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Abstract

The recent development of more sophisticated remote sensing systems enables the measurement of
radiation in many more spectral intervals than previous possible. An example of this technology is
the AVIRIS system, which collects image data in 220 bands. The increased dimensionality of such
hyperspectral data greatly enhances the data information content but provides a challenge to the
current techniques for analyzing such data.

Human experience in three dimensional space tends to mislead one’s intuition of geometrical and
statistical properties in high dimensional space, properties which must guide our choices in the data
analysis process. Using Euclidean and Cartesian geometry, in this paper high dimensional space
properties are investigated and their implication for high dimensional data and its analysis is studied
in order to illuminate the differences between conventional spaces and hyperdimensional space.

I. Introduction

The complexity of dimensionality has been known for more than three decades, and its impact
varies from one field to another. In combinatorial optimization over many dimensions, it is seen as
an exponential growth of the computational effort with the number of dimensions. In statistics, it
manifests itself as a problem with parameter or density estimation due to the paucity of data. The
negative effect of this paucity results from some geometrical, statistical and asymptotical properties
of high dimensional feature space. These characteristics exhibit surprising behavior of data in
higher dimensions.

                                                
1 Work reported herein was funded in part by NASA Grant NAGW-3924.
2 Corresponding author.
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There are many assumptions that we make about characteristics of lower dimensional spaces based
on our experience in three dimensional Euclidean space. There is a conceptual barrier that makes it
difficult to have proper intuition of the properties of high dimensional space and its consequences
in high dimensional data behavior. Most of the assumptions that are important for statistical
purposes we tend to relate to our three dimensional space intuition, for example, as to where the
concentration of volume is of such figures as cubes, spheres, and ellipsoids or where the data
concentration is in known density function families such as normal and uniform. Other important
perceptions that are relevant for statistical analysis are, for example, how the diagonals relate to the
coordinates, the number of labeled samples required for supervised classification, the assumption
of normality in data, and the importance of mean and covariance difference in the process of
discrimination among different statistical classes. In the next section some characteristics of high
dimensional space will be studied, and their impact in supervised classification data analysis will be
discussed. Most of these properties do not fit our experience in three dimensional Euclidean space
as mentioned before.

II. Geometrical, Statistical and Asymptotical Properties

In this section we illustrate some unusual or unexpected hyperspace characteristics including a
proof and discussion. These illustrations are intended to show that higher dimensional space is
quite different from the three dimensional space with which we are familiar.

As dimensionality increases:

A. The volume of a hypercube concentrates in the corners [15].

It has been shown [9] that the volume of the hypersphere of radius r and dimension d is given by
the equation:

Vs r( ) =  volume of a hypersphere =
2r d

d

π
d

2

Γ d
2

 
 

 
 

(1)

and that the volume of a hypercube in [-r, r]d is given by the equation:

V c r( ) =  volume of a hypercube = 2r( )d
(2)

The fraction of the volume of a hypersphere inscribed in a hypercube is:

f d1 =
Vs (r)
VC (r) = π

d
2

d2d−1 Γ d
2( ) (3)

where d is the number of dimensions. We see in Figure 1 how fd1 decreases as the dimensionality
increases.
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Figure 1. Fractional volume of a hypersphere inscribed in a hypercube as a

function of dimensionality.

Note that lim d→∞ f d1 = 0  which implies that the volume of the hypercube is increasingly
concentrated in the corners as d increases.

B. The volume of a hypersphere concentrates in an outside shell [15, 16].

The fraction of the volume in a shell defined by a sphere of radius r-ε inscribed inside a sphere of
radius r is:

f d2 =
V d(r) − Vd (r −ε )

V d(r) = rd − (r −ε )d

rd =1 − 1− ε
r

 
 

 
 

d

In Figure 2 we can observe, for the case ε = r/5, how as the dimension increases the volume
concentrates in the outside shell.
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Figure 2. Volume of a hypersphere contained in the outside shell as a function

of dimensionality for ε = r/5.

Note that lim d→∞ f d2 = 1,∀ε > 0 , implying that  most of the volume of a hypersphere is
concentrated in an outside shell.

