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This paper deals with the problem of classifying a pattern based on
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BAYESTAN CLASSIFICATION IN A

TIME-VARYING ENVIRONMENT
‘g .1
Philip H. Swain

Introduction

We pose thé following pattern classification problem:

A series of observations is made on a pattern in a time-
varying environment. The identity of the pattern itself may
change. It . is desiredvto classify the pattern after the current
obéervation is made, drawing on information derived from ear-
lier observations plus knowledge about the statistical behavior
of the environment. |

An example of such a situation arises in remote sensing ap-
plications in which the sensor system can make multiple passes
over the same ground area [1]. The identity of the ground cover
may change between passes. In general it is desired to determine
the current identity of the ground cover, but past observations

can be helpful in accomplishing the identification.

Approach
The classification strategy we shall develop is a Bayes
optimal (minimum risk) strategy [2]. In the ordinary single
1
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observation case, the approach is to select a decision rule so as

to minimize the conditional average loss

m
Ly () =£ )\ijp(wj!X) (1)

where

X 1s an n~-variate observation (feature) vector

{wj, j=1, 2,..., m} is the set of m classes

Xij is the cost resulting from classifying into
class i a pattern actually from class j

p(ijX) is the conditional probability that, given

observation X, its class 1is wj

That is, LX(wi) is the expected loss incurred if an observation X
is classified as w;. Commonly [2] Aij is taken to be the "0-1

loss function," i.e.,

Ai. =0, 1i=9) (no cost for correct classifi-
J cation)
=1, i #3 (unit cost for an error)

Then Eqg. (1) becomes
= - 2
LX(wi) 1 p(wi|X) (2)
and an appropriate decision rule which will minimize Lx(wi) is:
Decide X ¢ Wy if and only if

P(X|w;)p(w;) = max p(Xle)p(mj) (3)
j

where p(Xlwi) is the probability density function for the obser-



vations associated with class Wy and p(wi) is the'g priori proba-
bility of class w;. Thus the set of products {p(Xlwi)p(wi),
i=1l, 2,..., m} is a set of discriminant functions for the.class—
ification problem.

We now generalize this Bayes optimal approach to the case of
a series of observations. It will be convenient to assume that ob-
servations are méde at two times. Generalization to a larger number
of observation times is straightforward.

Let X = X(t,) and X, = X(t,) be n-variate random vectors,
the pattern observations at times t1 and t,, respectively.

Let {Vi = vi(tl)i i=1,2,..., ml} be the set of possible

Il

classes at time t , and let {wi wi(t2)| i=1,2,..., m,} be the

set of possible classes at time tz.

We define a compound conditional average loss

2

Ly x (03) = 2
1 2 ]

o~ 3

1 Aljp(w]lxll X.) (4)

where Aij is the cost resulting from classifying into class i, at
time t,, a pattern actually from class j. In this case p(mjlxl, Xz)

is the a posteriori probability that, given the observations X,

at time t1 and X2 at time tz, the class of the pattern at time

tz is wj.
Once again assuming a "0-1 loss function," Eg. (4) becomes

Lxlxz(wi) =1 - p(wi[XI, X ) | (5)




which is minimized if we choose Wy to maximize the a posteriori

probability p(wiIXI, X,). Thus an appropriate set of discriminant
functions for a Bayes optimal classification strategy is the set

of a posteriori probabilities; i.e.

{p(wilxl, Xz), i=1,2,..., m2}

As usual, however, we wish to derive a set of equivalent dis-
criminant fﬁnctions expressed in terms of class-conditional den-
sity functions and a priori probabilities as in Eq. (3). This
may be accomplished proceeding as follows. First we write:

p(wlxllxz)

p(wIXI, Xz) = m (6)

For fixed X, and X s the denominator in Eq. (6) is constant.

Let ¢ = l/p(Xl, Xz) and write Eq. (6) as

p(mlxl,xz) = cplu,X ,X))

=c ) P(X , X,, V,0)
v

=c ] pX,, X, [v,w)p(v,w)
v

=c )] pX,, X, |v,0)plw|v)p(v) (7)
v

The summation is over the classes which can occur at time t . The

factor p(Xl, X2|v,w) is a joint class-conditional density; p(w|v)
may be interpreted as a transition probability (the probability
that the class is w at time t  given the class was v at time t );

and p(v) is an a priori probability.



