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DECISION BOUNDARY FEATURE EXTRACTION FOR
NON-PARAMETRIC CLASSIFICATION1

Abstract

Feature extraction has long been an important topic in pattern recognition. Although

many authors have studied feature extraction for parametric classifiers, relatively few

feature extraction algorithms are available for non-parametric classifiers. In this paper

we propose a new feature extraction algorithm based on decision boundaries for non-

parametric classifiers. We note that feature extraction for pattern recognition is

equivalent to retaining "discriminantly informative features" and a discriminantly

informative feature is related to the decision boundary. Since non-parametric

classifiers do not define decision boundaries in analytic form, the decision boundary

and normal vectors must be estimated numerically. We propose a procedure to extract

discriminantly informative features based on a decision boundary for non-parametric

classification. Experiments show that the proposed algorithm finds effective features

for the non-parametric classifier with Parzen density estimation.

I. INTRODUCTION

Feature extraction has long been an important topic in pattern recognition and has

been studied by many authors. Linear feature extraction can be viewed as finding a

set of vectors which effectively represent the information content of an observation

while reducing the dimensionality. The performance criteria for feature extraction could

be different depending on the application. In signal representation, a widely used

criteria is mean square error, and the Karhunen-Loeve transformation is one of the

techniques under such a criterion; it is optimum in the sense that the mean square

error is minimum for a given number of features. In pattern recognition, however, it is

desirable to extract features which are focused on discriminating between classes.

1 This work was funded in part by NASA under grant NAGW-925.
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Many algorithms have been proposed for feature extraction for pattern recognition in

order to best deal with the varying circumstances which might arise in a pattern

recognition problem [1-13]. For example, in some applications, design data (i.e.,

training set data) may be quite sparse. One approach in this circumstance is to base

feature extraction on the statistics of the whole data set [5]. Although this is not optimal

in a theoretical sense, it can be used even when underlying class densities are

unknown, or precise estimates of them are not possible. In addition, such methods can

be used for both parametric and non parametric classifiers. Since, in many cases, it

may be difficult to obtain enough training samples, feature extraction methods based

on the whole data may be a good and useful solution.

Another approach for feature extraction is to find feature vectors under criteria
functions. In discriminant analysis [1], a within-class scatter matrix ΣW and a between-

class scatter matrix Σb are used to formulate a criterion function. A typical criterion is

J1 = tr(Σ-1
w Σb) (1)

where Σw =  ∑
i

 

P(ωi)Σ i (within class scatter matrix)

Σb =  ∑
i

 

P(ωi)(M i–  M0)(M i–  M0)  (between class scatter matrix)

M0 =  ∑
i

 

P(ωi)M i

Here M i , Σ i , and P(ωi) are the mean vector, the covariance matrix, and the prior

probability of class ωi, respectively. New feature vectors are selected to maximize the

criterion. However, since discriminant analysis mainly utilizes class mean differences,

the feature vector selected by discriminant analysis is not reliable if mean vectors are

near to one another. And, by using the lumped covariance in the criterion, discriminant

analysis may lose some information contained in class covariance differences.

Another problem with the criteria functions using scatter matrices is that the criteria

generally do not have a direct relationship to the error probability.

Features can be selected under a criterion which is related to the probability of error.

The Bhattacharyya distance is a measure of statistical separability and is defined as

follows [1]:
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µ(
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If normal density functions are assumed, (2) reduces to

µ(
1
2) = 

1
8(M2- M1)t [ 

Σ1+Σ2
2  ]-1(M2-M1) + 

1
2 ln 

|  
Σ1+Σ2

2  |
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2 

Feature selection algorithms utilizing statistical separability were successfully applied

in many applications [1-3, 6-7]. Although theoretically it is possible to calculate (2) for a

non-parametric classifier such as Parzen density estimator, in practice, it is frequently

not feasible due to a prohibitively long computing time, particularly for high

dimensional data.

Although many authors have studied feature extraction for parametric classifiers,

relatively few algorithms are available for non-parametric classifiers. The lack of

practical feature extraction algorithms for the non-parametric classifier is mainly due to

the nature of a non-parametric classifier. Without an assumption about the underlying

density functions,  feature extraction for non-parametric classifiers is often practically

not feasible or very time consuming. Though some general approaches such as

principal component analysis might be used for non-parametric classifiers, those

methods generally do not find optimum feature sets in the sense of class

discrimination.

Some authors studied non-parametric feature extraction [8, 9]. Fukunaga proposed a

non-parametric discriminant analysis which is based on non-parametric extensions of

commonly used scatter matrices [8]. Patrick proposed a non-parametric feature

extraction process where a nonquadratic distance function defined between classes is

used to define the best linear subspace [9].

Short and Fukunaga showed that, by problem localization, most pattern recognition

problems can be solved using simple parametric forms, while global parametric

solution may be untractable [10]. Short and Fukunaga also proposed a feature

extraction algorithm using problem localization [11]. They considered feature

extraction as a mean-square estimation of the Bayes risk vector. The problem is
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simplified by partitioning the distribution space into local subregions and performing a

linear estimation in each subregion.

Though the computation cost of non-parametric classifiers is often much larger than

that of parametric classifiers, there are some cases where the use of non-parametric

classifiers is desirable. For instance, if underlying densities are unknown or problems

involve complex densities which cannot be approximated by the common parametric

density functions, use of non-parametric classifier may be necessary. However, for

high dimensional data and multi-source data, the computation cost of non-parametric

classifiers can be very large. As a result, there is a greater need for a practical feature

extraction algorithm which can take a full advantage of non-parametric classifiers

which can define an arbitrary decision boundary.

