
PARTIALLY SUPERVISED CLASSIFICATION
USING WEIGHTED UNSUPERVISED

CLUSTERING

Byeungwoo Jeon1 and David A. Landgrebe2

1 School of Electrical and Computer Engineering
Sung Kyun Kwan University, Korea

2School of Electrical and Computer Engineering
Purdue University, W. Lafayette, IN 47907-1285, U.S.A.

Copyright (c) 1999 Institute of Electrical and Electronics Engineers. Reprinted from IEEE
Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, March 1999, pp 1073-
1079.

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by sending a blank email message to
info.pub.permission@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

ABSTRACT

This paper addresses a classification problem in which class definition through
training samples or otherwise is provided a priori only for a particular class of interest.
Considerable time and effort may be required to label samples necessary for defining all the
classes existent in a given data set by collecting ground truth or by other means. Thus, this
problem is very important in practice, because one is often interested in identifying samples
belonging to only one or a small number of classes. The problem is considered as an
unsupervised clustering problem with initially one known cluster. The definition and
statistics of the other classes are automatically developed through a weighted unsupervised
clustering procedure that keeps the known cluster from losing its identity as the "class of
interest." Once all the classes are developed, a conventional supervised classifier such as
the maximum likelihood classifier is used in the classification. Experimental results with
both simulated and real data verify the effectiveness of the proposed method.

Key Words: partially supervised classifier, one-class classifier, single hypothesis testing,
unsupervised clustering, significance testing
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I. INTRODUCTION

In the real world, there are many applications where a classifier that can recognize

only a single class of samples is sufficient. Since the process of gathering training samples

or otherwise labeling training samples is very expensive in terms of time and manpower, it

would be very useful if one can design such a classifier given only the training samples

belonging to the class of interest.

We call this a "partially supervised classification" in the sense that the prior

information is available only for the class of interest. It is assumed that one either knows

the probability density function of the class of interest, or has training samples from which

its unknown density function can be estimated. It is also known as the single hypothesis

problem [1,2]. This kind of problem arises in such cases where defining all the classes and

gathering corresponding statistical information is impossible or very expensive in terms of

time and manpower. Examples of possible applications include target detection [1], object

detection out of various backgrounds [3], texture detection, and cloud identification.

The maximum likelihood (ML) classifier, one of the most widely used relative

classifiers, is not a good choice here since the relative comparison of log-likelihood values

requires training samples for all other classes in order to adequately train the classifier. The

necessity of training samples for, or otherwise defining all other classes (i.e., fully

supervised) is an onerous shortcoming especially when there are large numbers of classes

and/or features to deal with. Note that the necessary number of training samples is

dependent on the number of features and the number of classes [4], and insufficient

training samples compared to the number of features can degrade the classification

performance [5].

On the other hand, classifiers such as the parallelepiped classifier or a scheme based

upon a known absorption feature for a specific material, classify data samples on an

absolute basis without regard to the spectral responses of other materials or classes that

may be in the scene. Therefore design of such a classifier requires class definition through



Jeon and Landgrebe, Partially Supervised Classification

-3- Final version August 21, 1998

training samples only for the particular class under consideration. When properly designed,

a relative classifier such as the ML classifier, nearly always provides better performance,

and is much less sensitive to many unmanageable factors, e.g., atmospheric conditions,

calibration, etc. However, the operational simplicity of the absolute scheme (such as the

parallelepiped classifier) may make it the scheme of choice in many practical instances.

In this paper, we seek both advantages of the reduced requirements for necessary

prior knowledge in the absolute scheme and the potentially robust and powerful

discriminating capability of the relative scheme by developing an automatic mechanism for

extracting statistical information corresponding to the others class without recourse to prior

knowledge supplied by the data-analyst. We formulate this as a special case of

unsupervised clustering with one particular cluster initially known. Its key problem is how

to define and find statistics for the other clusters without confusion between the class of

interest and the others class.

The proposed method is in three steps. First, each data sample is assigned a weight

factor indicating likelihood of being from "the others" class. The second step is to develop

the initial definition of clusters corresponding to the others class using the weighted

unsupervised clustering. Finally the cluster statistics are iteratively refined, and a

conventional relative classifier such as the maximum likelihood classifier makes decisions

using the cluster statistics.

The organization of this paper is as follows. Section II presents a formal statement of

the partially supervised classification problem with a brief review of previous works.

