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ABSTRACT

With the popularisation of remote sensing techniques and applications, large area classification
will become inevitable. Conventionally, when using supervised classification methodologies for
the analysis of multispectral data, class training fields must be selected from the whole area to
be classified in order to create reliable statistics for each class. This tends to be labour-intensive,
and the costs increase significantly when a large area is to be analysed.

In this paper, an investigation on how to improve the generalisation of training results from a
local area to fit a larger area is presented. Problems which must be dealt with and strategies
which might be used are outlined and illustrated, including some newer algorithms which have
only recently appeared in the literature. Experimental results using an AVIRIS data set showed
that the training results obtained from a small area was able to be adjusted to improve the
classification accuracy on a neighbouring area nine times the size of the region from which
training was drawn.

INTRODUCTION

Conventionally, classifier training is required to be done using well distributed training pixels in
the image to be classified in order to ensure that the training pixels are representative and
therefore, class statistics are reliable (Richards, 1993). Training pixel labeling, however, is an
expensive process, which include field visits, reference map production or collection and
photointerpretation of multispectral images, etc. Moreover, the ground truth information must
be approximately contemporary with the multispectral data to be recorded and must be applied
to the correctly registered image. For a large area image classification, the high cost incurred in
the class training becomes a great concern.

With this problem in mind, the intension of this work is to investigate the possibility of using
limited ground truth information for a local area to classify other areas in the vicinity.
Theoretically, hyperspectral data have higher separability power than multispectral data.
However, as the dimensionality goes up, the number of training samples needed to adequately
define the shape of the class distribution in N-dimensional space goes up quite rapidly
(Landgrebe, 1995). Therefore, a key difficulty is that the conflict between the requirement of
largTr t;1lumbc:rs of spectral bands for class separability and the limited number of training pixels
available.




In this paper, problems encountered for this work are demonstrated and analysed, followed by
general consideration and experimental results.

DEMONSTRATION OF THE PROBLEM

The image data used for this work is from an area of mixed agriculture and forestry in
Northwestern, Indiana, USA. The data was recorded in June 1992 by AVIRIS with 210 bands.

The centre area, 145 by 145 pixels, of about 8.4 kmz, is used as training site (Fig. 1(a)).
Experiments on using the training results obtained from this local area to label the surrounded
area, which is 9 times of the centre area, have been studied and analysed.

Firstly, the class training was done in the centre area. 16 classes were defined and their statistics
were estimated using the training pixels selected from this region based on the ground truth.
(Landgrebe, 1994) demonstrated that the classification accuracy was 75.5% for the training data
using 9 AVIRIS bands which occur in the middle of the 6 Thematic Mapper reflective bands
plus 3 additional ones. But, 98% was reached using the first 50 new features obtained after the
original 210 bands were transformed using Decision Boundary Feature Extraction (DBFE) (Lee
and Landgrebe, 1993). The function of DBFE is to find an optimal linear transformation to
enhance class separability, based directly upon the training samples. The new features obtained
are in order of their importance relative to discriminating between the classes defined. This
showed the higher separation power of the hyperspectral data.

The training results were then applied to the extended area as shown in Fig. 1 (a) and the
probability map is showed in Fig. 1 (b). A probability map indicates the degree of membership
of the class to be labelled for each pixel (Landgrebe and Biehl, 1995). Using Gaussian

maximum likelihood classification, the decision rule is: x € w; if g;(x)> g j(x) for all j#i
where g;(x) =—In|Z;|- (x —m;)’ >l (x-m;), i=1, 2, ..., M, where x is a pixel brightness
vector, m; is the mean brightness vector for class i, and X, is its covariance matrix of size

N x N, and N is the total number of spectral bands. M is the number of classes available for
labeling the pixel. The brightness in a probability map is direct proportional to the maximum

likelihood value, Maximum(g;(x)).

Fig. 1. (a) Image segment selected for large area classification exercise. The centre area is used
as training site. (b) Classification probability map using the training results obtained from the
centre area.



The average probability is 46.3% in the training site, 18.7% on the extended area. The
classification accuracy on the test data of the extended area was 35% only. This results show
that the classification is reliable in the centre area, but not in the extended area and demonstrate
the problem of classifier generalisation.

There are two main physical reasons for the poor classification on the extended area. One is that
the radiometric error resulting from atmospheric and other effects varies from nadir and the
extremities of the swath for the systems, particularly those with a wide fields of view, because
of the appreciable difference in atmospheric path length, the differences in illumination and view
angles, and other effects. Secondly, there are some slight differences in spectral response from
place to place for an information class. For example, the different moisture contents and
different types of soils may present variations to the class spectral response.

Six classes have been selected from the image for detailed investigation. Since the data were
collected in the early part of the growing season, soybean and corn canopies presented only
about a 5% ground cover. These two classes were further divided into three subcategories
depending upon the different tillage practice used on a given field: no-till, minimum-till, and
clean-till. The no-till fields would have a substantial amount of residue from the crop of the
previous year, the minimum-till field would have only a moderate amount, and the clean-till
would show only the species canopy on a soil background. The separation of these six classes,
two species in each of three conditions, represent a very challenging classification problem, one
that represents a very poor S/N ratio where the response from the plant leaves represent signal
and that from the soil/residue background represents noise. They are used for the following
tests.

