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< Abstract >

In this paper, a novel approach to feature extraction for classification is proposed based

directly on the decision boundaries. We note that feature extraction is equivalent to retaining

informative features or eliminating redundant features, thus first the terms "discriminantly

informative feature" and "discriminantly redundant feature" are defined relative to feature extraction

for classification. Next it is shown how discriminantly redundant features and discriminantly

informative features are related to decision boundaries. A novel characteristic of the proposed

method arises by noting that usually only a portion of the decision boundary is effective in

discriminating between classes, and the concept of the effective decision boundary is therefore

introduced. Next a procedure to extract discriminantly informative features based on a decision

boundary is proposed. The proposed feature extraction algorithm has several desirable properties:

(1) it predicts the minimum number of features necessary to achieve the same classification

accuracy as in the original space for a given pattern recognition problem, and (2) it finds the

necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of

equal class means or equal class covariances as some previous algorithms do. Experiments show

that the performance of the proposed algorithm compares favorably with those of previous

algorithms.

1This work was funded in part by NASA under grant NAGW-925.
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I. INTRODUCTION

Linear feature extraction can be viewed as finding a set of vectors that represent an

observation while reducing the dimensionality. In pattern recognition, it is desirable to extract

features that are focused on discriminating between classes. Although a reduction in dimensionality

is desirable, the error increment due to the reduction in dimensionality must be constrained to be

adequately small. Finding the minimum number of feature vectors which represent observations

with reduced dimensionality without sacrificing the discriminating power of pattern classes along

with finding the specific feature vectors has been one of the most important problems of the field

of pattern analysis and has been studied extensively [1-12].

In this paper, we address this problem and propose a new algorithm for feature extraction

based on the decision boundary. The algorithm predicts the minimum number of features to

achieve the same classification accuracy as in the original space; at the same time the algorithm

finds the needed feature vectors. Noting that feature extraction can be viewed as retaining

informative features or eliminating redundant features, we define the terms discriminantly

informative feature and  discriminantly redundant feature. This reduces feature extraction to finding

discriminantly informative features. We will show how discriminantly informative features and

discriminantly redundant features are related to the decision boundary and can be derived from the

decision boundary. We will need to define several terms and derive several theorems and, based on

the theorems, propose a procedure to find discriminantly informative features from the decision

boundary.

II. BACKGROUND AND PREVIOUS WORKS

Most linear feature extraction algorithms can be viewed as linear transformations. One of

the most widely used transforms for signal representation is the Karhunen-Loeve transformation.

Although the Karhunen-Loeve transformation is optimum for signal representation in the sense that

it provides the smallest mean square error for a given number of features, quite often the features

defined by the Karhunen-Loeve transformation are not optimum with regard to class separability.
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In feature extraction for classification, it is not the mean square error but the classification accuracy

that must be considered as a primary criterion for feature extraction.

Many authors have attempted to find the best features for classification based on criterion

functions. Fisher's method finds the vector that gives the greatest class separation as defined by a

criterion function [1]. Fisher's linear discriminant can be generalized to multiclass problems. In

canonical analysis [2], a within-class scatter matrix ΣW and a between-class scatter matrix Σb are

used to formulate a criterion function and a vector d is selected to maximize,
dtΣbd

dtΣwd

where,

ΣW = ∑
i

 

P(ωi)Σ i (within-class scatter matrix)

Σb = ∑
i

 

P(ωi)(Mi–  M0)(Mi–  M0)t (between-class scatter matrix)

M0 = ∑
i

 

P(ωi)Mi

Here Mi , Σ i , and P(ωi) are the mean vector, the covariance matrix, and the prior probability of

class ωi, respectively. Although the vector found by canonical analysis performs well in most

cases, there are several problems with canonical analysis. First of all, if there is little or no

difference in mean vectors, feature vectors selected by canonical analysis is not reliable. Second, if

a class has a mean vector very different from the mean vectors of the other classes, that class will

be dominant in calculating the between-class scatter matrix, thus resulting in ineffective feature

extraction.

Fukunaga recognized that the best representational features are not necessarily the best

discriminating features and proposed a preliminary transformation [3]. The Fukunaga-Koontz

method first finds a transformation matrix T such that,

T[S 1 + S 2]T-t = I

where S i is the autocorrelation matrix of class ωi.

Fukunaga showed that TS1T-t and TS2T-t have the same eigenvectors and all the eigenvalues are

bounded by 0 and 1. It can be seen that the eigenvector with the largest differences in eigenvalues
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is the axis with the largest differences in variances. The Fukunaga-Koontz method will work well

in problems where the covariance difference is dominant with little or no mean difference.

However, by ignoring the information of mean difference, the Fukunaga-Koontz method is not

suitable in the general case and could lead to irrelevant results [4].

Kazakos proposed a linear scalar feature extraction algorithm that minimizes the probability

of error in discriminating between two multivariate normally distributed pattern classes [5]. By

directly employing the probability of error, the feature extraction method finds the best single

feature vector in the sense that it gives the smallest error. However, if more than one feature is

necessary, it is difficult to generalize the method.

 Heydorn proposed a feature extraction method by deleting redundant features where

redundancy is defined in terms of a marginal distribution function [6]. The redundancy test uses a

coefficient of redundancy. However, the method does not find a redundant feature vector unless

the vector is in the direction of one of the original feature vectors even though the redundant feature

vector could be detected by a linear transformation.

Feature selection using statistical distance measures has also been widely studied and

successfully applied [7-8,15]. However, as the dimension of data increases, the combination of

features to be examined increases exponentially, resulting in unacceptable computational cost.

Several procedures to find a sub-optimum combination of features instead of the optimum

combination of features have been proposed with a reasonable computational cost [8]. However, if

the best feature vector or the best set of feature vectors is not in the direction of any original feature

vector, more features may be needed to achieve the same performance.

Depending on the characteristics of the data, it has been shown that the previous feature

extraction/selection methods can be applied successfully. However, it is also true that there are

some cases in which the previous methods fail to find the best feature vectors or even good feature

vectors, thus resulting in difficulty in choosing a suitable method to solve a particular problem.

Although some authors addressed this problem [9-11], there is still another problem. One must

determine, for a given problem, how many features must be selected to meet the requirement. More
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fundamentally, it is difficult with the previous feature extraction/selection algorithms to predict the

intrinsic discriminant dimensionality, which is defined as the smallest number of features needed to

achieve the same classification accuracy as in the original space for a given problem.

