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ABSTRACT

A linear shift-invariant image preprocessing technique is
examined which requires‘no specific knowledge of any parameter
of the original image and which is sufficiently general to allow
the effective radius of the composite imaging system to be arbi-
trarily shaped and reduced, subject primarily to the noise power
constraint. In addition, the size of the point-spread function

of the preprocessing filter can be arbitrarily controlled, thus
minimizing truncation errors.

iii



I. INTRODUCTION

The general problem of image processing has received ruch
attention within the last decade. The intense interest in this
area arises from the need for the highest possible image quality
in the increasing application of the many forms of imagery, from
X-rays in medicine to data collected from satellite-based multi-
spectral optical line scanners for monitoring earth resources, to
the solution of various related problems in many fields of science
and engineering, made feasible by recent improvements in digital
computer hardware. The general area of image processing may be
divided into three major categories: im;ge preprocessing, effi-
cient image coding, and pattern recognition. There are several
comprehensive tutorial surveys which cite the significant tech-
niques for handling problems in each of these categories and
which contain extensive references. (1, 12, 23)

Since no image collecting or imaging system will produce a
perfect replica of the original image, some further processing is
usually required. Image preprocessing deals primarily with the
problem of processing the output of an imaging system in such a
way that the significant parameters or features of the original
image are, in some sense, enhanced or restored. This processing
may be linear or nonlinear, shift-variant or invariant depending
upon the type of degradation produced by the imaging system.



II. STATEMENT OF PROBLEM

The purpose of this research is the development of a tech-
nique to reduce the effective aperture radius of multispectral
optical line scanners used for remote sensing of earth resources.
The data gathered from such systems is used principally for the
classification of individual resolution elements by pattern recog-
nition techniques. The accuracy of such classification techniques
is usually based upon the supposition that each resolution element
of the imaging system output exactly represents a sample of a
correspondingly located element of the original image. Because
of the finite aperture size of the scanner, which is not only a
function of the optics of the scanner but also the impulse response
of any analog signal conditioning or recording equipment, (14) a
two-dimensional spatial smearing or blurring of the original image
is produced. This type of imaging degradation essentially maps
many points from the original image into a single resolution ele-
ment. In other words, a single resolution element of the imaging
system output represents a two-dimensional weighted sum of many
points adjacent to the correspondingly located sample of the
original image. Thus, depending upon the density” and shape of
the aperture and the spatial and multispectral characteristics
of the original image, serious classification errors may result.
This smearing has been observed to seriously affect classification
accuracy within several aperature diameters of the boundaries of
data classes. In addition, the classification accuracy of any
topographical feature of approximately two aperture diameters or
less; for example, roads, streams, and buildings at an altitude
of 1.5 kilometers or more, is substantially reduced.

It is expected that a reduction of the aperture radius will
decouple the spatial correlation between adjacent resolution ele-

ments of the imaging system output, thus correcting each resolution



element so that it more accurately represents a single sample of
a correspondingly located element of the original image and not
a weighted sum of adjacent points. Consequently classification
accuracy of both small topographical features and in the bound-
ary areas of large data classes should be improved, as well as
overall spatial resolution of the imaging system output.

An analysis of the multispectral optical line scanner system (14)
indicates that the imaging system degradation could be assumed to

be linear shift-invariant.(zo' 23)

The proposed preprocessing
technique is based upon this assumption. The principle advantage

in making such an assumption was to reduce the cost of preprocessing.



III. COMPARISON OF PROPOSED TECHNIQUE TO EXISTING TECHNIQUES

Numerous techniques have been proposed for (2, 4, 5, 6, 9,

10, 15, 19, 22, 27)processinq linear shift-invariant degraded
images. The majority of these techniques require some knowledge

(23)

of the original image. For example, when the mean-square

error of the processed image is minimized, which incidently is

(23)

not a very effective performance criterion, the resulting

filter requires a knowledge of the power spectral density of the

(3, 11, 13, le 23) When precise knowledge of

original image.
the required parameter of the input signal is not known, the
resulting error produced by the processor may often negate any
possible image improvement. Such techniques must necessarily
require that a different processing filter be used for each
specific image class comprising images having similar "a priori"
statistics.

In view of the potentially large number of image classes
comprising the data processed at LARS, the cost of such a pre-
processing technique requiring a separate "matched" filter for
each specific image class would be prohibitive. The technique
examined in this research does not require specific information
about the original image. Thus a single processing filter for
all image classes would be réquiréd. However, it should be noted
that the resulting processing filter is suboptimal in the sense
that "a priori" statistics of the original image are ignored.

The fundamental objectives of this technique are similar to
(24) and Stuller. (25)
the basic image preprocessing system is shown in Figure 1. The

those examined by Smith The diagram of
problem is to determine the optimal preprocessing filter point-
spread function, hr(;)’ which will make the composite imaging
system point-spread function g(v), arbitrarily close to an impulse
function, subject to a constraint on the mean-squaré noise compon-

(v).

ent in the processed image, n.,



Stated more precisely, the problem is to choose the hr(G)
that will minimize the functional

o«

[ w(v) g?(v}av where v is a two-dimensional vector

- OO

and
g(v) = hy(v)*n_(v)

subject to the constraints

K, = E {nz(s)}
©
K, = [ g2 (¥)av.
-
The function w(;] is a penalty function designed to force the
composite imaging point-spread function, g(v), to be arbitrarily
duration limited; thus approximating the desired impulse function.
The more rapidly w(v) increases with increasing v, the more
rapidly g(v) will decrease with increasing v. Both Smith and
Stuller chose w(v) = v2?, because of resulting mathematical conven-
iences; although a more general formulation allowing for a higher
order penalty function would be desirable. It would provide the
‘filter designer with an additional parameter for controlling the
degree of resolution improvement.
In practice it is also desirable to have h (V) duration limi-
ted. Ultimately any preprocessing will be performed digitally;
and since only a finite record length of h (V) may be used, serious

(12, 21) 1he technique proposed

truncation errors may result.
by Smith did not provide a means for arbitrarily controlling the

duration of hr(Gl. The lack of such a constraint also leads to a
difficulty in obtaining hr(;) from the solution of a differential

equation. The technigue proposed by Stuller provided for an
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arbitrary control on the duration of h (v) by- allowing the
solution for h (v) to contaln only a spec1f1ed number of data
points.