C. The volume of a hyperellipsoid concentrates in an outside shell.

Here the previous result will be generalized to a hyperellipsoid. Let the equation of a hyperellipsoid
in d dimensions be written as:

  

X1
2

λ1
2 +

X2
2

λ2
2 +L+

Xd
2

λd
2 =1

The volume is calculated by the equation [9]:

V e λ i( ) =
2 λi

i=1

d

∏
d

π
d
2

Γ d
2

 
 

 
 

The volume of a hyperellipsoid defined by the equation:

  

X1
2

(λ1 −δ 1)
2 +

X2
2

(λ2 −δ 2 )2 +L+
Xd

2

(λd −δ d )2 = 1

where 0 ≤δ i < λi ,∀i , is calculated by:
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V e λ i −δ i( ) =
2 (λi −δ i)

i =1

d

∏
d

π
d
2

Γ d
2

 
 

 
 

The fraction of the volume of V e(λ i −δ i)  inscribed in the volume V e(λ i)  is:

f d3 =
λi −δ i( )

i =1

d

∏

λ i
i =1

d

∏
= 1−

δi

λi

 
 

 
 i =1

d

∏

Let γ min = min
δ i

λ i
( ) , then

f d3 = 1 −
δi

λ i

 
 

 
 i =1

d

∏ ≤ 1− γmin( )
i =1

d

∏ = 1 −γ min( )d

Using the fact that f d3 ≥ 0, it is concluded that lim
d→∞

fd3 = 0 .

The characteristics previously mentioned have two important consequences for high dimensional
data that appear immediately. The first one is that high dimensional space is mostly empty, which
implies that multivariate data in Rd is usually in a lower dimensional structure. As a consequence
high dimensional data can be projected to a lower dimensional subspace without losing significant
information in terms of separability among the different statistical classes. The second consequence
of the foregoing, is that normally distributed data will have a tendency to concentrate in the tails;
similarly, uniformly distributed data will be more likely to be collected in the corners, making
density estimation more difficult. Local neighborhoods are almost surely empty, requiring the
bandwidth of estimation to be large and producing the effect of losing detailed density estimation.

Support for this tendency can be found in the statistical behavior of normally and uniformly
distributed multivariate data at high dimensionality. It is expected that as the dimensionality
increases the data will concentrate in an outside shell. As the number of dimensions increases that
shell will increase its distance from the origin as well.

To show this specific multivariate data behavior, an experiment was developed. Multivariate
normal and uniform distributed data were generated. The normal and uniform variables are
independent identically distributed samples from the distributions N(0,1) and U(-1,1),
respectively. Figures 3 and 4 illustrate the histograms of random variables, the distance from the
zero coordinate and its square, that are functions of normal or uniform vectors for different number
of dimensions.
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Figure 3. Histograms of functions of Normally distributed random variables.
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Figure 4. Histograms of functions of Uniformly distributed random variables.
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These experiments show how the means and the standard deviations are functions of the number of
dimensions. As the dimensionality increases the data concentrates in an outside shell. The mean
and standard deviation of two random variables

r = x i

2

i =1

d

∑     and     R = x i

2

i =1

d

∑
are computed. These variables are the distance and the square of the Euclidean distance of the
random vectors. The values of the parameters and the histograms of the random variables are
shown in Figure 3 and 4 for normal and uniform distribution of the data. As the dimensionality
increases the distance from the zero coordinate of both random variables increases as well. These
results show that the data have a tendency to concentrate in an outside shell and how the shell's
distance from the zero coordinate increases with the increment of the number of dimensions.

 Note that R = x i

2

i =1

d

∑  has a chi-square distribution with d degrees of freedom when the xi' s are

samples from the N(0,1) distribution. The mean and variance of R are: E(R) = d, Var(R) = 2d [14,
pp. 62-64]. This conclusion supports the previous thesis.

Under these circumstances it would be difficult to implement any density estimation procedure and
to obtain accurate results. Generally nonparametric approaches will have even greater problems
with high dimensional data.

D. The diagonals are nearly orthogonal to all coordinate axis [15, pp. 27-31] [16].

The cosine of the angle between any diagonal vector and a Euclidean coordinate axis is:

cos θd( ) =± 1
d

 ,

Figure 5 illustrates how the angle between the diagonal and the coordinates, θd , approaches 90o

with increases in dimensionality.

Note that lim d→∞ cos θd( ) = 0 , which implies that in high dimensional space the diagonals have a
tendency to become orthogonal to the Euclidean coordinates.

This result is important because the projection of any cluster onto any diagonal, e.g., by averaging
features, could destroy information contained in multispectral data. In order to explain this, let
adiag be any diagonal in a d dimensional space. Let aci be the ith coordinate of that space. Any
point in the space can be represented by the form:

P = αi
i=1

d

∑ aci

The projection of P over adiag, Pdiag is:

Pdiag = PTadiag( )adiag = α i
i =1

d

∑ ac i
T ad( )ad

But as d increases ac i
Tadiag ≈ 0 which implies that Pdiag ≈ 0 . As a consequence Pdiag is being

projected to the zero coordinate, losing information about its location in the d dimensional space.
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Figure 5. Angle (in degrees) between a diagonal and a Euclidean coordinate vs. dimensionality.

