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ABSTRACT

An analysis of pixel labeling by probabilistic relaxation

techniques is presented to demonstrate that these labeling procedures

degenerate to weighted averages in the vicinity of fixed points. A

consequence of this is that undesired label conversions can occur,

leading to a deterioration of labeling accuracy at a stage after an

improvement has already been achieved. Means for overcoming the

accuracy deterioration are suggested and are used as the basis for

a possible design strategy for using probabilistic relaxation procedures.

The results obtained are illustrated using simple data sets in

which labeling on individual pixels can be examined and also using

Landsat imagery to show application to data typical of that encountered

in remote sensing applications.
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i, INTRODUCTION

Probabilistic relaxation procedures, which employ the information

embedded in spatial context, appear to be attractive techniques for

reducing labeling errors in various types of image data. In the results

of some simple exercises such as the labeling of the sides of a triangle

[1,21, this has indeed been the case with perfect labeling shown to be

possible. However, in more complex labeling tasks such as line and

edge enhancement [3,4,5] and pixel labeling [6,71, the results obtained

to date detract somewhat from the appeal of relaxation since labeling

accuracy has been observed to improve during the early iterations of the

process only to be followed by a subsequent degradation. In pixel labeling,

for example, the labeling error exhibits a turning point at a specific

iteration and the final error, in some situations, can be worse than that

initially; similarly in line enhancement applications, line broadening

is observed to occur late in the process, degrading an otherwise acceptable

labeling. From a practical viewpoint, this suggests that the relaxation

process in these sorts of applications should be stopped at some particular

point to avoid incipient deterioration of the results. However, since the

iteration of minimum error will not be known, so that the optimum stopping

point will not be evident, it is likely that the final labeling error will

always be larger than necessary. To avoid 'U, his situation, it is clearly

important that the degradation mechanism be understood so that, at worst,

a stopping criterion can be devised or, better still, the deterioration

of labeling accuracy can be minimized or avoided. Eklundh and Rosenfeld

[8] and Peleg [9] have addressed the task of deters° i;ining suitable stopping

rules. In particular, Eklundh and Rosenfeld observe that the convergence

of relaxation is such that labeling error changes most in the earlier
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• erations and only slightly in the 'tatter stages of the process. As

a result, they recommend that the average absolute difference between label

estimates in pairs of sequential iterations be computed and.that relaxation

be terminated when this measure is an order of magnitude smaller than it

was after the first iteration. Peleg bases his stopping criterion on a

measure of the likelihood that the labeling at each iteration is the

correct one. By establishing a likelihood measure that incorporates both

the influence of the current label estimates and the effect of the current

joint probabilities, he demonstrates (for two examples) that the most

probable labeling occurs at some iteration before that where the minimum

labeling error is observed. A second stopping rule proposed by Peleg,

using information channel concepts, exhibits similar behavior. With both

of these measures, the process is stopped significantly short of the

iteration of minimum error and thus they must be regarded as sub-optimal

criteria. Moreover, since the reason for the turning point in the error

curve has not been determined, there is no theoretical reason to suppose

that stopping rules of these types will circumvent deterioration of labeling

accuracy.

The present treatment is directed towards understanding the mechanism

during relaxation that causes labeling error to increase again after ,'saving

reached a minimum. It is demonstrated that this is a process of local

averaging once relaxation has approached a fixed point. As a consequence,

it is shown that if the parameters in the relaxation algorithm are suitably

chosen, the error versus number of iterations curve can be made to decrease

monotonically to a fixed error.

l
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2. THE RELAXATION ALGORITHM AND THE DEFINITION OF NEIGHBORHOOD

Consider the probabilistic relaxation algorithm of Rosenfeld, Hummel

and locker [ 11:

Pik+l M s pik ( X)Qik (a) E 
PikmQ ikM

X

where p i k ( X ) is the k th estimate of the probability that X is the proper

'label for the i th pixel, and Qry k (X) is the kth estimate of the neighborhood

function, given by

Qik(X) + E dj L ! rid ( ^^' ) p (^' ) (2)
 jeJ a

In this expression the rij (XIV) are the compatibility coefficients, the

d  are a set of neighbor weights that can be used to give different

neighbors differing degrees of influence in the neighborhtood function,

and J defines the neighborhood about the particular pi;;el being considered.