In this paper, we extend a recently proposed parametric feature extraction algorithm

approach [14] to the non-parametric case. The method is based directly on the

decision boundary. Instead of utilizing distributions of data, we explore the decision

boundary which the employed classifier defines. It has been shown that all feature

vectors which are helpful in discriminating between classes can be obtained from the

decision boundary [14, 15]. Thus, by extracting features directly from the decision

boundary which a non-parametric classifier defines, one can fully explore the

advantage of the non-parametric classifier. Since the decision boundary can not be

expressed analytically in the non-parametric case, the proposed algorithm finds points

on the decision boundary numerically. From these points, feature vectors are

extracted. The proposed algorithm predicts the minimum number of features to

achieve the same classification accuracy as in the original space while at the same

time finding the needed feature vectors.

II. DECISION BOUNDARY FEATURE EXTRACTION

Consider briefly Bayes' decision rule for minimum error, used in the proposed feature

extraction algorithm. Let X be an observation in the N-dimensional Euclidean space
EN under hypothesis Hi: X ∈ ωi  i=1,2. Decisions will be made according to the

following rule [1].
Decide ω1 if h(X) < t

else  ω2
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where h(X) = –ln
P(X |ω1)

P(X |ω2)
 (3)

t = ln
P(ω1)

P(ω2)
.

In Lee and Landgrebe [14, 15], we defined discriminantly informative features and

discriminantly redundant features as follows:

 Definition 1. A feature vector is discriminantly informative if there exists at

least one observation whose classification result would be changed as the

observation moves along the direction of the vector. In other words, vector
βk is discriminantly informative if there exists at least one observation

Y such that

(h(Y) – t)(h(Y ^) – t) < 0

where Y = ∑
i=1

N

biβi  and  Y ^ = ∑
i=1 i≠k

N

biβi  and {β1,β2,..,βN} is a basis of EN

 Definition 2. A feature vector is discriminantly redundant if, for every

observation, the classification result remains unchanged even though the

observation moves along the direction of the vector. In other words, vector
βk is discriminantly redundant if for any observation X

(h(X) – t)(h(X ^) – t) > 0

where X = ∑
i=1

N

biβi    and   X ^ = ∑
i=1 i≠k

N

biβi

Fig. 1 shows examples of the discriminant informative feature and the discriminant

redundant feature. It was shown that discriminantly informative features and discrimi-

nantly redundant features are related to the decision boundary and can be extracted

from the decision boundary [14, 15]. It was also shown that discriminantly informative

feature vectors have a component which is normal to the decision boundary at at least

one point on the decision boundary and discriminantly redundant feature vectors are

orthogonal to the vector normal to decision boundary at every point on decision

boundary.
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Class ω1

Class ω2

Decision boundary

h(X) < t

X

X'

X''

Discriminantly 
redundant 
feature
vector

Discriminantly 
informative 
feature vector

Fig. 1 Examples of the discriminant informative feature and the discriminant redundant feature.

In order to extract discriminantly informative features and discriminantly redundant

features from the decision boundary, in [15] the decision boundary feature matrix

was defined as follows:

Definition 3. The decision boundary feature matrix (DBFM): Let N(X)

be the unit vector normal to the decision boundary at a point X on the

decision boundary for a given pattern classification problem. Then the
decision boundary feature matrix ΣDBFM is defined as

ΣDBFM = 
1
K ∫

 S
N (X)N t(X)p(X)dX (4)

where p(X) is a probability density function, K= ∫
 S

p(X)dX, and S is the decision

boundary, and the integral is performed over the decision boundary.

It was shown that the rank of the decision boundary feature matrix is equal to the

smallest dimension where the same classification could be obtained as in the original

space, and the eigenvectors of the decision boundary feature matrix of a pattern

recognition problem corresponding to non-zero eigenvalues are the necessary feature

vectors to achieve the same classification accuracy as in the original space for the

pattern recognition problem [14]. In these regards, the following two theorems were

derived.

Theorem 1. The rank of the decision boundary feature matrix ΣDBFM of a pattern

classification problem will be the smallest dimension where the same

classification could be obtained as in the original space.
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Theorem 2. The eigenvectors of the decision boundary feature matrix of a pattern

recognition problem corresponding to non-zero eigenvalues are the necessary

feature vectors to achieve the same classification accuracy as in the original

space for the pattern recognition problem.

The decision boundary feature extraction method has been successfully applied to a

parametric classifier [14, 15]. The method was shown to be robust and effective even

when there are no class mean differences or no class covariance differences [15]. It

was also shown that by considering the effective decision boundary only, the number

of features can be significantly reduced while achieving almost the same classification

accuracy [15]. However, in non-parametric classifiers, when outliers exist, the decision

boundary feature matrix defined as in Definition 3 may be calculated from insignificant

portions of the decision boundary. Such outlier problems are discussed in [19].

III. DECISION BOUNDARY FEATURE EXTRACTION
FOR NON-PARAMETRIC CLASSIFICATION

A. Parzen Density Estimation and Selection of Kernel Size

A non-parametric classifier with Parzen density estimation will be used to test the

proposed feature extraction algorithm for non-parametric classification;  thus we will
briefly discuss Parzen density estimation. Parzen density estimation with kernel ϕ is

defined as [2]

p(X) = 
1

Nhn ∑
i=1

N
 ϕ( 

X  –  X i  
 h )

where n is the dimensionality of the data, and h is the window size, and N is the
number of training samples. The kernel ϕ must be non-negative and satisfy the

following condition:
1
hn ∫

Rn
 ϕ(X) dX = 1

Although many authors have studied the problem of determining the value of the

Parzen scale parameter h , no theoretical value of h gives consistently optimum results

[16]. As a result, we determined the best h  experimentally in our experiments. Fig. 2

shows the classification results for various h.  The peak performance occurs when h is

between 0.5 and 0.7 in this case.
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Fig. 2 Determining the best h experimentally.