E. The required number of labeled samples for supervised classification increases as a function of
dimensionality.

Fukunaga [2] proves that the required number of training samples is linearly related to the
dimensionality for a linear classifier and to the square of the dimensionality for a quadratic
classifier. That fact is very relevant, especially since experiments have demonstrated that there are
circumstances where second order statistics are more relevant than first order statistics in
discriminating among classes in high dimensional data [13]. In terms of nonparametric classifiers
the situation is even more severe. It has been estimated that as the number of dimensions increases,
the sample size needs to increase exponentially in order to have an effective estimate of multivariate
densities [15, pp. 208-212] [5].

It is reasonable to expect that high dimensional data contains more information in the sense of a
capability to detect more classes with more accuracy. At the same time the above characteristics tell
us that current techniques, which are usually based on computations at full dimensionality, may not
deliver this advantage unless the available labeled data is substantial. This was proven by [4] who
proved that with a limited number of training samples there is a penalty in classification accuracy as
the number of features increases beyond some point.

F. For most high dimensional data sets', low linear projections have the tendency to be normal, or
a combination of normal distributions, as the dimension increases.

That is a significant characteristic of high dimensional data that is quite relevant to its analysis. It
has been proved [1, 3] that as the dimensionality tends to infinity, lower dimensional linear
projections will approach a normality model with probability approaching one (see Figure 6).
Normality in this case implies a normal or a combination of normal distributions.
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Figure 6. The tendency of lower dimensional projections to be normal.

Several experiments will illustrate this with simulated and real data. The procedure in these
experiments is to project the data from a high dimensional space to a one dimensional subspace.
We examine the behavior of the projected data as the number of dimensions in the original high
dimensional space increases from one to ten and finally to one hundred. The method of projecting
the data is to multiply it with a normal vector with random angles from the coordinates. A
histogram is used to observe the data distribution. A normal density function is plotted with the
histogram to compare the results to normal.

Figure 7 shows the case of generated data from a uniform distribution. As the number of
dimensions increases in the original space the projected data's histogram has a tendency to be
normal. Figure 8 shows the results of the same experiment with real AVIRIS data with one
soybeans class. Note that the results are similar to the generated data.
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Figure 7. Generated data: One class with uniform distribution.
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Figure 8. AVIRIS Multispectral data: One class, soybeans.

These results tempt us to expect that the data can be assumed to be a combination of normal
distributions in the projected subspace without any problem. Other experiments show that a
combination of normal distributions where each one represents a different statistical class could
collapse into one normal distribution. That will imply loss of information. Figures 9 and 10 show
the result of repeating the experiments for a two class problem. Both show the risk of damaging
data projecting it into one normal distribution loosing separability and information. In the case of
Figure 10 we have real AVIRIS data with a corn and a soybeans class.
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Figure 9. Generated data: Two classes with normal distributions.
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Figure 10. AVIRIS Multispectral data: Two classes, corn and soybeans.

In all the cases above we can see the advantage of developing an algorithm that will estimate the
projection directions that separate the explicitly defined classes, doing the computations in a lower
dimensional space. The vectors that it computes will separate the classes, and at the same time, the
explicitly defined classes will behave asymptotically more like a normal distribution. The
assumption of normality will be better grounded in the projected subspace than in full
dimensionality.

III. Asymptotical first and second order statistics properties

Lee and Landgrebe [13] performed an experiment where they classified some high dimensional
data in order to see the relative role that first and second order statistics played. Here a more
general basis will be given for the role of the first and second order statistics in hyperspectral data
where adjacent bands could be correlated in any way. The results will be based on the asymptotic
behavior of high dimensional data. This will aid in the understanding of the conditions required for
the predominance of either first order or second order statistics in the discrimination among the
statistical classes in high dimensional space.

It is reasonable to assume that, as the number of features increases, the potential information
content in multispectral data increases as well. In supervised classification that increment of
information is translated to the number of classes and their separability. We will use Bhattacharyya
distance here as the measure of separability. It provides a bound of classification accuracy taking
into account first and second order statistics. Bhattacharyya distance is the sum of two
components, one based primarily on mean differences and the other based on covariance
differences.

The Bhattacharyya distance under the assumption of normality is computed by the equation:

µ =
1
8

M2 − M1( )T Σ1 + Σ2
2

 
  

 
  

−1

M2 − M1( ) +
1
2

ln

Σ1 + Σ2
2

Σ1 Σ2

 

 

 
 
 

 

 

 
 
 
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We will denote µ = µ M + µ C where µ M, the first term on the right, is the mean difference
component and µC, the second term on the right, is the covariance difference component.