In this paper, we propose a different approach to the problem of feature extraction for

classification. The proposed algorithm is based on decision boundaries directly. The proposed

algorithm predicts the minimum number of features needed to achieve the same classification

accuracy as in the original space for a given problem and finds the needed feature vectors, and it

does not deteriorate when mean or covariance differences are small.

III. FEATURE EXTRACTION AND SUBSPACE

A. Feature Extraction and Subspace

Let X  be an observation in the N-dimensional Euclidean space EN. Then X can be

represented by

X  = ∑
i=1

N
aiαi where {α1,α2, . . ,αN} is a basis of EN.

Then feature extraction is equivalent to finding a subspace, W, and the new features can be found

by projecting an observation into the subspace. Let W be a M-dimensional subspace of EN spanned

by M linearly independent vectors, β1,β2, . . ,βM.

W = Span{β1,β2, . . ,βM} and dim(W) = M ≤ N

Assuming that βi's are orthonormal, the new feature set in subspace W is given by

{X tβ1, X tβ2,.., X tβM} = {b1,b2,..,bM} where bi = X tβi

Now let ˆ X  = ∑
i=1

M
biβi . Then ˆ X  will be an approximation to X  in terms of a linear combination of

{β1,β2, . . ,βM} in the original N-dimensional space.

B. Bayes' Decision Rule

Now consider briefly Bayes' decision rule, which will be used later in the proposed feature

extraction algorithm. Let X  be an observation in the N-dimensional Euclidean space EN under

hypothesis Hi: X  ∈ ωi i=1,2. Decisions will be made according to the following rule:
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Decide ω1 if P(ω1)P(X |ω1) > P(ω2)P(X |ω2)      else ω2

where P(X |ωi) is a conditional density function.

Let h(X ) = –ln
P(X |ω1)

P(X |ω2)
 and t = ln

P(ω1)

P(ω2)
. Then

Decide ω1 if h(X ) < t        else ω2

Feature extraction has been used in many applications, and the criteria for feature extraction

can be different in each case. If feature extraction is directed specifically at classification, a criterion

could be to maintain classification accuracy. As a new approach to feature extraction for

classification, we will find a subspace, W, with the minimum dimension M and the spanning

vectors {βi} of the subspace such that for any observation X

(h(X ) – t)(h(X ^) – t) > 0 (1)

where ˆ X  is an approximation of X  in terms of a basis of subspace W in the original N-

dimensional space. The physical meaning of (1) is that the classification result for ˆ X  is the same as

the classification result of X . In practice, feature vectors might be selected in such a way as to

maximize the number of observations for which (1) holds with a constraint on the dimensionality

of subspaces. In this paper, we will propose an algorithm which finds the minimum dimension of

a subspace such that (1) holds for all the given observations and which also finds the spanning

vectors {βi} of the subspace. In the next section, we define some needed terminology which will

be used in deriving theorems later.

IV. DEFINITIONS

A. Discriminantly Redundant Feature

Feature extraction can be performed by eliminating redundant features, however, what is

meant by "redundant" may be dependent on the application. For the purpose of feature extraction

for classification, we will define a "discriminantly redundant feature" as follows.

Definition 1. Let {β1,β2, . . ,βN} be a orthonormal basis of EN. We say the vector βk is

discriminantly redundant if for any observation X
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(h(X ) – t)(h( ˆ X ) – t) > 0 (1)

In other words,

if h(X ) > t, then h( ˆ X ) > t or

if h(X ) < t, then h( ˆ X ) < t

where X  = ∑
i=1

N

biβi, 
ˆ X  = ∑

i=1 i≠k

N

biβi and X = ˆ X  + bkβk

The physical meaning of (1) is that the classification result for ˆ X  is the same as the classification

result of X . Fig. 1 shows an example of a discriminantly redundant feature. In this case even

though ˆ X  is moved along the direction of vector βk, the classification result will remain

unchanged. This means vector βk makes no contribution in discriminating classes, thus vector βk

is redundant for the purpose of classification.

class ω2

Decision boundary

h(X) < t

h(X) > t

X

X̂
bkβk

class ω1

Feature 1

F
ea

tu
re

 2

Fig. 1 An example of a discriminantly redundant feature. Even though the observation is moved
in the direction of vector ββk, the decision will be the same.

B. Discriminantly Informative Feature

In a similar manner, we define a discriminantly informative feature.

Definition 2. Let {β1,β2, . . ,βN} be a orthonormal basis of EN. We say that βk is

discriminantly informative if there exists an observation Y such that

(h(Y) – t)(h( ˆ Y ) – t) < 0 (2)

In other words,
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h(Y) > t but h( ˆ Y ) < t or

h(Y) < t but h( ˆ Y ) > t

where Y = ∑
i=1

N

biβi, 
ˆ Y  = ∑

i=1 i≠k

N

biβi and Y = ˆ Y   + bkβk

The physical meaning of (2) is that there exists an observation Y such that the classification result

of ˆ Y  is different from the classification result of Y. It is noted that (2) need not hold for all the

observations. A vector will be discriminantly informative if there exists at least one observation

whose classification result can be changed as the observation moves along the direction of the

vector. Fig. 2 shows an example of a discriminantly informative feature. In this case, as ˆ Y  is

moved along the direction of vector βk the classification result will be changed.

Decision boundary

h(X) < t

h(X) > t

Y

Ŷ

class ω1

class ω2

bkβk

Feature 1

F
ea

tu
re

 2

Fig. 2 An example of a discriminantly informative feature. As the observation Y  is moved along
the direction of vector ββk, the classification result of the observation is changed.

C. Decision Boundaries and Effective Decision Boundaries

The decision boundary of a two-class problem is a locus of points on which a posteriori

probabilities are the same. To be more precise, we define a decision boundary as follows:

Definition 3. A decision boundary is defined as

 { X | h(X ) = t }

A decision boundary can be a point, line, plane, hyper plane, solid, hyper solid, curved surface or

curved hyper-surface. Although a decision boundary can be extended to infinity, in most cases
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some portion of the decision boundary is not significant. For practical purposes, we define the

effective decision boundary as follows:

Definition 4. The effective decision boundary is defined as

 { X | h(X ) = t , X  ∈ R1 or X  ∈ R2 }

where R1 is the smallest region which contains a certain portion, Pthreshold, of class ω1

and R2 is the smallest region which contains a certain portion, Pthreshold, of class ω2.

The effective decision boundary may be seen as an intersection of the decision boundary and the

regions where most of the data are located. Figs. 3 and 4 show some examples of decision

boundaries and effective decision boundaries. In these examples, the threshold probability,

Pthreshold, is set to 99.9%. In the case of Fig. 3, the decision boundary is a straight line and the

effective decision boundary is a straight line segment, the latter being a part of the former. In Fig.

