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ABSTRACT Research objectives included 1) determine
relationships if any between spectral response of soil and soil textural

groups, Unified Soil Classification subgroups and selected landforms and

2) develop computer assisted techniques for engineering soils mapping of

remotely sensed data.

The site in northeastern Kansas, 1.6 Km by 43 Km (1.0 mi by 27 mi),
contained glacial and alluvial soils. Multispectral scanncr data (0.40 to
1.80 pym) collected at 915 meters altitude (3,000 feet) were analyzed using
two distinct computer techniques: the nonsupervised approach involwving
delineation of soil training areas directly by computer and the super-
vised approach entailing training area selection manually by the researcher.
Computer classification of surface materials follows both methods.

Non supervised analysis results failed to show a consistant relation-
ship between landform type and soil spectral class. Landforms correlating
well displayed either unusually bright or unusually dark spectral signatures.

Supervised analysis results showed a strong relaticnship betwecn soil
texture and soil spectral class. A moderately strong tie was shown
between engineering soils groups (ML, CL, CH and OH) and their respective
spectral classes, and a weak association between landform type and soil
spectral class.

An analysis procedure for engineering soils mapping by computer of
remotely sensed data was developed. 1. Locate cultural features by
visual examination of imagery. 2. Produce generalized bare socil-vegetation-
water map using nonsupervised techanique. 3. Outline significant soil fields
for computer training using supervised approach. 4. Computer-classify entire
area based on these soil fields.
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INTRODUCTION

Soils engineers have for some time utilized various types of aerial
photography in their soils mapping programs. Through examination of basic
air photo pattern elements (tone, texture, size, shape, association, drainage
pattern, and land use) the soils engineer has been able to obtain general
information about such soil parameters as soil texture and soil moisture con-
tent. However, with the advent of such "exotic" remote sensing devices as the
airborne multispectral scanner, the trained air photo interpreter should up-
date his interpretation techniques, or risk becoming lost in the shuffle of
advancing technology. In particular, he needs to become more proficient in
the interpretation of image tone (or multispectral response pattern), for
present-day multispectral imagery lacks the spatial resolution present in
conventional aerial photography. In order to correctly interpret tones on
multispectral imagery, a photo interpreter must possess a working knowledge
of the electromagnetic spectrum and the manner in which different earth
materials reflect light.

The electromagnetic spectrum consists of waves of energy ranging from
short wavelength Cosmic rays to very long Hertzian waves (Figure 1). These
waves, whose source is the sun, travel through many miles of atmosphere to
strike the earth's surface. When contacting this surface, the waves of
energy interact with the landscape and are either reflected, absorbed, scattered,
transmitted, or re~emitted by the rocks, soil, etc. composing the landscape
(Colwell et al., 1963). These five different modes of energy-matter inter-
actions occur in different proportions for different earth materlals and are
also a function of the wavelengthhof the impinging radiation. In view of

these facts, we can, in principle, identify earth materials by analyzing a



Frequencey (cycles por second)

24 2 1
10 10%° 10'° 102 10°

LIFYT (- L LI LI S [T P L
Coslgicﬂays

lamrﬁmRays
}»XRﬂg?rmg

Ultraviclel Radiation

Visible Radiation

Ir.frmﬁ-‘d Radiation
- Hertzicn Waves

(Rada v, Telovision, Radio)

P8 14 1em 1 km
|l;ll%llnlr1la=|lntlin
0 ]
10°'2 1078 :10'4 ! 10° w0t
Wavelength (centimeters)
o 1]
| |
- v,
-
f"” \‘\%‘wa
/’ \\\
- Optical Wavelengths M

Photogrephic Wavelangths

100

' Y ¥
i P i . i
3l o810 335! sge |
.g’:i £ = l - e ' Ea- I
>0 .-.g w E;E © 28 '
ool 2% | 2:3 i ££73
53' >:: | ;'gg | kP> i
l o | | i | l
Lo b bysha by oo legpgd oo g it
0. 04 07 10 i0 20
Wavelength (microns)
Figure 1. The Electromagnetic Spectrum (from

