the Application of Remote Sensing
of Purdue University (Purdue/LARS), and the Agricultural Stabilization and Conservation Service
(ASCS) of the U.S. Department of Agriculture (USDA), under took a joint task to quantify the crop
identification performance, resulting frcrn the remote identification of corn, soybeans and wheat
using automatic data processing (ADP) techniques developed at ERIM. LARS, and EOD. These ADP tech-
niques are automatic in the sense that subjective human interactions with the classification algorithms
were minimized by the specification of the steps required for an analyst to convert a multispectral
data tape to a classification result. The crop identification performances resulting from several
basic types of ADP techniques are to be compared and examined for significant differences: The
multispectral data to be analyzed, consists of ERTS-1 data acquired over ;each, of six 5 x 20 mile
segments in Indiana and Illinois at six periods from early June through early September 1973. 'Crop
identification and other information was gathered by the ASCS in each segment each 18 days coincident'
with an ;ERTS overpass.

The ADP techniques are to be evaluated on this data set in two basic remote sensing situations:
(1) Crop signatures for classifier training will be obtained within the same segment in which crops 1

3
are recognized by the classifier (local recognition). (2) Crop signatures for classifier training
will be obtained from a different segment in which crops are recognized (non-local recognition).

°`

Once the crop identification performance is established for each of the ADP techniques for
local and nonLl.ocal recognition, differences in the performances of these techniques w_-1 be established
for differences in geographic location, time of the year,;etc.

Proceedings of the Ninth International Symposium on Remote Sensing of°
Environment, Ann Arbor, Michigan, April 15-19, 1974.
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The CITARS task was designed to cpantitatively answer the following questions

o How does corn, soybeans, and wheat identification vary with time during the growing
season?

o How does the crop identification performance (CIP) vary among different geographic
locations having different soils, weather, management practices, crop distributions., and field
sizes?

o Can statistics acquired from one time or location be used to identify crops at other
locations and/or times?

o How much variation in CIP is observed among different data analysis techniques?

o; Does use of multi-temporal data increase CIP? -

o Does use of radiometric preprocessing extend the use of training statistics and/or
Increase CIP?

o How much variation in CIP results from varying the selection of training sets?

o -Does rotation or registration of ERTS data affect classification performance?

2. ANALYSIS KKTICDQLCGX

7b establish and compare the capabilities discussed in the Introduction, an experiment was
designed to: (1) accurately estimate the crop identification performance (CIP) and (2) determine
whether differences in the CIP's for the various conditions are significant.

Each of the CIP's are established as a'result of a specific "treatment" combination; such a
treatment combination is characterized by several factors. 'These factors are: (a) ADP technique;
(b) data acquisition period; (c) location; _and '(d) training-recognition method.

Each of these factors can, in turn, be characterized by levels. The levels of factor (a.) are
different ADP techniques to be assessed;, the levels of factor (b)* are the six data acquisition
periods from. June through September 1973;'the levels of factor (c) are the six ter sites in
Indiana and Illinois, There are many possible levels in factor (d) but they can be characterized
for the present by (1) local recognition and (2) non--local recognition.`

Each treatment combination will have an associated CIP which will be quantified in three ways:
(1) a classification performance matrix from which the errors of omission and coimdssion for
"non-boundary" pixels can be determined and (2) a proportion classification error vector and
(3),a,proportion error vector corrected for bias. x

i
The classification performance matrix for "non-boundary" pixels will be established by

comparing the ADP classification with the. ground and photo interpretive' identifications of about '
12,800 acres within each data segment ;Test field boundaries will be estab)ished on the digital
data. To insure that only non-boundary pixels are used in training and classification, the j
boundaries will be selected such that no agricultural field boundary elements or field inhomo-
genieties are contained within the 'test field boundaries. The probability for correct classifica-
tion for each of corn, soybeans, wheat and "other" will be defined, for -a particular test field
set, as the frequency with which test field pixels of a particular class are co rrectly classified.
The error of commission between class i and class j will be defined as the frequency with which
an ADP identification of class i was determined from ground truth to actually have been a pixel
from class J. For a four class data set this procedure wilI define a 4 x 4 error matrix.' 9

The proportion classification error vector will be established by comparing the proportions
of corn, soybeans, wheat and other as determined from the ADP technique to those proportions
determined from ground truth. To establish the ground truth, twenty agricultural quarter sections

j in each segment were visited each 18 days by ASCS personnel for crop type identification. In
addition, twenty additional agricultural sections (one mile square) were photo interpret.; to
establish crop identification.

h *The levels in factor (b) will differ for the maititemporal ADP technique, I.e., if data from three.
passes are used for the analysis then there are ten possible ways to combine the six data acquisition
periods.

ii

i
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The proportion of each crop type in the sections within each segment were established by
i; mensuration of the photography. This results will be compared to the proportions: determined by
E the ADP techniques to determine the ADP proportion error vector. In addition, several methods

have been proposed to correct the remote sensing estimates of the crop proportions for bias.
Each of these methods require an cstittate of the bias, which is obtained by examining classifica-
tion perfo finance in fields or areas for which ground truth is available. These fields and areas
will be c1I1edip lot fields or areas, to distinguish them from the test fields where the crop

Y 
identificati,-A performance is to be established. The methods proposed for bias correction and the

f method for pilot field selection are more hilly discussed later in this section.

Thus for each treatment a performance matrix and a proportion error vector can be estimated
using the procedures described above.`

These data, once computed, form a basis for comparison of the performances of the techniques
under the various conditions. These comparisons will be made using standard statistical tests, The
primary statistical test to be applied is the analysis of variance. The objective of such a prone-
:dare will be to test the hypothesis, that the classification performance for two or more different
treatments (or combinations of treatments) are different. An example of a hypothesis to be tested is, a
"There are no significant differences in crop identification performance among test sites:" To test a
this hypothesis, the ratio of variation among test sites is compared to the variation within test
sites. This is referenced to as the calculated '"F" which is the ratio of the treatment mean square
(among) to the error mean square (within). If the calculated.F is greater than a tabulated F based
on the known distribution of the variance ratio under the null hypothesis, then one would reject
the null hypothesis and accept the alternate hypothesis that performances are different for different' w

locations. Similar hypotheses can be formulated for each factor, The comparisons of interest to
the FY711 task discussed in the Introduction can be formulated into hypotheses and tested in the j=^ ,
manner described above.