B. Determining the Decision Boundary and Finding Normal Vectors to the
Decision Boundary for Non-Parametric Classifiers

In order to extract feature vectors from the decision boundary of a given classifier, we
need to calculate the decision boundary feature matrix ΣDBFM as given in Definition 3.

Then Theorem 1 and Theorem 2 tell us that the eigenvectors of ΣDBFM  corresponding

to non-zero eigenvalues of ΣDBFM  are  all the feature vectors needed for discriminating

between the classes for the given classifier [14, 15]. In order to calculate the decision
boundary feature matrix ΣDBFM, the decision boundary must be found. However, in

general, a non-parametric classifier defines an arbitrary decision boundary which may

not be expressed in analytic form. Therefore the decision boundary for non-parametric

classifiers must be calculated numerically.

X

Y

Decision Boundary

Fig. 3 Finding decision boundary numerically for non-parametric classifiers.
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Consider an example in Fig. 3. Assuming X and Y are classified differently, the line

connecting X and Y must pass through decision boundary. Although, by moving along

the line, we can find a point Z on the decision boundary, there is no guarantee that the

point Z is exactly on the true decision boundary, even though h(Z)=t. Fig. 4 shows an

example. In the example, data are generated for the following statistics.

M1 = 



-0.6

0.6 Σ1 = 



1 0.5

 0 .5   1 M2 = 



0.6

-0.6 Σ2 =  



1 0.5

 0 .5   1

The points of the decision boundary found numerically are shown along with the true

decision boundary plotted as a straight line in Fig. 4. As can be seen, the points of the

numerically found decision boundary are distributed along the true decision boundary.

However, the points are not exactly on the true decision boundary. The problem that

the numerically found decision boundary does not match exactly the true decision

boundary becomes more apparent when training samples are limited or the Parzen

scale parameter h  is small. However, in our experiments, we found that  inaccurate

estimation of the decision boundary has relatively little impact on the performance of

the decision boundary feature extraction method for non-parametric classifiers. We will

discuss this problem more in the experiments.

3210-1-2-3
-3

-2

-1

0

1

2

3

Class 1 Class 2
Decision boundary found numerically

Fig. 4 Finding decision boundary numerically.

A normal vector to the decision boundary at X is given by

∇h(X) = 
∂h
∂x1

 x1 + 
∂h
∂x2

 x2 + ..... + 
∂h
∂xn

 xn (5)
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However, in non-parametric classifiers, the decision boundary can not be expressed

analytically and Eq. (5) can not be used. Instead, we may estimate the normal vector

as follows:

∇h(X) ≈ 
∆h
∆x1

 x1 + 
∆h
∆x2

 x2 + ..... + 
∆h
∆xn

 xn (6)

A problem of estimating a normal vector numerically is that  the nearest samples have

often much influence on the estimation of normal vectors. This problem becomes more

apparent when training samples are limited or the Parzen scale parameter h  is small.

As a result, care must be taken in selecting the Parzen scale parameter h, particularly

in a high dimensional space. We will discuss this problem more in the experiments.

C. Decision Boundary Feature Extraction Procedure for Non-Parametric
Classification

 Now we propose the following procedure to find decision boundary numerically and

calculate the decision boundary feature matrix for non-parametric classifiers.

Procedure for Feature Extraction for Non-Parametric Classifier
Utilizing the Decision Boundary

( 2 pattern class case)

STEP 1: Classify the training data.
STEP 2: For each sample correctly classified as class ω1, find the nearest sample

correctly classified as class ω2. Repeat the same procedure for the samples

correctly classified as class ω2.

STEP 3: Connect the pairs of samples found in STEP 2. Since a pair of samples are

classified differently,  the line connecting the pair of samples must pass

through the decision boundary. By moving along the line, find the point on

the decision boundary or near the decision boundary within a threshold.
STEP 4: At each point found in STEP 3, estimate the unit normal vector N i by

N i = ∇h(X) / |∇h(X)|

where ∇h(X) ≈ 
∆h
∆x1

 x1 + 
∆h
∆x2

 x2 + ..... + 
∆h
∆xn

 xn

h(X) = –ln
P(X |ω1)

P(X |ω2)
 assuming Bayes' decision rule for minimum error

is used.

STEP 5: Estimate the decision boundary feature matrix using the normal vectors

found in STEP 4.
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ΣEDBFM  = ∑
i

 
 N iN

t
i

STEP 6: Select the eigenvectors of the decision boundary feature matrix as new

feature vectors according to the magnitude of corresponding eigenvalues.

Euclidean distance is used to find the nearest sample in STEP 2 in our experiments.