Hoffer and Johannsen, 1969).



sufficiently detailed record of their spectral reflectance, absorption, emis-

sion, and/or scattering properties (Colwell et al., 1963). Depending upon the

wavelength of light being studied, this record may consist of an aerial photo,

multispectral scanner image (picture), thermal infrared image, or radar image.
Spectral studies have been conducted in the laboratory, in the field,

and from aircraft in an attempt to determine the relationship between the

physical and spectral properties of earth materials. Studies of different

soil types* have shown soil reflectance to be a function of many soil para-

meters--soil color (Myers and Allen, 1968; Vincent, 1972), texture (Piech

and Walker, 1972; Myers and Allen, 1968; Bowers and Hanks, 1965; Shockley

et al., 1962; Al-Abbas et al., 1971), structure (Myers and Allen, 1968),

surface roughness (Hoffer and Johannsen, 1969; Tanguay, 1969; Myers and

Allen, 1968), moisture (Piech and Walker, 1972; Cipra et al., 1971; Tanguay,
1969; Hoffer and Johannsen, 1969; Myers and Allen, 1968; Rib, 1966; Bowers

and Hanks, 1965; Shockley et al., 1963), and organic matter (Al-Abbas et al.,

1971; Horvath et al., 1971; Baumgardner et al., 1970; Bowers and Hanks, 1965).
As far as a soils engineer is concerned, this is unfdrtunate. The inability
of researchers to consistently relate soil reflectance differences to differ-
ences in one specific soil property has prohibited the widespread use of re-
mote sensing techniques in engineering soils mapping programs. However, soil
reflectance has been used to provide engineering soils information in several
instances. Wagner (1972) reports having used computerized aerial reconnais-—
sance techniques to map the distribution of fluvial clays, silty clays, silty
loams, and silts within the test site to be discussed in this paper. A

computer—-assisted study of aircraft multispectral imagery by Stockton et al.

* Those readers interested in spectral studies of rocks, minerals, vege-—
tation, and water should consult references (2), (7), (8), (10), (15), (17),
(25), (27), and (28).



(1973) has illustrated a capability of mapping soil drainage classes. An
ability to "automatically delineate'" unusually wet or highly organic soils
has also been shown in computerized studies of multispectral imagery (Tanguay,
1969; Mathews et al., 1973). Mathews et al. (1973) report having used a
similar technique to map soil erosion classes. In addition, studies by West
(1972), West (1971), Wagner (1972), Mathews et al. (1973), and Tanguay (1969)
have illustrated potential for mapping landform types using terrane reflectance.
The purpose of this study was 1) to gain a better understanding of the
relationship between spectral classes of soil and selected landform types,
soil textural groups, and Unified Scil Classification System subgroups (in
particular, the ML, CL, CH, and OH subgroups), and 2) to determine a technique

for mapping engineering soils in extensive areas using computer-assisted

analysis of remote sensing data.

MATERTALS AND METHODS

Description of Test Site

The test site for this study, hereafter referred to as Kansas Site 35,
extends northeastward from the Kansas River across Jefferson County, Kansas
(Figure 2). Most soils in Jefferson County have formed under tall prairie
grasses, resulting in dark surface soils of high organic matter content and
strong structure. Parent material for the soil in the test area include
Upper Pennsylvanian limestones and shales, Kansan glacial till, Loveland and
Peorian silts (loess), and Recent alluvium.

Upper Pennsylvanian limestones (Topeka, Deer Creek, and Lecompton) and
shales (Calhoun, Tecumseh, and Kawaka) sporadically crop out along major drain-

age ways in the central one-third of the test site. Soils developed from
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these rock units are extremely limited in areal extent and are therefore of
little consequence in this study. |

Scattered areas of red to brown Kansan glacial drift occur north of the
Delaware River, which crosses the flightline 3 km. north of the Kansas River,
whereas gray to black Peorian loess caps the uplands in the northern one-third
of the test site. The thickness of these glacial deposits is highly variable,
ranging from O to 60 feet for the till and from 0 to 10 feet for the wind
deposited silts (Stallard and Myers, 1972). Clay contents of soils derived
from the till range from 23 to 32% and plasticity indices from 9 to 1l4. Soils
derived from the loess have relatively high clay contents (30 to 427%) and plas-
ticity indices (12 to 17). Soil permeability in the glacial terrane is moder-
ately low to very low. Soil erosion, sewage disposal, and foundation stability
constitute prime engineering problems.