Section III discusses the weighted unsupervised clustering procedure for the unknown

initial class definitions and the subsequent class statistics development through clustering.

Experimental results with both simulated and real LANDSAT Thematic Mapper (TM) data

are presented with discussion in Section IV. Finally, some observations and concluding

remarks in Section V complete this paper.
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II. PARTIALLY SUPERVISED CLASSIFICATION

Suppose samples belonging to a particular class of interest need to be identified from

a given data set, X ≡ {x1, --- , xN}. Each data sample has a q-dimensional feature vector

xi. The number of samples in the whole data set X  is N. N1 denotes the number of samples

in X which belong to the class of interest samples; it is unknown. Let us denote the class

of interest and the class of "the others" by Cint and Cothers, respectively. Cothers might

consist of several sub-classes none of which are of interest. Cint is an information class [4]

which correspond to a physically meaningful entity. In the derivation of the proposed

method, Cint is assumed to be modeled by a known probability density function(PDF)

denoted by fx(x|Cint). If the PDF is not known a priori, one can choose a proper family of

PDF’s and estimate its parameters using the given training samples belonging to the class

of interest.

In some cases, more than one PDF may be necessary to model the distribution of the

class of interest. For example, suppose the selected PDF is (uni-modal) Gaussian, but the

distribution is multi-modal. In such cases, one can sub-group the data set X  first and apply

the proposed method to each sub-group separately; suppose K PDF’s are required for the

class of interest. Then, one divides the whole data set X  into K sub-groups by classifying

(e.g., using ML Gaussian classification) the samples in X  into the K sub-classes each of

which is characterized by one of the K PDF’s. In each of the K sub-groups, note that the

class of interest is modeled by one PDF. Furthermore, fx(x|Cint) is assumed to have zero

mean and an identity covariance matrix. This causes no loss of generality, since, if not, it is

always possible to normalize the data x to be so by a straightforward linear operation of

Σ− 1
2 (x - M) [2] where Σ and M are respectively the covariance and mean of x.

One straightforward way of partially supervised classification is by the significance

testing [6] under which the null hypothesis, H0: x ∈ Cint is tested against all other

alternatives with a test: Reject H0 if T(x|Cint) ≡ fx(x|Cint) < λα. It amounts to a simple

thresholding where the threshold λα is determined in such a way that the maximum
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rejection probability (i.e., omission error) is not more than the significance level α. The

significance level should be decided based on the probability distribution overlap between

the class of interest and the others. Since the user does not have such prior knowledge to

determine an optimal significance level, the success of this approach is very limited.

Furthermore, the reduction to one dimensional space of the test statistic causes the loss of

much information valuable in classification [1,2].

The approach in [7] avoids the difficulties by iteratively estimating the prior

probability of Cint and the PDF of Cothers from the Parzen estimate of the mixture PDF

through the EM (Expectation and Maximization) algorithm [8]. The mixture PDF fx(xi) is

written as fx(xi) = π fx(xi | Cint)+(1-π) fx(xi | Cothers), xi ∈ X . Although this can avoid the

information loss due to dimensionality reduction and the user's guess of an appropriate

significance level, it is computationally very intensive.

In this paper, we approach the problem in the context of unsupervised clustering [2].

This approach differs from general unsupervised clustering in that (1) one is interested in

finding samples of only one particular cluster (or class) and one has its statistical

information such as the probability density function a priori; (2) the clusters corresponding

to the others class do not need to be meaningful as useful informational classes and,

furthermore the confusion between those clusters are not important as long as they are

differentiable from the class of interest.

The mixture density fx(x) is written as a weighted sum of L probability density

functions as,

fx(x) = ∑
k=1

L

 πk   fx(x | Ck) (1)

where πk and fx(x|Ck) are respectively the prior probability and probability density function

of the kth class, k = 1, --- , L, and π1 +  ---  + πL = 1. The notation of C1 and C2, ---, CL
    

means that C1 = C int and C2, ---, CL are the sub-classes of Cothers. According to the

assumption, only fx(x|C1) is known a priori. We develop the probability distribution
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functions corresponding to the others class through unsupervised clustering so that the

time-consuming density estimation process in [7] can be avoided. In the process, it is

important to ensure that there is no significant confusion between Cint and the clusters

corresponding to Cothers so that the cluster statistics of Cothers should not be biased by the

samples belonging to C1. One conceivable approach for reducing the bias is to find the

clusters of Cothers by performing clustering with a subset of data in which a significant

portion of the C1 samples are removed through the significance testing. In addition to the

difficulty in selecting the proper significance level, the approach still suffers the biasedness

problem especially when Cothers is not well separated from C1. Instead of removing the

effect of C1 samples in a rather absolute way, we assign to each sample a weight factor

which indicates the relative likelihood of belonging to Cothers and determine the number of

clusters L and the unknown cluster statistics using a new unsupervised clustering with the

weights.

