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ABSTRACT

The launch of the Landsat-]l satellite in 1972 initiated a new era in the
collection, interpretation, and analysis of remotely sensed data. Early re-
sults indicated that the synoptic coverage and digital format of the Multi-
Spectral Scanner (MSS) data provides considerable potential for a variety of
earth resource applications. During the past seven years, much has been
learned about both the capabilities and the limitations of this satellite
data, as well as the analysis techniques for processing such data. It is
clear that there are no "magical" techniques for automatically processing
landsat data to obtain highly accurate and reliable results under any and all
circumstances! Computer—aided analysis of MSS data requires an effective
man/machine interaction that involves an analyst who is knowledgeable of the
data and scene characteristics, as well as the processing techniques uti-
lized. There are, however, many aspects of computer-aided analysis that are
still not adequately understood, either in theory or in practice.

This paper addresses some of the mysteries and the myths which have
often been associated with computer-aided analysis of remote sensor data.
Results of several studies involving aircraft, Landsat, and Skylab MSS data
are examined. The value of using topographic, soils, or other data sources
in addition to MSS spectral data is discussed, as are the potentials for
utilizing Synthetic Aperture Radar (SAR) and Thematic Mapper (TM) MSS data
sources,

Rey Words: Landsat, Thematic Mapper, Computer-Aided Analysis, Multi-Spectral
Scanners, Forest Cover Mapping
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I. INTRODUCTION

It is rather obvious that high flying aircraft or satellites can obtain
enormous quantities of data over vast geographic areas in a relatively short
period of time. Such masses of data can be collected using a variety of
sensor systems, each of which has its own particular advantages, as well as
disadvantages. However, there is a major step between the collection of the
data and the reduction of this data into useful information! A key factor
in applying remote sensing technology therefore, involves the data analysis
techniques that can most effectively reduce the masses of data collected into
‘the type of information which is required by the user.

Development of multispectral scanner (MSS) systems during the past fif-
teen years has resulted in an entirely new dimension in data collection sys-
tems and processing and analysis techniques. Because data from MSS systems
can be easily quantified and subsequently processed by a digital computer,
and also because the format of multispectral data is ideally suited for
pattern recognition analysis, there has been particular interest in defining
effective computer—aided analysis techniques for processing this type of
data. This interest has grown rapidly since 1972, when the first of the
Landsat satellite MSS data became available., During these past seven years,
many computer processing and analysis techniques have been developed and
tested for a variety of disciplines and conditions. The general thrust of
most of this research has been directed at defining and developing techniques
to map and tabulate various earth surface features over large geographic areas
in a timely, cost-effective manner. This work has been conducted on a wide
range of test sites, by many different people, using a variety of processing
and analysis techniques. There have been hundreds of articles published, and
it would appear that, as in many other areas of research, we are "learning as
we go"; testing many concepts, rejecting some, accepting others. This paper
will examine some of the capabilities and limitations, and the associated
"myths" and "mysteries," that have been encountered to date in the develop-
ment of computer-aided analysis techniques.

The procedures for digital processing and analysis of data from multi-
spectral scanner systems can be defined as involving five primary areas of
activity:

e Data Reformatting and Preprocessing,

° Définition of Training Statistics,

e Computer Classification of Data,

o Information Display and Tabulation, and

e Evaluation of Results
These five areas of activity will be used to provide a framework for much of
the following discussion. In considering these aspects of remote sensing, we

will first look at some of the terminology involved and the misconceptions (or
perhaps, "myths") that have developed around these terms.




II. MISLEADING TERMINOLOGY

Automatic Data Processing (ADP) is a term that has often been applied to
all phases of processing and analysis of multispectral scanner (MSS) data.
Procedures for reformatting and preprocessing MSS data do not involve any
data analysis per se, but simply involve changing the characteristics of the
raw data so that it is in a better format for the analysis sequence. Such
data handling procedures can be precisely defined and are carried out by the
computer in a rather straight-forward, fairly automatic mode of operation.