Recent alluvial soils, although scattered throughout the entire flightline,
are most extensive at the extreme southern end of the test site. Soils range
from the loamy soils of the Kansas River floodplain to the dense clayey soils
of the Kansas River and Deleware River terraces. Clay contents range from
12 to 40% and plasticity indices from 4 to 20. The more clayey soils have a
high shrink-swell potential and as a result create problems relative to foun-
dations, septic tank absorption fields and trafficability. Soil permeability in
the area is relatively high to very low. Soil units in the Kansas River valley

are subject to severe flood damage.

Data Collection and Preprocessing

Airborne multispectral scanner data were collected at 1416 hours on April

4, 1970 from an altitude of 915 meters (3,000 feet). From this altitude, it

was possible to survey a strip of terrane approximately 1.6 kilometers (1 mile)



wide and 43 kilometers (27 miles) long. Spectral data in 12 discrete wavelength
bands were obtained with the Willow Run Laboratory, University of Michigan air-
borne optical—mechanicallscanner system. Figure 3 illustrates the basic work-
ing mechanisms of the scanner system and the spectral response ranges of the
detectors employed therein.

A spring flight date was selected.so that data collection would follow
spring plowing and thereBy maximize the number of bare soil fields. Unfortu-
nately a light snowfall occurred several days before the remote sensing mission,
resulting in unusually wet ground conditions at the time of flight. Although
no snow remained in the southern one-half of the study area at the time of flight,
plow furrows in the loess-covered portion of the flightline did contain appre-
ciable amounts of snow.

Multispectral data initially collected by the Willow Run Laboratory scanner
system is in analog form and therefore musﬁ be preprocessed prior to analysis
using digital computer techniques. Scan lines produced by the aircraft system
are sampled, digitized, and reformatted to produce a grid of data points for
each wavelength band, or channel of interest. Each data point (image resolu-
tion element, or IRE) represents an area on the ground, whose size is dependent
upon flight altitude, scanner configuration, scanmer look direction and digi-
tization rate. In this particular study, each IRE directly beneath the aircraft
approximates a square, 2 3/4 meters on a side. Finally, each IRE (and associated
spectral response values) 1s assigned a location on a computer data tape based

upon scan line number and position within a scan line.

Gathering of Ground Truth Information

Location of bare soil fields was accomplished by analyzing 1/24,000 scale,
70 mm. color and color infrared aerial photography. Ground truth information

on distribution of landforms was obtained from a landform map of the study
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Figure 3. Airborne Multispectral Data Collection System:
(a) Scanner Configuration and Scan Pattern, and
(b) Spectral Response Ranges of Detectors (LARS=Purdue) .



area supplied by the State Highway Commission of Kansas. Information on engi-
neering soils was obtained from an engineering soils map and report, also sup-
plied by the commission. Information shown on the engineering soils map and
used in this study included annotations of landform type, Unified Soil Classi-
fication System subgroups, and basic soil textural groups. Landform types
studied included river sand bars, old (Newman) flood terrace, young flood ter-
race, floodplain veneer, meander scar, floodplain, glacial till plain, and
loess~-covered till plain; engineering soil subgroups studied were limitéd to
ML, CL, CH, and OH soils (see Figure 4); and soil textural groups studied were
as follows: group 1- sand, sandy loam; group 2- silty, silty loam; group 3-
silty clay loam, silty clay, clay loam, loam, sandy clay loam, sandy clay;

group 4- clay.