Once the initial specifications of the clusters are obtained through unsupervised

clustering with weights, then, a conventional supervised clustering procedure iteratively

refines the unknown class statistics. The class statistics developed are used in the relative

classification scheme chosen. The proposed procedure is summarized in Fig.1.
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Compute weight
 for each data sample

Define clusters using
unsupervised clustering 

with weights

start

Develop class statistics   
and perform relative 

classification

end

Figure 1. Flowchart of proposed partially supervised classification method

III. PARTIALLY SUPERVISED CLASSIFICATION USING
UNSUPERVISED CLUSTERING WITH WEIGHTS

A. Computation of Weights

Initial specifications of clusters which can initiate the supervised clustering are found

through an unsupervised clustering procedure. In creating a new cluster, setting up a

proper condition of new cluster creation is important. If too many small clusters are

generated near the origin in the feature space (that is, the class of interest ), these will take

up significant portion of samples from Cint. To reduce the sensitivity of the initial cluster

specification on the cluster creation parameter, each data point xi is assigned with a weight

w i1 in eq.(2.a) which is the relative likelihood of not belonging to Cint.

w i1 ≡ 1 - wi1 (2.a)

where, wi1 = π1 
fx(xi  |  C1)

 f x(xi)
   = 

N1  fx(xi  |  C1)
 N  f x(xi)

  (2.b)

Note that evaluating the weight factor, wi1 , requires π1 (or N1 since π1 = N1 / N, where

N1 is the number of samples in X  belonging to the class of interest) and the mixture density

fx(xi). Since the purpose of the unsupervised clustering is to provide initial specification of
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clusters to launch the clustering process and a direct estimation of fx(xi) through non-

parametric density estimation would require complex computation, practical approximation

is made by noting that wi1 can be expressed as a ratio,

wi1 = 
 N 1 fx(xi  |  C1)∆V  

 N  fx(xi)∆V   (2.c)

If we set the volume ∆V  such that the data point xi is inside a small hypersphere of

volume ∆V  and the following approximation is valid,

fx(xi)∆V  ≈  ⌡⌠
x∈∆V
  fx(x)dx  (3.a)

then, the right-hand side of eq.(3.a) is the probability that a sample is found in the volume

∆V , denoted by Prob{x in ∆V }. Note that it can be approximated by,

Prob{x in ∆V }  = 
number of samples in ∆V
 total number of samples   (3.b)

Since the total number of samples is N, the denominator of (2.c) is written as,

Nfx(xi)∆V  ≈  N Prob{x in ∆V } ≈  number of samples found in ∆V (3.c)

which can be obtained by counting the number of samples found in the hypersphere. In

implementation, the counting in eq.(3.c) for each xi can be done efficiently by finding first

a set of hyperspheres which cover all given data samples in the feature space as in Fig. 2

and, then counting the data points inside the hyperspheres.
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Figure 2. Computation of weights using clustering; Clustering is performed to

find a set of hyperspheres covering the data samples.

This is easily accomplished by a few iterations of simple unsupervised clustering

procedure in which a new cluster is generated if the distance to a nearest cluster exceeds a

certain threshold. The threshold value is set up in such a way that each hypersphere

corresponds to a cluster, and inside the hyperspheres, the probability density function,

fx(x) does not change much so that the approximation in eq.(3.a) is valid. After a few

iterations of clustering, the denominator in eq.(2.c) is computed as the counted value of

samples found in the cluster which the i-th sample xi belongs to. The numerator is

calculated simply by multiplying the known PDF fx(xi|C1) with the volume ∆V  and N1

estimate.

B. Estimation of the Number of Samples Belonging to the Class of Interest

Due to limited prior knowledge, an accurate estimation of N1 is another difficult task.