To use analysis of variance a measure of error must be available. This is obtained from
replication which is readily available in a factorial experiment. For example, a mathematical
model assumed is:

xij 
a "+ ri + cij , i = 1, 2, ..., k, j = 1, 2, .,'., n r

which states that any observed value x is equal to the overall mean u for all populations,
plus the deviation Ti of the i-TH p-iulation mean a from the overall, mean, plus a random
deviation from the mean of the I-TH population. In other words, if pi is the mean of the i-TH t
population, then

V = Sum of ui/K

-ri - ui- -u
e = xjj -1, =x

ijs

for this model. it is assumed that

1. u is m1 unknown parameter.

2. The ti are unknown constants or parameters,

3. The eij are normally and independently distributed with mean zero and variance a2.

With estimates of the population means and variance a it is also possible to estimate the magnitude
of treatment effects and to calculate confidence intervals.

E 3. EXPERIIY E'UAL PROCEDURES j

j 3.1 TEST SITE SELECTION

- The test sites were chosen over as large a geographic area as possible, within the resources of
the project, in order to include a wide variety of conditions. Even in the Corn Belt there is a
great deal of variation in soils, weather, cultural practices, crop distribution, etc. All of these
factors are related to geographic location. The best measure of the effects of these factors, then,
can beobtained by including as many test sites as possible over as large an area as possible. ThisE

f also increases the probability of obtaining cloud-free ERTS data.

i
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j Test sites were selected within the four overlap zones of the five ERTS passes over Indiana
{ and Illinois. These areas shown in Figure 1 include sane of the different conditions which could
i be expected to be encountered in the Corn Belt.

3.2 SELECTION OF SEGMENTS AND SECTIONS

Segments, five by twenty miles, were chosen at random within each of the six selected
counties. These segments were oriented such that the twenty mile length was oriented north—
south. This segment size was chosen to give a limited area for field visits and yet an
adequately large area for a representative sample of agriculture within a county.

Within each segment, 20 sections MJ 20 quarter sections were chosen at random in a manner
such that the selected quarter sections,avere spatially disjointed from the sections selected.

3.3 FIELD OBSERVATIONS FOR CROP TM-IDENTIFICATION
3

The ASCS of the USDA visited, each l$ days, the 20 quarter sections within each segment arxi
examined each field in the quarter sections for crop type identification, other agricultural Para—
meters shown in Figure 2. Atmospheric optical depth (related to visibility) at several locations,
using tripod mounted solar spectrophotometers provided by JSC and subjective assessments of cloud
cover weather and haziness during the ERTS overpass were also recorded by ASCS personnel,;%

3.4 Pwix) INTERPRETATION FOR CROP TYPE IDENTIFICATION

A more accurate estimate of the crop identification performance for each ADP technique can
be obtained if a larger field sample is available from each segment. Thus, the field observation
data was supplemented by photo interpretation of the 20 additional sections chosen in each segment.

The photo interpretation effort used large scale color IR (scale) photography acquired at
five times during the growing season, and large scale metric- photography acquired at two times,
to establish proportions of ground cover classes andother agricultural parameters within each of
the 20 sections in each segment.

A test procedure using ASCS visited quarter sections hidden in the photograph was devised to -
determine the accuracy of the crop identifications so obtained. The photo ,interpretation procedure
was designed to obtain as accurate an identification as possible. When the PI test procedure indicated
errors in the photo interpretation field identifications, the effects of these errors on the estimates
of the ADP crop identification performance were assessed, once the source and nature of the photo
interpretative errors were ascertained.

3.5 ERTS DATA PREPARATION

This section addresses those procedures required to reformat the EfaS MSS data, to locate in
the data the sections and quarter, sections, and to choose the test and training fields within
these sections.. These procedures have been designed to allow each institution to use common
training and test field boundaries and duplicate ERTS data tapes. Such a procedure was fc1lowed
to permit more meaningful performance comparisons and to eliminate needless duplication of tasks
and resources at each institution.

ERSS bulk tapes were received at LARS for subsequent reformatting and field boundaries
r

definition.

Of the two ERTS passes over each segment, the one acquired during minimum cloud cover was
selected for local recognition. If cloud cover was equal for the two passes, the data  cquired
most temporally coincident with the ASCS field visit was chosen for local recognition processing.

' < 3.5.1 GEOMETRIC CORRECTION AND REGISTRATION

ERTS data preparation for-01TARS has consisted of (1) geometric correction, (2) multi-
temporal registration, and (3) section and field coordinate location. geometric correction isf
perfoiTted to facilitate accurate location of section and field coordinates. Registration of the {

' data from two or more ERTS passes over the some scene is required for* multitemporal data analysis
procedures and to .reduce the number of times: which section and field coordinates had to be located.
With registered data the desired coordinates need to be found only once and the same coordinates -
are used.for all data collected over the same area. Field and section coordinates are, of 3
course, required for classifying the ERTS data and evaluating the results.

t

3.5.2 TEST, TRAINING, AND PiL6T FIELD SEGEGTION

" In addition to the training and test fields usually selected to train the classifier and to
evaluate its performance, "pilot" fields were selected. The pilot fields will be used to determine r

^ a

9
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if a Correction for bias in the classified crop proportion, resulting from classification errors,
! is feasible. Classificationerrors will be estirWited in the pilot fields and based on these

estimates, a correction will be .applied to the teUt field classification results (See 3.8 FAC`2ORIAT4
ANALYSES FOR PERFORMANCE COMPARISON for more details.)