ANALYSIS OF TEST SITE

Airborne multispectral scanner data collected over the test site were
analyzed using automatic pattern recognition techniques developed at the Labo-
ratory for Applications of Remote Sensing (LARS), Purdue University. These
techniques utilize a library of computer programs designed to "map" the distri-
bution of many earth materials including rock, soil, water, and vegetation.
Input to the LARS programs is digital in nature and consists primarily of spec-
tral radiance values as seen from aircraft or spacecraft. The basic LARS data
analysis sequence consists of five steps: 1) Training Sample Selection, 2) Sta-
tistical Analysis, 3) Feature Selection, 4) Classification, and 5) Results Dis-
play.

The first step in the "LARS 4pproach" is the designation of areas of known
classes of materials (rock types, soil types, etc.). This information, known

as "ground truth," is used to train the computer to recognize similar materials.
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These areas may be outlined manually (areas of uniform reflectance outlined on
computer gray scale printouts or television monitor) or automatically (uniform
areas determined by a clustering algorithm). In this study, soils in the test
site were first mapped using training classes determined by the algorithm (''non-
supervised approach") and then using training classes selected manually from
engineering soils map units within the test site ("'supervised approach"). Al-
though sets of training areas used in the two approaches were analyzed using
identical data analysis sequences, the two training sets differed in four dis-
tinct ways. First, because of the method used in the nonsupervised analysis
test site to initially separate soil from other cover types (data was clustered
into 2 spectral classes based upon response in 1.0 to 1.4 am channel), all soil
training classes delineated by the clustering algorithm contained a certain
amount of dead vegatation. Second, training areas chosen manualiy consisted of
small rectangular blocks of consecutive data points, whereas the trailning areas
selected by computer consisted of a grid of data points scattered over the en-
tire flightline. Third, areas chosen manually were determined through visual
inspection of only one channel of multispectral imagery (usually the 1.0 to 1.4
am channel), while areas selected automatically were determined through statis-
tical analysis of sets of four or six channels.* Fourth, due to limitations
inherent in the clustering approach employed, the automatically selected train-
ing sets consisted of fewer training classes than the manually selected set
(automatically selected - 14 to 15 classes, manually selected - 30 classes).

The second step in the LARS data analysis sequence involved statistical

* Several alternate training sets were automatically chosen using different
sets of channels. -This was done to see if the quality of training sets varied
with the number or type of channels chosen for clustering. Channel sets employed
were as follows (see Figure 3 for detailed channel information): 1, 8, 10, 12;
&y 7y 1%, 1231, 3, 5, 8, 10, 12; and 2, 4, 6, 7, 11, 12.
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analysis of the training areas chosen in step one. Statistical parameters of
each training class of interest were calculated from the spectral radiance in
each multispectral scanner channel. The parameters calculated are based on an
assumed Gaussian distribution of the data and include the mean, standard devia-
tion, and covariance (Smedes et al., 1970). These parameters constitute the
"fingerprint" of each training class to be used later in the data analysis se-
quence to classify the unknown data points into the known cover type categories.

The third step taken in analyzing the data involved the selection of the
"best", or optimum set of wavelength bands to be used to map the test site.
Ideally, one would like to utilize the spectral information contained in all
wavelength bands (channels or features) sensed by a multispectral scanner sys-—
tem. Such an endeavor would prove very costly as total computer time increases
geometrically as more channels are added to an analysis (Smedes et al., 1970).
Luckily, however, the use of four or five channels has been shown to result
in classification (mapping) accuracies very close to those achievable with more
channels (Smedes et al., 1970). 1In light of this fact, determination of the
optimum sets of channels to be used in the classification of the test site was
reduced to a determination of the "best" set of four or six channels (a "best"
set of six channels was determined for the éupervised analysis and 'best" sets
of four and six channels were determined for the nonsupervised analyses).' De-
termination of "best" channel sets was accomplished through the use of a feature
selection algordithm.

The fourth step taken in the analysis sequence was the classification of
all data points into the training classes using a Gaussian maximum liklihood
scheme. As an additional test of the distinctness of each training class de-
rived through clustering, additional "nonsupervised" classifications were per-

formed by combining spectrally similar tréining (cluster) classes. Class simi-
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larity was arbitrarily determined through the use of a separability quotient
supplied by the clustering algorithm. By combining spectrally similar training
classes, it was hoped that classes representing similar landform types would be
combined.