The technique proposed in this research adds an additional
constraint to the previous two constraints

o

K= [ s(x’z)h;(x'})d?z

-

where s(v) is an arbitrary penalty function designed to duration
limit the preprocessing filter point-spread function, hr(G). The
addition of this constraint provides a control on the rate of
decay as well as the duration of hr(G). In addition the proposed
technique allows for an arbitrary w(v) and obtains a solution
for hr(G) by using a different approach from that of Smith or
Stuller, which may be easily adapted to additional constraints.



IV. ANALYSIS OF PROPOSED PREPROCESSING TECHNIQUE

The block diagram of the basic preprocessing system is
shown in Figure 1. The fundamental design objective is to
choose h (v) so that the functional

o0
P = [ w(%)g? (7)a¥ (1)
- OO
is minimized, where the "bar" over a variable indicates that

the variable is a two-dimensional spatial vector and where

() = [ n@n,G - Dai = n () * 0, (7) (2)

where "*" denotes a convolution, subject to the constraints

[+

K, [ g2 (7)av (3)

- 00

-+

K, = [ s(¥)h 2 (¥)a¥ (4)

-0 .

Ky = E {nTz(\_;]}. (5)

As stated previously, m[G) is an arbitrary penalty func-
tion designed to influence the solution for h_(v) so that
g(v) is duration limited. The more rapidly w(v) increases
with increasing v, the more rapidly g(v) will decrease with
increasing v. Thus by choosing ®(v), g(¥) can be made arbitrarily
close to the desired impulse function. Similarly s(v) is an
arbitrary penalty function designed to duration limit hr(G).
Since any preprocessing will be performed digitally, it is
desirable to duration limit h_(Vv) so that truncation errors
are minimized.



AQ a criterion for the degree of resolution improvement
provided by a particular hr(G), the effective radius of the
scanner aperture is defined as
- ® 71

[ Fir?@aw|?
2=
[ *@a

L. =00 —J

>

. (6)

Without preprocessing, the effective radius of the scanner
aperture will be similarly defined as

F  » -.]2_.
-2, 2 =y
I 151202 (7) a7

o= 00

>

R, : | (7)

(-
[ h§(;)a;
L. w00 -

Lagrange multipliers and the methods of functional analysié7’8)
will be used to solve Eq. 1 subject to the constraints of Eg. 3
to 5. Eg. 1, 3, 4, and 5 may be combined into an augmented func-
tional, I, which must be minimized with respect to hr(G),

o _ o o
I= [ w(¥)g? (7)av + AlI g% (3)av + Azj s (7)n2 (v)a¥

- Q0 - 00 - 00

+ 1 2{n2(9)}
- [ | h_(Z)n, (7 - 5)a3| n,(@)n, (7 - 3)adav

#hy[ [ 0 By - 2)az| b (@)n, (7 - §)atav

+AZJ.[ s(8)6(3 - ¥)n_(¥)n, () adav

- 00
[~ ] -}

+A3E{ f a(% - i)hr(i)dEI n(E - ﬁ)h:(ﬁ)dﬁ} : (8)

= OO - 00
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Eq. 8 may be written in quadratic functional form as,
[ -]

1= [ [ a, (8,%)h_(2)n_(5)dzad

oy [ [ . 3)n, (E)n, (@) azad

why| [ 23 E)n, (F)n, (T azad

- 00
[

whyf [ 2@ E)n (3, (3)azan (9)
where al(ﬁ,E),égf(ﬁ,E], ay(u,z) and a,(u,z) are linear opera-

tors defined a o

a, (8,%) = [ w(@)hy (¥ - 2)n, (7 - 5)av (10)
%mj)=[%ﬁ-zmds-a& (11)
a3(ﬁ,2) = s(ﬁ)&(ﬁ'- z) . (12)
ﬂmj)=%q;-aﬂ;-a} | (13)

R (2 - u), for n(-) a
stationary ergodic random
process.
By taking the gradient of Eq. 9 with respect to hr(')
where the adjoint linear operators of Eg. 10 to 13 are

al'(ﬁ,i = al(u,z) (14)

ay' (U,2) = a,(8,2 (15)
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a,' (3,3) = a3(d,2) (16)
and

a,'(,2) = a,(5,2) (17)

and setting the gradient equal to zero, a homogeneous Fredholm
integral equation of the second kind sometimes referred to as
a Fredholm integral equation of the third kind, is obtained as

f {al(a,;) v hjay(7,3) + hya,(7.2) |n, (B)aT

+ As(@)n_(¥) = 0. (18)%1

The solution of this equation coupled with the constraint
equations, Eq. 3, 4, and 5, would give the required point-
spread function of the preprocessing filter, hr(Gl. However,
because of the numerical difficulties which may arise in the
general solution of this type ofaequation and in order to more
conveniently use the results of the multispectral scanner system
analysiél , the solution for hr(G] will be formulated in the two-
dimensional spatial frequency domain.

Eq. 9 may be rewritten using inner product notatioéa)as

1= (ajn_,h) + Ay(ajh b ) + A,(ajh ,h)

+ A;(azh b (19)

4'r r)-

/1 See Appendix A for derivation.
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Eq. 19 may also be written as a quadratic functional in the
spatial frequency domain as
I = (ByH_,H) + A (BH ,H) + A, (BjH, ,H )
+ Ay(B,H_,B ) (20)
where _ Hr(-) = 3{hr(-)} and
?{°} denotes the Fourier transform

and Bl’
operators which are the Fourier transforms of the spatial

B2, B3, and B4 are the spatial frequency linear

domain linear operators ays a5, ag, and a,- ‘Thus

_ ® _ _. s2nfu .2wva _ _
B (£,3) = I Ial(g,z)éj e dudz (21a)

which after substituting Egq. 10 into Eq. 2la may be simplified
to

B, (£,9) = v *(E)n, ()w(E - V) (21b)
where , Hb(') = ?{hb(')}
W() = 3{w(°)}
and Hb*(-) is the complex conjugate of Hb(-).