For those analyses which require pilot fields, all fields from one-half of tfie 20 photo
interpreted sections will be used for pilot fields and the remaining ten sections for test fields.
For those analyses which require no pilot fields, all photo interpreted sections will be ufied as t

r test fields.i
Training fields from the ASCS quarter sections will be used to train the classifiers. All

fields large enough to be accurately located in the scanner imagery will be available for training.
3.6 ADP TMHNIWES FOR MSS DATA PROCESSING

The basic ADP techniques will be grouped into three divisions: (1) "Standard" techniques,
(2) preprocessing techniques, and (3) multi-temporal. techniques. The ter7r_ "standard" ADF technique
is used to mean either Gaussian maximum likelihood classifiers or a classifier employing a linear
decision rule and classifies data which has not been radiometrically preprocessed and has not been
acquired multi-temporally.

Each of these ADP techniques consists of a computer implemented software system and a method
or procedure by which an analyst can convert multispectral data into grcand cover class identifica-
tion information on a pixel by pixel basis.;

is

Since the crop identification performance of ADF techniques can be sensitive to the manner in
which the classifier is trained, the types of MSS data input (e.g., preprocessed, multi-temporal,
etc.) which spectral bands are used for recognition, etc. A quantitative evaluation and subsequent
comparison of the crop ID performances of such techniques will be most meaningful if the procedures

j used to-obtain the classification results are well defined and repeatable.
i

Most of the existing procedures currently developed for the use of the very generalized analysis
algorithms, require decisions on the part of the analyst which can significantly affect the classi-
fication performance obtained. For the purposes of this assessment, the analyst factor will be
minimized as much as possible in order to permit an evaluation of the automated techniques.

A necessary requirement for a small variance in the classification repeatability of an ADP
technique is that the procedure for using such a technique be sufficiently well defined sothat an
analyst can follow the procedure without deviation; thus, each of the ADP techniques evaluated in
this task will be documented in detail, and the documented procedures will be rigidly adhered to.

3,6.1 TARS ADP TECHNIQUES

The analysis techniques to be'used by LARS utilize the LARSYS Version 3 multispectral data
analysis system. Its theoretical basis and details of the algorithm implementation are describedin references I and 2, respectively. A complete description of the analysis procedures is con-: Jtained.in reference 3. The procedures are designed to provide repeatable results, i.e.; variation
due to analysts is minimized. Briefly, the analysis procedures consist of: P'

1. Class' Definition and Refinement. Four major classes, corn, soybeans, wheat (for
selected missions) and all 11other ground covers are defined, These major classes are divided
into subclasses where spectral variability within a class is so great as to result in multimodal

i-; probability distributions for that class. Clustering is used to isolate the subclasses. For
clustering all four ERTS bands are used. A systematic method (see reference 3) which minimizes
the total number of subclasses produced while ensuring that multimodal class distributions arei 
avoided is used for interpreting information on the separability of subclasses.

2. Classification. Each data set is analyzed using two versions of the maximum likeli-
z.

hood classification algorithm. Gaussian probability density functions are assumed for both
procedures. The first classification method is the maximum likelihood classification rule
assuming equal prior probabilities for all classes and subclasses. This is the rule which has
been in common usage for remote sensing data analysis for some time.

The second method uses "class weights" proportional to the class wior probabilities, This
- approach is more nearly optimal given that the Bayesian error criterion (minirmn expected error)

is prefe red. Class weights may be based on any reasonably reliable source of information. In
CITARS the weights are computed from county acreage estimates made by the USDA the previous year.
Subclass weights are simply the number of points-in each subclass divided by the total number of
points in the class.

r
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3. Results Display arri Tabulation, The results of the classifications are displayed using
a discriminate threshold of O.l This light threshold eliminates only those data points very much

F different from the major Glass characterizati„ --,U^wesholded points are counted in the "other"
' category. A computer program is used to gen;rate resins tabulations, in both printed and punch-

card form, for training fields, test fields, and test sections.

3.6.2 ERU4 ADP TECHNIQUES

The digital data processing and analysis procedures defined by ERIM for use in the CITARS study
f reflect our concern for the calculational efficiency of recognition processors and the need for exterri-

ing recognition sig atures from training areas to other geographic locations and/or observation condi-
tions, as well as the LITARS requirement for minimizing the need for analyst judgment. A brief summu;y

j, of the procedures is as ;follows:

3.6.2.1 Training
i

F The training of the processor, that is, the establishment of class signatures for recognition,
is a crucial step in multi.spectral data processing. Although mul.timodal signatures are frequently
employed, the use of one signature per major clans was Selected for CITARS processing because of 
simplicity, processing efficiency, and the fact that a combination of individual field oigrati_wcs
can result in a single signature that encompasses more of the variability of the class thn io
represented by a multimodal signature. An objective, reproducible procedure; based on a Y.` V.st,
was devised to reject anomalous "outlier" fields before the formation of a combined sigeiatize, Sc!
as to develop signatures representative of healthy crops at a reasonable stage of maturity for the

- time of season. Signatures for classes other than the major ones are to be included only if they
are found to be confused with the major crops on preliminary recognition runs over training data.

+J

3.6.2.2 Recognition Without Preprocessing

Two types of decision algorithas are being used, a linear rule and a more conventional quadratic
rule. The linear decision rule was chosen because it requires substantially less computer time for
recognition calculations, has been used successfully in many applications at EM, and has been found - y;
to provide comparable recognition accuracy in previous tests (reference 4). Use of the quadratic
rule will permit another, comprehensive comparison of the two rules. Both raes apply a threshold
test (0.001 probability of rejection) based on a quadratic calculation for,the signature of the
"winning" class; points failing the test will be classified as being other than the major crops
considered.