As the fifth and final step of the analysis sequence, several "soils maps"
of the test site were produced and displayed. Sﬁpervised and nonsupervised
classification maps of the study area were generated in two forms - line printer
copy, with an alphanumeric character assigned to each spectral class of soilj

and photocopy, with a different color assigned to each soil class.

EXPERIMENTAL RESULTS

The following discussions deal primarily with that portion of the test
site mapped in greatest detail by the State Highway Commission of Kansas--the
area of alluvial soil between tﬁe Kansas and Delaware Rivers. Qccasional ref-
erences are made to severai other bare soil areas: a small area of alluvial
soils near the town of Oskaloosa, a large plot of loessial soil near the town
of Winchester, and five scattered plots of glacial till near the town of Perry.

It should also be noted that the terms "misclassification” and "classifi-
cation error" are used rather loosely in the following discussion. These terms
merely indicate situations where computer mapping results do not match those
predicted by the writer. '"Classification errors" and "misclassifications" are
usually an indication that little or no relationship exists between the target
of interest and multispectral response, or that impfoper training procedures

have been used in the data analysis sequence.

Nonsupervised Mapping of Test Site

A preliminary landform map was used to check the accuracy of the cluster
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(soil) map produced in this portion of the study. No other soils ground truth
information was available during the nonsupervised analysis of the study area.

Results indicate that a weak relationship exists between alluvial landform
types of northeastern Kansas and their corresponding spectral cluster classes.
In general, this relationship was strongest for landforms composed of very
bright soil (i.e., floodplain veneer and river bars) or very dark soil (i.e.,
old flood terrace and loess covered till plain). No tie was found between areas
of glacial till and spectral cluster class. Soils associated with river bars,
old flood terrace, floodplain veneer, and loess-covered till plain were found
to be spectrally the most homogeneous soils in the test site.

Classification of several landform units was significantly affected by
the channels used in the clustering and classification steps of the data anal-
ysis sequence. The landform most affected, a large meander scar, was delineated
most precisely in classifications involving, among others, channels 2 (0.46 to
0.48 um), 7 (0.62 to 0.66 uam), and 11 (1.00 to 1.40 pm). Also, far fewer dif-
ferences were noted between six-channel classifications than between four-channel
classifications.

Pooling of spectrally similar cluster (training) classes was found to re-
sult in increased confusion between landform types. Two meander scars and one

young flood terrace were the landform types most commonly affected.

Supervised Mapping of Test Site

The computer-generated engineering soils map (Figure 4) resulting from
this portion of the study was produced using six channels of reflectance data
(0.40 to 0.44, 0.62 to 0.66, 0.66 to 0.72, 0.80 to 1.00, 1.00 to 1.40, and
1.50 to 1.80 um). Most every engineering soils map unit mapped by Stallard
and Myers (1972) were successfully discriminated by the computer; but since

soil training samples were taken from soil units differing in landform type,
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engineering properties, and soil texture, any one of these factors may have
influenced the classification of each map unit. A discussion of the relation-
ship found between these three factors and soil spectral classes will now be

given.

¥: Relationship between landform type and soil spectral classes.

Although an undesirable amount of thresholding (blank or null decisions
on classification map) was encountered in the supervised classification of the
test site (Figure 4b) computer delineation of landforms was better than that
encountered previously in nonsupervised classifications. Most noticeable was
an improvement in the mapping of floodplain soils. Some difficulty was, however,
still encountered in separating young flood terrace from certain floodplain

soils near the town of Oskaloosa.

2. Relationship between soil te#tural groups and soil spectral classes.

Classification of the four textural groups present in the test site was
quite successful. The misclassifications that did occur were not confined to
any one landform type.

FtML2 soils (number 2 designates silt, silt loam textures - see Figure 4
legend for description of other textural groups) located between the two inter-
state highways shown in Figure 4a were incorrectly classified as textural groups
3 and 4 by the computer.