The adjoint of B, (%,v), defined as B,'(£,9), may be written as

B (£,5) = B*(5.8) (22a)
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which from Eq. 21b becomes

B,' (£,9) = B, (S)m *(E)w*(S - E). (22b)
Similarly,
B, (£,5) = u,*(E)n, (5)6(F - 3) (23)
B,'(£,9) = H (V) *(F)s(v - E) (24)
B,(£,5) = s(E - 9) 2s)
where S(*) = 3{8(')};
B, (£,5) = s*(5 - F) (26)
B,(,3) = ¢_*(3) 8(F - 7) (27)
where onn(” = 3{Rnn(')}
and B, (£,9) = ¢_(E)6(5 - ) - 242

The gradient of the guadratic functional of Eq. 20 becomes
Vi = (B, + Bl')Hr + A, (B, + Bz')Hr
+ A, (By + B3')Hr + A (B, + B,')H, (29a)

which, upon expanding the linear operator notation of Eq. 29a

becomes

Z 2 See Appendix B for a complete derivation of these
spatial frequency linear operators.
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VI - j [ L(B,3) + B, (£,5) + A { (£,5)

+ 3,7 (29)} + a,{3(2,5) + 3y (2,5}

. A3{34(f,3) . 34-(5,5)} ] B_(S)aS = 0. (290)

Substituting Eq. 21b, 22b, 23, 24, 25, 26, 27, and 28 into
Eq. 29b,

[ [ B * () B, (%) {w(f - 3) + W (S - E)}

VI

+ A, {s(f -3) + s*(5 - f)}] nr(c)a;

+ [2A1|Hb(f)| + 2050 (f)] R(E) =0. (0

Eq. 30 represents the general expression for the gradient
of Eq. 20 with respect to Hr(-), which, when combined with the
constraint equations, completely specifies the spatial frequency
spectrum of the preproceSsing filter. The constraint equations,
Eq. 3, 4, and 5, may be rewritten in the spatial frequency domain
as

K, = (BH_,H) - (31a)
which after substituting Eq. 23 into 3la becomes

K, = j [ub*(f)nb(s)nr(s)nr*(f)a(f - §)dvaE
B RENGIRENGIE (31b)
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K, = (ByH, H.) (32a)

which after substituting Eq. 25 into 32a becomes

- f Is(f - %) u_(5)n_*(E)avaE, (32b)

K,

and

Ky = (B H,,H,) (33a)
which after substituting Eq. 27 into 33a becomes

[ -]

K, = [ [¢nn(v)a(§ - S)H, (3)H_* (E)asaE

- 00

- [ o (%) |u.(2)]%% . (33b)

- 00

Before Eq. 30 can be reduced to a form more suitable for
the evaluation of the spatial frequency spectrum of the pre-
processing filter, the penalty functions w(v) and s(v) in
Eq. 1 and 4 respectively, must be further examined. Since
w(¥) is designed to influence the solution of h (V) so that
the composite imaging system point-spread function, g(v), is
duration limited, a possible choice for w(v) would be

w(v) =1 for v, <V <V,

= o, otherwise.

However, such a choice for w(v) would lead to analytical diffi-
culties in Eq. 30, since the Fourier transform of w(v) does not
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exist. Thus the expression for w(v) must be chosen in such a
manner that it allows enough flexibility to arbitrarily control
the duration as well as the rate of decay of g(G] and, in addi-
tion, to have a Fourier transform(zs). Also, because of the form
of Eq. 1, w(v) must be a positive valued function and also be
convex to insure the exist??g? of a global minimum to Eq. 1.
v

)

One function for which satisfies all the previous

requirements, written in terms of one variable, is

2k
2V -~ Vv, - vV
wiv) = 1 2 +c (34)
Vy = Vy .
for 0<c<1l

and k a positive integer, as shown in Figure 2. For convenience,
s(v) will also be described by the same type of function.

The following analysis is based upon a rectaﬁgular coordinate
system. Eq. 30 may be rewritten in terms of the x- and y~- com-
ponents of f and v, '

VI = ﬂ[ (£ £, )y (v, 0] { W(Ey = ver £y = )

- Q0

+wr(v, - £, Vy " fy)} + A, { s(£, - v, £, -_vy)
+s*(v, - £, vy " fy]}] Hr(vx,vy)dvxdvy

2
+ [21\1 |Hb(fx,fy]| + 2A3<bnn(fx,fy)] Hr(fx,fy) = 0. (35)
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I+ C

<V

Figure 2 One-Dimensional Penalty Weighting Function
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For convenience in handling the analysis with respect to a
rectangular coordinate system, both w(v) and s(v) will be
defined as the product of their x- and y- components, from
Eq. 34,

wiv) = wy (x)uy (y) (36a)
2k 2k
2x - X, . - X wX 2y - ¥4 " Y wy
_ { wl wz} + o, { wl wz} + e,
*w2 ~ *wl Yw2 ~ Y1
(36b)
where ' 0 < c, < 1
, (36c)
0<c_< 1
b4
and for kwx and kwy positive integers.
Similarly,
s[v) = sx(x)sy(y) (37a)
2k 2k
2x - x - X sx 2y - y -y sy
- { sl 52} + 4 { sl sz} + d
X ., - X x - Y
52 sl Yg2 © ¥g1
(37b)
where : 0‘< dx <1
(37¢)
0<d <1
b4

and for ksx and ksy positive integers.

Choosing kwx = 1= kwy' the Fourier transform of Eq. 36b

becomes



w(fx,fy) = wk(fx)w&(fy) (38a)
where
1l 2(x + x
w (f.) = - §" (£.) G * %) s (£,)
Xx\'x )2 m VX
(xw2 - X n
{(xwl + xwz)z + (x,y - x ¢ } s(£,) ] (38b)
and

= 1 2(y.1 + Yur)
Wy(fy) - 1 - " (f ) - j wl w2
(Foy = Yup)* A
Y2 wl m m

2 2
+ {(ywl + sz') + (sz - le) Cy} G(fy) . (38c)

A similar expression results from taking the Fourier transform
of Eq. 37b,

g,(fx,fy) = Sx(fx)sy(fy) (39a)
where
1 1 2(x, + x 5)
St = ey T ) s ey
g2 T *s1 T “

2 2
+ {(xsl +x )7+ (xg, - %) dx} 8(£,) (39b)
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and
! 1 2(ygy + Yg5)
S (f ) = - 6"(f ) - sl 82 6'(f )
v (vgo - ysl)2 n? Y ] n Y
+ {(Ysl +y )2+ (v, - vap)® dy}s(fyi] ' (39¢)