4, the decision boundary is an ellipse and the effective decision boundary is a part of that ellipse

which could be approximated by a straight line.

Effective  decision 
boundary

Decision boundary

class ω2

class ω1

Fig. 3 M1≠M2, Σ1=Σ2. The decision boundary is a straight line and the effective
decision boundary is a line segment coincident to it.
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99.9% of 
class ω 1

Effective  decision 
boundary

Decision boundary

99.9% of 
class ω 2

Fig. 4 M1≠M2, Σ1≠Σ2. The decision boundary is an ellipse and the effective decision boundary
is a part of the ellipse which can be approximated by a straight line.

D. Intrinsic Discriminant Dimension

One of the major problems of feature extraction for classification is to find the minimum

number of features needed to achieve the same classification accuracy as in the original space. To

be more exact, we define the term, "intrinsic discriminant dimension".

Definition 5. The Intrinsic discriminant dimension for a given problem is defined

as the smallest dimension of a subspace, W, of the N-dimensional Euclidean space EN

such that for any observation X in the problem,

(h(X ) – t)(h( ˆ X ) – t) > 0

where W = Span{β1,β2, . . ,βM}, ˆ X  = ∑
i=1

M

biβi ∈ W and M ≤ N.

The intrinsic discriminant dimension can be seen as the smallest dimensional subspace wherein the

same classification accuracy can be obtained as could be obtained in the original space.

The intrinsic discriminant dimension is related to the discriminantly redundant feature

vector and the discriminantly informative feature vector. In particular, if there are M linearly

independent discriminantly informative feature vectors and L linearly independent discriminantly

redundant feature vectors, then it can be easily seen that

N= M + L

IEEE Pattern Analysis & Machine Intell. Trans.  -     11     - April 1993



Lee & Landgrebe: Decision Boundary Feature Extraction

where N is the original dimension and the intrinsic discriminant dimension is equal to M. Fig. 5

shows an example of the intrinsic discriminant dimension. In the case of Fig. 5, the intrinsic

discriminant dimension is one even though the original dimensionality is two. If V2 is chosen as a

new feature vector, the classification accuracy will be the same as in the original 2-dimensional

space.

V1

V2

class ω1

class ω2

Feature 1

F
ea

tu
re

 2

Fig. 5 Σ1=Σ2. In this case the intrinsic discriminant dimension is one even though the original
space is two dimensional, since if V2 is chosen as a new feature vector, the classification
accuracy will be the same as in the original 2 dimensional space.

V. FEATURE EXTRACTION BASED ON THE DECISION BOUNDARY

A. Redundancy Testing Theorem

From the definitions given in the previous section, a useful theorem can be stated which

tests whether a feature vector is a discriminantly redundant feature or a discriminantly informative

feature.

Theorem 1. If a vector is parallel to the tangent hyper-plane to the decision boundary

at every point on the decision boundary for a pattern classification problem,

then the vector contains no information useful in discriminating classes for the

pattern classification problem, i.e., the vector is discriminantly redundant.
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Proof. Let {β1,β2, . . ,βN}be a basis of the N-dimensional Euclidean space EN, and let βN be a

vector that is parallel to the tangent hyper-plane to the decision boundary at every point on the

decision boundary.  Let W be a subspace spanned by N-1 spanning vectors, β1,β2, . . ,βN-1, i.e.,

W = Span{β1,β2, . . ,βN-1} and dim(W) = N-1

If βN is not a discriminantly redundant feature vector, there must exist an observation X  such that

(h(X ) –t )(h( ˆ X ) – t ) < 0

where X= ∑
i=1

N
biβi and ˆ X  = ∑

i=1

N-1
ciβi .

Without loss of generality, we can assume that the set of vectors β1,β2, . . ,βN is an orthonormal

set. Then bi = ci for i=1,N-1. Assume that there is an observation X  such that

(h(X ) –t )(h( ˆ X ) – t ) < 0

This means X and ˆ X  are on different sides of the decision boundary. Then the vector

X d = X – ˆ X  = bNβN 

where bN is a coefficient, must pass through the decision boundary. But this contradicts the

assumption that βN is parallel to the tangent hyper-plane to the decision boundary at every point on

the decision boundary. Therefore if βN is a vector parallel to the tangent hyper-plane to the decision

boundary at every point on the decision boundary, then for all observations X

(h(X ) –t )(h( ˆ X ) – t ) > 0

Therefore βN is discriminantly redundant. Fig. 6 shows an illustration of the proof.

From the theorem, we can easily derive the following lemmas which are very useful in

finding discriminantly informative features.

Lemma 1. If vector V is orthogonal to the vector normal to the decision boundary at every

point on the decision boundary, vector V contains no information useful in

discriminating classes, i.e., vector V is discriminantly redundant.

Lemma 2. If a vector is normal to the decision boundary at at least one point on the

decision boundary, the vector contains information useful in discriminating classes,

i.e., the vector is discriminantly informative.
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Decision boundary

h(X) < t

h(X) > t

X

bNβN
X̂

class ω2

class ω1

Feature 1

F
ea

tu
re

 2

Fig. 6 If two observations are on the different sides of the decision boundary, the line connecting
the two observations will pass through the decision boundary.

B. Decision Boundary Feature Matrix

From the previous theorem and lemmas, it can be seen that a vector normal to the decision

boundary at a point is a discriminantly informative feature, and the effectiveness of the vector is

roughly proportional to the area of the decision boundary which has the same normal vector. Now

we can define a DECISION BOUNDARY FEATURE MATRIX which is very useful to predict the

intrinsic discriminant dimension and find the necessary feature vectors.

Definition 6. The decision boundary feature matrix (DBFM): Let N(X)  be the

unit normal vector to the decision boundary at a point X  on the decision boundary for a

given pattern classification problem. Then the decision boundary feature matrix ΣDBFM

is defined as

ΣDBFM = 
1
K ∫

 S
N (X )N t(X )p(X )dX

where p(X ) is a probability density function, K= ∫
 S

p(X )dX ,  and S is the decision

boundary, and the integral is performed over the decision boundary.