In order to see how Bhattacharyya distance and its mean and covariance components can aid in the
understanding of the role of first and second order statistics, two experiments are presented. The
first one has conditions where second order statistics are more relevant in discriminating among the
classes. The second experiment has conditions for the predominance of first order statistics.

Experiment 1

In this experiment data are generated for two classes. Both classes belong to normal distributions
with different means and covariances. Each class has 500 points. Their respective parameters are:
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The data is classified by three classifiers, the ML classifier, the ML (ML Cov) classifier
constrained to use only covariance difference, and the minimum distance classifier (Min Dist). This
enables us to have similar conditions to Lee and Landgrebe's experiment. The results is shown in
Figure 11.
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Figure 11. Performance comparison of Gaussian ML, Gaussian ML with zero
mean data, and Minimum Distance classifier. Two generated classes.

The results resemble Lee and Landgrebe's results. In order to have an understanding of the roles
played by first and second order statistics the mean (Bhatt Mean) and covariance (Bhatt Cov)
components of Bhattacharyya distance and its sum were computed and are shown in Figure 12.
Their ratio of Bhatt Mean / Bhatt Cov was calculated and shown in Figure 13.
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Figure 12. Bhattacharyya distance and its mean and covariance components.
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Figure 13. Ratio of Bhattacharyya distance mean component over the covariance

component.

Both figures show that there is a relationship between second order statistics predominance and
Bhatt Cov relevance. As the number of dimensions increases the ratio Bhatt Mean / Bhatt Cov
decreases significantly and the ML Cov classifier becomes more effective than Min Dist. That
shows that if as the dimensionality increases the ratio Bhatt Mean / Bhatt Cov decreases then
second order statistics are more relevant in high dimensional data even when that could not be the
case in low dimensionality.

Experiment 2

This experiment is similar to the previous one. The difference is in the fact that first order statistics
are predominant in this case. The parameters of the two statistical classes are:

M1 = 0 0 0 0 0 0 0 0 0 0[ ]T

M 2 = 1.5 1 .5 0 0 0 0 0 0 0[ ]T

Σ1 =

1 0
1

1

1

1

1

1

1

1

0 1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

, 

Σ2 =

2.5 0
2

1

1

1

1

1

1

1

0 1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

The classification results are shown in Figure 14. Observe that Min Dist classifier becomes more
accurate than Min Cov after six dimensions.



Supervised Classification in High Dimensional Space

Jimenez & Landgrebe -   16   - April 8, 1999

*

*
* * * * * * * *

* * * * *

+
+

+ +
+ + +

+ + + + + + + +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
60

65

70

75

80

85

90

95

100

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of Features

ML

* ML (Cov)

+ Min Dist

Figure 14. Performance comparison of Gaussian ML, Gaussian ML with zero
mean data, and Minimum Distance classifier for two generated
classes.

The mean (Bhatt Mean) and covariance (Bhatt Cov) components of Bhattacharyya distance and
their sum were computed and are shown in Figure 15. Their ratio of Bhatt Cov / Bhatt Mean was
calculated and shown in Figure 16. As the number of dimensions increases the ratio Bhatt Cov /
Bhatt Mean decreases showing that first order statistics are more relevant in the classification of
data.
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Figure 16. Ratio of Bhattacharyya distance covariance component over the mean

component.

The previous results show how the predominance of the mean or covariance Bhattacharyya
distance components relates directly with first or second order statistics relevance in terms of
classification accuracy. In the present work both components will be computed analytically and
used to calculate upper bounds that will be functions of the number of dimensions. These bounds
will be calculated for the case where the mean difference plays a predominant role and for the case
where the covariance difference became predominant. Then the limits of the number of dimensions
increment will be taken enabling one to understand the behavior of high dimensional data under
such circumstances. That is the reason for dividing all the calculations into two cases: covariance
predominance and mean predominance.

Case 1: Covariance difference as the dominant role in statistical class
separability.

Assume a two class problem where without loss of generality the first and second order statistics
are:

  
Σ1 =

σ
2

0

O

0 σ 2

 

 
 

 

 
  and 

  

Σ2 =
α1σ 2

0

O

0 αdσ 2

 

 
 

 

 
 ,

  M2 − M1( ) = ε1 L εk
ˆ ε k +1 L ˆ ε d[ ]T

Observe that every two covariance matrices can be simultaneously diagonalized to obtain the form
of previous covariance matrices [2]. That will enable us to have less complicated calculations
without losing generality.

Under the conditions that:

(a) αi ∈ α min ,αmax( ) , where αmin > 0 , and at least there exist an αi  such that αi ≠1.

(b) εmax =
∀i ∈(k +1,d)
max ˆ ε i( )  be such that εmax ≈ 0 .