Fig. 5 shows an illustration of the proposed procedure. Although the proposed

procedure does not find the decision boundary where data are sparsely distributed,

this is an advantage not a disadvantage of the procedure. By concentrating on the

decision boundary where most of data are distributed, the feature extraction can be

more efficient [15]. The classification error increase resulting from not considering the

decision boundary in the region where data are sparsely distributed will be minimal

since there will be very little data in that region.
Decision boundary

Class ω1

Class ω 2

Fig. 5 Illustration of the procedure feature extraction for a non-parametric classifier utilizing decision
boundary

Some non-parametric classifiers such as the kNN classifier do not define class

probability densities. If the employed non-parametric classifier does not define class

probability densities, h(X) in (3) can not be calculated. In such a case, normal vectors

can not be estimated. In that case, one might find a vector along which the

classification result changes most rapidly. For example, let X be a point on the
decision boundary. Then find the smallest ∆xi such that the classification result of

X+∆xixi is different from that of X. And we may estimate a unit vector N  along which the

classification result changes most rapidly as follows:
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N  = V / |V | where V ≈ 
1

∆x1
 x1 + 

1
∆x2

 x2 + ..... + 
1

∆xn
 xn

If there are more than two classes, the procedure can be repeated for each pair of

classes and the total effective decision boundary feature matrix can be calculated by

averaging the effective decision boundary feature matrices which are calculated for

each pair of classes. If prior probabilities are available, the summation can be

weighted. In other words, if there are M classes, the decision boundary feature matrix

can be calculated as

ΣDBFM = P(ωi)P(ωj)ΣDBFM
ij∑

j, j≠i

M

∑
i

M

where Σ ij
DBFM  is the decision boundary feature matrix between class ωi

and class ωj and P(ωi) is the prior probability of class ωi if available.

Otherwise let P(ωi)=1/M.

IV. DECISION BOUNDARY FEATURE EXTRACTION AND
PROBLEM LOCALIZATION

By problem localization, Short and Fukunaga showed that most pattern recognition

problems can be solved using simple parametric forms [10]. In [11] Short and

Fukunaga proposed a feature extraction method using problem localization. In their

method, the original space is subdivided into a number of subregions and a linear

estimation is performed in each subregion. In their method, a modified clustering

algorithm is used to find the subregions. To a certain extent, the decision boundary

feature extraction method parallels the problem localization approach. In the problem

localization, Short and Fukunaga recognized that a parametric discriminant function

can be used in each subregion [11]. In the Decision Boundary Feature Extraction

method, we recognized that only a small portion of the decision boundary plays a

significant role in discriminating between classes. Consider the case of Fig. 6.  The

effective decision boundary which is plotted in bold, plays a significant role in

discriminating between classes. Even if the effective decision boundary is used, the

data still can be classified in the almost same manner as the whole decision boundary

is used as shown in Fig. 7. On the other hand, a part of the decision boundary, which is

plotted as a plain line, play relatively little role in discriminating between classes while

some part of the decision boundary, plotted as a dotted line, are rarely used.

Therefore, we recognized that by concentrating on the effective decision boundary, the

IEEE Systems, Man, and Cybernetics Trans. -   13   - March/April 1994
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feature extraction can be more efficient. It is noted that the effective decision boundary

need not to be linear or be represented by a parametric form.

Class ω1
Class ω2

Decision boundary

Effective
decision boundaryClass ω2

Fig. 6 Decision boundary and effective decision boundary

New decision 
boundary extended 
by the effective 
decision boundary

Class ω1
Class ω2

Effective
decision boundaryClass ω2

Fig. 7 Effective decision boundary and new decision boundary extended
by the effective decision boundary.

However, the Decision Boundary Feature Extraction method differs from the problem

localization in several ways. First, the Decision Boundary Feature Extraction method

does not divide the pattern space into subregions. Dividing the pattern space into

subregions is not an easy task when the number of subregions is unknown. This

problem becomes apparent particularly in a multiclass problem with real, high

dimensional data. Secondly, the Decision Boundary Feature Extraction method finds a

global feature set while a local feature set is found in the problem localization. Thirdly,

in the problem localization, Short and Fukunaga take advantage of the fact that class
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boundaries are likely to be more nearly linear in each subregions while the Decision

Boundary Feature Extraction method does not assume that the effective decision

boundary is nearly linear or can be represented in a parametric form. In the Decision

Boundary Feature Extraction method, the effective decision boundary can be of any

shape. Finally the Decision Boundary Feature Extraction method has the capability to

predict the minimum number of features needed to achieve the same classification

accuracy as in the original space.

V. EXPERIMENTS AND RESULTS

A. Experiments with generated data

In order to evaluate closely how the proposed algorithm performs under various

circumstances, tests are conducted on generated data with given statistics. The non-

parametric classifier was implemented by Parzen density estimation using a Gaussian

kernel function. In each example, classification accuracies of the Decision Boundary

Feature Extraction method and the discriminant analysis using Eq. (1) as a criterion

function are compared. We will refer the Decision Boundary Feature Extraction method

as DECISION BOUNDARY FEATURE EXTRACTION, and the discriminant analysis

using  Eq. (1) as DISCRIMINANT ANALYSIS.