However, the objective of the estimation here is to obtain a simple and reasonable estimate

which can produce a meaningful initial cluster definition rather than pursuing a very

accurate estimation.

The simplest method is counting the number of samples accepted by a given

significance level. Define N(α) as the number of samples accepted by the significance
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testing with a significance level α, then, N(α) = (1-α) N1 + Nothers. (1-α) is the

acceptance probability and Nothers denotes the number of accepted samples that belong to

the others class. In general, there is no guarantee that Nothers is close to zero, or

insignificant compared to (1-α)N1. Nevertheless, the proposed method uses the simplest

estimate of N1, computed as,

N1 = N(α) / (1-α) (4)

ignoring Nothers. This estimate always produces an over-estimated value, and the degree of

over-estimation is significant when there is insufficient separability between the class of

interest and the class of the others. It may be beneficial to use a large significance level of

α hoping that a smaller acceptance probability (that is, tighter threshold) may exclude more

samples of the others class. Note that an appropriate level of α is a priori unknown. In

developing the initial clusters specification, however, experimental results show that this

over-estimation is not critical to the performance, but an under-estimated value could be

problematic since it causes non-trivial wi1  values and allows clusters generated in the

region where most of the class-of-interest samples are located. These extraneous clusters

would take a significant portions of class C1 samples away.

C. Initial Cluster Definition

Once the weight factors are computed for all data samples in X , an unsupervised

clustering is performed with the weights to find the clusters corresponding to Cothers. For

each cluster k corresponding to Cothers, (that is, k = 2, ---, L), the cluster centroid is

computed as the effective cluster mean,

Mk =
1

Nk

wi1x i
i ∈I k

∑ (5.a)

where Ik is the index set of the k-th cluster (i.e., if i ∈ Ik, then xi ∈ Ck). Nk is the effective

number of samples in the cluster and computed as,
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Nk = wi1
i∈Ik

∑ (5.b)

Note that the influence of data point xi on the cluster means and number of samples is

accordingly weighted by wi1 . If second order statistics are necessary for clustering, then,

the effective cluster covariance can also be computed with weights in a similar fashion.

After each iteration of clustering, any cluster with a negligible effective number of members

is deleted since most of the samples are from C1. In the deletion, the ratio of the effective

number to the actual sample number assigned to the cluster,

Rk = 
Nk

 Number of samples in cluster Ck
  (6)

is also checked and any cluster with a small value of this ratio is deleted since most samples

in the cluster have very negligible weight factors. When the number of class-of-interest

samples, N1, is under-estimated, this ratio checking is very important since extraneous

clusters are generated in the region where most of the class-of-interest samples are located.

This ratio checking should be also effective when the class-of-interest samples are

distributed slightly differently from the known distribution function in some hyperspheres

so that the numbers computed with eq.(2.a) deviate from those statistically expected.

Without the ratio-checking, weights larger than they should be in some hyperspheres

permit generating clusters of Cothers which would take up significant portion of class-of-

interest samples.

A few iterations of this unsupervised clustering with weights will suffice to provide a

list of clusters corresponding to Cothers and their initial specifications for the subsequent

supervised clustering process.

D. Development of Class Statistics and Classification

Once the number of clusters and the specifications of the clusters are obtained through

unsupervised clustering with weights, a conventional supervised clustering procedure can

be started to refine the class statistics. The class statistics developed are used in the selected
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relative classification scheme. In certain cases, especially in analyzing high dimensional

feature vectors, second order statistics, which are usually characterized by interband

correlation structures, provide very crucial information to use in classification or in

clustering [9]. In this case, a conventional clustering procedure such as the ISODATA [10]

algorithm is not likely to perform well in developing class statistics since the algorithm does

not account for interband correlation. In this case, a clustering method based on the EM

algorithm [9] can be used. That is, in the mth iteration of clustering, weight factor,    

wik [ ˆ Ψ (m)] , for i = 1,---, N  and k = 1, ---, L, is computed as,

wik [ ˆ Ψ (m)] =
ˆ π k

(m)ˆ f x
(m) (xi |C k )

ˆ π j
(m)ˆ f x

(m)(x i |C j )
j=1

L

∑
(7)

where fx
 (m)

(xi | C1) = fx(xi | C1) for all m, and Ψ  is the set of parameters of the unknown

probability density functions(    E    xpectation - step). For example, if the unknown probability

density functions are Gaussian, then Ψ  ≡ [π2, ---, πL, M2, ---, ML, Σ2, ---, ΣL]. With the

weight in eq.(7), a new maximum likelihood estimate of Ψ , (i.e., ˆ Ψ (m +1)  ) is obtained

(     M     aximization - step). These two steps are iteratively performed until convergence. Each

iteration of these two steps is known to increase the joint likelihood of data samples [8].