If it is assumed, as would usually be the case, that the penalty
functions, w(x,y) and s(x,y), are centered about the origin,

then

]
o]

wl = Fw2 w
Yul T Yw2 = Yy
Xgl ""Xg2 T X
Yg1 " Yg2 " ¥g -

| Substituting Eq. 394 into 38b, 38c, 39b, and 39c,

1
We(fe) = = =7 sn(g) + c 8(¢,)
wy(fy) = - —5—5 6"(fy] + cy6(fy)

avvy,

1l
Sx(fx) = - 2;2-;{—5-2' s" (fx) + dx6 (fx)

1
gy(fy) = - 2;7;;7 6'(fy) + dys(fy)

(394)

(39%e)

(39£)

(39g)

(39h)
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Substituting Eq. 39%e, 39f, 39g, 3%9h, 39%a, and 38a into Eq. 35,

4
nb*(fx,gy) d

5% 3 H (£,

VI = z
8w X, Yy of afy

fy)nr(fx,fy)
X

- an?y 2c o B (£ ,£.)H (£.,£.)
T Yy Sy 2 2 b\x'"y ey
X

2
]
2 2
- 47 xw Cx _a-? Hb(fx,fy)Hr (fx,fy)
Y

+ srix 2y 2. € Hb(fx,fy)Hr(fx,fy)}

A a? 22
2 H(f )-41r 24 H(f £ )
i_ 2.2 2.. 2 r Yg %y ““7 y

8n Xg Yg afx afy

)
9

2 2 : 4 2 2

- 4r°x_“d_ —__7 B (£ x'fy) + 8 x_ ys dd, H (fx y]}

2
+ [éAl IHb(fx,fy)l + 2A3¢nn(fx,fy ] Hr(fx,fy) = 0 (40a)

which, when expanded in terms of Hr(fx,fy), becomes



VI =

“+

4+
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4
3°H (£ ,£E )
X'y
[é(fX'fy)Hb(fX’fy) ¥ B(fX’fyj] af_2af *
x Uy
3
2A(F, £ )aHb(fx'fY) i Hr(ix'fy)
x'"y
A, 3, "I,
3
2A(fx,fy)aﬂb(fx'fy) 3 Hr(fx,gzl
Af, 3 IE,
2 2
(e ) e larty) Thelarty)
A IE, 3, IF,
i 2%my (£,.,£,) —82Hr[fx,fy)
A(fx,fy) 2 + E(fx,fy)Hb(fx,fy) + G(fx,fy) A
of | af_ < -
u x = y
i 2 1.2
3%u_(£.,£.) c 3°H (£, ,£ )
b'"x’' vy . r'\"x’'"y
A(fx,fy) =2 + D(fx,fy)Hb(fx,fy) + F(fx,fy) o2
| X
B 3
a°H, (£_,£_) 3H, (£_,£.) | 3H_(£_,£ )
ZA(fx,f ) b 2X' Y + ZE(fx,f ) b( x’ Y rs x y)
¥' oag “af Y af of
u y Y y
3°n, (£_,£_) oH, (£_,£. )| 9H_(£_,£ )
2 (£, £,) b x'2y + 2D(£, £ ) b> x'y rx'"y
Af_Af of of
L Xy X X
[ 4 2
a°n, (£, ,£_) 3°n, (£_,£_ )
b'\"x'"y b'"x'"y
c(g, £, ) + + D(f_,£f )
x"7y ] 2 x'"y p)
] 3, "OF If,
5
3°H, (£, ,£ )
+ E(fx.fy)' b z_y + H(fx,fy) Hr(fx,fy) = 0 (40b)
of |

Y
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where

H*(f ,f ) ‘
A(f,/£,) = B_ Xy (40c)
8"4xw2Yw2
AH *(f ,f )
2°b ’
B(50ty) = gt (s0a
TX_Y
S S
2
c(fx,fy] = 2A1|Hb(fx,fy)| 4+ 2A30nn(fx,fy) (40e)
Hb*(fx,fy)cy
D(fx,fy) = - - (40£)
w
| H *(f_,f ]c
b 14
E(fx,fy)_ = - 2’2‘ = (40g)
n yw
Ad
F(£,.£) = - —4= (40h)
Y 2% Xg .
Azdx
G(fx,fy)_ al (40i)
n ys
2 f | :
.-H(fx,fy) = cxcyle(fx,fy]I + Ayda, . (407)

Thus Eq. 40 in conjﬁnction'with the constraint equations,
Eq. 31b, 32b, and 33b, specify the general form of the required
preprocessing filter spatial frequency transform.



- 24 -

l. Separable Aperture

A large class of physically realizable apertures

may be modelled as separable apertures, where it is
assumed that

Hb(fx,fy) = be(fx)Hby(fy) (41)
¢nn(fx,fy]v= ® nx (£5) d>nny(fy) (42)
B (fx,fy) = er(fx)nry(fy), (43)

With the assumptions of Eq. 41 to 43, the solution of
Eq. 40 can be considerably simplified by use of the
method of separation of variables. Instead of substi-
stuting Eq. 41, 42, and 43 into Eq. 40 and separating
Eq. 40 into two differential equations, one a function
of fx and the other a function of fy’ a somewhat more
fundamental approach will be used.

Taking the inverse two-dimensional Fourier transform
of Eq. 41, ’

l‘b(,(IY) = hbx(x)hby(Y)q (44)
Similarly, Eq. 42 and 43 become respectively,

Rnn(x,y) = R (y) (45)

nx(X)Rnny

and
he x,y) = hp (x)h, (¥), (46)
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Writing Eq. 1 in terms of the two spatial_dimensions,

-]

F = [ [m(x.y)g2 (x,y)dxdy (47)

-0
where from Eg. 2,

g(x,y) = b (x,y)**h, (x,y), (48)

Substituting Eq. 44 and 46 into 48 and using the
properties of two-dimensional convolution

g(x,y) = [hrx(X)hry(y)]**[hbx(X),hby(y)],

[ 00 1y 1] [ 91 ¥ 5

= gy (x)g, (¥) (49a)

where
gy (x) = b (x)*h,  (x) (49Db)
9, (y) = h _ (¥)*h (¥). (49c)

~ Substituting Eq. 36a and 49a into Eq. 47,

(- ] (-2}

2 2
F = [ mx(x)gx(x)dx I wy(y)gy(y)dy

= F F {50a)
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o

2
where By = [ gl max

- 00

2
Fy = [ my(y)gy(y)dy .

Substituting Eq. 49%9a into Eq. 3,

K, = I qxz(x)dx f gyz(y)dy

- 00 - 00

==/lexly
where | K, = 2(x)dx
1x Ix
a0
and K, = | g.2(y)a

Substituting Eq. 37a and 46 into Eq. 4,

 K2 = [ sx(x)hrxz(x)dx f sy(Y)hryz(Y)dY

-0 -0

= K2xK2y
[

2
where K2x = J sx(x)hrx (x)dx

oo

oo

2
and sz f sy(y)hry (y)dy .