Example 1. In this example, class ω1 is normal with the following statistics:

M1 = 



0

0    Σ1 = 



3 0.5

 0 .5   3

And class ω2 is equally divided between two normal distributions with the following

statistics:

M1
2 = 



-3

3    Σ1
2 =  



2 0.5

 0 .5   2   and   M2
2 = 



3

-3    Σ2
2 =  



2 0.5

 0 .5   2

200 samples are generated for each class. Fig. 8 shows the distribution of the data

along with the decision boundary found by the proposed procedure numerically.
Eigenvalues λi and eigenvectors φi of ΣEDBFM are calculated as follows:

λ1 = 355.0, λ2 =6.0 φ1 = 



0.69

-0.72 , φ2 = 



0.72

0.69

Since one eigenvalue is significantly larger than the other, it can be said that the rank
of ΣEDBFM is 1. That indicates only one feature is needed to achieve the same

classification accuracy as in the original space. Considering the statistics of the two
IEEE Systems, Man, and Cybernetics Trans. -   15   - March/April 1994
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classes, the rank of ΣEDBFM gives the correct number of features needed to achieve the

same classification accuracy as in the original space. Table I shows the classification

accuracies of DECISION BOUNDARY FEATURE EXTRACTION and DISCRIMINANT

ANALYSIS. DECISION BOUNDARY FEATURE EXTRACTION finds the right feature

achieving about the same classification accuracy with one feature while

DISCRIMINANT ANALYSIS performs significantly less well in this example since class

means are the same.

Table  I. Classification accuracies of DECISION BOUNDARY FEATURE EXTRACTION  and
DISCRIMINANT ANALYSIS in Example 1.

Number of
 Features

Discriminant
Analysis

Decision Boundary
 Feature Extraction

1 54.5 (%) 92.8 (%)
2 91.8 (%) 92.0 (%)

6420-2-4-6
-6

-4

-2

0

2

4

6

Class 1 Class 2
Decision boundary found numerically

Fig. 8  Data distribution of Example 1. The decision boundary found by the proposed
procedure is also shown.

Example 2. In this example, class ω1 is normal with the following statistics:

M1 = 






0

0
0

   Σ1 = 






9  0  0

0  9  0
0  0  9

And class ω2 is equally divided between two normal distributions with the following

statistics:

M1
2 = 







3

0
0.1

   Σ1
2 =  







1  0  0

0  1  0
0  0  9

  and   M2
2 = 







-3

0
0.1

   Σ2
2 =  







1  0  0

0  1  0
0  0  9
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200 samples are generated for each class. From the statistics, it can be said that the

decision boundary approximately consists of two hollow cylinders. Fig. 9 shows the

distribution of the data in the x1-x2 plane. The decision boundary found by the
proposed procedure numerically is also shown. Eigenvalues λi and eigenvectors φi of

ΣEDBFM are calculated as follows:

λ1 = 184.0,   λ2 = 106.0,   λ3 = 21.9

φ1 = 






0.25

-0.97
0.00

 ,    φ2 = 






0.95

0.24
0.17

,   φ3 = 






-0.17

-0.04
0.98

Rank(ΣEDBFM) ≈ 2

It can be said that the rank of ΣEDBFM is approximately 2. It means two features are

needed to achieve the same classification accuracy as in the original space, which

agrees with the data. Table II shows the classification accuracies of DECISION

BOUNDARY FEATURE EXTRACTION and DISCRIMINANT ANALYSIS. DECISION

BOUNDARY FEATURE EXTRACTION find the correct features achieving about the

same classification accuracy with two features while DISCRIMINANT ANALYSIS

performs significantly less well, since there is no class mean difference.

9630-3-6-9
-9

-6

-3

0

3

6

9

Class 1 Class 2
Decision boundary found by the procedure

x1

x
2

Fig. 9 Data distribution of Example 2. The decision boundary found by the proposed
procedure is also shown.
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Table  II. Classification accuracies of DECISION BOUNDARY FEATURE EXTRACTION  and
DISCRIMINANT ANALYSIS in Example 2.

Number of
 Features

Discriminant
Analysis

Decision Boundary
 Feature Extraction

1 61.5 (%) 68.8 (%)
2 67.8 (%) 76.3 (%)
3 76.0 (%) 76.5 (%)

B. Experiments with real data

Real data sets were selected from a high dimensional multispectral remote sensing

data base of agricultural areas. The data were collected by the Field Spectrometer

System (FSS), a helicopter-mounted field spectrometer, as a part of the LACIE

program [17].  Table III shows major parameters of FSS.

TABLE III. Parameters of Field Spectrometer System (FSS)

Number of Bands 60
Spectral Coverage 0.4 - 2.4 µm
Altitude 60 m
IFOV(ground) 25 m

Along with the proposed algorithm, three other feature extraction algorithms,

UNIFORM FEATURE DESIGN, the Karhunen-Loeve transformation (Principal

Component Analysis) [2], and the discriminant analysis using Eq. (1) as a criterion

function [1] are tested to evaluate and compare the performance of the proposed

algorithm. UNIFORM FEATURE DESIGN is a simple band combination procedure. For

example, if the number of features is to be reduced to 30, every two consecutive bands

are combined to form a new feature. Where the number of features desired is not

evenly divisible into 60, the nearest integer number of bands is used. For example, for

9 features, the first 6 original bands were combined to create the first feature, then the

next 7 bands were combined to create the next feature, and so on. UNIFORM

FEATURE DESIGN is used as a baseline means to evaluate efficiencies of the other

feature extraction methods. The discriminant analysis using Eq. (1) is referred as

DISCRIMINANT ANALYSIS.

In the first test, 4 classes are chosen from the FSS data. Table IV provides descriptive

information on the 4 classes. Fig. 10 shows the mean graph of the 4 classes. As can

be seen, there are significant mean differences among classes. In this test, 400

randomly selected samples are used for training and the rest are used for test.
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TABLE IV. Class Description

SPECIES DATE No. of Samples
Winter Wheat May  3, 1977 657

Unknown Crops May  3, 1977 678
Winter Wheat March  8, 1977 691

Unknown Crops March  8, 1977 619
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Fig. 10 Mean graph of the four classes in Table IV.