Thus, the multiobservational decision rule analogous to Eqg.
(3) is:

Decide X, € w; if and only if

m
1
kzl P(X , X v, 0)p(w v )p(v,)
ml
= max kzl p(X, , levk,wj)p(mjlvk)p(vk) (8)

j
and the set of discriminant functions is the set of sums of

products:

m
1
{k_z_l p(xlr XZIVk:wi)P(wil\)k)p(\)k), i=1,2,..., mz}.
(9)

A "Cascade" Implementation

In practice, the terms in the discriminant functions must
be estimated from "training samples.”" The most formidable job is
estimating the m e m joint class-conditional densities
p(Xl, levk,wi), each of which is of dimension 2n.?2 Clearly a
large number of training samples will be required. When certain
approximations can be justified, the situation is eased consider-
ably. We shall now show that these approximations lead to a rather

attractive model for a multitemporal classifier.

°The observation vectors need not be of the same dimensionality.
if X, has n, components and X, has n, components, the p(X,, lev,w)

is N-variate, where N = n, +n,.




We are accustomed to assuming class-conditional independence
in the spatial domain; i.e., given the class at a particular point,
the random variable which is the measurement vector at that point
is independent of the class or measurement vector at any other
point. Applying this same idea to multitemporal measurements at
a given point, we say that given the classes vy at tl and w; at

t the random variables X, and X, are independent. Then we can

2'
write

p(X , levk,wi) = p(X1|vk,mi) p(levk,wi) (10)

and furthermore

A
P(X [v,rw.) F p(x [v,)
(11)
p(X, v, rw) = p(X, [w;)
Imposing these conditions, it follows that
p(X,, levk,wi) = p(Xllvk)p(X2|wi).
The discriminant functions, Eg. (9), then become
m,
{ kzl p(X, v )p(X, lw)plw, [v )pv,),
(12)

_ 1
i=1,2,..., mz[

From Eq. (12) we can model the discriminant function calculations
as indicated in Figure 1, from which we derive the term "cascade

classifier" to describe this multistage classifier.

The cascade classifier model was programmed and applied to

the analysis of a set of Landsat multispectral data. The data,



collected by the satellite on two successive passes, eighteen days
apart, over Fayette County, Illinois (see Table 1), were geo-
metrically registered at Purdue University's Laboratory for Ap-
plications of Remote Sensing. The objective of the analysis was
to discriminate among the ground cover classes "corn", "soybeans",
woods", and "other", where the last category was simply a catch-
all consisting of water, pasture, fallow and other relatively
minor ground covers. Each class was actually decomposed in the
analysis process into a union of subclasses, each having>a data
distribution describable as approximately multivariate normal.3

To provide a baseline for comparison, the data from each of
the passes was first analyzed separately. The a priori proba-
bilities of the classes were approximated as being equal, and 557
test samples, independent of the training samples, were used to
evaluate the results. As shown in Table 1(a) and (b), the per-
formance of this conventional maximum likelihood classifier was
68% correct for the June 29, 1973 data, and 72% correct for the
July 17, 1973 data.

To implement the cascade analysis, it was assumed unlikely
that the ground cover would change identity over so short a time
span. Accordingly, the transition probabilities were estimated

as follows:
p(wilvk) = 0.8 for Wy = Vi (13a)

and all other transition probabilities were set equal and such that

3A11 probability densities were assumed to be multivariate normal

(Gaussian), characterized by mean vector and covariance matrix.




g P(wilvk) = 0.2. : (13b)
wiFvy
Again the a priori probabilities were assumed equal and the same
test samples were used to evaluate the results.

The results of this multitemporal classification, Table 1l(c),
were substantially better than either of the unitemporal analyses.
The overall results were 84% correct. In addition, the performance
for each class was better than the best aﬁtained for the class
in either of the unitemporal analyses. The unitemporal and
multitemporal results are compared in Figure 2.