 We will show some examples of the decision boundary feature matrices. Even though the

examples are in 2-dimensional space, the concepts can be easily extended to higher dimensional

spaces. In all examples, a Gaussian Maximum Likelihood classifier is assumed.
IEEE Pattern Analysis & Machine Intell. Trans.  -     14     - April 1993



Lee & Landgrebe: Decision Boundary Feature Extraction

Example 1. The mean vectors and covariance matrices of two bivariate Gaussian classes are

given as follows:

M1 = [ ]1
2 , S 1 = [ ]1 0.5

0.5 1  M2 = [ ]2
1 , S 2 = [ ]1 0.5

0.5 1

P(ω1) = P(ω2) = 0.5

These distributions are shown in Fig. 7 as "ellipse of concentration." In a two-class, two-

dimensional pattern classification problem, if the covariance matrices are the same, the decision

boundary will be a straight line and the intrinsic discriminant dimension is one. This suggests that

the vector normal to the decision boundary at any point is the same. And the decision boundary

feature matrix will be given by

ΣDBFM = 
1
K ∫

 S
N (X )N t(X )p(X )dX  =  

1
KNN t ∫

 S
p(X )dX  = NN t

ΣDBFM = 
1
2
 (-1,1)t 

1
2
 (-1,1) = 

1
2 [ ]1-1

-11

Rank(ΣDBFM) = 1

It is noted that the rank of the decision boundary feature matrix is one which is equal to the intrinsic

discriminant dimension and the eigenvector corresponding to the non-zero eigenvalue is the desired

feature vector which gives the same classification accuracy as in the original 2-dimensional space.
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Decision boundary

N = 1
2

(-1,1)

class ω2

class ω1

Feature 1

F
ea
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Fig. 7 An example where the covariance matrices of two classes are the same and the decision
boundary is a straight line. In this case, there is only one vector which is normal to the
decision boundary.

Example 2. The mean vectors and covariance matrices of two classes are given as follows:

M1 = [ ]5
5 , S 1 = [ ]3 0

0 3   M2 = [ ]5
5 , S 2 = [ ]1 0

0 1

P(ω1) = P(ω2) = 0.5

The distributions of the two classes are shown in Fig. 8 as "ellipse of concentration." In this

example, the decision boundary is a circle and symmetric, and 
1
Kp(X ) is a constant given by 

1

2πr

where r is the radius of the circle. The decision boundary feature matrix will be given by

ΣDBFM = 
⌡
⌠

0

2π

 
1

2πr
[cosθ sinθ]t[cosθ sinθ]  r  dθ

= 
1

2π ⌡

⌠

0

2π

 






cosθcosθ cosθsinθ

sinθcosθ  sinθsinθ
 dθ

= 
1

2π
 






π 0

0  π
 = 

1
2 







1 0

0  1

Rank(ΣDBFM) = 2

From the distribution of data, it is seen that two features are needed to achieve the same

classification accuracy as in the original space. This means that the intrinsic discriminant dimension
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is 2 in this case. It is noted that the rank of the decision boundary feature matrix is also 2, which is

equivalent to the intrinsic discriminant dimension.

Decision 
boundary

Nθ = (cosθ,sinθ)

class ω1

class ω2

Feature 1

F
ea

tu
re

 2

Fig. 8 The case for equal means and different covariances. In this case, the decision boundary will
be a circle and there are an infinite number of different vectors which are normal to the
decision boundary.

In a similar way, we define an EFFECTIVE DECISION BOUNDARY FEATURE

MATRIX. The effective decision boundary feature matrix is the same as the decision boundary

feature matrix except that only the effective decision boundary instead of the entire decision

boundary is considered.

Definition 7. The effective decision boundary feature matrix (EDBFM): Let

N(X)  be the unit normal vector to the decision boundary at a point X  on the effective

decision boundary for a given pattern classification problem. Then the effective

decision boundary feature matrix ΣEDBFM is defined as

ΣEDBFM = 
1
K' ∫

 S'
N (X )N t(X )p(X )dX

where p(X ) is a probability density function, K'= ∫
 S'

p(X )dX ,  and S' is the effective

decision boundary as defined in Definition 4, and the integral is performed over the

effective decision boundary.
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C. Decision Boundary Feature Matrix for Finding the Intrinsic Discriminant

Dimension and Feature Vectors

We state the following two theorems which are useful in predicting the intrinsic

discriminant dimension of a pattern classification problem and finding the feature vectors.

Theorem 2. The rank of the decision boundary feature matrix ΣDBFM (Definition 6) of a

pattern classification problem will be the intrinsic discriminant dimension

(Definition 5) of the pattern classification problem.

Proof: Let X  be an observation in the N-dimension Euclidean space EN under the hypothesis Hi: X

∈ ωi i = 1, 2. Let ΣDBFM be the decision boundary feature matrix as defined in Definition 6.

Suppose that

rank(ΣDBFM) = M ≤ N.

Let {φ1, φ2,.., φM} be the eigenvectors of ΣDBFM corresponding to non-zero eigenvalues. Then a

vector normal to the decision boundary at any point on decision boundary can be represented by a

linear combination of φi, i=1,..,M. In other words, for any normal vector VN to the decision

boundary

VN = ∑
i=1

M
aiφi

Since any linearly independent set of vectors from a finite dimensional vector space can be

extended to a basis for the vector space, we can expand {φ1, φ2,.., φM} to form a basis for the N-

dimension Euclidean space. Let {φ1, φ2,.., φM, φM+1,.., φN} be such a basis. Without loss of

generality, we can assume {φ1, φ2,.., φM, φM+1,.., φN} is an orthonormal basis. One can always

find an orthonormal basis for a vector space using the Gram-Schmidt procedure [13]. Since the

basis is assumed to be orthonormal, it can be easily seen that the vectors {φM+1, φM+2,.., φN}, are

orthogonal to any vector VN normal to the decision boundary. This is because for i = M+1,..,N

φt
iVN= φt

i∑
k=1

M
akφk

= ∑
k=1

M
akφt

iφk = 0 since φt
iφk= 0 if i≠k
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Therefore, since the vectors {φM+1, φM+2,.., φN} are orthogonal to any vector normal to the

decision boundary, according to Lemma 1, the vectors {φM+1, φM+2,.., φN} are discriminantly

redundant. Therefore the number of discriminantly redundant features is N – M, and the intrinsic

discriminant dimension is M which is the rank of decision boundary feature matrix ΣDBFM.

From Theorem 2 we can easily derive the following theorem which is useful to find the

necessary feature vectors.

Theorem 3. The eigenvectors of the decision boundary feature matrix of a pattern

recognition problem corresponding to non-zero eigenvalues are the necessary feature

vectors to achieve the same classification accuracy as in the original space for the

pattern recognition problem.