Fig. 11 shows a performance comparison. First the original 60 dimensional data is

reduced to 17 dimensional data using UNIFORM FEATURE DESIGN. And then

DECISION BOUNDARY FEATURE EXTRACTION, DISCRIMINANT ANALYSIS, and

Principal Component Analysis are applied to the 17 dimensional data. With 17

features, the classification accuracy is about 90.0%. At low dimensionality (number of

feature ≤3 ), DISCRIMINANT ANALYSIS performs better than the other methods.

However, when more than 3 features are used, DECISION BOUNDARY FEATURE

EXTRACTION begins to perform better than the other methods.

IEEE Systems, Man, and Cybernetics Trans. -   19   - March/April 1994



Lee & Landgrebe: Non-Parametric Feature Extraction

16141210864200

30

40

50

60

70

80

90

100

Number of Features 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
) 

Uniform Feature Design 
Decision Boundary Feature Extraction   
Discriminant Analysis 
Principal Component Analysis   

Fig. 11 Performance comparison of UNIFORM FEATURE DESIGN, DECISION BOUNDARY FEATURE
EXTRACTION, DISCRIMINANT ANALYSIS, and Principal Component Analysis of the data in Table IV.

In order to test the performance in a multimodal situation, 3 classes with 2 subclasses

were chosen. In other words, 2 subclasses were combined to form a new class, thus

the data are purposely made multimodal. TABLE V provides information on the

classes. Fig. 12 shows a graph of the mean values for the 6 subclasses, and Fig. 13

shows a graph of the mean values of the 3 classes each of which has 2 subclasses.

500 randomly selected samples from each class are used as training data and the rest

are used for test.

TABLE V. Class Description

Class Subclass No. of Samples Total No. of Sample

Class ω1 Winter Wheat
March 8, 1977

691 1209

Spring Wheat
July 26, 1978

518

Class ω2 Winter Wheat
June 26, 1977

677 1146

Spring Wheat
Sep. 21, 1978

469

Class ω3 Winter Wheat
Oct. 18, 1977

662 1103

Spring Wheat
Oct.  26, 1978

441
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Fig. 12 Mean graph of the 6 subclasses in Table V.

6050403020100

0

10

20

30

Spectral Band

Class w1
Class w2
Class w3

Fig. 13 Mean graph of the 3 classes in Table V.

Fig. 14 shows a performance comparison. With 17 features, the classification accuracy

is about 94%. DISCRIMINANT ANALYSIS shows the best performances until 2

features are used. However, the classification accuracies are much lower than the

maximum possible classification accuracy, and the comparison seems irrelevant.

DECISION BOUNDARY FEATURE EXTRACTION shows consistently better

performances when more than 3 features are used. DECISION BOUNDARY FEATURE

EXTRACTION achieves about 94% classification accuracy with 7 features while all

other methods needs 13-17 features to achieve about the same classification

accuracy.
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It appears that when class mean differences are reasonably large and classes are

unimodal, DISCRIMINANT ANALYSIS finds a good feature set. However, when

classes are multi-modal, DISCRIMINANT ANALYSIS does not often find a good

feature set. On the other hand, DECISION BOUNDARY FEATURE EXTRACTION finds

a good feature set even when classes are multi-modal.
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Fig. 14 Performance comparison of UNIFORM FEATURE DESIGN, DECISION BOUNDARY FEATURE
EXTRACTION, DISCRIMINANT ANALYSIS, and Principal Component Analysis of the data in Table V.

Table VI lists the eigenvalues of a decision boundary feature matrix of the 17

dimensional data, along with proportions and accumulations. It also shows

classification accuracies and normalized classification accuracies obtained by dividing

classification accuracies with the classification accuracy obtained using the whole

feature set.

The rank of the decision boundary feature matrix (ΣDBFM) must be decided upon, and in

this case, somewhat arbitrarily so. Theoretically, the classification result obtained

using all the eigenvectors of the decision boundary feature matrix corresponding to

non-zero eigenvalues are the same as the classification result obtained using the

whole feature set. However, for real data, eigenvalues of the decision boundary

feature matrix are seldom zero, even though some eigenvalues are very close to zero

and there are large differences among the eigenvalues. As a result, although it is
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relatively easy to decide the rank of the decision boundary feature matrix for low

dimensional generated data, it becomes less obvious for high dimensional real data.

In non-parametric classification, it would be more difficult since decision boundary and

normal vectors are estimated. One may add eigenvalues until the accumulation

exceeds 95% of the total sum and set that number of the eigenvalues as the rank of
the ΣDBFM. Defined in this way, the rank of the ΣDBFM would be 9. Alternatively, one may

retain the eigenvalues greater than one tenth of the largest eigenvalue. In this way, the
rank of the ΣDBFM would be 6. As can be seen in Table VI, the normalized classification

accuracy increases monotonically as the accumulation of eigenvalues increases up to

5 features. After 5 features, the classification accuracy is almost saturated and adding

more features does not improve classification accuracy. Fig. 15 shows the relationship

between the accumulations of eigenvalues and the normalized classification

accuracies. More experiments are needed to obtain a better understanding on the

relationship between the normalized classification accuracy and the accumulation of

eigenvalues.

Table VI. Relationship between eigenvalues of decision boundary feature matrix and classification
accuracy. (Ev: Eigenvalues, Pro: Proportion, Accu: Accumulation,
Cl. Ac: Classification Accuracy, N. Cl. Ac: Normalized Classification Accuracy.