Owing to practical considerations, this neighborhood in pixel labeling is

chosen either as the 3x3 set of pixels about the pixel under consi'eration

or, more simply, as the pixels above, below, and to the sides of that

pixel. Within these choices two variations appear to have been used.

One includes the central pixel (i.e., that under consideration) as a

member of that neighborhood (11 and the other excludes that pixel [10,111.

These will be referred to here as inclusive and exclusive neighborhoods

res pectivel),. The following analysis is based upon inclusive neighborhoods

with results for exclusive neighborhoods, as required, being given as

special cases.

3. LOCAL ^VERAGINO IN THE VICINITY OF FIXED POINTS AND ITS EFFECT ON

GEOMETRIC FEATURES

Suppose a oarticu llar relaxation exercise has progressed to a point

where the label estimates have all approached 0 or 1. (The stage where i

++3
i



the label estimates are at 0 or 1 is called a fixed point in the process.

Fixed points with p i k M other than 0 or 1 can occur, however, they are

infrequent in pixel labeling and will not be considered here.) Within

homogeneous regions -- i.e., where all pixels in a neighborhood have the

same predominant label -- the mutual support offered among neighbors will

not allow the label

significant amount.

their fixed points.

of one region withia

isolated pixels can

reveals.

estimate on any particular pixel to alter by any

In fact, those estimates will simply move closer to

However, the situation at boundaries such as corners

1 another, the ends of lines (single pixel wide), and

be quite different, as the following discussion

Consider a Al pixel on the boundary between X1 and az regions.

Evidently p i k ( ^} is the largest label estivate Tor that pixel and it is

reasonable to assume for such a X,,X2 neighborhood that p i k (Al) > pi k (XP) »

P i k (Xn ), un 1,2. Now consider whether the label estimate p i k (X I ) will be

strengthened or weakened as relaxation proceeds. To do this, it is sufficient

to consider the relative strengths of the neighborhood functions as defined

in (2). In particular, if

Q i k (XI) > Qik(W

the a, label will be strengthened at the next iteration; otherwise it will

weaken. This wil l continue with subsequent iterations (since the label

estimates at neighbors will not change by any significant amount). Should

Q i k ( W > Qi k (XI), the repeated application of relaxation will ultimately

lead to Xz being the favored label at the pixel - i.e., the 1 1 label will

be removed by further iterations. Consequently even though labeling error

could have been reduced in establishing the X, label on that pixel, it
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will now (gradually) increase owing to the loss of that label. To avoid

this, it is necessary, therefore, to ensure (fvoni (2)) that

1 + Z dj Z r1 j (xll xl ) pj k ( X") > 1 + Z d E rij(X21X')pakW)
jeJ  jeJ V

i.e. E dj {rij(XIIXI) - rij (XzjX I )} P i kW) > 0 (3)
jeJ ?^

Note that the additive 11 1 11 in (2) has been of no significance in determining

(3), so that (3) is a result general to all present relaxation algorithms

which employ arithmetic averaging over the neighborhood, including

particularly that where the rij (Xlx') are mapped to conditional probabilities

in which case the "P does not appear in (2). (See [10].)

The probability that the pixel's label could alter to that of a third

class a 3 has been ignored owing to the earlier assumptions regarding the

relative strengths of the label estimates on that pixel.

Since it has been assumed that all the probability estimates are

close to 0 or 1, (3) can be modified to

Z
di {rij (a l j^,j ) ri j (X 2 lXj )l > 0

jF;J

where Xi is the preferred label on the j th neighbor.