After convergence, the estimates of Ψ  specify the probability density functions of the

clusters which can be used in the subsequent relative classification.
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IV. EXPERIMENTS AND DISCUSSION

To test the performance of the proposed method, experiments are carried out with

both simulated and real data. For simulated data, several bivariate Gaussian data sets are

generated with different degrees of class separability. As real data, LANDSAT Thematic

Mapper (TM) data are used. For comparison purposes, two additional classifiers are also

used; the (fully supervised) maximum likelihood classifier (denoted as "REL-ML")

designed with the known class statistics and the one based on the significance testing

(denoted as "ABS-SIG"). The fully supervised maximum likelihood classifier is just to

provide a point of comparison with the proposed classifier, that is, the lower bound of

classification error which is ever achievable by the proposed method. On the other hand,

the significance testing provides the performance result obtainable by a purely absolute

scheme. In the significance testing, the best significance level is selected manually by

testing the significance level in the interval [0.01, 0.99] in steps of 0.01. Therefore its

results are the best ones obtainable by the significance testing.

Experiments         with        Simulated        Data   

For a test with simulated data, 1000 bivariate (q=2) Gaussian samples are generated

for the class of interest, Cint, with zero mean and an identity covariance matrix. In the same

way, 2000 Gaussian samples are generated for the others class, Cothers, having the mean

[d,0]T , d > 0, and an identity covariance matrix. Therefore, N=3000 and N1 = 1000.

With this set-up, the exact amount of overlap between two distributions can be

calculated as (the "overlap" is defined here as the volume shared by the two probability

density functions),

Overlap(d) = 1 - 
2

 2π
  ⌡
⌠

0

d/2
 exp(- 

1
2 s 2) ds  

By varying the distance d between the two class means, data sets with different

degrees of overlap can be simulated. In the simulation, d is increased from 0.1 to 5 in steps

of 0.1. The value d = 0.1 simulates the case of 96.02% overlap between the two
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distributions, and d=5 presents an example of only 1.24 % overlap. To avoid any random

errors due to the data generation process and its effect on evaluating experimental result,

data sets are generated 50 times with different seed numbers and the averaged result is used

in comparison.

d

N   samples1
N   samples2

0

Figure 3. Simulated 2 class, 2 dimensional Gaussian data sets. Cint: 1000 samples

with zero mean, Cothers: 2000 samples with mean [d,0]T. Both have an

identity covariance matrix. (N1 = 1000, N2 = 2000, q=2).

A. Comparison of Classification Errors

Eq.(4) is used to obtain the N1 estimate with varying significance level. The estimated

number is shown in Fig. 4.

5 .04 .54 .03 .53 .02 .52 .01 .51 .00 .50 .0
500

1000

1500

2000

2500

3000

d, Distance Between Class Means

α=0.5

α=0.9
α=0.7

Figure 4. The estimated number of class-of-interest samples with different values of

significance level α's in eq.(4).
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The estimated values are observed to be not very different for different significance

level α's especially when the classes are well separated (i.e., d > 3, which corresponds to

13.36% overlap). When d < 3, there is significant degree of over-estimation.

Using the N1 estimate, the weights wi1 's are computed and used in the unsupervised

clustering to develop clusters corresponding to the others class. Any cluster having a

negligible effective number of eq.(5.b) or a negligible ratio of eq.(6) is deleted. Without the

ratio checking, the non-trivial weights wi1 's due to an under-estimated value of N1 in the

regions where the weights should be negligible would result in extraneous clusters and

would cause large omission error. For those clusters, the effective numbers of samples

would be much smaller than the actual sample numbers grouped to those clusters since

significant portions of the samples in those clusters are from the class of interest. When the

actual distribution of the class-of-interest samples is slightly different from that predicted by

the probability density function fx(x|C1), those extraneous clusters can also be observed

even though N1 is not greatly under-estimated.