Ev Pro
(%)

Accu
(%)

Cl. Ac
(%)

N.Cl.Ac
(%)

1 995.2 34.5 34.5 57.1 63.2
2 556.4 19.3 53.8 84.7 93.7
3 446.4 15.5 69.3 87.9 97.2
4 293.3 10.2 79.4 88.5 97.9
5 138.5 4.8 84.2 89.8 99.3
6 120.5 4.2 88.4 89.8 99.3
7 88.6 3.1 91.5 90.1 99.7
8 55.8 1.9 93.4 90.1 99.7
9 50.8 1.8 95.2 90.5 100.1
10 46.2 1.6 96.8 90.2 99.8
11 34.0 1.2 97.9 90.1 99.7
12 21.4 0.7 98.7 90.2 99.8
13 14.1 0.5 99.2 90.3 99.9
14 11.3 0.4 99.6 90.4 100.0
15 5.8 0.2 99.8 90.4 100.0
16 4.5 0.2 99.9 90.4 100.0
17 2.3 0.1 100.0 90.4 100.0
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Fig. 15 Relationship between Accumulations of Eigenvalues and Normalized Classification Accuracies.

VI. ESTIMATION OF DECISION BOUNDARY AND NORMAL VECTOR

Since non-parametric classifiers do not define the decision boundary in analytic form,

it must be estimated numerically. And then, from the estimated decision boundary,

normal vectors are estimated as follows:

∇h(X) ≈ 
∆h
∆x1

 x1 + 
∆h
∆x2

 x2 + ..... + 
∆h
∆xn

 xn

Next we will investigate the effect of inaccurate estimation of the decision boundary

and normal vectors on the performance of the proposed decision boundary feature

extraction.

A. Effect of Inaccurate Estimation of Decision Boundary

In the proposed procedure, we found a point on the decision boundary by moving

along the line connecting two differently classified samples. In other words, by moving

along the line, we try to find a point X such that

h(X)=t

When the difference between the decision boundary and an estimated decision

boundary is smaller than a threshold, the searching procedure stopped. In other

words, if
(h(X) – t)(h(X') – t) < 0 and |X – X' | < ε
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we take either X or X'  as a point on the decision boundary. To investigate the

sensitivity of the Decision Boundary Feature Extraction method, it was applied to the
17 dimensional data with various thresholds, ε=0.01σ, 0.05σ, 0.1σ, 0.5σ, 1σ and   2σ,
where σ is the average standard deviation, i.e.,

σ = 
1

MN ∑
i=1

M
 ∑
j=1

N
 σi

j

where N is the number of features, M is the number of classes, and σi
j is j-th

feature standard deviation of class ωi.

With 17 features, the classification accuracy is 90.4%. Fig. 16 shows the performance

comparison for the first 5 features. For 1 feature, there is not much difference. For 2

features, the classification accuracy decreases as the threshold increases. If more than

2 features are considered, the performances are essentially the same. When 3

features are used, all thresholds achieve about 89% classification accuracy. From the
experiments, it appears that the threshold between 0.05σ and 0.5σ would be

reasonable and the performance of the Decision Boundary Feature Extraction method

does not appear to be very sensitive to inaccurate estimation of the decision boundary.
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Fig. 16 Effect of inaccurate estimation of decision boundary on the performance of the
Decision Boundary Feature Extraction method.

B. Effect of the Parzen Scale Parameter h  in Estimating Normal Vectors

Since normal vectors are estimated using (6), the Parzen scale parameter h will affect

the estimation of normal vectors. Since normal vectors are used to estimate the
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decision boundary feature matrix, the Parzen scale parameter will affect the

performance of the Decision Boundary Feature Extraction method. In the following test,

we estimated the normal vectors using various Parzen scale parameters and

investigate the effect of  the Parzen scale parameter on the performance of the

Decision Boundary Feature Extraction method. The Decision Boundary Feature

Extraction method is applied to 18 dimensional data. With 18 features the classification

accuracy is 92.9%. Fig. 17 shows the performance comparison for various Parzen

scale parameters in estimating normal vectors. When h=0.3, 0.5, 0.7, and 1.0, the

classification accuracies with 3 features are  92.6%, 92.3%, 92.2%, and 92.1%,

respectively. As larger Parzen scale parameters are used (h ≥ 2), classification

accuracies decrease, though the decreasing rate is relatively small. However, if the

Parzen scale parameter is too small (h=0.1), the classification accuracy decreases

considerably. Overall, the Parzen scale parameters between 0.5 and 1.0 give best

results in this case. Although the performance of the Decision Boundary Feature

Extraction method does not seem to be very sensitive to the variation of the Parzen

scale parameter, care must be taken that the Parzen scale parameter should not be

too small or too large for a given data.
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Fig. 17 Performance comparison for various Parzen scale parameters in estimating normal vectors.

VII. CONCLUSION

Decision boundary feature selection is a new feature selection technique which is

derived from the fact that all the feature vectors needed in discriminating between
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classes for a given classifier can be obtained from the decision boundary defined by

the given classifier. Instead of utilizing class mean differences or class covariance

differences, the method utilizes the decision boundary directly. As a result, the method

does not deteriorate under the circumstances of equal means or equal covariances,

and can be used for both parametric and non-parametric classifiers. In this paper we

proposed a decision boundary feature selection algorithm for non-parametric

classifiers. By directly utilizing the decision boundary defined by an employed non-

parametric classifier without any assumption about the distribution of data, the

proposed feature selection algorithm can take advantage of the generality of the non-

parametric classifier, which can define a complex decision boundary. The experiments

show that the performance of the proposed algorithm is very promising. The

importance of such algorithms is enhanced as the use of non-parametric classifiers

such as neural networks continues to grow [18].