The results can be sensitive, however, to the specification
of the transition probabilities and a priori probabilities. This
is demonstrated in the following experiment.

Landsat data from two passes over Grant County, Kansas, were
analyzed in a manner similar to that used for the Fayette County
data. In this case, the two passes were separated by more than
two months and a different set of classes was involved (Table 2).
The transition probabilities were specified as in Eq. (13a) and
(13b); equal a priori probabilities were assumed.

As shown in Table 2 and Figure 3, in this case the overall per-
formance of the multitemporal cascade classifier was only marginally
better than the best unitemporal result. A closer look at the
class-by-class results is revealing. The largest detractors from
the multitemporal results were the classes "alfalfa" and "pasture.”
In both of these cases, the unitemporal results for the second
pass were substantially lower than those obtained in the first

pass. (There are physical explanations for why this is reasonable,

but this is not germane to our exploration of classifier behavior.)



Let us examine the impact that the relatively arbitrary
assignment of transition probabilities has on the classification
results.‘ In case the actual transition probabilities are not
known (which was true for the cited examples), the assignment
can be made anywhere between two extremes. On the one hand, it

could be assumed that

p(wilvk)=—~— , k=1,2,..., m

ey

i.e., equiprobable transitions. Then the discriminant functions

have the form

m
1

1
L p(xllgk>p(x2[wi)ﬁ: p(v,)

m
1
1
T m p(Xz‘mi) z p(Xllvk)p(vk)
1 k=1

it

1
- PO TR

1
Since m  and p(X,) will be common to each of the discriminant

1
functions, the decision will depend only on p(X2|wi) and will be
independent of the first-stage results.

On the other hand we could make p(milvi) =1 and p(wi!vj) = 0,

j # i. Then the discriminant functions become
X X
p( 1lvi)p( 2Iwi)p(vi).

Thus, in a sense, the contributions from the two stages are weighted

equally.




10.

There is no way to make the first stage input dominate the
second stage.

In view of these considerations, another classification of
the Grant County data was performed. 1In this case, the transition
probabilities p(wilvi) were set equal to unity for the "alfalfa"
and "pasture" classes in order to give as much strength as pos-
sible to the first stage results. Table 3 and Figure 3 show the
outcome of this classification. The confusing influence resulting
from the second stage data has been reducead.

It is interesting to compare the results obtained using the
cascade classifier to results produced by a "conventional" maximum
likelihood classifier using all of the multitemporal features si-
multaneously. To perform the latter classifications, egqual 2 priori
probabilities were assumed. The results were:

Fayette County: 80.8 percent correct

Grant County: 64.1 percent correct
It is curious that neither of these results is any better than the
cascade classifier results achieved. It is possible that these
slightly poorer results represent the price paid for having to
estimate 8-dimensional statistics as opposed to 4-dimensional

statistics in the face of limited training data.

Discussion and Conclusions

The approach we have adopted for classifying data in a non-
stationary environment was based on avpplication of classical
statistical decision thecory in a straightforward manner. Jlowever,

we uscd the conditions of the problem to approximate some of the

statistical quantities involved. This step simplified the inter-

dependencies of the data involved and led to a "cascade classifier"



1]

model. In the timé—varying environment, this model is seen to:

(1) Successfully incorporate the temporal information in
the classification process, resulting in improved classification
accuracy;

(2) Reduce the dimensionality of the probability functions
used and thereby make less stringent demands with respect to the
size of the training set required;

(3) Facilitate distribution of the computational load over
time.

Each time a set of observations becomes available, dis-
criminant functions are calculated which can be used, if desired,
to make a classification. However, the values of the discrim-
inant functions are also passed along and contribute to a new set
of discriminant functions calculated when the next set of observations
is obtained. Although we have demonstrated the use of the cascade
model only for the case of two stages, extension to an arbitrary
number of stages presents no difficulty.

The prospective user of this approach should be aware that
a casual implementation of the likelihood computers may result
in computational difficulties of two sorts: loss of precision
and very large computation times as compared with, say, a con-
ventional Gaussian maximum likelihood classifier. Both of these
difficulties can be overcome or at least substantially reduced
by appropriate measures (scaling, ignoring zero terms, etc.)

in carrying out the likelihood computations.