(c) k = f (d) ∋
d→∞
lim

k

d
= 0, (as an example ∀λ > 0,d = k(1+ λ ) )
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(d) ε i
2 ∈(Emin , Emax ),∀i ∈ 1,k( )  and Emax <∞  (to see the validity of this last assumption,

see Appendix B).

Then as d increases, the covariance contribution will dominate the Bhattacharyya distance.

Proof:

The means contribution to the Bhattacharyya distance can be written as (see Appendix A)

µM =
1

8

ε i
2

σ i
2
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d
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2
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d
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Observe that αmin  minimizes (1+α i ),∀i . Then

ˆ µ M =
k

4σ2 (1+ αmin )

1

k
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2

i =1

k

∑ 
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 
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k
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i =1
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∑ = Emax  with the consequence that

ˆ µ M ≤ µM max =
k

4σ2 (1+ αmin )
Emax +

d − k

4σ 2(1+ α min)
ε max

2

The covariances contribution to the Bhattacharyya distance can be written as (see Appendix A):

µC =
1

2
ln

σ2 + αiσ
2

2σ 2 αi
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∑

Let γ  be the argument that minimizes 
1 +α i

2 αi

,∀i , subject to the constrain that γ ≠1. That argument

must exist, based on the fact that αi ∈ α min ,αmax( ) , where αmin > 0  and that ∃i ∋ αi ≠ 1. Then

µC ≥ µC min =
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2 γ
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Define a bound as  Φ(αi ,ε i , d) =
µM

µC

≤
µM max

µC min

= Φmax(d)  where:
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The quantity Φmax(d) is an upper bound of Φ αi ,ε i ,d( )  and it can be rewritten as
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Φmax(d) =

k

d
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d
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Finally taking the limit of d

d →∞
lim Φmax (d) =

εmax
2

2σ2 (1+ αmin )ln
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2 γ
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By the assumption that εmax ≈ 0 , then 
d →∞
lim Φmax (d) ≈ 0 . As a consequence 

d →∞
lim Φ(αi ,ε i , d) ≈ 0

In conclusion, second order statistics and the hyperellipsoids shapes will play a more important
role in discriminating among the classes than the means and the hyperellipsoids positions relative to
one another.

Discussion

This proof only requires that αmax −α min > 0  (differences in variances). It does not depend on how

much this difference should be. The quantity max ε i  can be as large as the physical devices
permit. Also it only requires that k = f (d) ∋

d→∞
lim (k d) = 0 , but it does not constrain the rate. In

other words, in low dimensional data the differences in covariance can be small and k ≈ d  and in
terms of the mean such difference can be very large. In that case first order statistics will be more
relevant in providing information than second order statistics in such low dimensional subspaces.
But if as the dimension increases, the rate at which covariance information (even a small amount of
information in low dimensional subspace) grows faster (nothing is said about how much faster)
than the rate at which mean information grows (even large amounts of differences) then there will
be a point where the total covariances information plays a more important role in discriminating
among the classes than the means information.

Case 2: Mean differences as dominant in statistical class separability.

Assume a two class problem, where without loss of generality, the first and second order statistics
are:
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,

  M2 − M1( ) = ε1 L εd[ ]T



Supervised Classification in High Dimensional Space

Jimenez & Landgrebe -   20   - April 8, 1999

Under the assumptions that:
(a)αi ∈(α min ,αmax ) where 0 < α min < α max <∞ ,∀i ∈(1,k) .
(b) ˆ α i ∈(1− δ ,1 + δ),∀i ∈(k +1,d) where δ ≈ 0.

(c)ε i
2 ≥ Emin > 0,∀i ∈(1,d).

(d)
d →∞
lim k d( ) = 0 , (as an example ∀λ > 0,d = k(1+ λ ) ).

As d increases, the means differences will dominate the Bhattacharyya distance.

Proof:

The means contribution to the Bhattacharyya distance can be written as (see Appendix A)
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Note that the maximum of 1 + ˆ α i( ) = (2 +δ ) and that the maximum of (1+α i ) = (1+α max ).
As a consequence

µM ≥ ˆ µ M =
k

4σ 2 (1+ αmax )

1

k
ε i

2

i=1

k

∑ 
  

 
  +

d − k

4σ 2(2 + δ )

1

d − k
ε i

2

i= k +1

d

∑ 
  

 
  

Observe that Emin ≤
1

m
ε i

2

i =1

m

∑ ,∀m . This implies that:

ˆ µ M ≥ µM min =
Emin

4σ 2

k

1 + αmax

+
d − k

2 + δ
 

  
 

  