D. Procedure to Find the Decision Boundary Feature Matrix

Assuming a Gaussian Maximum Likelihood classifier is used, the decision boundary will

be a quadratic surface if the covariance matrices are different. In this case, the rank of the decision

boundary feature matrix will be the same as the dimension of the original space except for some

special cases. However, in practice, only a small portion of the decision boundary is significant.

Therefore if the decision boundary feature matrix is estimated using only the significant portion of

the decision boundary or the efficient decision boundary, the rank of the decision boundary feature

matrix, equivalently the number of features, can be reduced substantially while achieving about the

same classification accuracy.

More specifically, the significance of any portion of the decision boundary is related to how

much accuracy can be achieved by utilizing that portion of the decision boundary. Consider the

case of Fig. 9 which shows the two regions which contain 99.9% of each Gaussianly distributed

class, along with the decision boundary and the effective decision boundary of 99.9%. Although in

this example the threshold probability, Pthreshold, is set to 99.9% arbitrarily, it can be set to any

value depending on the application (See Definition 4). If only the effective decision boundary,

which is displayed in bold, is retained, it is still possible to classify 99.9% of data from class ω1
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the same as if the whole decision boundary had been used, since the effective decision boundary

together with the boundary of the region which contains 99.9% of class ω1 can divide the data of

class ω1 into two groups in the same manner as if the whole decision boundary is used; less than

0.1% of data from class ω1 may be classified differently.

Therefore, for the case of Fig. 9, the effective decision boundary displayed as a bold line

plays a significant role in discriminating between the classes, while the part of the decision

boundary displayed as a non-bold line does not contribute much in discriminating between the

classes. Other portions of the decision boundary displayed as a dotted line would be very rarely

used.

It is noted, however, that even though only the effective decision boundary is used for

feature extraction, this does not mean that the portion outside of the effective regions does not have

a decision boundary. The actual decision boundary is approximated by the extension of the

effective decision boundary as shown in Fig. 9. As shall be seen, feature extraction based on the

effective decision boundary instead of the complete decision boundary will result in fewer features

while achieving nearly the same classification accuracy.

99.9% of 
class ω 1

Decision boundary

99.9% of 
class ω 2

New decision boundary represented by
 the effective decision boundary outside
 the effective regions

Effective  decision 
boundary

Effective regions

Fig. 9 An example of a decision boundary and an effective decision boundary.
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Next we propose a procedure for calculating the effective decision boundary feature matrix

numerically.

Numerical Procedure to Find the Effective Decision Boundary Feature Matrix
(2 pattern classes)

1. Let ˆ M i  and ˆ Σ i  the estimated mean and covariance of class ωi. Classify the training samples

using full dimensionality. And apply a chi-square threshold test to the correctly classified

training samples of each class and delete outliers. In other words, for class ωi, retain X  only if

(X  – ˆ M i )
t ˆ Σ i

−1 (X  – ˆ M i ) < Rt1

In the following STEPs, only correctly classified training samples which passed the chi-square
threshold test will be used. Let {X 1,X 2,. . . , XL1

} be such training samples of class ω1 and

{Y1,Y2,. . . , Y L2
} be such training samples of class ω2.

For class ω1, do STEP 2 through STEP 6:

2. Apply a chi-square threshold test of class ω1 to the samples of class ω2 and retain Yj only if

(Yj – ˆ M 1)t ˆ Σ 1
−1 (Yj – ˆ M 1) < Rt2

If the number of the samples of class ω2 which pass the chi-square threshold test is less than

Lmin (see below), retain the Lmin samples of class ω2 which gives the smallest values.

3. For X i of class ω1, find the nearest sample of class ω2 retained in STEP 2.

4. Find the point Pi where the straight line connecting the pair of samples found in STEP 3 meets

the decision boundary.

5. Find the unit normal vector, N i, to the decision boundary at the point Pi found in STEP 4.

6. By repeating STEP 3 through STEP 5 for Xi, i=1,..,L1, L1 unit normal vectors will be

calculated. From the normal vectors, calculate an estimate of the effective decision boundary

feature matrix (Σ1
EDBFM) from class ω1 as follows: 

Σ1
EDBFM = NiNi

t

i

L1

∑
Repeat STEP 2 through STEP 6 for class ω2.

7. Calculate an estimate of the final effective decision boundary feature matrix as follows:

ΣEDBFM = Σ1
EDBFM +Σ2

EDBFM
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The chi-square threshold test in STEP 1 is necessary to eliminate outliers. Otherwise,

outliers may give a false decision boundary when classes are well separable. The chi-square

threshold test to the other class in STEP 2 is necessary to concentrate on effective decision

boundary (Definition 4). Otherwise, the decision boundary feature matrix may be calculated from

an insignificant portion of decision boundary, resulting in ineffective features. In the experiments,

Lmin in STEP 2 is set to 5 and Rt1 is chosen such that

Pr{X |(X  – ˆ M i )
t ˆ Σ i

−1 (X  – ˆ M i ) < Rt1} = 0.95, i=1,2, and Rt1 = Rt2

Fig. 10 shows an illustration of the proposed procedure.

N1

Decision boundary

N2

Class ω1

Class ω2

N3

N4

Feature 1

F
ea

tu
re

 2

Fig. 10 Illustration of the procedure to find the effective decision boundary feature matrix numerically.

If we assume a Gaussian distribution for each class and the Gaussian ML classifier is used,

h(X ) in Eq. (1) is given by

h(X ) = –ln
P(X |ω1)

P(X |ω2)
 = 

1
2 (X  – M1)tΣ-1

1  (X  – M1) + 
1
2 ln|Σ1| – 

1
2 (X  – M2)tΣ-1

2  (X  – M2) – 
1
2 ln|Σ2|

The vector normal to the decision boundary at X 0 is given by [17]

N= ∇h(X )|X=X0 = ( Σ-1
1  – Σ-1

2 )X 0 + (Σ-1
2  M1 – Σ-1

1 M2) (3)

If P1 and P2 are on different sides of decision boundary h(X ) = t, the point X 0 where the

line connecting P1 and P2 passes through the decision boundary is given by [17]
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X 0=uV+ V0 (4)

where V0 = P1

V = P2 – P1

u = 
t  –  c '

b  if a = 0,

u = 
–b ±  b2 -  4a(c'  – t)

2a  and 0 ≤ u ≤ 1 if a ≠ 0,

a = 
1
2 Vt(Σ-1

1  – Σ-1
2 )V,

b = V0
t(Σ-1

1  – Σ-1
2 )V – (Mt

1Σ-1
1  – Mt

2Σ-1
2 )V,

c' = 
1
2 V0

t(Σ-1
1  – Σ-1

2 )V0 – (Mt
1Σ-1

1  – Mt
2Σ-1

2 )V0+ c,

c = 
1
2 (MtΣ-1

1 M1 – Mt
2Σ-1

2 M2 ) + 
1
2 ln

|Σ1|

|Σ2|

Eq. (4) can be used to calculate the point on the decision boundary from two samples classified

differently and Eq. (3) can be used to calculate a normal vector to the decision boundary.