Acknowledgements

The author wishes to thank Mr. Carlos A. Pomalaza for

programming the cascade classifier model and testing it with

the remote sensing data. This research was supported in part

by MASA Contract NAS9-~-14970.

[1]

References

Landgrebe, D.A., "The Quantitative Approach: Concept and
Rationale," Chapter 1 in P.H. Swain and S.M. Davis, eds.,

Remote Sensing: The Quantitative Approach, McGraw-Hill

International Book Co., Inc., 1978.

Milsson, N.J., Learning Machines, McGraw-Hill Book Co.,

Inc., 1965.

12



13

Table 1. Test results for classification

of the Fayette County, Illinois, data.

(a) June 29, 1973 data

No. of Percent No. of Samples Classified into
Group Samples Correct CORN OTHERS SOYBEAN WOODS
CORN 186 65.1 121 36 24 5
OTHERS 100 40.0 33 40 22 5
SOYBEAN 227 82.4 10 30 187 0
WOODS 44 72.7 0 4 8 32
TOTAL 557 164 110 241 42

OVERALL PERFORMANCE = 68.2 percent correct

(b) July 17, 1973

No. of Percent No. of Samples Classified Into
Group Samples Correct CORN OTHERS SOYBEAN WOODS
CORN 186 89.2 166 16 1 3
OTHERS 100 45.0 38 45 15 2
SOYBEAN 227 73.6 24 36 167 0
WOODS 44 56.8 4 9 6 25
TOTAL 557 232 106 189 30
OVERALL PERFORMANCE = 72.4 percent correct

(c) Multitemporal results (cascade. classifier)

No. of Percent No. of Samples Classified Into
Group Samples Correct CORN OTHER SOYBEAN WOODS
CORN 186 90.3 168 11 4 3
OTHERS 100 48.0 29 48 20 3
SOYBEAN 227 94.3 3 10 214 0
WOODS 44 84.1 0 5 2 37
TOTAL 557 200 74 240 43

OVERALL PERFORMANCE

83.8 percent correct
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Table 2. Test results for classification of the

Grant County, Kansas, data.

(a) May 9, 1974

No. of Percent No. of Samples Classified Into

Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT
ALFALFA 58 84.5 49 0 0 0 9
CORN 428 57.0 0 244 183 1 0
FALLOW 526 54.4 0 196 286 36 8
PASTURE 1513 52.6 127 148 220 796 227
WHEAT 913 82.5 97 17 0 49 767
TOTAL 3455 273 605 689 882 1006
Overall Performance = 62.0 percent correct

(b) July 20, 1974

No. of Percent No. of Samples Classified Into

Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT
ALFALFA 58 5.2 3 3 0 10 42
CORN 428 53.0 15 227 105 15 66
FALLOW 526 62.9 0 113 331 5 77
PASTURE 1513 42 .4 64 329 213 641 266
WHEAT 913 76.2 22 108 33 58 709
TOTAL 3455 104 780 682 729 1160
Overall Performance = 55.3 percent correct

(c) Multitemporal results (cascade classifier)

No. of Percent Number of samples classified Into
Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT"
ALFALFA 58 41.4 24 0 0 2 32
CORN 428 59.6 5 255 165 1 2
FALLOW 526 76.4 0 107 402 2 15
PASTURE 1513 46.3 101 205 224 701 282
WHEAT 930 88.3 77 19 0 13 821

TOTAL 3455 207 586 791 719 1152
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Table 3. Cascade classifier results for adjusted

transition probabilities (Grant County data).

No. of Percent Number of samples classified Into
Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT
ALFALFA 58 94.8 55 0 0 0 3
CORN 428 70.3 5 301 122 0 0
FALLOW 526 68.1 0 139 358 7 22
PASTURE 1513 48.1 105 211 195 727 275
WHEAT 930 89.1 82 9 0 10 829
TOTAL 3455 247 660 675 744 1129

Overall Performance = 65.7 percent correct
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Figure 1. The cascade classifier model.
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