Engineering soil map unit FoCL3 (unit in contact with I-24 (0ld)) was in-
correctly classified as a heterogeneous mixture of éroup 2 and 4 soils.

A large terrace (unit FtML3), while mapped as textural group 3, was classi-

fied as textural groups 3 and 4. 'This may not represent a classification error,
as this unit possesses clay contents higher than other group 3 soils in the test

site (Myers, 1973).
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The greatest difficulty encountered in mapping soil texture involved soil
unit FtCL4, located in the lower left hand corner of Figure 4a. Although soil
samples taken from this unit by Stallard and Myers (1972) were definitely clayey
in texture (group 4 soil), a significant portion of the unit was classified as
containing group 2 soils (silts, silty loams). But again, this may not repre-
sent a classification error. A very thin veneer of silt occurs over a large
portion of this soil unit (Myers, 1973).

One bare soil area deserves special mention here. Soils of map unit Fn
(ML & CL) (3 & 4), Figure 4a, were classified as two soil textural groups; soils
of the southeastern half of the unit were classified mostly as group 3 soils,
and soils of the northwestern half as group 4 soils. Although acknowledging
the presence of two soil textural groups in this unit, Stallard and Myers (1972)
did not actually delineate tﬁem. Two soil textural groups were mapped in this
area by SCS personnel (U. S. Dept. of Agriculture, Soil Conservation Service,
1972); soils mapped in the southeastern half of the unit (silt loams) were in-
deed coarser textured than those mapped in the northwestern half (silty clay

loams).

3 Relationship between Unified Soil Classification System subgroups and
soil spectral classes.

Delineation of ML, CL, CH, and OH engineering soils groups was good, but
not as accurate as the delineation of soil textural groups. Most misclassifi-
cations involved inorganic silts and fine sands (ML soils).

Soils in unit FtML3 were classified as CL soils. This misclassification
may be due to unusually high clay contents in this unit (see - 2. Relationship
between soil textural groups and soil spectral classes).

One young flood terrace deposit labled FtML4 in Figure 4a was partially

thresholded, the rest being classified as CL soil. One would not have expected
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the entire landform unit to be classified as one spectral class, as the thresh-
holded portion appeared distinctly lighter in tone than the remainder of the
unit on color aerial photography. It is very possible that the darker portion
of this unit may represent a remnant of landform FtN (a unit composed of CL
soils) (Myers, 1973). Unit FtML4 may therefore have been classified correctly.

The western portion of a meander scar (unit FoML4) was classified as CL
soil, as was the eastern portion (unit FoCL4). Whether or not the classifica-
tion of FoML4 is incorrect is uncertain. The labeling of this unit as an ML
soil is based soley upon ome "poorly placed" soil sample. ‘The soil sample is
situated dangerously close to an exposed sandy C horizon of unit FtN.

Soils of the large meander scar (unit FoCL3, in contact with I-24 (01d))
were partially misclassified, some parts being classified as CL soils, others
as ML soils. This same unit was previously totally misclassified in terms of
soil texture.

The only CH soil in the flightline, located within a glacial till area
near the town of Oskaloosa, was mapped very well. The only misclassification
involving this spectral class of soil occurred in two small portions of Newman
terrace (FtN and FN) where Newman (CL) soiis were confused with glacial (CH)
soils.

OH soils, occurring in a very narrow meander scar (unit Fo (CL-OH) 4,
Figure 4a), were also mapped very well. CL soils within a young flood terrace

near the town of Oskaloosa were, however, misclassified as OH soils.

Development of a Technique For
Engineering Soils Mapping Using Computer-Assisted
Remote Sensing Techniques

Results of this study indicate that, under geographic and atmospheric

conditions similar to those encountered in this study, engineering soils mapping
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can be accomplished through computer-assisted analysis of remote sensing data.
This analysis would not consist sclely of a 'nonsupervised" or "supervised"
approach, but would instead consist of a blend of the two approaches. The

following data analysis sequence is suggested:

1) location of known cultural features through visual examination of multi-
spectral image tones--researcher becomes more familiar with the imagery

and can locate ground truth areas within it;

2) production of a generalized bare soil-vegatation-water map through clus-
tering (nonsupervised) techniques--a maximum of four wavelength bands
should be employed (preferably two in the visible portion of the spec-

trum and two in the reflective infrared);

3) manual (supervised) selection of significant soil fields (based on
ground truth information, etc.) from soil cluster classes for use in

training the computer; and

4) classification of the entire test site using the selected training fields

and subsequent evaluation based upon known conditiomns.