3.6.2.3 Recognition With Signature Extension Preprocessing

Changes in atmospheric and other local conditions can cause changes in the signal levels re-
ceived at the scanner for different areas and at different times. The region of signature
applicability can be extended beyond the region used for training by employing signature-extension
preprocessing techniques. Non-local recognition denotes recognition performed on segments other
than those from which signatures were extracted. Non-local recognition will be carried out once
before and once after preprocessing corrections for , signature extension have been applied (for
both linear and quadratic decision rules). Several promising preprocessing methods have been
developed (references 5 and 6) and are being tested on EWS data at ER114 (reference 7). 0113y
one method has been identified to date for use on the CITARS project - a mean-level adjustment
procedure. The mean-level adjustment is derived from an average over diverse groiuld_covers within
the !"local" signature extraction segment and a comparable average within the "non-local," segnent
to be classified.'

3.6.2.4 Results Summarization

The results obtained with each procedure will be summarized in a`standarrlized farm for
subsequent analyses of variance. Separate summarization will be made for field-center , pixels

I and for entire test sections.

3.6.3 EOD ADP-TECHNIQUES

EOD will evaluate two techniques. One technique for single pass data and another for multi-
temporal MSS data.'"

A.For single pass data the EOD will utilize the ISOCLS (reference &) clustering algorithm
implemented at JSC to generate the class and subclass statistics and the Gaussian maximum likel,^-
hood classifier on the Earth Resources Interactive Processing System (ERIPS) (reference 9).

The training fields for corn,; soybeans and wheat will be submitted to independent runs on the
Earth Resources Interactive Processing System (ERIPS) using the ISOCLS implemented clustering rou'ine

i-
I°
i
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to generate class and, if necessary, subclass statistics, e.g., corn 1, corn 2, corn 3, etc. The 9

training fields for " other" will then be submitted to the sane clustering scheme to generate class
and subclass statistics for all "other".

The training fields, test fields and "test" sections will then be classified using the Gaussian
maximum likelihoW classification algorithm on ERIPS and the statistics as previously generated with
the rauot:ering process.

For multi-temporal data ISOCLAS will be used to separate spectral classes. A linear combination
of features will be selected using and EOD alForithm (reference 10) and classification will be similar
to the uni-temporal technique.

3.6 PERFORMANCE COMPARISONS

The basic questions proposed in the objectives will be answered by a series of analyses of
variance. There will be two basic quantities which will be used to characterize the crop,identifica-
tion performance of the ADP techniques. These are (1) e iq, the estimated probability of classifying
a non-boundary pixel from class i as class j and (2) pi - pi , the estimated proportion of class i-
minus the true proportion of class i. I

Tn order to compute the e i . from the ADP results,pixels which correspond to ground cover
classes rand j must be precise g y located with respect to the ground'truthed areas, Test fields

be chosenexclude agricultural
 

to
i
ill

in the (field, susasflooded
boundaries
 be discussed later, eitiest areaetc. As v lle j

this task was difficult and required the development of new technology.

Since in an actual remote sensing situation, the classifications error resulting from pixels
containing agricultural field boundaries (boundary pixels) and the error resulting from field
inhomogeneities may represent a large part of the error, some method is required to estimate these
errors. The use of ei to accomplish this was decided to be impractical because of the difficulty

the 6taining boundaries. Thus it decided to the esti-in locating pixels ,field was use proportion
mate to characterize this error. pi will be computed for "pure test pixels 1' as well as for the
agricultural sections -and the differences in the resulting proportion error vectors will be used to
estimate the error contribution resulting from boundary pixels and field inhomogeneities.

In addition to the per£Urmance quantities discussed above, some attempt will be 'made to correct
the proportion estimates for statistical bias which is expected to result from misclassification.
Two methods have been proposed for accomplishing this and the corrected p i using each method
(described below) will be compared to the p as determined from the photo interpretation to deter-

;nmine if either method improves the proportiestimates.

3.7 FACTORIAL ANALYSES FOR PERFORMANCE COMPARISONS

For performance comparisons several dependent variables will be calculated for each of the 20
test areas per segment. The quantities 

eij 
will be estimated.as discussed previously.

The proportion estimates pi will be computed in one of three ways:
i

ni/Ni

3. Pi = E -1(n)

where 
ni. 

= number of pixels classified as i.

N = total number of pixels in area to be classified.'

f3i = regression coefficient obtained by comparing niIN with the true proportion pi for a
pilot data s

E = matrix of e^3 I s obtained from pilot data. g

n= vector of nitse a

l
i Note that methods two and three require the use of "pilot" data, i.e., additional ground truth used

to obtain estimates of E or ti.
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Once a dependent variable is decided upon x typical analy ix will consist of {i7 obtalidng cal
means of the dependent variable over various combinations of factors, (b) perionain vr, rr xty.i:; of
variance. 

\

4. FIRST RESULTS MOM CITARS

CITARS as designed and described above, was originally scheduled to begin in early June 1973
and to be complete by October 1974 with a majority of the actual ERTS data processing complete by
April 1, 1974; However, as of April 1, 1974, CITARS is approximately 90 days behind scheduiv. ̀iii,
slip resulted primarily from difficulties encountered in field boundary courdirrate locati.uri in the
ERTS imagery (to be discussed momentarily).

j Complete as of April I is the acquisition of ground truth by ASCS, the aircraft acquisition of
large scale color IR photography, the interpretation of that photography for supplemental ground
truth, data quality evaluation of the ERTS data, and the geometric correction and registratiur, of
that data. To be completed are Test, Training and pilot field coor, 3Unate detenTr1nation, ADP proces-
sing of the data and the subsequent performance comparisons, The remainder of this paper will be
devoted to a discussion of the completed portions of CITARS.

4.1 DATA ACQUISITION

Data acquisition consisted of three major efforts; the periodic visitation of each segment by
ASCS personnel for crop type identification, the periodic acquisition of large scale aircraft photeg-
raphy and IMS data acquisition. Each of these tasks have been completed and with some exceptions,
each effort has provided data adequate for the accomplishment of the CITARS objectives.