Now consider the neighborhood definition explicity. Let J l be

the exclusive neighborhood so that J {J',i} where i is the pixel whose

label is "currently" under consideration. Then (4) can be recast as

(4)
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di {rii(XIIX) - ri i (X2IA0} + E di {rii (XIIX^) ri (^21a )} o,
,ir;d'

E di { ri j(A, I^j ) - r,^(^2I^a)} (5)
giving di 

JcJ 
.

rii ( a 7 1a 1 ) - ri^(a,^^,)

as the condition that X, be retained as the label for the i th pixel,

To simplify further discussion, now consider some special cases of

(5), First suppose the compatibilities rij (Xla') have been chosen as

conditional probabilities, and secondly consider only a two-label problem

so that

rii (a21 X ) = p ij (a21x;) = 1 - pij(XIIXj).

Thus (5) becomes

T 
I 
d fl - 2pia(a,^a)}

aeJ
di

-1 + 2pii (X IXx)

Within the conditional probability compatibility definition, it is

logical that p ii (XIIXI) 1, although in (5) rii (X I IX I ) based upon other

compatibility definitions need not necessarily be unity: To avoid loss

of a a i label on a border between a l and X2 regions, we therefore have

the condition

d. > d.{l - 2p..̂7(alI`X•)}
• jr

(5)

Now consider the particular choice of neighborhood shown in Fig, ;, and

let the pixel under consideration be a corner pixel, as depicted. Suppose



- 3 -

di = d VJ, and further assume the compatibility coefficients pi,(XIIXi)

are the same for each neighbor j of the corner pixel, In view of these,

(6) simplifies to

di - ad { p ij (X2la2) - pij (X I IX 0

Further suppose the d. have been chosen such that Ede a 1, Such

a choice is strictly only required when the r ij (X I a') are chosen as

correlations, However, it is a useful choice in general and here leads

to 4d + di = 1 so that we have

di > tl(l+n) -1 0 n = p ij( X21X2)- pi j(X 11X1) (7)

as the required condition that a l corner labels not be lost, This

condition also applies to the preservation of single-pixel-wide a,

lines that pass through a X 2 neighborhood. For the simple neighborhood

chosen, the only other ;,; ,ometr ies that are subject to label conversion

(deterioration) by the mechanism described are the ends of lines a single

pixel wide, and single isolated pixels, From (6) it can be shown that the

condition for the preservation of labels at the ends of lines of X1

within Xy regions is

3p i j( X2J X2) - p i ( X pXr) - 1
 

(8)

3p i i ( X21 XZ) - p i j (X11X1) 1

Likewise, to preserve individual X i labeled pixels in X 2 regions, it is

necessary that

di
 y 2pi^(X2IX2)

2p i a( x7 ( Xz) - 1 

(9)

, 1Thi§ ig es, for example, systematic biases such as the unequal vertical
and horizontal sampling rates present in Landsat imagery.
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the prodictions of (7-9) were checked using the data chosen in

Figure 2. This i g. assumed to be a portion of an ima(le for which the

compatibilitie ,,, are pij (WIW) ^ 0.700,p ij Wb) n 0.800, where b implies

blank. Ug ing (7-9), the following conditions can be determined.

1. To avoid loss of a W corner in a b region d i > 0,091
2. To avoid loss of a b corner in a W reckon d i 5- 0.111

3. To avoid loss of a W line end in a 'b i mugion d i 0.259

4. To avoid loss of a b line end in a W region d i 0,130

S. To avoid loss of a W pixel in a b region di 0.375

G. To avoid loss of a b pixel in a W region di 0.286

Consequently we would expect that if

di ^ 0 1 only b corners would be retained

d i - 
01000,100 V Lo and W corners would be retained

d i - 0.160 the above plus b lines would be retained

di 0.270 the above plus W lines would be retained

d i ^, 0,400 all corners, lines and isolated pixels would he retained

As seen in Figure 2, those predictions are accurate. The image was

initiatilized very close to a fixed noint by choosing the initial label

estimates as P, O (k or W) = 0.99, and thus could be regarded as an image

which has approached that condition by some preceding iterations of

relaxation; moreover, it is useful to suppose the initial labeling represents

the true labeling since then the 'label conversions observed in Figure 2

would represent the introduction of labeling errors,

An example with assumed initial labeling errors is shown in Figure 3.