5 .04 .54 .03 .53 .02 .52 .01 .51 .00 .50 .0
0

10

20

30

40

50

d, Distance Between Class Means

α=0.9
α=0.7

REL-ML
ABS-SIG

α=0.5

Figure 5. Class-averaged classification error comparison. The proposed method is denoted

by the α value used in estimating the number of class-of-interest samples with

eq.(4). "REL-ML" is the relative ML classifier with known class statistics and

"ABS-SIG" is the best attainable result by significance testing.
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Figure 5 compares the class-averaged classification errors of the relative maximum

likelihood classifier (REL-ML), the classifier based on significance testing (ABS-SIG), and

the proposed classifier with three different significance level α's for the N1 estimation

(denoted with three different α values). The class-averaged classification error is a simple

average of the omission and commission errors.

omission error ε0 = P {x is decided as Cothers | x ∈ Cint}

commission error ε1 = P {x is decided as Cint | x ∈ Cothers}

While the significance testing results in about 5 ~ 12 % greater error than the relative

maximum likelihood classifier unless d is sufficiently large, the proposed method closely

follows the performance of the maximum likelihood classifier. Only when the overlap

between two classes is significant (for example, see the case d < 2, 31.14% overlap), there

is some error increase compared to the maximum likelihood classifier, but the deviation is

at most less than 5 %.

B. Sensitivity to N1 Estimate

To analyze the reason for the performance deviation for d<2.0 in Fig.5 and the

sensitivity of the proposed classifier to the N1 estimate in computing the weights wi1 ' s ,

several different values of N1 are used instead of the estimated values and its classification

result is analyzed as in Fig. 6.

There is almost negligible difference in class-averaged classification error when N1 is

varied from 750 to 1500 (not shown). When an over-estimated N1 is used, there is as

much as 2% (N1 = 2000, 100% over-estimation) or 5% (N1 = 3000, 200% over-

estimation) error increase compared to the maximum likelihood classifier for d < 2. The

observation that the estimation method of N1 always over-estimates as seen in Fig.4 for d <

2.5 and severe over-estimation brings maximum 5% of classification error increase over the

REL-ML as seen in Fig.6 explains the reason for the increased deviation for d < 2 in Fig.5.
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One important observation is that even though the simple method in eq.(4) gives very

rough and over-estimated N1 and in some cases the over-estimated N1 increases the

commission error, but its effect on classification accuracy is much less in the proposed

classifier compared to the significance testing in which improper significance level results

in classification accuracy degradation of 5% ~ 50% depending on distribution overlap.

Therefore, the proposed method can be said relatively insensitive to the significance level

(which is used for N1 estimation).
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N  =10001
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N  =30001

Figure 6. Sensitivity of the proposed method to the estimate N1. Several different

values of N1 are used in computing the weights wi1 's without estimating (the

true value of  N1 is 1000).

The proposed method is also observed very tolerable on the degree of over-

estimation, however, it is less so on under-estimation as shown in Fig. 6. See the case

N1=500 (50% under-estimation); when d > 2.5, the class-averaged classification error

increases since the clusters containing non-trivial portion of the class-of-interest samples

survive the cluster deletion test of eq.(5.b, 6) and many class-of-interest samples are

deleted to increase omission error. Note that the N1 estimate with eq.(4) is in general

slightly over-estimated as shown in Fig. 4 due to the commission of "others" samples. The
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under-estimation is not so problematic in reality unless the training samples of the class of

interest are not representative enough to adequately model its distribution function.

Experiment         with        Thematic         Mapper        Data   

A real data test is carried out using the LANDSAT Thematic Mapper data acquired

over an agricultural area in Tippecanoe County, Indiana in July, 1986. All seven features

are used in the classification. From the ground truth data, four different information classes

are identified as in Table 1 and about 10% of the samples are randomly selected from each

class to serve as training samples. In the test of the proposed classifier using the real data,

each information class is assumed to be the class of interest one by one (indicated in the

header of column 2 to 6 in Table 2) and the other three as the class of the others. Therefore,

the test is still a two-way classification problem. The information classes are modeled by

several sub-classes each of which has the multivariate Gaussian PDF. To obtain a set of

constituent sub-classes as in Table 1, clustering is performed first on the selected training

samples belonging to each information class. Then, the training samples clustered to each

sub-class are used to calculate the mean and covariance of its Gaussian PDF.