(50b)

(50c)

" (51a)

(51b)

(51c)

(52a)

(52b)

(52c)
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Substituting Eq. 42 and 43 into Eqg. 33b,

o [ ]

2 2
K = [ SameEd 10, ()17 a5, [0 (e )1 ()12 at,

- Q0 - 00

= K3xK3y (53a)
-]
2
where K3y = [ O nx (£ 1H (£,)1° af, (53b)
o0
= f @ s (£ JAE (53c)

-00

where ’nnTx(fx),is the power spectral density of the
x-component noise in the processed image, and since
the noise is assumed to be a sample function from a
stationary ergodic random process,

Ky, = E{nsz(x)}. | (53d)

Similarly, .
Ky = I any(fy)lﬂry(fy]lz at, (54a)
- E{nTyz(y)}. o (54b)

Thus, the problem of determining the optimum prepro-
cessing filter point-spread function, hr(x,y), reduces
to finding the hrx(x) that will minimize Egq. 50b
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subject to the constraints of Eq. 51b, 52b, and 534,
and to finding the hry(y) that will minimize Eq. 50c
subject to the constraints of Eq. 5lc, 52c¢, and 54b.
The original two-dimensional preprocessing problem
reduces to two one-dimensional processes which have
similar equations. From the preceeding vector nota-
tional analysis used in Eg. 1 to 34 and Eq. 36 to 39,
the system of equations necessary to solve for hrx(x)
and.hry(y) may be formulated.

To solve for hrx(x), the augmented quadratic
functional of the form of Eq. 8 determined by Eq. 50b,
51b, 52b, and 53d becomes

o co

I, =,f w (x)g 2 (x)ax + Alxj g% (x)dy

+hy J sx(x)hrxz(x)dx + A3xE{nTx2(x)}’ (55)

- OO

which may be written as a quadratic functional in
the spatial frequency domain from Eg. 20 as,

+

= (le rx’ rx) Alx(B2x rx'’ H:x)

,H (56)

+‘A2x(B3xer’er) + A3x(B4x rx’ rx)

where from Eq. 21b,

le(fx'vx) = be*(fx)nbx(vx)wx(fx._ vx) (57)
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Eq. 22b,

Bix (fx'vx = be(vx)be*(fx)Wk*(“x’- fx)
Eg. 23,

Box (FxrVy) = be*(fx)be(vx)G(fx = V)
Eq. 24,

Béx(fx'fy) = 3bx(vx)be*(fx)6(vx - fx)

Eq. 25,

B3x(fx’vx = S#(fx - vx)
Eq. 26,

Béf(fx’ox = Sx*(vx - fx)‘
BEq. 27,

B4x(fx’vx) = ®onx’ (\’x)a(fx - vx)

and from Eq. 28,

B«'lx(fx’vx - ¢nnx(fx)5(vx - fx)'

(58)

(59)

(60)

(61)

(52)

(63)

(64)
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The gradient of Eq. 56 may be written in the
form of Eq. 29a

VIx = (le + le')er + Alx(BZx + B2x')er

¢

+ A, (By, + B + Ay (B, + B (65)

3x')er 4x')er !

‘which may be expanded to the form of Eq. 30,

_ f[nbx*(fx)nbx(vx) fig (e, = vg) + 2l - )

* Aax {Sx(fx = V) sy, - £y }]er (vy)av,

+

2
[2"1x|“bx'(fx)| + 2A3x‘°mx(fx)]ﬂm(fx) = 0. (66)

Substituting Eq. 39e and 39g into Eq. 66, the following
differential equation arises

‘ 2
2be* (fx) be ' (fx) xs

H —
2 2
Ibe (fx] | Xs

rx"( x)-

+H _'(£)
2 rx X
+ A2xxw

+ X 2 _[be* (fx) be"(fx).-‘”zxwz{(cx + Alx) |be(fx) |2+A3x¢nnx(fx) +dx}]

er (fx)
Ibe (fx) |2 xs2 2

+ Azwa

= 0. : (67{.3

L3 For derivation see Appendix C.
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From Eq. 31 and 51,

| 2 2
Ky, = I |be(fx)| |er(fx)| at_ (68)

and from Eq. 32, 39g, and 52

oo

Kox = - '_7177 I [ rrx (Fx) Brpy (£,)

4 Xs ‘e

vy (e )0, (5,) s,

2 L4
+ dxvf |H:x(fx)| a_ | (69a)

-0
where B (£,) =8 (£,) + 35 ; (£) ~ (69b)

and where H (£ ) is the real part and H, (£,]) is
the imaginary part of er(fx).

Restating Eq. 53b,

[

2
Ky, = J ¢ nx (Ex) 1E (£.)1° ag . (53b)

Thus the simultaneous solution of the differential
equation Eq. 67, and the constraint equations,

Eq. 68, 69, and 53b, specify the form of the x-compon-
ent of the spatial frequency transform, or equivalently

/4 For derivation see Appendix D.
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the point-spread function, of the preprocessing
filter.

In a similar manner it is possible to solve
for hry(y) by forming an augmented quadratic func-

tional of the form of Eq. 8 determined by Eq. 50c, 51lc

52¢c, and 54b,

-] oo

[ 2 2
I, = I wylylg " (y)dy + Ay J 9, (y)dy

-0 -00

o0

2 “ 2
+ A2y f sy(y)hry (y)dy + A3yE{nTy (y)}. (70)

== 0O

By following an analogous procedure to that used for
determining hrx(x) in Eq. 55-69, the equations which
specify hry(y) may be formulated. Only the results
will be stated since the derivation of the equations
for hry(y) is idéntical in form to that given‘for
hrx(x) with the appropriate change in variables from
X~ to y- dependency.