Again, initial label estimates of 0,99 were chosen to allow the prediction

of (7) to be checked. As seen when d i is chosen to avoid loss of corners,

the relaxation process converges to the true labeling and remains there.
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However, when d i is less than the prescribed value, the corners are lost

shortly after the true labeling has been achieved,

The predictions of (5) through (9), of course, only hold exactly

for an image that has approached a 0,1 fixed point and thus tacitly

assumes that the local averaging that gives rise to the conversion of

border labels takes place when the label estimates are all near 0 or 1.

While this is indeed the case, averaging also takes place earlier when

the label probability estimates are not quite so extreme. By initializing

label probabilities further from a fixed point, the predictions from

equations such as (7) through (9) will be modified. As an indication

of this, Figure 4 illustrates how the value of d i pre.4icted from (7)

for the example of Figure 3 is modified for a range of initial label

estimates. This graph was produced empirically and implies that (7)

is a lower bound,

Should an exclus'M neighborhood definition be used, then d i = 0

in (5) through (9), Thus a, label deterioration of the types considered

will occur unless the right-hand sides of those equations are less than

zero, A little thought reveals that these equations can never be satisfied

for all complementary pairs of neighbor geometry (i.e., a, corners in X2

regions and az corners in ,X, regions) so that label degradation leading to

an increase in labeling error would always be expected to occur with

conventional probabilistic relaxation algorithms applied to real imagery

when used with exclusive neighborhood definitions. 'The supervised algorithm

proposed recently, however, can be adjusted to avoid the degradation

problem on exclusive neighborhoods since it bears similarity to using an

inclusive neighborhood definition with the conventional algorithm [121.

r



4. LABELING IMPROVEMENT DURING RELAXATION

The intention of applying relaxation to an image is to improve upon 
i

a labeling which has been generated beforehand by some "imperfect" process.

In endeavoring to examine the improvement, it is useful to view the situation
in the following manner. The relaxation algorithm does not know, of course,

Y

 

 which are the correct and which are the incorrect labels. It only "knows"

which labels are consistent and which are inconsistent with their neighbors.

Consequently, an image with initial labeling errors will be treated by the

relaxation algorithm as though it were correctly labeled and the "improve-

ment" which it creates is a conversion of locally inconsistent labels.

This conversion will take place by mechanisms such as those described in

the previous section and, in particular, for pixels that are close to

fixed points, equations such as (7) through (9) can be used to describe

labeling improvement in addition to likely degradation. Indeed, in the

special case when an image is intentionally initialized close to a fixed

point, those expressions can be used very accurately to describe the labeling

improvement phase as well as any deterioration in the labeling that might

occur. In such a situation, the predictions of (7) through (9) (for a

two-label example) allow the value of di to be chosen relative to the

compatibilities and other neighbor weighting coefficients to ensure that

some labels are intentionally converted (i.e., those in error), while others

are retained. Clearly the requirements for improvement and for avoiding

degradation will often conflict in real image segments and, in order to

obtain clean-up during relaxation, some correct labels may have to be

sacrificed. As an illustration of these comments, consider the results

of Figure 5 and suppose any one of the isolated pixels happened to be

correctly labeled initially. If corner W labels are not to be lost, (7)
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demands d i 0.274, whereas (8) and (9) require di < 0.36`t4 0,429

respectively if l ine end pixels and individual pixels have to be removed

during the relaxation "improvement" phase. Choosing d i tg 0.200 shows that

all erroneous labels are modified as expected, except that shown by the

arrow which forms a corner with the corner W region. However, if one of

the isolated pixels was correctly labeled initially, as supposed above,

then this is also now in error.