Table 1. Training and test samples of LANDSAT Thematic Mapper data

Information Number of Number of Samples
Classes Sub-Classes Training Test
Corn 2 913 9371

Soybeans 2 824 8455
Wheat 4 181 1923

Alfalfa/Oats 4 206 2175
Total 12 2124 21924

In classification, the whole data set is first divided by the maximum likelihood

classifier into n sub-groups where n is the number of sub-classes of a given information

class as in Table 1. For each sub-group, the proposed method is applied to identify the

samples belonging to the corresponding sub-class. As before, the maximum likelihood
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classifier (REL-ML) designed with the total 12 sub-classes and the significance testing with

the manually selected best significance level are used for comparison. The test result is

summarized in Table 2.

Table 2. Comparisons of Classification Error in %.

Error Criterion Classifier Corn Soybean Wheat Alfafa/Oats

Omission REL-ML 3.04 13.65 13.36 23.95

Error ABS-SIG 4.64 12.94 10.45 24.14

ε0 Proposed 3.69 6.02 10.66 18.53

Commission REL-ML 1.15 3.18 2.04 6.89

Error ABS-SIG 2.79 11.17 5.38 21.31

ε1 Proposed 1.68 7.02 3.6 16.38

Class Averaged REL-ML 2.1 8.42 7.7 15.42

Error ABS-SIG 3.72 12.05 7.92 22.72

(ε0+ε1)/2 Proposed 2.69 6.52 7.13 17.45

Total REL-ML 1.95 7.19 3.02 8.57

Error ABS-SIG 3.58 11.85 5.82 21.59

π1ε0 + (1-π1)ε1 Proposed 2.53 6.64 4.21 16.59

The relative class separability can be predicted in some degree by checking the

commission error ε1 of the significance testing; the class of corn and wheat have relatively

small commission errors, therefore each distribution of two classes is seen relatively

separable from others. For these two classes, the classification errors of all three classifier

are almost equivalent. However, the separability of the class of alfafa/oats from the others

is not so large since the significance testing results in 21% of the commission error. In this

case, the proposed method's classification error is only 2% (class-averaged classification

error sense) and 8% (total classification error sense) higher than the maximum-likelihood

classifier result, while the significance testing classification error is 7% and 13% higher,

respectively, than the maximum likelihood classification result.
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When estimating N1, five different values of α (0.9, 0.8, 0.7, 0.6 and 0.5) are used

to observe that the estimated numbers N1 are mostly over-estimated and that there are less

than 1% of the differences in the classification error even though there are large differences

in the degree of over-estimation (21% ~ 177%). Table 2 shows only the result with α =

0.5. The proposed method is seen to perform better in all classes by about 1 ~ 6 % than the

best significance testing case where the significance levels are strenuously chosen

manually.

Compared to the fully supervised maximum likelihood classifier which requires a

complete list of classes with their class statistics, the proposed method achieves comparable

classification performance even though prior knowledge is provided only for the specific

information class under consideration. The computational complexity increases over the

relative maximum likelihood classifier, but not prohibitively so in view of the time savings

for the manual portion of the analysis task. In the experiment with Thematic Mapper data in

identifying one information class, it takes about 3 times more computational time than the

maximum likelihood classifier.

V. CONCLUDING REMARKS

In this paper, we have proposed a new partially supervised classification method

using unsupervised clustering. Since the definition and statistics of the "others" class are

automatically developed through a weighted unsupervised clustering procedure, the user

needs to supply prior information for a particular class one actually wants to identify. This

operational simplicity should make this method useful in many practical applications.

Experiments with simulated and real Thematic Mapper data show that the proposed

method is definitely better than the conventional approach using the significance testing

even if the best optimal significance level is manually provided. On the contrary to the large

range of classification performance variation due to significance level input by the user in
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case of the significance testing, the proposed method is much less sensitive to the

significance level provided by the user for estimating N1.

It is also pretty much comparable to the fully supervised maximum likelihood

classifier unless the overlap of class distribution is very significant. The classification

accuracy degradation when the class distribution is heavily overlapped is found to be

caused by the over-estimated number of samples belonging to the class of interest. Since a

relatively accurate estimate achieves classification performance very close to that of the fully

supervised maximum-likelihood classifier, a better estimation method of N1 deserves

further investigation.
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