The covariance's contribution to the Bhattacharyya distance can be written as (see Appendix A):
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Let α  be the argument that maximizes (1+ αi ) 2 αi( ) ,∀i ∈(1, k). Let ˆ α  be the argument that

maximize (1+ ˆ α i ) 2 ˆ α i( ) ,∀i ∈(k + 1,d), where ˆ α ∈(1−δ ,1 +δ ) . Then
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Define a bound P(α i ,ε i ,d) =
µC

µM

≤
µC max

µM min

= Pmax(d)

Substituting equations, the upper bound Pmax(d)  will be calculated as:
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Taking the limit as d tends to infinity:

d →∞
lim Pmax(d) =
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ln
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Observe that because δ ≈ 0 then ˆ α ≈1 and 
d →∞
lim Pmax(d) ≈ 0. As a consequence

d →∞
lim P α i ,ε i ,d( ) ≈ 0 .

In conclusion then, for the conditions specified in this case, first order statistics and the
hyperellipsoids positions relative to one another will play a more important role than second order
statistics and the hyperellipsoid shape.

Discussion

This proof only requires that ε i
2 ≥ Emin > 0,∀i ∈(1,d). It does not require a limitation on how large

Emin should be. αmax  could be as large as the physical devises will allow. Also it requires that

d →∞
lim k d( ) = 0 , but it does not constrain how the limit should approach zero. Even if in low

dimensional data, where k ≈ d , the covariance difference is very large and dominates over the
means, if as the dimensionality increases, the rate at which means differences (even small
differences) grows faster than the covariance one, then there will be a point where the total mean
differences will provide more information for classes discrimination than covariances differences.

IV. High dimensional characteristics implications for supervised classification

Based on the characteristics of high dimensional data that the volume of hypercubes have a
tendency to concentrates in the corners, and in a hyperellipsoid in an outside shell, it is apparent
that high dimensional space is mostly empty, and multivariate data is usually in a lower
dimensional structure. As a consequence it is possible to reduce the dimensionality without losing
significant information and separability. Due to the difficulties of density estimation in
nonparametric approaches, a parametric version of data analysis algorithms maybe expected to
provide better performance where only limited numbers of labeled samples are available to provide
the needed a priori information.

The increased number of labeled samples required for supervised classification as the
dimensionality increases presents a problem to current feature extraction algorithms where
computation is done at full dimensionality, e.g. Principal Components, Discriminant Analysis and
Decision Boundary Feature Extraction [12]. A new method is required that, instead of doing the
computation at full dimensionality, computes in a lower dimensional subspace. Performing the
computation in a lower dimensional subspace that is a result of a linear projection from the original
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high dimensional space will make the assumption of normality better grounded in reality, giving a
better parameter estimation, and better classification accuracy.

A preprocessing method of high dimensional data based on such characteristics has been developed
based on a technique called Projection Pursuit. The preprocessing method is called Parametric
Projection Pursuit [6, 7].

Parametric Projection Pursuit reduces the dimensionality of the data maintaining as much
information as possible by optimizing a Projection Index that is a measure of separability. The
projection index that is used is the minimum Bhattacharyya distance among the classes, taking in
consideration first and second order characteristics. The calculation is performed in the lower
dimensional subspace where the data is to be projected. Such preprocessing is used before a
feature extraction algorithm and classification process, as shown in Figure 17.

Class Conditioned
  Pre-processing

High Dimensional Data

Classification/AnalysisFeature Extraction

Dimension Reduced

Dimension Further Reduced

Sample Label 
  Information

Φ
Γ Ψ Ω

Figure 17. Classification of high dimensional data including reprocessing of high dimensional data.

In Figure 17 the different feature spaces have been named with Greek letters in order to avoid
confusion. Φ  is the original high dimensional space. Γ  is the subspace resulting from a class-
conditional linear projection from Φ  using a preprocessing algorithm, e.g. Parametric Projection
Pursuit. Ψ  is the result of a feature extraction method. Ψ  could be projected directly from Φ  or,
if preprocessing is used, it is projected from Γ . Finally Ω  is a one dimensional space that is a
result of classification of data from Ψ  space. The intention is to use Parametric Projection Pursuit
[6, 7, 8] in the role of Class Conditional Preprocessing, and a suitable class conditional feature
extraction method such as Decision Boundary Feature Extraction [12] following this. Note that the
three procedures, preprocessing, feature extraction and classification all use labeled samples as a
priori information.

V. Experiment

In order to see the relevance of high dimensional geometrical and statistical properties for high
dimensional data analysis purposes two experiments were designed. In both experiments a
comparison is provided between high dimensional feature extraction and the method that uses a
Parametric Projection Pursuit based preprocessing to reduce the dimensionality before a feature
extraction method is used.