11.1.1 GROUND OBSERVATIONS'

ASCS personnel completed all .field visits to all segments. In addition, they made additional
visits in the Fayette County, Illinois segment to determine additional training and test fields for
wheat which were required as a result of late and incomplete. aircraft coverage of Fayette County In
early June.

Table 1 summarizes for each county the amount of acreage, the total number of fields by class,
and the average field size for the fields in the 20 ASCS June identified quarter sections. In addi-
tion to these and the other ag data discussed in section 3.3, ASCS personnel successfully used the
solar photometers to record atmospheric optical depths on successive ERTS orbits over the segments.
For some of these segments, there are considerable differences in the atmospheric state from one day
to.the next. Thus by training on a segment and.classifying it on the subsequent ERTS orbit, the
effect of atmospheric differences on crop identification performance can be evaluated.

4.1.2 AERIAL PHOTOGRAPHY

Aerial photography was used for field annotation, extension of ASCS ground truth via photo inter-'
pretation and mensuration of field acreage. For accurate photointerpretation, large scale color infra-
red photos were specified. This photography was acquired each 18 days from June through October by
the Bendix Queen-Aire Aircraft at 4 km altitude using a Fairchild 22 11 camera. For accurate mensuration`-
of fields, data was acquired in July and August with a Zeiss metric camera flown in the NUM 0-46 at
about 4 km altitude. Base photography for the annotation of ground truth was acquired with a^n RC- s
camera carried at 18 kmr by the NASA RB57F.

Camera problems, excessive cloud cover and incorrect flight lines rendered some of the test and
j training sections-in the Bendix photography unuseable. Some sections were also incompletely covered

by the C-46. However, combining the photography from these two sources proved adequate for the CITARS
requirements.

4.1.3 PHOTOINTERPRETATION

Thehotointe retation team at EOD has completed the tasks of determiningp rp p u.ng crap identi£icatiun,
j areal proportion a£ each crop, row direction and width and any field anomalies for each of twenty

agricultural sections in all CITARS segments. 
This 

job which took about 6 montho from the aequisiLiorn i
of the first photography was completedwithin three weeks of the originally pro,Jected schedule. About
18 man months was expended in the effort. The photointerpreters, cuing large scale color IR photog-
raphy acquired 6 times during the growing season, identified 23 or 24 agricultural section;; ir,each
segment. The photo interpreters trained in 16 or 1.7 of the ASC;+ quarter sections. Three or four of
the remaining quarter sections were withheld front the'pbotointerpreters, but were included it, the full
sections -to be interpreted so that a coml;.arison of their , results to the ASLS identificatiot,:; could be x

f f made. The photointerpreters did not know which section: • contained the te;t quarter sectlrr,

E
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Comparisons of the AsCu crap identifivatlon3 to the I'1 ldentIricatlons have been completed in
3 of the 6 CITARS st,gmente. lrz these counr leo the percent a4,rveement with the ASCS identdfis.ations
was 94% for soybeans,_ 96% for c;orrr and 16% for what. 'These are percentages of fields with a sxnple
of 32 soybean fields, 27 corn"fiz+:lds and `6 wheat. yields. Of the 2 soybean fields misidentified as
other, une field was pla:`.,te,112 weeks late acid the tither ono; 6 week; late. 'ilie corn field rni..c.i;usai- " f:
fica.tion may be a result of mistaken field labtliazt,. This problem is as yet unresolved. Thu wheat
problem is a different matter, since the first aircraft phutogr •aphy of June 28 was acquired during l
wheat harvest. Thus the phot.ointerpreterz had only mature (low M reflectance) or harvested wheat
imagery which proved inadequate for wheat r:coV)ition,

4.1.4 MTS-1 MULTISPEGTRAL SCANN.M DATAi

The ERTS-1 satellite passed over each of the six test segments twice (ors successive day:) during
each 18-day period. Since there were six .periods of Interest, from early .Tune: to early September 1973
a total of 72 data sets were potentially available fox , processing and analy:.,,is. Cloud cover problems
were identified by reference to the ERTS data catalog, and visual inspection of imagery where available.
Of the 72 possibilities,'ploud cover was severe enough (-20-30%) on 41 seta; to cause their, rejection

u

outright, no data were collected for two ..ets; arrd Uhex•c were eliminated for other reasons.
A total of 23 sets were selected for analyois and ..evrra:1 of theso were found to have cloud problems
upon detailed examination. Thus, roughly 60% of the data sets were eliminated because of excessive

' cloud cover. Table 2 sumn<arives the cloud cover statistics.
sr,

A majority of the selected data were of goad quality. However a; few problems were observed which
are affecting data analysis procedures and/or results: (a) occasional erratic data throughout individ-
ual scars lines or portions of lines, (b) detector-to-detector* differences among the mean values 4
obtained from the six detector channels that comprise each spectral band as averaged over a large
sample of the data and (c) differences In the variances observed from the detector channels over the
same data sample. x

Eff..CS-1 data quality was assesoed by several different methods. First, visual impection was
made for each spectral baud on a digital display to determine the presence'of any lines of bad data
through one of the 5 x 20 mile, segments, More than half (14) of the 23 sets had no bad 'lines and

j the worst- were one with 8 two with 19, and one with =40 bad lines, Next histogram and sample
statistics (mean and standard deviation) were computed for samples of the data — every lime and
every 30th point for all cases, every line and every sixth point for many, and every line and every
point- fox, a few. These statistics were calculated separately for each detector 

in 
each spectral band;

unrotated ERTS data were utilized for these tests.