The discussions above and the supporting results presented have been

based upon initial label probabilities being chosen close to 0 or 1. The

graph of Figure 4 supports that these comments will apply also for initial

label estimates different to 0, 1 but all being the same for the same

class. Should the initial label estimates within a class be all different

(as would happen, for example, should they be deterrined on the basis of

Mahalanobis distance considerations in a classification (71), some

correctly (and weakly) labeled pixels will be removed preferentially during

the early improvement phase in the relaxation, However, all label estimates

will then move toward 0 or 1 and the remarks of Section 3 regarding deterioration

still apply in principle.

b. RELEVANCE OF ACCURATE COMPATIBILITIES

In view of the comments of the previous two sections, it is clear that

control of a relaxation process lies significantly in equations of the

type (7) through (9) for a two-label problem and similar (albeit more

numerous) manifestations of (5) for a multi-label exercise. Consequently,

in the remo val of initial labeling errors and in avoiding label degradation,

the actual values of the compatibility coefficients (r ii (Aja') or pij(aIX'))

appear not to be important in pixel labeling so much as their values relative

a^
JJJi
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to each other and to d i as described in (7) through (9). As a demonstration

of this, consider again the example of Figure 5, and arbitrarily choose the

compatibilities as p ij (WIW) - 0,600 and pij (beta) r 0.700 (compared with the

'true values of 0.500 and O.875). Eqn (7) shows d i > 0.091 for corner

retention but loss of other geometries. Choosing d i _ 0.096, the results

in Figure 6 are obtained showing the expected label improvement without

subsequent degradation, notwithstanding the arbitrary choice of the

compati bi 1 i ti es.

6, DESIGN OF POSSIBLE RELAXATION STRATEGICS FOR PIXEL LABELING

Since equations such as (7) through (9) describe the effect of relaxation

(within the comments of the previous sections), it should be possible to

specify an appropriate set of compatibilities and the weighting constant

di to achieve certain desired results. In so doing, the following guide-

lines are significant in a two-label situation, with the neighborhood

definition chosen;

(i) I f pia(AzIaa) > p ij (A,IXI) corner pixels labeled 7, 2 protruding

into X, regions will never degrade.

(ii) Practical lower bounds on the compatibilities p ij ( a I Ia l ) and

p ij (azjaz) are 0.5. Otherwise the image must have consisted

of isolated pixels or lines of pixels, depending upon the manner

in which those compatibilities were calculated.

(iii) for both p ij ( X j jX a) and p ij (,1 2 jaz) close to 0.5 (7) through

(9) reveal that all conditions on di are approximately zero --

i.e., there would be no degradation and no improvement (as

expected).
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(iv) Convergence is faster for larger values of the compatibilities.

As a result of the above comments, the following is proposed as one possible

design strategy for pixel labeling relaxation procedures, which obviates

the need to obtain reliable estimates for the compatibility coefficients.

It turns out to be a sub-optimal ,poocedure for practical image data, since

its success depends upon forekno-i1c , a,e of, or a feeling for, the prevailing

geometry in a particular image; however, it is a significant improvement

on choosing neighbor weights (d
i
) in an , arbitrary manner.

1. Choose all initial label estimates as 0.99 (or 0.01 as

appropriate), unless there is good reason for doing other-

wise. Such a choice (close to a fixed point) allows moderate

accuracies in predictions made from (7) through (9).

2. Choose the compatibility for the most prevalent class to

be the strongest since this automatically preserves corners

in that class and will preempt lower overall final error.

3. Form an impression of the label geometries in which most label

errors seem to lie (such as isolated pixels) and also of the

label geometries which should not be allowed to degrade (such

as corners) and choose d i in order to remove only suspected

errors.

4. If speed is a consideration, choose the magnitudes of the

compatiabi 1 i ties to be as large as possible within the restraints

imposed by the above considerations.