DISCUSSION OF RESULTS

An attempt was made in this study to map soil types through automatic and
semi-automatic digital processing of airborne multispectral scanner data. A
low degree of success was achieved in landform mapping using the automatic im-
agery analysis technique, while mapping of engineering soils using the semi-
automatic data processing technique was moderately successful. It is felt that
the success in mapping engineering soil types was a direct result of the cor-

relation between soil reflectance and 1) landform type, 2) soil texture, and
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3) engineering soil subgroups of the Unified Soil Classification System (ML,
CL, CH, and OH soils).

Soil texture was found to best correlate with soil spectral classes. That
is, those engineering soil map units which differed significantly in soil tex-
ture did, in most cases, differ significantly in their spectral signatures.

Selected Unified Soil Classification System subgroups were found to cor-
relate with soil spectral classes moderately well. Most computer mapping errors
were confined to areas of ML soils (inorganic silts and fine sands).

Correlation of landform types with soil spectral classes was poor in both
the nonsupervised and supervised analyses. This is extremely unfortunate, as
landform units are often mapped as indicators of engineering soil types. Those
landform types that did correlate well were those exhibiting unusually bright
or dark spectral signatures.

Unfortunately, the success reported here in mapping soil textural groups
may be fortuitous. That is, differences in soil spectral response within the
study area may not be directly due to differences in soil texture. Observations
by Myers (1973) and by Rowland (1973) indicate that a direct relationship may
exist between soil texture and soil organic matter content in the alluvial por-
tion of the study area. It appears that the finer the soil texture, the higher
the soil organic matter content. This would explain why the spectral response
of alluvial soils in the test site decreases with increasing clay contents (ef-
fect seen by the writer during analysis of spectral response graphs and by
Stallard and Myers (1972) during analysis of spectroradiometer data).

The possibility that different levels of soil organic matter were responsible
for the writer's success in mapping gross soil textural groups is strengthened
by studies done by Horvath et alq (1971) and Al-Abbas et al. (1971). Both of

these research teams have found the 1.5 to 1.8 micrometer wavelength band to
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be extremely useful in their attempts to map soil organic matter levels using
automatic data processing of airborne multispectral scanner imagery; this same
wavelength band appeared in all "best" sets of four and six wavelength band com-
binations involved in the writer's study.

Although results of this research indicate a potential for computer-assisted
mapping of engineering soil types, this potential may not be realized under at-
mospheric or geographic conditions different from those present in this study.

In order that this problem be dealt with properly, it is recommended that a de-

termination be made of:

1) where (in the U.S.A. or the world) and to what degree soil organic mat-
ter, color, moisture, and texture influence the spectral properties of

soil; and

2) for the same areas, if and to what extent a correlation exists between

soil texture and Unified Soil Classification System subgroups.

And finally, regarding the merits of supervised and nonsupervised approaches
to computer mapping of earth materials, the following observations are drawn

from this study.

1) The nonsupervised classification technique applied to engineering soils
mapping demonstrated the following advantages over the supervised tech-
nique:

a) involved fewer man-hours (not necessarily fewer computer-hours), less
human intervention, and less bias than the supervised technique.
b) provided for selection of training samples that were more fully re-

presentative of an entire soil class (or map unit).

2) The supervised classification technique demonstrated one distinct advan-
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tage--it provided greater detail and accuracy in the mapping of engin-

eering soil types than did the nonsupervised technique.

3) Using the supervised approach, some engineering soil types can be clas-
sified based on training samples located at considerable distance (up
to 10 km. in this study) from the area classified (single overflight as-

sumed) .
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