One would expect some variation between values in the various detectors, because each is Cali-
brated separately. To evaluate the degree of similarity between there +atistics, a mean, in , of
the six detector means was calculated for oach spectral band, as well as the :ample standard p evia_

4'tion, su, of the individual values faun that overall mean. The ratio, si,/mu, was computed for` each
data set and a histogram of these values is presented in Figure 3. All values lie; below 3%, except
for one of 9,3%, which corresponds to the data set with 40 lines of bad data, No clear relationship
could be found between the number of bad linos and s ir/mu values below 3%. The number of goad lines

Alines,present was sufficient to mask effects of a few bad and channel-to-channel variations existed
in all data.

2, ;

Similarly, the detector value standard deviations were analyzed and a histogram of so/ma is pro-
se nted in Figure 3. In this in2tance, the s/m values exhibit considerably more spread than they do 1
for the detector, means. Most values are <5%, but they scatter up to 24%, with an extreme of 87% for
the 40-bad-line case. Here sgain, except for extreme values there was no apparent direct correlation
between sQ/% aryl the number of bad lines present.

The question now cakes regarding the ^rmlysis of data exhibiting problems associated with
clouds, lines of bad data, and channel-to-ohannel variations. Test section, test fields, and train-
ing fields affected by clouds and/or bad lines were determined by inspection and eliminated from the
;uralys:l4. Ttre one daUt 'set with 40 bate lines is being analyzed in three bands only, since all bad

. limes were in the: same b;urd. one could transform all data values to ''equalize the means and/or vari-
ances in each set of detector charnels (omitting bad-line values) and perhaps effect some improvement
ilr recognition results. However,, geometric correction and spatial registration operations were being
applied to these data sets in ,parallel with the data quality evaluations, so .it was decided to start
zagaicr arr(i carry out radionLtrdc correction procedures only if poor recognition performance' were
obtained acid :-appeared 'to be attr.lbutable to such differences.f - _ I

I,

*Detector is used here to denote the entire si,fqial channel from individual detector element to CCT.
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_- 4.2 ERTS MSS DATA PREPARATION

11.2.1 GENIMC CORRECTIONI
The digital form of the E}1'PS data (CCr a s) contains several geometric distortions. Thew

distortions include, scale differential, altitude and attitude variations, earth rotation skew,
orbit velocity change, scan time skew, noni.ii'iear scan sweep, sc ar angle error, and frame rotation.
The major errors are the scale and skew errors. Also, notation to North--orientation is highly
desirable. A two-step process, developed by LARS, to r:,ometrically correct TILTS data over small
areas has been applied to all data for CITARS (reference 11).

i

Briefly, the procedure uses four linear transformations to correct or adjust for horizontal
and vertical scale differences, rotation, skew due to earth rotation and output scale factor. The
process assigns radiance values in a resealed, rotated, and deskewed coordinate system using data

I 
from the existing grid, i.e., the raw ERTS data. Hecauso a fixed grid Output device is used (i.o.,
line printer or digital display screen) some interpolation is requirod to produce new samples. The
point nearest the desired sample location is used to represent the value at the desired location
("Nearest Neighbor Rule").

The procedures are fully described in reference 11. ̀The output form uscci for CrfARS is suoh
that when the data is printed on an 8 line per inch, 18 column per inch computer line printer the
resulting scale is approximately 1:211,400 and the image is North-oriented (Figure fit). Compari;,ons
made using topographic maps indicate about a 1 to 2% scale error..

11. 2.2 SPATIAL, REGISTRATION OF TINE FZ, QV ,NCIAT, ERTS DATA

Registration of multiple images of the same scene is accomplished through use of the LARS
Image registration system described in reference 12. The overl,,,iy processing operation cons i sts of
two basic operations: (1) image correlation and (2) overlay transformation. Many factors
which prevent exact overlay of the images, thus this operation is approximate. Two major errors,`
are: (1) It is unlikely that the samples from one time were imaged from exactly the same apot^:ds
samples from a later satellite pass; thus, in general, no data exists which exactly overlay--?or
both times even if no other errors were present; and (2) Due to changes An the scene and other
"noise" sources the two images cannot be exactly correlated or matched. The overlay prcvedure arce=i

y

consists of the following:
9

1. Initial checkpoints or matching points are manually selected in the two images to be
overlayed using a digital display screen.'

a
s

2. A two dimensional least squares quadratic polynomial is generated to represent the
difference in position of points in the two images.

I 3. A block image cross correlator is employed to find the remaining image displacement
at the nodes of a uniform grid using the approximate overlay polynomial generated in reference !2.

I
4, A new overlay polynomial is generated from the correlater produced set rat`checkpoitttz

and used to actually overlay the images. The two images are combined onto one data tape and a new
data set is formed having M+N channels where M is the number of channels from image A arad N
is the number of channels from image B.

5. The overlay data tape is inspected to check image quality and overlay quality. Preciee
' ! evaluation *of overlay accuracy is difficult. A measure of registration error is obtained from the 1

residual of the least squares polynomial; this statistic averages 0.5 of an 
Image sample, F,MS (Table 3).

However, crop identification performance obtained when using field coordinates selected from a base
period will be compared to performance when using coordinates located in data which has not been `. 9
registered.

4.7.3 SECTION AND FIELD COORDINATE LOCATION

Locating section and field coordinates in the ERTS data has been a major task preparatory to
{ classifying the ERTS data. This task was first attempted uving a manual method for location of
o fields in ERTS data displayed as ` single-band dray-scale line printer maps (reference 13) This

required that field boundaries be easily distinguished in the imagery. In cases where there was
minimal spectral contrast among crop fields, non-supervised classifications have been performed to
produce an enhanced image:. Whether using gray-scale or computer enhanced images, reasonably
large fields are required to assure that pixels are selected from within the field boundaries.

i f
s

With the CITARS data, there was little contrast among fields of interest, since the first data 9
was collected early in the growing season (June 8-12). For instance, at this time of year cr-anzay3

r

20
1-,



I

I

soybeans were only a few inches tall and the spectral response was primarily from the soil. And,
roads were not as visible in the imagery as they generally are in data collected later in the season,
.Also, many fields were smell (,r 20 acres). lberefore, procedures for accurately locating fields,
when individual fields could n—t be clearly seen in the imagery, were required to meet project
requirements.