The differential equatlon specifying the form

of Hry(fy) becomes,
£ H y
(e ¢ L 2( e ()

2y*'w

2 [ﬁby*(fy)nﬁy(fy)-4" {(CY ly)lﬂby(fy)lz 3y nnY(f )+dY}]

2 2

+ A2

2

(71)

]
o
~

I f
qry( Y)
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while the constraint equations become,

- -}

2 2
[ Imyy(e)1218 (2,017 ag,

(72)

ly
l L
Yoy = T 7, 2 [ [.rry(fy)Hrry(fy)
s w00
n 2
+ H_ . (f JH_ . (f df _+ d H f df 73
Fly( Y) rlY( Yi} Y y f | rY( Y)I b4 (73)
- OO0
2 .
and K = ¢ f H £ daf_ . 54
3y I any (£y) 1My (£)17 afy (34a)
Thus the simultaneous solution of Eq. 71, 72, 73, and
54a will specify the y-component of the preprocessing
filter.
2. Radially Symmetric Aperture

Probably the most common type of aperture, because

of the physical ease in construction, is the radially

symmetric aperture.

and

where

For this case it is assumed that

Hb(fx,fy) = H (£,) (74)

wnn[fx'fy) = anr[fr) (75)

Hr(fx,fy) = H_ (£) (76)
£24+£2%2=1¢2 (77)
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The solution to Eq. 40 is analogous to the
solution for hrx(x) where all variables dependent
upon x are replaced by corresponding variables
dependent upon r. From Eq. 36a,

w(v) = w_(r)
2k
2r - r -r wr
= yl w2 (78a)
Tw2 ~ Twl
for k. a positive integer and
r? = x% + y2. (78b)
From Eg. 37a,
s(v) = s, (r)
2k
2r - r -r - 8r
- sl 82 (79)
- Tg2 T~ Tg1

for k8r a positive integer.

"
-
|
x
)
o]
Q

Choosing kwr ST

]
I
|
]
2]

Tl (80)

sy © "Tg2 T Tgr
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the Fourier transforms of Eq. 78a and 79 become

1
- ——— 6" (£) (81)

41°r

W (£f,)

s_(¢,) s"(£,). - (82)

To solve for hrr(r), the augmented quadratic
functional of the form of Eq. 8 which must be mini-
mized with respect to hrr(r) becomes,

2 2
Ir = [ wr(r)gr (r)dr + Alr I 9, (r)dr

- OO e GO
0o

+ Ay I Sr(r)hrrz(r)dr

+ Ay E {nTrz (r)} . (83)

"By following an analogous procedure to that used
for determining hrx(x) in Eq. 55-69, the equations
which specify hrr(r) may be formulated. Again, only
the results will be stated since the derivation of
the equations for hrr(r) is identical in form to that
given for hrx(x) with the appropriate change in
variables. v

The differential eqﬁation specifying the form
of H_(£f) becomes,
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2
ZHbr*(frlHl')r(fr)rs o ()
2 2 2 "rr\r
IHbr(fr)| Ts + Aerw

;r(r

" _aq2, 2 2
+r 2[Fbr*(fr)nbr[fr) an Tw {Alr,Hbr(fr)l +A3r¢nnr(fr)}]

H__(£)
s 2 2 2 rr\"r
'Hbr(fr)' Ts + A2rrw

=0, (83)

while the constraint equations become,

2 2

Kie = I |Hb’r(fr)l IHrr(fr)I af, (84)
. | I S
Kor = - anly 2 I [ Hepe (£ B pp (£))
8 =0 °
+ H;ir(fr)Hrir(fr)] afy (85)
and ®

2

K3r = [ *nnr (fr)'ﬂrr(fr)l dfy - (86)

Thus the simultaneous solution of Eq. 83, 84, 85, and
86 will give the spatial frequency spectrum of the
required preprocessing filter.
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V. NUMERICAL SOLUTION TECHNIQUE FOR PREPROCESSING FILTER

Since the form of the differential equations specifying
the shape of h (x), Eq. 67, h (y), Egq. 71, and h (r), Eq. 83,
is the same, a smngle method of solution is appllcable. In this
discussion specific reference will be made to the solution of
Bq. 67, 68, 69, and 53b for H__ (£ ).

Eq. 67 may be written in the form,

H;x(fx) + A(fx)néx(fx) + B(fx)er(fx) =0 (87)
20, _*(f_)H (£ )x_2
where A(fx = bx xi bf( x) s - (88)
|8y, (£, 1%x,2 + Ay x,

and

2 [ B * (£ )Hp, (£.)-4n?x, {(c A I (£ ) 12+nq 0 ( d}] (89)
» c
lex(fx)| s2 Ayt

2x'w

It should be noted that fo(fx)’ A(fx) and B(fx) are complex.

Defining
rx(?x) B Hrrx(fx) * jHrix(fx) (69b)
a(e,) =a_(£,) + ja; (£,) (90)
and
B(£,) = Br(fx) + 3B, (£,) (91)

as the sum of real and imaginary components, then by substituting
Eq. 69b, 90, and 91 into Eq. 87,

[ (5 + omzg (2] + (ol + 58] [ (8 + am (5]
+ [Br(fx) + jBi(fx)J [Hrrx(fx) + jHrix(fx)] = 0 (92)
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or by collecting the real and imaginary components,
H;rx(fx) + A (f Hérx(fx) - Ay (f )Hrlx(fx) + Br(fx)Hrrx(fx)
- By (£ )0, (5] + 3[mpg, (50 + A (£ 0m2 (£)

+a_(£)mr, (£) + B (£ ) (£) + Br(fx)nrix(fx)]= 0.

(93)

Eq. 93 may be separated into two differential equations formed
by the real and imaginary components of Eq. 93(17),

H;‘rx(fx) +A (f )Hrrx(fx) - Ay (f )Hrlx(fx) + Br(fx)Hrrx(fx)

- By (£ )u_, (£) =0, (94)

and

rlx(f ) + Ay (f )Hrrx(fx) + A (f )H;:J.x(fx) + Bi(fx)Hrrx(fx)

£) = o. ‘ ' (95)

+ Br(fx)Hrix( X

Thus, the original complex second order differential equation,
Eq. 87, has been reduced to a system of second order differential
equations, Eg. 94, 95.