The multispectral data used in these experiments are a segment of AVIRIS data taken of NW
Indiana's Indian Pine test site. From the original 220 spectral channels 200 were used, discarding
the atmospheric absorption bands.
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Experiment 1

In the present experiment, eight classes were defined. The total number of training samples is 1790
and the total number of test samples is 1630. The classification task for several classes in this and
the next experiment are particularly difficult ones. The data were collected early in the growing
season when the canopy of both corn and soybeans covered only about 5% of the area. There were
three levels of tillage, no till in which there would be a great deal of residue on the soil surface
from last year’s crop, minimum till leaving a moderate amount of residue, and clean till for which
there would be little or no residue. Add to this the normal amount of spectral variability due to the
varying soil types present in the fields. Thus the 95% background would be highly variable, as
compared to the relatively small difference in spectral response between corn and soybeans.

Table 1. Classes and Samples for the Eight Classes

Classes Training Samples Test Samples
Corn-min 229 232
Corn-notill 232 222

Soybean-notill 221 217
Soybean-min 236 262
Grass/Trees 227 216

Grass/Pasture 223 103
Woods 215 240

Hay-windrowed 207 138
Total 1790 1630

Four types of dimension reduction algorithms were used. The first is Decision Boundary Feature
Extraction (DB 200-22) to reduce the dimensionality from 200 bands to 22 features. The second is
Discriminant Analysis (DA 200-22) reducing the dimensionality again from 200 to 22. Both of
these procedures perform a direct linear projection from Φ  to Ψ . In the third and fourth methods
Parametric Projection Pursuit was used to reduce the dimensionality from 200 to 22. These
methods linearly project the data from Φ  to Γ  subspace. After that preprocessing method was
used, a feature extraction algorithm follows in order to project the data once more from Γ  to the Ψ
subspace. Decision Boundary or Discriminant Analysis, was used (PPDB 22 and PPDA 22) with
the advantages of doing the computation with the same number of training samples in less number
of dimensions.

Four types of classifiers were used. The first one is ML classifier, the second is ML with 2%
threshold. The third classifier is a spectral-spatial classifier named ECHO [10, 11] and the fourth is
ECHO with a 2% threshold. In the second and the fourth, a threshold was applied to the standard
classifiers whereby in case of true normal distributions of the data, 2% of the least likely points
will be thresholded. These 2% thresholds provide one indication of how well the data fit the
normal model. All of these classifiers performed a projection from Ψ  to the resulted space Ω .

The results are shown in Figure 18. The methods that use Parametric Projection Pursuit as a
preprocessing method, in order to use Γ  as a stage between Φ  and Ψ , performed better in terms
of classification accuracy than directly using feature extraction at full dimensionality in Φ  space
(200 bands). That is because Parametric Projection Pursuit takes into consideration high
dimensional characteristics. Using feature extraction methods at full dimensionality can harm the
data and makes difficult the extraction of information.
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Figure 18. Test fields classification accuracy for four feature extraction methods and four
classifiers.

Observe how significantly the performance of classifiers with 2% thresholds improves when using
Parametric Projection Pursuit. The reason is that making the computation at low dimensional
space, Γ , the assumption of normality has greater validity. In the case of having less samples and
classes Discriminant Analysis will be significantly affected by the high dimensional geometrical
and statistical characteristics. The next experiment will show this difficulty.

Experiment 2

In this experiment four classes were defined: corn, corn-notill, soybean-min, soybean-notill. The
total number of training samples is 179 (less than the number of bands used) and the total number
of test samples is 3501.

Table 2. Classes and Samples for the Four Classes

Classes Training Samples Test Samples
Corn-notill 52 620

Soybean-notill 44 737
Soybean-min 61 1910

Corn 22 234
Total 179 3501

Two types of dimensional reduction algorithms were used. The first is Discriminant Analysis (DA
200-3) that reduces the dimensionality from 200 to 3. It directly projects the data from Φ  space to
Ψ  subspace. In the second method Parametric Projection Pursuit was used to reduce the
dimensionality from 200 to 22. It projected the data from the Φ  space to the Γ  subspace. After that
preprocessing method was used, Discriminant Analysis was used (PPDA 200-3) in order to
linearly project the data from the Γ  subspace to the Ψ  subspace. As mentioned before, this has the
advantage of doing the computation with the same number of training samples but at lower
dimensionality. In both cases the best three features were used for classification purposes. The
same four types of classifiers were used here as in the first experiment.