Compared with the conventional feature selection algorithms, the proposed algorithm

predicts the minimum number of features to achieve the same classification accuracy

as in the original space and at the same time finds the needed feature vectors which

have a direct relationship with classification accuracy. Unlike some of the conventional

extraction algorithms using the lumped covariance, the proposed algorithm takes a full

advantage of the information contained in class covariance differences by extracting

new features directly from the decision boundary. Since the information contained in

the second order statistics increases its importance in discriminating classes in high

dimensional data, the proposed algorithm also has potential for feature extraction for

high dimensional data and multi-source data.
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Proof of the theorems, extracted from [14, 15]

Theorem 1. If a vector is parallel to the tangent hyper-plane to the decision

boundary at every point on the decision boundary for a pattern

classification problem, the vector contains no information useful in

discriminating classes for the pattern classification problem, i.e., the

vector is discriminantly redundant.

Proof. Let {β1,β2,..,βN} be a basis of the N-dimensional Euclidean space EN, and let βN

be a vector that is parallel to the tangent hyper-plane to the decision boundary at every

point on the decision boundary.  Let W be a subspace spanned by N-1 spanning
vectors, β1,β2,..,βN-1, i.e.,

W = Span{β1,β2,..,βN-1} and dim(W) = N-1

If βN is not a discriminantly redundant feature, there must exist an observation X such

that

(h(X) –t )(h(X ^W ) – t ) < 0

where X= ∑
i=1

N

biβi and X ^W = ∑
i=1

N-1

ciβi

Without loss of generality, we can assume that the set of vectors β1,β2,..,βN is an

orthonormal set. Then bi = c i for i=1,N-1. Assume that there is an observation X such

that

(h(X) –t )(h(X ^W ) – t ) < 0

This means X and X ^W are on different sides of the decision boundary. Then the vector

Xd = X – X ^W = bNβN 

where bN is a coefficient, must pass through the decision boundary. But this contradicts

the assumption that βN is parallel to the tangent hyper-plane to the decision boundary

at every point on the decision boundary. Therefore if βN is a vector parallel to the

tangent hyper-plane to the decision boundary at every point on the decision boundary,

then for all observations X
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(h(X) –t )(h(X ^W ) – t ) > 0

Therefore βN is discriminantly redundant. Fig. A1 shows an illustration of the proof.

Q.E.D.

From the theorem, we can easily derive the following lemmas which are very

useful in finding discriminantly informative features.

Lemma 1. If vector V is orthogonal to the vector normal to decision boundary

at every point on decision boundary, vector V contains no information useful

in discriminating classes, i.e., vector V is discriminantly redundant.

Lemma 2. If a vector is normal to the decision boundary at at least one point

on the decision boundary, the vector contains information useful in

discriminating classes, i.e., the vector is discriminantly informative.

Class ω 1

Class ω 2

Decision boundary

h(X) < t

h(X) > t

X

bNβN
X̂ w

Fig. A1 If two observations are on the different sides of the decision boundary, the line
connecting the two observations will pass through the decision boundary.

Theorem 2. The rank of the decision boundary feature matrix ΣDBFM of a pattern

classification problem will be the smallest dimension where the same

classification could be obtained as in the original space.

Proof: Let X be an observation in the N-dimension Euclidean space EN under the
hypothesis Hi: X ∈ ωi i = 1, 2. Let ΣDBFM be the decision boundary feature matrix as

defined in Definition 3. Suppose that
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rank(ΣDBFM) = M ≤ N.

Let {φ1, φ2,.., φM} be the eigenvectors of ΣDBFM corresponding to non-zero eigenvalues.

Then a vector normal to the decision boundary at any point on decision boundary can
be represented by a linear combination of φi, i=1,M. In other words, for any vector N

normal to the decision boundary

N  = ∑
i=1

M

aiφi

Since any linearly independent set of vectors from a finite dimensional vector space
can be extended to a basis for the vector space, we can expand {φ1, φ2,.., φM} to form a

basis for the N-dimension Euclidean space. Let {φ1, φ2,.., φM, φM+1,.., φN} be such a

basis. Without loss of generality, we can assume {φ1, φ2,.., φM, φM+1,.., φN} is an

orthonormal basis. One can always find an orthonormal basis for a vector space using

the Gram-Schmidt  procedure. Since the basis is assumed to be orthonormal, it can be
easily seen that the vectors {φM+1, φM+2,.., φN}, are orthogonal to any vector N normal to

the decision boundary. This is because for i = M+1,N

φt
iN= φt

i∑
k=1

M

akφk

= ∑
k=1

M
akφt

iφk = 0 since φ
t
iφk= 0 if i≠k

Therefore since the vectors {φM+1, φM+2,.., φN} are orthogonal to any vector normal to the

decision boundary, according to Lemma.1, the vectors {φM+1, φM+2,.., φN} are

discriminantly redundant. Therefore the number of discriminantly redundant features is

N – M and only M features are needed to achieve the same classification could be

obtained as in the original space.

Q.E.D.

From Theorem 2 we can easily derive the following theorem which is useful to

find the necessary feature vectors.

Theorem 3. The eigenvectors of the decision boundary feature matrix of a

pattern recognition problem corresponding to non-zero eigenvalues are the

necessary feature vectors to achieve the same classification accuracy as in

the original space for the pattern recognition problem.
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