This procedure is now illustrated using two data sets. One consists

of a multitemporal Landsat image acquired over a region in Kansas and

contains an array of 117 x 196 pixels. The other is a 40 x 100 pixel

portion of that same image. The latter was chosen to enable the results
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to be inspected on a pixel-by-pixel basis, whereas the former is used

to illustrate performance on imagery of the size typically encountered in

remote sensing applications. Figure 7a represents two-category (wheat

and non-wheat) ground truth for the smaller image and as such can be

regarded as true labeling. Figure 7b shows the result of a crude

classification of that portion. This classification was obtained using

a minimum distance to means classifier on pattern vectors consisting of

three only of the 16 possible spectral response features. These features

were chosen beforehand on the basis of a separability measure computed

over the full image. Similarly, training areas were selected from the

full segment and Figure 7b represents only a small portion of the

resulting classification map.

Inspection of Figure 7a suggests that it would be desirable to

remove isolated W (wheat) pixels from any classification but that W line

ends and corners of W fields should not be allowed to alter. Also, it

would seem desirable to preserve blank (none-wheat) corners. On the basis

of these observations, the relaxation parameters

p(WIW) = 0.600 p(bjb) = 0.700 di = 0.200

could be suggested as a possible choice which would remove scattered W

pixels but retain all other geometries. This prediction can be checked

on Figure 7c which shows labeling error, after 100 iterations of relaxation,

as a function of d i ; the image was initialized close to a fixed point. It

is evident that di = 0.200 is a good choice for these particular data.

The figure also displays discernible improvements in labeling at values

of d i corresponding to the preservation of the various geometric features

noted on the diagram. Inspection of Figure 7d, which shows the final
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labeling achieved with d i = 0.200, reveals that only the isolated W

pixels have been relabeled as required.

In passing, it is of interest to note that only when di > 0.15,?

relaxation reduces the labeling error below that i`n the initial labeling.

For di < 0.14, the label degradation mechanism leads to worse error after

relaxation than before for these particular data. This effect is so severe

here because of the "large" number of geometries that need to be preserved.

As a basis for comparison of the results of Figure 7, Figure 8 shows

label error as a function of d i using "true" compatibilities calculated

from the full image. Shown in that figure also are the predicted values

of d i from (7) through (9) relating to the preservation of particular

geometries. Comparison of Figures 7c and 8 shows no essential difference

in shape, supporting the notion that exact compatibilities are not

required.

Figure 9 shows the result of relaxation over the complete image using

the "true" values of the compatibilities. Again, the significant values

of d i are noted. Examination of this figure reveals that preservation of

(too many) wheat corners is detrimental. The fact that this behavior is

different from that of Figures 7 and 8 is indicative of the fact that the

portion of the image used in these previous figures has a geometric

character that is not representative of the complete segment. This is

evident from an inspection of the full ground-truth map.

Figure 10 shows labeling error versus number of iterations for

selected values of d i in Figure 9. Note that for d i less than optimum,

labeling error initially decreases, passes through a turning point, and

increases again before settling down to a pessimistic final value. For

values of d i near 0.15, the error curve does not exhibit the deterioration

phase and has a final value which is almost as low as the minimum in the
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previous curve. For larger d i , while the curve is monitonically decreasing

the final error is larger than necessary. Ultimately, for large d i the

curve will remain constant at the initial labeling error.

7. SUPERVISION AS A MEA NS FOR SEGMENTING LABEL CONVERSION EFFECTS

An unfortunate observation on the results of the previous section is

that once a choice of algorithm parameters has been made to retain some

and remove other border geometries, this effect takes place over the

complete image, except at those pixels that were so strongly labeled

initially that their probability estimates reach 0 or 1 well ahead of

ethers. In a practical pixel labeling exercise, particularly of the remote

sensing variety, this is undesirable since there could be segments of an

image where, for example, single pixels would wish to be preserved,

whereas in other segments single pixels would want to be removed (e.g.,

urban versus agricultural regions). The only way this effect can be

implemented with existing algorithms is to attempt to condition the

initial probability estimates by, say, strengthening those corresponding

to regions where single pixels are desirable. At best, this would be a

time-consuming procedure that would also override any information implicit

in the 'initial labeling. An alternative, and potentially attractive,

technique for suitably segmenting the image is to make use of the super-

vised approach to relaxation proposed recently (121. In that technique,

the label estimates at each iteration of relaxation are modified by

reference to some other data. Using the initial label estimates for

that other data has given rise to a relaxation procedure that can be used

to overcome the detrimental label conversion effects on boundaries, as

discussed earlier. However, it should also be possible to derive the
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supervising data from an array which overlays the image and which contains