E. Decision Boundary Feature Matrix for Multiclass Problem

If there are more than two classes, the total decision boundary feature matrix can be defined

as the sum of the decision boundary feature matrix of each pair of classes. If prior probabilities are

available, the summation can be weighted. In other words, if there are M classes, the total decision

boundary feature matrix can be defined as

ΣDBFM = P(ωi)P(ωj)ΣDBFM
ij∑

j, j≠i

M

∑
i

M

where Σ ij
DBFM is the decision boundary feature matrix between class ωi and class ωj

and P(ωi) is the prior probability of class ωi if available. Otherwise let P(ωi)=1/M.

It is noted that Theorem 2 and Theorem 3 still hold for multiclass case and the eigenvectors of the

total decision boundary feature matrix corresponding to non-zero eigenvalues are the necessary

feature vectors to achieve the same classification accuracy as in the original space. In practice, the

total effective decision boundary feature matrix can be calculated by repeating the procedure for
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each pair of classes. By eliminating some redundancy, the total decision boundary feature matrix

for a multiclass problem can be more efficient [17].

VI. EXPERIMENTS AND RESULTS

A. Experiments with synthetically generated data

 To evaluate closely how the proposed algorithm performs under various circumstances,

tests are conducted on data generated with given statistics assuming Gaussian distributions. In all

examples, a Gaussian Maximum Likelihood classifier is used and the same data are used for

training and test. In each example, the Foley & Sammon method [4] and the Fukunaga & Koontz

method [3], are compared and discussed. In particular, classification accuracies of the Decision

Boundary Feature Extraction method and the Foley & Sammon method are compared.

Example 3. In this example, data are generated for the following statistics.

M1 = [ ]-1
1 , Σ1 = [ ]1 0.5

 0 .5   1  M2 = [ ]1
-1 , Σ2 =  [ ]1 0.5

 0 .5   1

P(ω1) = P(ω2) = 0.5

Since the covariance matrices are the same, it can be easily seen that the decision boundary will be

a straight line and just one feature is needed to achieve the same classification accuracy as in the

original space. The eigenvalues λi and the eigenvectors φi of ΣEDBFM are calculated as follows:

λ1 = 576.97, λ2 = 0.03 φ1 = [ ] 0.71
-0.70 , φ2 = [ ]0.70

0.71

Since one eigenvalue is significantly larger than the other, it can be said that the rank of ΣEDBFM is

1. That means only one feature is needed to achieve the same classification accuracy as in the

original space. Considering the statistics of the two classes, the rank of ΣEDBFM gives the correct

number of features to achieve the same classification accuracy as in the original space. Fig. 11

shows the distribution of the generated data and the decision boundary found by the proposed

procedure. Since class mean differences are dominant in this example, the Foley & Sammon

method will also work well. However, the Fukunaga & Koontz method will fail to find the correct

feature vector. With two features, the classification accuracy is 95.8% and both methods achieve

the same accuracy (95.8%) with just one feature.
IEEE Pattern Analysis & Machine Intell. Trans.  -     24     - April 1993



Lee & Landgrebe: Decision Boundary Feature Extraction

420-2-4
-4

-2

0

2

4

Class 1 Class 2

Decision boundary found by the procedure

Feature 1

F
ea

tu
re

 2

Fig. 11 The distribution of data for the two classes in Example 3. The decision boundary found by
the proposed algorithm is also shown.

Example 4. In this example, data are generated with the following statistics.

M1 = [ ]0.01
0  ,    Σ1 = [ ]3   0

0   3         M2 = [ ]-0.01
0  ,     Σ2 = [ ]3   0

0   1

P(ω1) = P(ω2) = 0.5

In this case, there is almost no difference in the mean vectors and there is no correlation between

the features for each class. The variance of feature 1 of class ω1 is equal to that of class ω2 while

the variance of feature 2 of class ω1 is larger than that of class ω2. Thus the decision boundary will

consist of hyperbolas, and two features are needed to achieve the same classification accuracy as in

the original space. However, the effective decision boundary could be approximated by a straight

line without introducing significant error. Fig. 12 shows the distribution of the generated data and

the decision boundary obtained by the proposed procedure. The eigenvalues λi and the

eigenvectors φi of ΣEDBFM are calculated as follows:

λ1 = 331.79, λ2 = 27.21 φ1 = [ ]0.06
1.00 ,  φ2 = [ ]-1.00

0.06

Since the rank of ΣEDBFM is 2, two features are required to achieve the same classification accuracy

as in the original space. However, λ2 is considerably smaller than λ1, even though λ2 is not
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negligible. Therefore, nearly the same classification accuracy could be achieved with just one

feature.
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Fig. 12 Distribution of data from the two classes in Example 4. The decision boundary found by
the proposed algorithm is also shown.

Since there is a very small difference in the mean vectors in this example, the Foley & Sammon

method will fail to find the correct feature vector. On the other hand, the Fukunaga & Koontz

method will find the correct feature vector. Table I shows classification accuracies. Decision

Boundary Feature Extraction achieves the same accuracy with one feature as can be obtained with

two features while the Foley & Sammon method fails to find the right feature in this example.

Table I. Classification accuracies of Decision Boundary Feature Extraction and the Foley &
Sammon Method of Example 4.

No. Features Decision Boundary
Feature Extraction

Foley & Sammon
Method

1 61.0 (%) 52.5 (%)
2 61.0 (%) 61.0 (%)

Example 5. In this example, we generate data for the following statistics.