To Improve the accuracy of the manual location method, ERTS Images were geometrically
x corrected and and resealed tc produce a nominal 1:24,000 scale map on a line printer (reference 11).

this product alone made the location of fields more precise and - ire rapid than it would have been o
on uncorrected data. Photo overlays were prepared with section and field boundaries outlined. The
Initial overlays, made from photography enlarged to a nominal scale of I:24,000, were helpfU, but not

a
completely satisfactory due to distortions in the photo, Following this rectified photographs were
produced at a scale of 1:2 11,000. This product could be manually overlaid to the line printer maps of
the ERTS data,

After manually locating all field and section coordinates in the I TS data the precision was
still not adequate to meet the requirement of "."q maximum error of tine pixel, Therefure, a previously
developed, computer--assisted procedure was employed by Eft:4 to locate section corners and define FM,-3
data coordinates for sections (reference 14), A map transformation from Earth coordinates on a
rectified aerial photograph to ERTS data coordinates was calculated for each segment using roughly

" 30 control points for each calculation. The control points were located visually in the rotated
and geometrically corrected ERIS data and by coordinate digitization on the photograph. A amap
transformaton then was computed by the methodof least squares; ERTS coordinates of the few control
points with large residuals (>1 pixel) were checked and modified or deleted, as appropriate, and
the transformation was recomputed. Next, the transformation was applied to all section ,comers of
Interest (whose locations on the photograph bad been digitized at the same time as the control
points) to find their fractional line and column coordinates in the ERTS data, Final standard errors
of estimate (for control points) were less than 0.5 and typically between 0.2 and 0,4 ERTS pixels,
i.e., 15 to 30 meters on the ground. The RMS error in digitizing the location ofthe individual
points was on the order of three meters on the ground (errors of roughly 0.005 inch or less on a
photograph at a scale of 1,24,000).

These section corner coordinates (calculated in fractional MTS line and column coordinates)
were used to locate field boundaries of individual fields within the sections, A major advantage

4 of the procedure is that it preserves the relative positions of all points Considered with an 4.
accuracy that cannot be matched manually. Another feature of the ERIM procedure was utilized to
generate ERTS data coordinates for each outlined section. All pixels whose centers fell inside
lines connecting the vertices (again, located by fractional coordinates) were automatically

`
'

"Lricluded on coordinate definition cards.
I
I I

F

A,: ADP ANALYSIS OF THE ER'1'S DATA

Ì As a result of the difficulties encountered with the field boundary selection problem, the
ADP analyses of the ERTS data and the subsequent performance comparisons as specified by the CITARS
design plan, have not been completed. However, the preliminary analyses to date merit some brief

{ discussion.

The most sipfrificant result to date, is the amount of training data acquired from the 20 quarter
sections in each ofthe 5 x 20 mile segments.

i
To insure that the pattern classifiers were being trGined only on "pure" and correctly

identified ground classes, the CITARS task design specified that training data come from the a

quarter sections visited by ASCS personnel and that no pixel (ERTS data resolution element)
which contained ta, boundary between different ground classes be used in the computation of training i
statistics. During the CITARS design phase, the amount of ground truth required for classifier{
training was estimated by assuming that ten times the nawber of channels used for classification
would be required to train the classifier for each ground cover class, Thus based on 20 ground
cover classes, and four channels, 800 "pure" or non-boundary pixels would be required for training.
Other rough calculations (reference 15) indicated that no more than about one half of all acquired1 pixels would contain agricultural boundaries based on a preliminary estimate of a 20 arse average
field size for Indiana and Illinois. Thus for IRTS pixels of 1.1 acres in size, 'roughly 1600 acres
would be required to obtain the 800 "pure" training pixels. In addition, an equal additional
amount of training data was required to form replicate training sets to determine the effect of
training set selection on classifier performance, Thus ASCS was requested to visit and identify
twenty 160 acre quarter sections to obtain 3200 acres for training purposes,

1 It is of interest to see how this design worked out in practice. In each of the CITARS seg-
ments, training field boundaries have been selected and final boundary adjustments are nearing

f completion. Based on the number of training pixels selected to date, Figure 5 plots the percent .-
{ of the training acres actually selected as "pure" training pixels versus the average field size
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in the ASCS quarter sections. Except for the anomoly in Livingston County (yet to be explained)
the shape of this curve is as one would expect, However, the percent usable pixels are much
smaller than the early estimates of 50%. This io a result of a subsequent design change in CI'WHO
to include a row of "guard" pixels between the agricultural field boundary and the training field
boundary. This was done to iL;crease the probability that only non-boundary pixels were cho,en f'^,v
training, but prevented the selection of pixels in many fields, especially ones less than ten aoreo,
(20-110% of the fields) and larger but narrow fields.

5. SUMMARY

The CITARS task was designed as carefully as possible to insure an objective and quantitative
assessment of the crop identification performance of currently available classification aloritYuns
and procedures,

The ADP procedures were written to minimize the amount of subjective human interaction, This
was done to permit a quantitative and repeatable evaluation of classification techniques which could
be automated for operational implementation.

For the resources available, a data set was designed to permit an objective evaluation of these
techniques over a wide as possible range of agricultural and climatological conditions. An extensive
data set has been collected and the utmost care has gone into the preparation i,f this data set for
ADP crop identification performance evaluation.

Based on the data set acquired and the stated objectives of CTT'ARS, a factorial analysis has been
designed to obtain the maximum amount of reliable information regarding classifier performance.

l
At this point in the progress of the CITARS ta r "., the most major problem encountered was the

selection of field boundaries in the ERTS data, Thz. problem resulted from the requirement that
c no pixels which contained boundaries between different agricultural classes were included in the

training or test data, This problem had to be resolved through the implementation of recently
developed technology and has resulted in a 90 day delay.