data on the likely geometries which should desirably be preserved in

various image segments. As an early indication of the viability of such

a scheme, Figure 11 shows an image which is supervised with the overlay

array of probabilities indicated. As observed, it is possible to adjust

the degree of influence of the supervision (via the parameter a) to retain

certain geometric features in one image segment while allowing those same

features to be relaxed out in other segments. Means for establishing the

appropriate values of g have not yet been determined; however, it is

believed that the results of Figure 11 demonstrate the usefulness of this

approach.

8. DISCUSSION AND CONCLUSIONS

From the results presented in the previous sections, it is evident

that the compatibilities should not need to be accurately characteristic

of a particular image. Rather, as noted, it is biases in the compatibilities,

along with the value of d i (relative to the weights on the other neighbors --

here all taken to be the same) that substantially determine how relaxation

will behave on particular image data. This is demonstrated in the fact

that the compatibilities in Figures 5 and 7 are the same (by choice) and

yet clearly the images are quite different. In those cases it was only

necessary to choose the appropriate value for d i in view of the compatibilities

given. A little thought also reveals that for image data (of the Landsat

type especially) the true compatibilities cannot be particularly significant

since these are statistically averaged measures computed over the whole

or even a part of an image where in fact some regions of an image may
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bear no geometric or statistical resemblance to other areas of that

same image,

The examples presented above have shown that it is possible with
image data to choose compatibilities and specific values of the neighbor
weights d  such that the relaxation process will converge to a near optimum
error which will not subsequently increase owing to label conversion
(degradation) mechanisms. Owing to the greater degree of homogeneity
present in the data typically encountered in picture processing tasks

(such as noise removal), it is likely that the predictions concerrtirjg

retention of label geometries presented herein may be more useful in
those applications than with pixel labeling, For example, inspection of

the noisy scene of  house used in [71 reveals that the most important
features to be retained are the corners of one label type within another.

For example, it is important to preserve corners of "sky" which protrude

into regions of "brick" (sky is visible through the end of a veranda).

With the compatibilities chosen by those authors, (5) can be used to

specify a value of d i beyond which sky-in-brick corners will be preserved.

Those authors use a full 3x3 neighborhood and choose d  = l,Vj (the

compatibility coefficients were defined by mutual information), Choosing

dj 1,V j#l, eqn (5) shows that for sky-in-brick corners to be preserved,

it is necessary that d i > 5.22 (the actual value of d i depends upon the

initial label estimates). Clearly with d i = 1 degradation will occur and

it is to be expected, with regard to this feature at least, that label

accuracy would improve early on during relaxation and then become poorer

owing to sky label degradation. Indeed those authors report a degradation

phase during this relaxation exercise and it is probably that a (major)

component of it is a result of sky label loss at corners.

._ Pin
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The theme of this paper has been to develop a rndel for the

relaxation process that would permit the label degradation mechanism to

be uodarstood and thus avoided. Consequently attention has not been given

to attempting to achieve the smallest possible labeling error. For example,

the exercises presented have been initialized with label probabilities

all close to a fixed point and all the same within the same class initially.

Distributing the initial label estimates, however, according to some

measure of confidence, would probably lead to overall lower error since

erroneous labels that were weak initially would be removed before the

relaxation mechanism fixed them by one of the preservation measures discussed

earlier. Notwithstanding this, the predictions of equations such as (5)

through (9) are important guidelines for controlling the relaxation

improvement and degradation mechanisms and consequently for algorithm design

as discussed.
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