To make use of the many subprograms available for handling
systems of first order differential equations, Eq. 94 and 95 may
be reduced to a system of first-order differential equations(17)

by introducing the variables,

mE) = Hp(5)
(6 = B e,
(5 = 1,405
1,5, - 11y (5
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By substituting Eg.96 into 94 and 95, the following system of
first-order differential equations is formed.

Hi(fx) = Hy(f)

HY(£,) = - B_(£) Hy(£) - A_(£) Hy(£) + B, (£) Hy(f))
+ Ai(fx) H4(fx)

Hé(fx) = H4(fx)

Hi(fx) = - Bi(fx) Hl(fx) - Ai(fx) Hz(fx) - Br(fx) H3(fx)

- A(£) H,(£) . (97)

After specifying initial conditions for Hl(O), H2(O), H3(O)
and H,(0), H_ (£ ) may be obtained as
rx X

er(fx) = Hy(£)) + 3J Hy(£f)) . | (98)

In order to solve for H  (f ), the system of differential
equations, Eg. 97, plus the constraint equations, Eq. 67, 69,
and 53b, must be solved simultaneously. The constraint equations
may be considered to be a system of non-linear equations where
the unknown parameters are Alx: A2x' and A3x' qu a given value
of these parameters, Eq.97 may be used to determine er(fx)
and the constraint equations checked to determine if they are
satisfied., If the constraint equations are not satisfied,
appropriate pertubations in Alx' A2x' and A3x can be made and a
new value of er(fx) computed. This procedure would be repeated
until the constraint equations are satisfied. A program for
solving a system of non-linear equations has been developed and
could be used for determining Alx’ A2x' and A3x'

Two possible problems which might prevent obtaining a solu-
tion for H__(f_) using the procedure described above must be

rx X
considered. One problem would be the possibility of obtaining
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a solution which would represent a local minimum to Eq. 55 but
not necessarily the best solution which would represent a
global minimum. This problem should not arise because of the
choice of the functionals in Eq. 50b, 51b, 52b, and 53d. Since
all of these functionals are convex, a global minimum is assured(16).
The second problem that could arise is related to the
solution of the system of differential equations, Eq. 97. Is
it possible for a given set of Alx' A2x' and A3x that either no
solution or several solutions to Eq. 97 exists? A theorem in
Section 7 of (26) states that as long as Br(fx), Bi(fx), Ar(fx),
and Ai(fx) are continuous functions, then for a given set of
initial conditions one and only one set of solutions exist.
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VI. CONCLUSIONS

T i i = = = =
he preceeding analysis was based upon kwx kwy ksx kSy 1,

or for kw = k l, as a convenience for formulating the equations

specifyin; th:rrequired preprocessing filter. The larger the
integer value of kw or ks,'the greater the reduction in the effec-
tive scanner radius of the composite imagery system. However,
the size of the system of differential equations increases and
linear differential equations, where

k

results in a system of 4kmax

kmax is the largest integer value of kwx, kwy’

ksr' For example, if kwx= 3, kwy= 2, ksx= ksy=

differential equations similar to equation 97 will result composed

k or k
sx’” T'sy’ wr'

1, then a system of

of 12 simultaneous linear differential equations. However,

one of the major advantages of this proposed technique for image
preprocessing is that it is sufficiently general to allow for
any integer value of kw and ks and thus allows the effective
scanner radius of the composite imaging system to be arbitrarily
reduced, subject primarily to the noise constraint.

Although Equation 40 in conjunction with Equ;tion 31b, 32b,
and 33b, specify the general form of the spatial frequency trans-
form of any preprocéssing filter, it was shown that in the case
of a separable aperture or a radially symmetric aperture the solu-
tion can be considerable simplified. These two classes represent
the most common tYpes of apertures used for data collection.

There exist many functions which are separable in the sense
that the function can be expressed as the product of its x- and
y- components. By appropriately choosing such a function, manyb
types of asymmetric apertures may be approximated as symmetric,
separable apertures. For example, by properly selecting the para-
meters of a two-dimensional Gaussian function, an elliptical aper-
ture of uniform density could be approximated. By using a two-
dimensional Gaussian function, it is also possible to approximate
a radiallylsymmetric aperture as a separable aperture. The
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principal advantage for choosing a separable apérture is that
two-dimensional convolutions with such an aperture is equivalent
to two one-dimensional convolutions along each orthogonal axis.
Thus preprocessing time for a given data set can be significantly
reduced by using a separable aperture.

The preprocessing filter theory presented in this paper,
and in particular the filters described in Equations 67, 71, and
83, will be applied to the multispectral scanner data at LARS to
determine the best set of parameters for reducing the effective
scanner aperture and the effect of such a reduction on classifi-

cation accuracy.
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APPENDIX A =~ DERIVATION OF EQUATION 18

The gradient of Eqg.

[ ta, @ 2

[« o}

[a, (u,

i

—
-
8 ~—

-3
N

la; (u,

3
W

[a4 (u,

!
8 ~——88~——38

Substituting Eq. 12,

VI

]

§~——~8

-

Ay I s (u)

§~— 8

A, s(Q) hy(2)

[a1 (u, z) + Ay a, (u,

S(u'- z) H

9 may be written as

+ a} (u, z)] h, (z) dz

1
z) + a (u,

z) + ay (u,

z) + aa (u,

14, 15, 16,

r

= 0.

z)] h, (z) dz
z2)1 h, (2) dz
z)] h, (z) dz.

and 17 with Eq. Al,
z) + A3 a, (u, z)] hr (z) dz

(z) dz

[a1 (u, E) + Al a, (u, z) +'A3 a, (u, z)] h (z) dz

(Al)

(A2)
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APPENDIX B - DERIVATION OF EQUATIONS 21b,
23, 25, and 27

Substituting Eq. 10 into 21la,

29 = [[[ w@ G- B 0@ - @ o

- Q0

éJZqu eJZﬂVz aa

Introducing a change of variable in Eq. Bl where

J w(v) h (v - z) h (a) gi2nf(v -a) _j2mvz

[wo]
’-l
i
<l
1]
| S——
g~ 8

[

= H* () Jl w(®) by (7 - ) &2V &I2TVE 45 gz

and introducing another change of variable in Eq. B3 where

z= B

<t
]