The results are shown in Figure 19. Parametric Projection Pursuit followed by Discriminant
Analysis at lower dimensionality performed substantially better than using Discriminant Analysis at
full dimensionality. The application of a threshold to Discriminant Analysis at full dimensionality
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reduced its classification accuracy more severely than when a threshold was applied in the case
where Projection Pursuit was first applied, followed by Discriminant Analysis at lower
dimensionality. This is due to Parametric Projection Pursuit preprocessing being better fitted to the
assumption of normality.
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Figure 19. Test fields classification accuracy for two feature extraction methods and four classifiers.

We note in passing that Discriminant Analysis Feature Extraction provides predictably optimal
results only for a number of features less than the number of classes. Thus if one has a problem in
which the number of classes is not large, but the difficulty of separation requires a larger number
of features than the number of classes to achieve satisfactory performance, Decision Boundary
Feature Extraction would be expected to provide the better performance of the two.

VI. Conclusion

We have shown that the characteristics of high dimensional space are quite different from those of
the three dimensional space we are used to. This has significant implications in the context of
supervised classification techniques. In terms of class parameter estimation, a large number of
samples are required to make an adequately precise estimation, and the problem grows as the
dimensionality increases. In a nonparametric approach, the number of samples required to
satisfactorily estimate a class density is even greater. Both kinds of estimations confront the
problem of high dimensional space characteristics.

The present work is in the context of multispectral remote sensing, where commonly, training sets
by which to estimate class statistics are quite small. As a consequence, it is desirable to project the
data to a lower dimensional space where the effects of high-dimensional geometric characteristics
and the Hughes phenomena are reduced. Commonly used techniques such as Principal
Components, Discriminant Analysis, and Decision Boundary Feature Extraction have the
disadvantage of requiring computations at full dimensionality in which case the required number of
labeled samples is very large. The procedures use estimated statistics thus are not necessarily
accurate, leading to reduced classifier performance. Another problem is the assumption of
normality. Nothing guarantees that at full dimensionality, that model fits well.

It has been shown that high dimensional spaces are mostly empty, indicating that the data structure
involved exists primarily in a subspace. The problem is which subspace it is to be found in is
situation-specific. Thus the goal is to reduce the dimensionality of the data to the right subspace
without losing separability information. In this paper we have described a procedure to make the
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computations in a lower dimensional space, i.e. in Γ  instead of Φ , where the projected data
produce a maximally separable structure and which, in turn, avoids the problem of dimensionality
in the face of the limited number of training samples. Further, a linear projection to a lower
dimensional subspace will make the assumption of normality in the Γ  subspace more suitable than
in the original Φ . In such a lower dimensional subspace any method used for feature extraction
could be used before a final classification of data, often those that have the assumption of
normality.

More details of the information presented in this paper are contained in [8].

This work is part of a longer effort to find effective ways to analyze high dimensional multispectral
remote sensing data. As a perhaps unusual feature of this research program we are following the
practice of making available new algorithms resulting from this work in an application program for
personal computers. This application program, called MultiSpec©, is made available at no cost to
persons interested via the world wide web. The URL for this site is
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/. The projection pursuit algorithm described in this
paper is already implemented in MultiSpec, along with Decision Boundary Feature Extraction,
Discriminate Analysis Feature Extraction,  and a number of other algorithms related to
classification of multispectral and hyperspectral image data. Thus it is possible for interested users
to try out these algorithms on their own desktop computers.

Appendix A

The Bhattacharyya distance is the sum of the contribution of the difference of the means and the
difference of the covariances. µ = µM +µ C , where

µM = 1
8 M2 − M1( )T

Σ −1 M2 − M1( ) , Σ =
Σ1 +Σ 2

2
 
 

 
 

and

µC = 1
2 ln

Σ 

Σ1 Σ2

 

 
 

 

 
 

For the two class problem in a d-dimensional space assume, without generality, the following.

   M2 − M1( ) = ε1 L εd[ ]T
and 
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For that case, the computation of the mean and covariances components of Bhattacharyya distance
are:

µM =
1

8

ε i
2

σ i
2

i =1

d

∑

µC =
1

2
ln

σ1i
2 + σ2i

2

2σ1iσ2i

 
 
  

 
 

i =1

d

∏
 

 
  

 
 =

1

2
ln

i =1

d

∑ σ1i
2 + σ2i

2

2σ1iσ2i

 
 
  

 
 

Appendix B

The amount of energy that real sensors receive and their bandwidth is finite. As a consequence we
can model ε i

2  as a random variable that is defined over the range ε i
2 ∈(E min ,E max ) such that

Emax <∞ ,∀i .

Under the assumption that the E(ε i
2 )  exist then:

Emin ≤ E ε i
2( ) ≤ Emax

Var(ε i
2 ) = E(εi

4) − E2 (ε i
2 ) ≤ Emax

2 − Emin
2

Both are finite quantities.
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