M1 = 






0

0
0

 ,     Σ1 = 






3   0   0

0   3   0
0   0   1

,      M2 = 






0

0
0

 ,     Σ2 = 






1   0   0

0   1   0
0   0   1

P(ω1) = P(ω1) = 0.5

In this case, there is no difference in the mean vectors and there are variance differences in only

two features. It can be seen that the decision boundary will be a hollow right circular cylinder of
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infinite height and just two features are needed to achieve the same classification accuracy as in the

original space. Eigenvalues λi and eigenvectors φi of ΣEDBFM are calculated as follows:

λ1 = 234.93 ,   λ2 = 171.49,   λ3 = 1.58

φ1 = 






0.86

-050
001

 ,    φ2 = 






0.49

0.84
0.21

,   φ3 = 






-0.21

-0.18
0.98

Rank(ΣEDBFM) ≈ 2

Since the rank of ΣEDBFM is 2, it can be said that two features are required to achieve the same

classification accuracy as in the original space, which agrees with the data. Since there is no

difference in the mean vectors in this example, the Foley & Sammon method will fail to find the

correct feature vectors. On the other hand, the Fukunaga & Koontz method will find the correct

feature vector. Table II shows the classification accuracies. Decision Boundary Feature Extraction

finds the two effective feature vectors, achieving the same classification accuracy as in the original

space.

 Table II. Classification accuracies of Decision Boundary Feature Extraction and the Foley &
Sammon Method of Example 5.

No. Features Decision Boundary
Feature Extraction

Foley & Sammon
Method

1 65.0 (%) 62.3 (%)
2 70.0 (%) 60.5 (%)
3 70.0 (%) 70.0 (%)

B. Experiments with real data

In the following experiments, tests are conducted using multispectral data which was

collected as a part of the LACIE remote sensing program [14] and major parameters are shown in

Table III.

TABLE III. Parameters of Field Spectrometer System

Number of Bands 60 bands
Spectral Coverage 0.4 - 2.4 µm
Altitude 60 m
IFOV(ground) 25 m

Along with the proposed Decision Boundary Feature Extraction, three other feature

selection/extraction algorithms CANONICAL ANALYSIS [2], feature selection using a statistical
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distance measure, and the Foley & Sammon method [4] are tested to evaluate and compare the

performance of the proposed algorithm. In the feature selection using a statistical distance measure,

Bhattacharyya distance [12] is used. Feature selection using the statistical distance measure will be

referred as STATISTICAL SEPARABILITY. The Foley & Sammon method is based on the

generalized Fisher criterion [4]. For a two class problem, the Foley & Sammon method is used for

comparison. If there are more than 2 classes, CANONICAL ANALYSIS is used for comparison.

In the following test, two classes (WINTER WHEAT  and UNKNOWN CROPS) are

chosen from the data collected at Finney Co. KS. in May 3, 1977.  WINTER WHEAT has 691

samples and UNKNOWN CROPS have 619 samples. In this test, the covariance matrices and

mean vectors are estimated using 400 randomly chosen samples from each class and the rest of the

data are used for test. Fig. 13 shows the mean graph of the two classes. There is reasonable

difference in the mean vectors.
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Fig. 13 Mean graph of the two classes.

Fig. 14 show the performance comparison of the 3 feature selection/extraction algorithms

for different numbers of features. DECISION BOUNDARY FEATURE EXTRACTION and the

Foley & Sammon method achieve approximately the maximum classification accuracy with just

one feature while STATISTICAL SEPARABILITY needs 5 features to achieve about the same

classification accuracy.

IEEE Pattern Analysis & Machine Intell. Trans.  -     28     - April 1993



Lee & Landgrebe: Decision Boundary Feature Extraction

20181614121086420

80

85

90

95

Number of Features 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Foley & Sammon    
Decision Boundary Feature Extraction  

Statistical Separability   

Fig. 14 Performance comparison of Statistical Separability, the Foley & Sammon method, and Decision Boundary
Feature Extraction

Table IV shows the eigenvalues of the decision boundary feature matrix along with

proportions and accumulations. The eigenvalues are sorted in the decreasing order. The

classification accuracies obtained using the corresponding eigenvectors are also showed along with

the normalized classification accuracies obtained by dividing the classification accuracies by the

classification accuracy obtained using all features. The rank of the decision boundary feature

matrix(ΣDBFM) must be decided. Although it is relatively easy to decide the rank for low

dimensional generated data, it becomes less obvious for high dimensional real data. One may add

eigenvalues until the accumulation exceeds 95% of the total sum and set that number of the

eigenvalues as the rank of the ΣDBFM. Defined in this way, the rank of the ΣDBFM would be 5.

Alternatively, one may retain the eigenvalues greater than one tenth of the largest eigenvalue. In

this way, the rank of the ΣDBFM would be 4. We will discuss more about this problem later.
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TABLE IV. Eigenvalues of the Decision Boundary Feature Matrix of the 2 classes along with
proportions and accumulations. The classification accuracies are also shown along with the
normalized classification accuracies. Ev.:Eigenvalue, Pro. Ev.:Proportion of Eigenvalue,
Acc. Ev.: Accumulation of Eigenvalues, Cl. Ac.: Classification Accuracy,
N. Cl. Ac.:Normalized Classification Accuracy(see text).

Ev. Pro. Ev.
(%)

Acc. Ev.
(%)

Cl. Ac.
(%)

N. Cl. Ac.
(%)

1 0.994 49.6 49.6 93.4 97.9
2 0.547 27.3 77.0 94.3 98.8
3 0.167  8.3 85.3 94.4 99.0
4 0.133  6.6 91.9 95.0 99.6
5 0.066  3.3 95.2 95.1 99.7
6 0.041  2.1 97.3 94.9 99.5
7 0.020  1.0 98.3 94.9 99.5
8 0.012  0.6 98.8 94.8 99.4
9 0.008  0.4 99.2 95.0 99.6
10 0.007  0.3 99.6 95.3 99.9
11 0.005  0.2 99.8 95.3 99.9
12 0.001  0.1 99.9 95.7 100.3
13 0.001  0.0 99.9 95.5 100.1
14 0.001  0.0 100.0 95.4 100.0
15 0.000  0.0 100.0 95.3 99.9
16 0.000  0.0 100.0 95.6 100.2
17 0.000  0.0 100.0 95.5 100.1
18 0.000  0.0 100.0 95.5 100.1
19 0.000  0.0 100.0 95.4 100.0
20 0.000  0.0 100.0 95.4 100.0

In the final test, 4 classes chosen from the data collected at Hand Co. SD. on May 15,

1978. Table V shows the number of samples in each of the 4 classes. Fig. 15 shows the mean

graph of the 4 classes. As can be seen, the mean difference is relatively small among some classes.

In this test, all data are used for training and test.

Table V. Class Description

SPECIES DATE No. of Samples

Winter Wheat May  15, 1978 223
Native Grass Pas May  15, 1978 196

Oats May  15, 1978 163
Unknown Crops May  15, 1978 253
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Fig. 15 Mean graph of the 4 classes in Table IV.