As such, this phase of the sequence could be correctly referred to as auto-
matic data processing. However, to classify MSS data by computer in order to
obtain maps and tables of the various cover types requires that the computer
be "trained" to recognize particular combinations of numbers (reflectance
measurements in each of the wavelength bands) that hopefully will characterize
each of the cover types of interest. Experience has shown that an effective
man/machine interaction is needed to develop training statistics that will
result in classifications having the highest accuracy and reflecting the
interests and needs of the user. Thus, an integral, key part of the classi-
.fication process is the requirement for an analyst who is: (1) knowledgeable
of the classification techniques as well as the theory involved, (2) who is
familiar with the spectral, spatial and temporal characteristics of the cover
types in the area being analyzed, and (3) who also has an understanding of
the users' requirements.

Classification of Landsat or other MSS data is far from being an "auto-
matic" process, and the use of the term "ADP" really does not give a correct
impression of what is actually involved. I believe that it is better to use
terms such as "computer-assisted" or "computer-aided analysis techniques"
(CAAT), in order to give a more correct impression of the role of the analyst
relative to that of the computer.

Another rather common, and often misused remote sensing term is "spectral
signature." As often used, this term implies a unique, well-defined and
characteristic spectral pattern by means of which a particular earth surface
feature can be positively and reliably identified. However, all green vege-
tation, for example, has rather similar, basic spectral characteristics,
vhich makes it difficult to define unique "spectral signatures" for every
individual species of vegetation of interest. In addition, normal geographic
and temporal effects as well as other factors may cause variations in the
spectral behavior of any species or cover type at any point in time. Thus,
it should be recognized that unique and unchanging spectral signatures do not
exist in the natural world. However, at any point in time in a particular
geographic area, there may exist measureable spectral response patterns from
the various vegetation types of interest that are distinctive enough in that
particular data set to allow various cover types to be identified.

The misunderstandings that have resulted from use of the term "'spec-
tral signature"” have sometimes led to proposals to develop large data banks
of spectral signatures which would then be used as a source of training data
to analyze incoming sets of MSS data collected at any time of the year and
from any geographic location. Archives of spectral data are useful for



studying spectral characteristics of earth surface features, but do not
appear to be a feasible solution to defining training data sets for computer
classification of MSS data obtained under a wide variety of conditions and
geographic areas.

Because of the many misunderstandings that have developed, the term
"spectral signature" should be used with caution, or perhaps a completely
different term, such as "spectral response patterns" should be used instead.

ITI. THE "MYTH" THAT "BIGGER IS ALWAYS BETTER!"

In many aspects of life, including the world of research, we often fall
into the trap of thinking that "bigger is better," even though we all know
that this is not always true! 1In the area of computer-aided analysis of
remotely sensed data, there is a tendency to use all of the available wave-
length bands for the classification. It would appear that this attitude has
developed as a result of the Landsat MSS having only four bands, and the
fact that computer classifications involving only four bands are relatively
fast. In the near future, however, Thematic Mapper data, having seven wave-
length bands, will become available. Should all seven be used for computer
classification? What impact will the larger number of wavelength bands have
on the classification accuracy and cost (i.e., computer time)?

Earlier studies with both aircraft and satellite data indicate that
simply increasing the number of wavelength bands does not improve classifi-
cation performance, but the cost of processing the data can increase signifi-
cantly as more and more wavelength bands are involved. Figure 1 is a good
example of the relationship between number of wavelength bands used and the
resulting classification performance and also the computer time required.

The data used in this study were obtained by the ERIM 12-channel aircraft
scanner, and the cover types included deciduous forest, coniferous forest,
corn, soybeans, forage, and water. Another study involving Skylab S-192 MSS
data also indicsted that more wavelength bands do not necessarily produce in-
creased accuracy of the classification. In this study, "major cover types"
(coniferous forest, deciduous forest, grassland, exposed rock and soil, water,
and snow), as well as individual "forest cover types" (Douglas and white fir,
ponderosa pine, Engelmann spruce and subalpine fir, aspen, Gambel oak, grass-—
land, water and snow) were classified. As onemight expect, the major cover
types could be classified more accurately than the individual forest cover
types. At both levels of detail, however, classification accuracy did not
increase when more than four wavelength bands were used (Figure 2). The more
important result, however, in both of the above studies, involves the spectral
location of the wavelength bands used, rather than just the number of bands.
Analysis of the aircraft data indicated that the middle infrared portion of
the spectrum (1.3-3.0 yjm) was particunlarly important, while the Skylab study
indicated that the near infrared (0.7-1.3 ym) was especially valuable for
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Figure 1. Overall classification accuracy and computer time required
versus number of channels used (aircraft MSS data). (From
Coggeshall and Hoffer, 1973.)
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identifying forest cover type. As shown in Tables 1 and 2, in both studies,
when the optimal combination of six wavelength bands were selected (using the
LARSYS Feature Selection Processor), all four of the major regions in the
optical portion of the spectrum were represented (i.e., visible [0.4-0.7 ym],
near infrared [0.7-1.3 ym], middle infrared [1.3-3 um], and thermal infrared
[3-14 ym]. Even when only four wavelength bands were used, three of the four
major regions in the optical portion of the spectrum were represented. This
is significant when one considers the very different energy/matter interac-
tions that take place in the different regions of the spectrum (Figure 3).