An experiment was made to examine the effect of using a pixel as training data or as testing data
against the number of features used. In the real case as the project setup, training pixels are only
available in the centre area, totalling 6554. Testing pixels were selected from the extended area
totalling 9434. The classification results on the testing data were not satisfactory as suggested
above. Three simulations were conducted for classifier performance comparison by using part
of testing data (Simulations 1 and 2) or all the testing data as training data (in Simulation 3)
(Table 1). The classification accuracy on the training data and testing data for each case is
plotted against the number of DBFE features used as shown in Figs. 2 (a) and 2 (b),
respectively.

Table 1 Number of Training and Testing Pixels in Each Test

No. of Training | No. of Testing | Percentage of
Pixels Pixels Training Pixels
Real Case 6554 9434 41%
Simulation 1 12519 3467 78%
Simulation 2 14586 420 91%
Simulation 3 15980 0 100%

From Fig. 2 (a), it can seen that the classification accuracy on the training data increases with
the increasing number of features used. The number of training pixels has a significant effect on
the performance. Using the least training pixels, 41% of the total labelled pixels, the shape of
the class distributions fits the training samples the best, while using all the labelled pixels as
training data give the lowest classification accuracy on those data itself. This results are opposite
to the testing data. For the testing data, the more training data, the better the classification results
achieved as would be expected. The Hughes phenomenon (Hughes, 1968) is observed in Fig.
2 (b) where the classification accuracy does not continue to increase with the number of features
used. Rather, it starts to decrease after more than a certain number of features used. A
conclusion can be drawn from the above tests: High dimensional feature space provides the




possibility to separate even arbitrary classes. However, enormous numbers of training samples
are needed to generate reliable class statistics. The training data can be classified very well as
long as enough features are available. But, when the number of training samples are fixed, the
accuracy first increases, then drops with increasing features. These points are significant for
finding a suitable way for classifier generalisation discussed below.
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Fig. 2. Classification accuracy (a) on the training data; (b) on the testing data, using different
percentage of labelled pixels as training data

PROBLEM SOLUTION

There are several problems to deal with for classifier generalisation:

Reliable and separable class statistics estimation It is essential that the class spectral
response be unique and reasonably separable from class to class. Attention must be paid when
one seeks strong class separability by increasing the number of features to be used. With higher
dimensionality, the ratio of the number of training pixels to the number of features decreases
and therefore the robustness of the class spectral response drops. High performance obtained
on the training data may be a misleading. Since there are only a limited number of training
pixels for each class in the remote sensing situation, it is vital to use the smallest number of
features which achieve adequate separability. As a result, feature extraction will be the first step
to compress the rich information contained in a hyperspectral data such as AVIRIS data with its
more than 200 bands, into, say 10 to 30 bands (Landgrebe, 1995). Basically, the number of
training samples per class is a parameter to limit how many features can be used.

New classes detected in the extended area This can be done using classification with a
threshold or finding them directly from the probability map. Regions with low likelihood are
candidates for the new spectral classes and should be trained separately. When we have no
ground truth information for them, we can simply regard them as unknown classes. But, it is
important to include them in the class list, in order that there is a logical class to which to assign
every pixel.




Class spectral response modification The class statistics estimated from. the training
pixels selected from a limited area need to be modified to accommodate the variations in the
extended area. The key point is how to make use of extra information provided in the extended
area to achieve this. Unsupervised clustering techniques may be employed on the extended area
for subclass detection. Alternatively, more training pixels may be picked up using iterative
classification and class statistics can be recalculated after each iteration with some new training
pixels added. However, these methods can be sensitive to the degree of separability between the
classes of interest and may be suitable for main ground cover types mapping only.
Alternatively, the statistics enhancement algorithm (Shahshahani and Landgrebe, 1994) can be
employed for general class spectral response modification. Statistics enhancement focuses on
modifying the original class statistics estimated from the local training pixels to fit the global
image statistics, i.e. the probability density function of the entire data set is modelled as a
mixture of Gaussian class densities. By doing this, unlabelled pixels can play a significant role
in class spectral response formation. A requirement for running statistics enhancement is the list
of classes must be exhaustive, which is required for a proper classifier training as well.

’

EXPERIMENT RESULTS

The above procedure were applied to the image data discussed previously. After careful
examination, nine classes were defined. DBFE was applied to the 210 bands based on these
classes of interest and the first 15 features were kept. Using the original statistics, the highest
accuracy on the testing data was 70.7% when the first 10 features were used. Statistics
enhancement was conducted after 22 new clusters were defined and taken into account with the
original 9 classes. The highest accuracy on the testing data using the enhanced statistics
increased to 73.1% when 10 features were used. More comparisons using different number of
features are plotted in Fig. 3.
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Fig. 3. Classification accuracy comparison using the original class statistics and the enhanced
statistics.




CONCLUSIONS

Hyperspectral data provide stronger power in class discrimination and possibility of classifier
generalisation. However, to make class statistics reliable, it is important to carry out feature
extraction to reduce the dimensionality. Class spectral response modification is then a
critical step for classifier generalisation to accommodate variations in the areas other
than the training site. Nevertheless, better class modelling needs to be developed to a imitate
human being's ability in ignoring noise and detecting signal only.

All of the algorithms used in this work are contained in MultiSpec®©, a software system with a
substantial amount of documentation which may be downloaded without cost from the World
Wide Web at the following URL:
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/

The current version of this system runs under the Macintosh operating system. A Windows
version of MultiSpec is under construction, and a partially complete version of it is also
downloadable, but it does not yet include all of the algorithms used herein. This Windows
version is expected to be complete within the next several months.
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