(£,9) = H*(P) JI w(¥) hy (B) &I2TEV 2V -B) 43 4p

= Hb*(f) Hb(G) I w(v) éj2nv(f -9 5

= Hb*(f) Hb(ﬁ) W(f - V),

Following a similar development

g0 = [ e, ) 3T ITVE i a3

B2(

which after substituting Eq. 11 into B6a becomes

t5 = [ mp@- B n & - B 2T ITE & qu e

o0

B, (

u dz.

dv da dz

(Bl1)

(B2)

(B3)

(B4)

(B5)

(B6a)

(B6b)
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Introducing the change of variable of Eq. B2 into B6b,
o0
B, (£,9) = IIJ h, (v - 2) h (5) g12"E(v -a) j2mvz

- 00

dv da dz

[«

- Hb*(f) IJ hb(; - 3) éijfv j2mvz

-0

e dv dz

and introducing the change of variable of Eq. B4 into B7,

H* () II hy (B) &I2TEV 32m (v -B) 43 43

-—00

Bz(f,v)

é]2‘ﬂv(f =vV) d\—l

Hb*(f),ﬂb(G) I

B3(f, V) = [J a3(ﬁ, z) gi2mfu j2mvz 4o 47

-0

Substituting Eq. 12 ‘into B9,

jj s(3) 8(a - 7) ai2rfu j2mvz o oo

B3(E, v) =
= T s(z) ai2mz(f -v) 45
= S(f -v).
B, (%, 3 = jTla4(a, 7) ai2miu 32miz g g5

hal < -]
Substituting Eq. 13 into Bll,

2 = _ = _ = =j2nfu _j2mvz - -
B4(f, v) = JJ Rnn(z u) e e du dz

- OO

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)
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Introducing the change of variable
z-u= a (B13)

into Eq. Bl2,

JI Rnn(a) éjZﬂfu eJva(u + a) an 4=

[

Fhi
~
B |
~
]

é]ZWu(f -v) an

= an* v) I

¢nn*(6) S(E - V). (B14)



VI
X

or

VI
X
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APPENDIX C - DERIVATION OF EQUATION 67

Substituting Er. 39e and 39g into Eq. 66,

1l
= * - — L] - -
I [%bx (fx) be(vx) { PRI 8 (fx Vx) + cxé(fx vx)
Ancx
o W
- 1 sv (v - f) +cs(v. - £)
4w2xw2 X X X X X
A, {- L sn (g, - v +as(E, - V)
X 4m?x 2 X
l [ - - -
- Z;;;—? 8 (vx_ fx) + dxé(vx fx)-} uJer(vx) dvx
3
2 —
+ [gAlx Ibe(fx)l + 2A3x nnx(f z} er(fx) =0, (c1)
*(f) 2
. bx ""x d
B o2y 2 af 2 [y (£ Hpy (£,01]
W X
+ 2c¢ | (f )lz H__(f.)
X bx rx "x
A 2
2x a
- H. (f.) + 2d_ H_. (f.)
2 rx X X rx X
2% xS dfx

+ (24, |be(fx)|2 + 20y, 0 (E)) H () =0, (c2)



- 51 -

or,
H *(£) :
.Vl = - PX X gy "O(E) H_(£) + 2B () H_ ' (£)
X om2x 2 bx b4 b4
mT™X
w
+ H _(£) H__" (f)]——-Al’i- H " (f)
bx ' "x’ rx X 2"2xsz rxX X
2 -
+ [2(cx+Alx) ‘be(fx)| + 205, nnx(f)+2d] H (£ =0, (C3)
H _(£.)|? A
e IR
27 X, 2T xs
be*(fx) be'(fx) .
- H (f.)
‘szxz rx X
W
H *(f ) H_." (£f_)
bx X bx X 2
0T om2x 2 20, + Ay [Hpy (E )1
w
+ 2A3x nnx(fx) + 24 :} er(fx) = 0, (C4)
g, _(£)]2 x 2 + A, x 2
VIx - - bx'™x [ 2xw er" (fx)
2m2x 2x ?
w °s
be*(fx) be'(fx) H '(f)
"szz rx X
W
- " - 2 2 2
{be*(fx) Hpx (fx) 4Tt xgy {(cx * Alx) I (f )' * A3x nnx(fx) +d } ]
2n2x 2
W
e H (£) =0, (C5)
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or in normalized form,

2
2be*(fx) be'(fx) Xs

vI =H » (f ) + H '(f)
X rx X 2 2 2 rx b ¢
lex(fx)l xs + A2xxw

2 2

+ [be*(fx) be"(fx)xs

2
- T X
4 w

2
Xs {(cx+Alx)lex(fx)Iz+ A3x¢nnx(fx) +dx}]

IH x 2

2x “w

2 2
bx(fx)! X + A

. er(fx) =0 . . (C6)
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APPENDIX D - DERIVATION OF EQUATION 69

From Eq. 32, 39g, and 52,

o«

.1 " (£ - v.) H |
Kox = amlx 2 f[ 8" (£, = V) H M (£ Hpx V) dvy af,
s
+ dx II G(fx - vx) er*(fx) er(vx) dvx'dfx (D1)

1 "
Sl Jer*(fx) HY (£.) af,

41r2xs2 _ x X
+d. Im Ier(fx)lz a, . (D2)
From Eq. 69b,
H;x (fx) = H;rx(fx) +3 H;ix(fx) o (53)
and
er*(fk) = Hrrx(fx) =3 Hrix(fx) : (D4)

From Eq. D3 and D4,

H;'x(fx) er*(fx) = Hr;'x(fx) Hrrx(fx)

+ H;ix(fx) Hrix(fx) + 3 [H;ix(fx) Hrrx(fx)

- H'. (£)) H
r

TrixTx ix(fx) 1. ' (D5)
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Substituting Eq. D5 into D2,

- 1 " n
Kox = I {'Hrrx(fx) Hrrx(fx) * Hrix(fx) Hrix(fx)} dfy

+ 3 [ { H'x'-ix(fx) Hrrx(fx) - H;rx(fx) Hpix(£,) } af

' 2
v d I m_ (£]2 af, . (D6)

Since hrx(x) is assumed to be a real function, then

n : .
Hrrx (fx) is an even function
and

”" : '3
Hrix(fx) is an odd function.

Thus, the second integral in Eq. D6 is zero, and

oo

- 1 LU "
Kox = - 2 I [Hrrx(fx) Hrrx(fx) + Hrix(fx). Hrix(fx)] dfx

|er(fx) [2 af_ . (D7)

+
0,
b
§—8