The results of these studies have several implications concerning future
MSS systems and the computer-—aided analysis of data from such systems. These
include the following:

(1) The spectral location and width of the wavelength bands used can
significantly influence the accuracy of the cover type classifi-
cation.

(2) A relatively few (e.g., 4-6) properly located wavelength bands can
enable classifications to be obtained that are as accurate as
those obtained using all (e.g., 12-13) available wavelength bands.

(3) At least one wavelength band in each of the near infrared, middle
infrared, and thermal infrared wavelength regions and two bands in
the visible wavelengths appear to offer the optimal combination to
spectrally differentiate and identify various vegetative cover
types.

(4) Detailed cover type classes (e.g., individual forest cover types)
cannot be classified as accurately as more generalized cover type
groups.

(5) Increased numbers of wavelength bands can cause significant in-
creases in computer CPU time required, but classification per-

formance may not significantly increase when more than 4-6 bands
are utilized.

(6) The improved spectral resolution and the spectral location of the
wavelength bands defined for the Landsat-D Thematic Mapper should
enable significant improvements in classification performance over
those obtained with previous 4-channel Landsat MSS systems.

In addition to being able to understand and define the optimal numbers
~and locations of wavelength bands for computer classification, there are also
data compression techniques, such as principal components, which can be used
very effectively to condense most of the information content of many wave-
length bands into a relatively few (e.g., 3~4) number of channels of data.

It would appear that such techniques have considerable promise, but that they

need to be studied and tested more, particularly in situations where multi-
temporal data is involved.




1From Coggeshall and Hoffer (1973),

2Based on 6 classes, involving 49,794 resolution elements in 158 test areas.

Table 1. Wavelength Band Selection Sequence and Classification Results Using Aircraft MSS Datal
No. of Test Area Number of Bands in Each
Channels C1assif1ca§1on . Major Wavelength Region
Used Results Wavelength Bands Selected Visible Near Middle Thermal
IR IR IR
1 44 ,0% 1.5-1.8 1
2 80.5% 1.,5-1.8, 0,58-0,65 1 1
3 87.1% 1.5-1.8, 0,58-0,65, 9.3-11.7 1 1 1
4 89.3% 1,6-1.8, 0,58-0,65, 9.3-11,7, 0.52-0.57 2 1 1
5 90.8% 1.5-1.8, 0,58-0,65, 9.3-11,7, 0.52-0,57,
1.0-1.4 . 2 1 1 1
6 92.4% 1.5-1,8, 0,58-0,65, 9.3-11.7, 0,52-0,57,
1.0-1.4, 2.0-2.6 2 1 2 1
8 93.7% 1.5-1.8, 0,58-0,65, 9,3-11,7, 0.52-0,57, ’
1.0-1.4, 2.0-2.6, 0 61-0,70, 0,72-0,92 3 2 2 1
10 94.,7% 1.5-1.8, 0,.58-0.65, 9.3-11.7, 0.52-0.57,
1.0-1.4, 2.0-2.6, 0.61-0.70, 0.72-0.92,
0.46-0.49, 0,50-0,54 5 2 2 1
12 95.,1% 1.5-1,8, 0,58-0.65, 9.3-11.7, 0,52-0.57,
1.,0-1,4, 2,0-2.6, 0,61-0,70, 0.72-0,92,
0.46-0,49, 0,50-0.54, 0,48- O 51, 0.54- 0 60 7 2 2 1

3Wavelength band selection sequence defined by the "Feature Selection Processor" in the LARSYS software,