At this point, the combination of ASCS field visits with interpretation of low altitude
temporally acquired photography appears to be a relatively cost effective and accurate method
for assumbling a large ground truth set with stringent design requirements.

Of the 72 possible ERTS acquired data sets roughly 60% of the data sets were unusab:.e'as a
result of excessive cloud cover. Of the remaining sets the electronic data quality was acceptabl¢ n
for processing.
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FIGURE 1. CITARS ERTS DATA SE:P DESIGN
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ASCS SUPPORT FOR CROP ID TECHNOLOGY ASSESSMENT OBSERVATION KEY

GROUND OBSERVATIONS SUMMARY 0 -NO COMMENT_ EARLY IN CYCLE:
' COUNTY DATE OBSERVER 1-BARE SOIL

TOWNSHIP RANGE SECTION (NW, NE, SE, SW): QUARTER 2 — FRESHLY CULTIVATED
3—NEWLY SEEDED

FIELD
ID
1

ACRES
(EST.)

2
CROP

3

HEIGHT
4

STAGE OF
MATURITY

5
ROW

DIRECTION WIDTH
6 7

GROUND
COVER

8
OBSERVATIONS

9`
4-VOLUNTEER 1
S-REPLANTED
6-REGROWTH

HOMOGENIETY:
11-THIN STAND'
12—DROWNED SPOTS
13-SKIP ROW PATTERN
14-STRIP FARMING

LATE IN CYCLE:
21-HARVESTED
22-PARTHARVESTED
23—GRAZING
24-DEFOLIATED
25-WIND ROWED
26-CHOPPED FOR SILAGE
27-TILLED AFTER HARVEST

STRESS FACTORS:
31 —DROUGHT DAMAGE
32-EXTREMELY WEEDY
33— PLANT DISEASE
34-NUTRIENT DEFICIENCY'
35-HAIL DAMAGE
36-LODGING
37 — INSECT DAMAGE

SURFACE MOISTURE: a
41-DRY
42-MOIST
43—WET r

ROW DIRECTION KEY— COLUMN 6 'GROUND COVER KEY-COLUMN 8 COMMENTS: 44-STANDING WATER
0 - NO ROWS 0 0-57 45-IRRIGATING
1- N- S

2
1— 5-20/ OTHER:

3-NW  W SE 2-20-50%
3 - 50-80/

51
4 SW-NE 4 -80-1001/.5 —CONTOUR

,

FIGURE 2. ASCS GROUND OBSERVATION SUMARY FORM FOR CROP IDD,14TIFICATION AND CONDITION
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FIT-TIRE u . Comparison of original and geometrically corrected :ind rotated FRTS-1
MSS digital imagery. Upper image is the original. :over imaage is skew
and scale corrected and rotated to Nbrth. :tale iv such that when this
data is printed on an 3 line per inch, 10 column per inch computer lire
printer, the resulting scale will be approximately 1:21+,000.
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TABLE 1. SUMMARY OF ASCS IDENTIFIED QUARTER SECTIONS

COUNTY CORN SOY WHEAT OTHER TOTAL
ACRES 149b 13 36 620 3550 n i

Lee NO. FIELDS 42 31, 2 34 160
AVG. SIZE 35.6 26.2 18.0 18.2 22.1 R
ACRES 1239 1073 39 --5T9— 29 9

Livingston NO. FIELDS 33 27 2 33 87
34.1AVG. SIZE' 37.5 39.7 19.5 17.2

ACRES 733 2 7 1 135 3193
Fayette NO. FIELDS 37 11 26 92 - 217

AVG. SIZE 19.8 26.0 16.0 14.7 14.7
ACRES 1836 510 38 954 3753 x

White NO. FIELDS 42 13 2 41 146"
AVG. SIZE 43.7 39.2 19.0 23.3 25.7 ;F

- ACRES 1888 540 323 753 3

Shelby NO. FIELDS 71 24 15 61
'

189
AVG. SIZE 26.5_ 22.5 21.5 12.3 19.3 a
ACRES 831 618 63 qb6 2757

Huntington NO. FIELDS 39
AVG. SIZE 21.2

25
24.7

6
10:4

54
18.3

148
18.6

j l
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Table 2. Percent Cloud Cover over CITARS Test Sites (luring ERTS Passes.

Date 
Segment Passe June June July August August September

8-12 26-30 14-18 1:5 19-23 6-10

Huntington.Co., 1 A X X X X k
Indiana 2 A X A X A X

' Shelby Co., 1: A X B X C B
Indiana 2 X X X X X X

White Co., 1 A X X X X X
Indiana 2 X X_ X X A C

Livingston Co., 1 A X B B C X
Illinois 2 X „C X. X Xi
Fayette Co., 1 A X A X A X

' Illinoisi 2 A A A X X X

Lee -Co .. 1 X X B X, X X
111inois 2 X X A. A X X

1
Percent 'Cloud Cover. *Segments are located.in overlap ar,eaa
A 0 - 5 between ERTS passes on successive days -a
B 6 - 15
C;16 -30

i

f

X '31 - 100

t

t

i
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Table 3. RMS Error of Spatially Registered Multi-temporal
ERTS Data. a,

i

ErrorNumber RMS
Segment Period Checkpoints Lines Columns

Iiuntington; 1 30 .44 .36
i 3 27 .31 .39
I 7 51 .30 .43

IShelby 3 23 .63 .38

6 43 .30 .47
7 59 .31 .43

' White
5 61 .32 .39

( 6 16 .28 .14

Livingston 32 31
3

. .37
4 9 .16 .87'

Fayette 1 41 .39 .33
252 .37 .293 

53 .44: .34
5 19 .57 .39 3

Lee 3 100 .34 .58
- 4 84 .32 .41
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