Fig. 16 show the performance comparison of the 3 feature selection/extraction algorithms

for different numbers of features. The classification accuracy using all features is 88.4%. In this

case, CANONICAL ANALYSIS performs less well since class mean differences are relatively

small. The performance of DECISION BOUNDARY FEATURE EXTRACTION is much better

than those of the other methods. With 8 features, the classification accuracies of DECISION

BOUNDARY FEATURE EXTRACTION, CANONICAL ANALYSIS, and STATISTICAL

SEPARABILITY are 85.1%, 77.4%, and 76.1%, respectively. DECISION BOUNDARY

FEATURE EXTRACTION achieves approximately 87.5% classification accuracy with 11 features

while the other methods need 17 features to achieve about the same classification accuracies.

IEEE Pattern Analysis & Machine Intell. Trans.  -     31     - April 1993



Lee & Landgrebe: Decision Boundary Feature Extraction

20181614121086420

50

60

70

80

90

Number of Features 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
) 

Canonical Analysis   
Decision Boundary Feature Extraction   
Statistical Separability   

Fig. 16 Performance comparison of Statistical Separability, Canonical Analysis, and Decision Boundary Feature
Extraction

Table VI shows the eigenvalues of the decision boundary feature matrix of the 4 classes in

Table V along with proportions and accumulations. The classification accuracies obtained using the

corresponding eigenvectors are also showed along with the normalized classification accuracies

obtained by dividing the classification accuracies by the classification accuracy obtained using all

features. Depending on how the threshold is set, the rank of the decision boundary feature matrix

could be said to be between 3 to 6. The classification accuracy obtained using all features is 88.4%

while the classification accuracies obtained using 3 and 6 features found by DECISION

BOUNDARY FEATURE EXTRACTION are 75.8% and 82.5 %, respectively.
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TABLE VI . Eigenvalues of the Decision Boundary Feature Matrix of the 4 classes in Table V
along with proportions and accumulations. The classification accuracies are also shown
along with the normalized classification accuracies. Ev.:Eigenvalue, Pro. Ev.:Proportion of
Eigenvalue, Acc. Ev.: Accumulation of Eigenvalues, Cl. Ac.: Classification Accuracy,
N. Cl. Ac.:Normalized Classification Accuracy(see text).

Ev. Pro. Ev.
(%)

Acc. Ev.
(%)

Cl. Ac.
(%)

N. Cl. Ac.
(%)

1 2.956 61.5 61.5 62.3 70.5
2 .917 19.1 80.6 69.3 78.4
3 .317 6.6 87.1 75.8 85.7
4 .193 4.0 91.2 79.5 89.9
5 .157 3.3 94.4 81.7 92.4
6 .109 2.3 96.7 82.5 93.3
7 .066 1.4 98.1 83.7 94.7
8 .042 0.9 99.0 86.3 97.6
9 .029 0.6 99.6 86.8 98.2
10 .009 0.2 99.8 87.4 98.9
11 .007 0.1 99.9 86.7 98.1
12 .002 0.0 100.0 88.0 99.5
13 .002 0.0 100.0 88.6 100.2
14 .000 0.0 100.0 89.0 100.7
15 .000 0.0 100.0 88.6 100.2
16 .000 0.0 100.0 88.6 100.2
17 .000 0.0 100.0 88.4 100.0
18 .000 0.0 100.0 88.7 100.3
19 .000 0.0 100.0 88.4 100.0
20 .000 0.0 100.0 88.4 100.0

Theoretically, the eigenvectors of the decision boundary feature matrix corresponding to

non-zero eigenvalues will contribute to improvement of classification accuracy. However, in

practice, a threshold must be set to determine the effectiveness of eigenvectors by the

corresponding eigenvalues, especially for a high dimensional real data. Fig. 17 shows the

relationship between the accumulation of eigenvalues of the decision boundary feature matrix and

the normalized classification accuracies obtained by dividing the classification accuracies by the

classification accuracy obtained using all features. There is a nearly linear relationship between

normalized classification accuracy and accumulation of eigenvalues up to x=95 where x is the

accumulation of eigenvalues. As the accumulation of eigenvalues approaches 100 percent, the

linear relationship between the normalized classification accuracy and the accumulation of

eigenvalues does not hold; care must be taken to set the threshold. More experiments are needed to

obtain a better understanding on the relationship between the normalized classification accuracy and

the accumulation of eigenvalues.
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Fig. 17  Relationship between the normalized classification accuracy(see text) and the accumulation of eigenvalues.

VII. CONCLUSION

We have proposed a new approach to feature extraction for classification based on decision

boundaries. We defined discriminantly redundant features and discriminant informative features for

the sake of feature extraction for classification and showed that the discriminantly redundant

features and the discriminantly informative features are related to the decision boundary. By

recognizing that normal vectors to the decision boundary are discriminantly informative, the

decision boundary feature matrix was defined using the normal vectors. It was shown that the rank

of the decision boundary feature matrix is equal to the intrinsic discriminant dimension, and the

eigenvectors of the decision boundary feature matrix corresponding to non-zero eigenvalues are

discriminantly informative. We then proposed a procedure to calculate empirically the decision

boundary feature matrix.

Except for some special cases, the rank of decision boundary feature matrix would be the

same as the original dimension. However, it was noted that in many cases only a small portion of

the decision boundary is effective in discriminating among pattern classes, and it was shown that it
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is possible to reduce the number of features by utilizing the effective decision boundary rather than

the complete boundary.

The proposed feature extraction algorithm based on the decision boundary has several

desirable properties. The performance of the proposed algorithm does not deteriorate even when

there is little or no difference in the mean vectors or covariance matrices. In addition, the proposed

algorithm predicts the minimum number of features required to achieve the same classification

accuracy as in the original space for a given problem. Experiments show that the proposed feature

extraction algorithm finds the right feature vectors even in cases where some previous algorithms

fail to find them and the performance of the proposed algorithm compares favorably with that of

several previous algorithms.

Developments with regard to sensors for Earth observation are moving in the direction of

providing much higher dimensional multispectral imagery than is now possible. The HIRIS

instrument now under development for the Earth Observing System (EOS), for example, will

generate image data in 192 spectral bands simultaneously. In order to analyze data of this type,

new techniques for all aspects of data analysis will no doubt be required. The proposed algorithm

provides such a new and promising approach to feature extraction for classification of such high

dimensional data.

Even though the experiments are conducted using multivariate Gaussian data or assuming a

Gaussian distribution, all the developed theorems hold for other distributions or to other decision

rules as well. In addition, the proposed algorithm can be also applied for non-parametric classifiers

if the decision boundary can be found numerically [16,17].
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