Table 2. MWavelength Band Selection Sequence and Classification Results For Major Cover Types Using
Skylab Data!l
No. of Test Area Number of Bands in Each
Channels Class1f1ca§10n . Major Wavelength Region
Used Results Wavelength Bands Selected Visible Near Middle Thermal
IR IR IR
1 7507% 1.09"].19 ]
2 76.8% 1.09-1.19, 0.46-0,51 1 ]
3 81.9% 1.09-1,19, 0,46-0,51, 0,78-0,88 1 2
4 85.0% 1,09-1,19, 0.46-0,51, 0,78-0,88, 1,55-1,75 1 2
5 84.,1% 1.09-1,19, 0.46-0.51, 0,78-0.88, 1,55-1.75,
0.56-0,61 2 2
6 83.7% 1.09-1.19, 0.46-0.51, 0,78-0.88, 1,55-1,75,
0.56-0.61, 10,2-12,5 2 2 1 ]
7 '85.3% 1.09-1,19, 0.46-0,51, 0,78-0,88, 1,55-1,75,
0.56-0.61, 10,2-12,5, 2,10-2,35 2 2 2 1
8 84.1% 1.09-1,19, 0,46-0,51, 0,78-0,88, 1,55-1,75,
0,56-0.61, 10.2-12.5, 2.10-2,35, 0,41-0,46 3 2 2 ]
10 85.2% 1.09-1,19, 0,46-0,51, 0,78-0.88, 1,55-1,75,
0.56-0.61, 10.2-12.5, 2.10-2,35, 0,41-0.46,
‘ 0,98-1,08, 1.20-1.30 5 5 2 1
13 86.0% 1,09-1,19, 0,46-0,51, 0,78-0,88, 1,55-1,75,
0.56-0,.61, 10,2-12, 5. 2,10-2,35, 0,41-0,46,
0.,98-1,08, 1,20-1,30, 0,52-0,56, 0,62-0,67,
0.68-0,76

1From Hoffer et al., (1975).

2Based on 6 classes, involving resolution elements in test areas,

IWavelength bands selection sequence defined by the "Feature Selection Processor" in the LARSYS software.

01
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IV. THE "MYSTERY" OF "WHICH CLASSIFICATION TECHNIQUE IS THE BEST ONE?"

A. Training Versus Classification

Computer classification of MSS data involves a series of steps designed
to enable the computer to identify and map various cover types or earth sur-
face features of interest. The key elements in this process involve the
development of a set of "training statistics" (which represent the spectral
reflectance of the various features or cover types of interest), and then the
actual classification of the MSS reflectance values for each resolution ele-
ment (or a subset thereof) by the computer.

There has been a tendency among remote sensing researchers to assume
that the accuracy of computer classification results is primarily a function
of the algorithm used in the classification process. Much attention has been
given to the various classification algorithms, but relatively little emphasis
has been given to the procedures used to develop the training statistics. It
is my belief that the process involved in developing the training statistics
is very critical, and indeed is the key to effective use of the computer for
mapping vegetative cover using satellite MSS data! Therefore, questions con-
cerning the "best" classification techniques really should address both (1)
the method used to define the training statistics and (2) the effectiveness
of the classification algoritlm itself.

B. Comparisons Among Techniques for Defining Training Statistics

Several methods to defining a set of training statistics have been
developed. Among the more common are the following:

(1) The "Supervised Training Field" technique, in which the analyst
designates to the computer the X-Y coordinates of training fields
of the various cover types of interest.

(2) The "Clustering” or "Non-supervised" technique, in which the
analyst simply designates the area to be classified and a specified

set of analysis parameters (such as the number of spectral classes
to be defined).

(3) The "Multi-Cluster Blocks" technique, which is a hybrid of the
above two techniques (Fleming and Hoffer, 1977). 1In this approach
the analyst locates several relatively small blocks in the data,
each of which contains several cover types and spectral classes.
Each data block is individually clustered, and then the spectral
classes for all cluster areas are combined, through a series of
man/machine interactions, to form a single data deck of training
statistics.

(4) The "Procedure-1" technique (developed at NASA's Johnson Space
Center during the LACIE program), in which an array of individual
resolution elements of known cover type are used to "seed" a
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clustering processor, which then defines the training statistics
for the various cover types.

Results obtained with the various training techniques vary. The "Super-
vised Training Field" technique is the most easily understood and has probably
been the most frequently used approach. This technique has been used very
effectively for agricultural mapping (Bauer, 1975), and several forestry
applications studies have utilized this technique, but with varying degrees
of success (Dodge and Bryant, 1976; Williams and Haver, 1976; Mead and Meyer,
1977). Our own experience at Purdue has shown that for wildland forested
areas, where the cover types of interest are often spectrally and spatially
complex, this supervised technique frequently does not allow an acceptable
level of accuracy or reliability to be obtained. The primary reason for this
is the difficulty the analyst has in defining locations in the data that

represent all significant variations in spectral response for every cover
type of interest.

The "Clustering” technique effectively overcomes the primary limitation
of the "supervised" approach, since every pixel in the area of interest is
included in the process of developing the training statistics. However, when
working with large areas, a very large amount of computer time is often re-
quired for the iterative clustering sequence, thereby making this technique

very expensive. For this reason, it has not been utilized on forestry studies
involving relatively large geographic areas.

The "Multi-Cluster Blocks" technique overcomes the major limitations of
both the Supervised and Clustering approaches by clustering heterogeneous
blocks of data but restricting the size of the areas being clustered in order
to minimize computer costs. Usually, less than one percent of the entire
area of interest is involved in the development of the training statistics.

By clustering relatively small blocks, the analyst can effectively relate the
cluster classes defined by the computer to the cover types and characteristics
seen on an aerial photo of the clustered areas.

In addition to the Multi-Cluster Block technique (as defined by Fleming
and Hoffer, 1977), there are several other procedures whereby the analyst can
combine various features of the supervised and non-supervised techniques.
These can all be considered as "hybrid clustering" techniques, and include:
(1) combining several heterogeneous blocks and then clustering the entire
group as a single unit (e.g., 'Mono-Cluster Blocks"); (2) grouping supervised
training fields into a single block and clustering this block (e.g., "Momo-
Cluster Fields"); and (3) clustering supervised training fields individually
and then combining the statistics into a single data deck (e.g., "Multi-
Cluster Fields").

To evaluate the importance of the method used, a quantitative comparison
was made by Fleming and Hoffer (1977) among six different techniques for
developing training statistics. After the training statistics were developed,
the same set of data was classified using a maximum likelihood classifier,
and the same test areas were used for the comparison. These results, shown
in Tahle 3, indicate that the method of developing training statistics can
have a statistically significant impact on:




Table 3, A comparison of six techniques for developing training statistics,

Analyst Time Computer Time Estimated Cost Resultant

Technique Required Used Per / Classification2

Used (Hours) (C.P.U, Minutes) 1000 Hectares— Performance —
Supervised 53 25,2 $1.18 64,77
Non-Supervised
Cluster 26 48.4 $0.85 76.97
Multi-Cluster
Blocks 12 21.8 $0.39 78.8%
Mono-Cluster
Blocks 10.5 25.1 $0.39 73.1%
Multi-Cluster ,
Fields 50 19.3 $1.07 69.77%
Mono-Cluster

Fields 46.5 22.4 $§1.03 - 69.47%

lCoats include only the analyst and C.P.U., time required to develop the training statistics

for a relatively large study site (i.e., 540,580 hectares or 1,335,797 acres). Costs were
calculated on the basis of $250/C.P.U. hour plus $10/man-hour.

2Based upon a statistically defined grid of test fields which were classified using a maximum
likelihood algorithm,

€T
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(a) the accuracy of classification achieved;
(b) analyst time required for developing the training statistics;
(c) computer time required; and

(d) ease and effectiveness of the analyst/data interface

Of particular interest was the finding that the "Supervised" technique re-
sulted in the lowest classification accuracy, as well as requiring the
largest amount of computer CPU time!

This study concluded that for areas of complex vegetative cover, the
"Multi~Cluster Blocks" was the most effective technique for developing
training statistics. This technique is believed to be particularly useful in
situations where little reference data exists. In such cases, a sample of
medium-scale aerial photography can be obtained and used to identify the in-
formational classes within cluster blocks.

In many situations, however, reference data does exist, and it is desir-
able to make use of such data if possible. "Procedure-1" is a relatively new
method for developing training statistics that was developed at NASA's
Johnson Space Center, Houston, Texas, during the LACIE (Large Area Crop In-
ventory Experiment) project. The Procedure-1 (or P-1) technique involves use
of a set of small points of known cover type. Although developed for agri-
cultural applications, it would appear that such a technique could also be
used for mapping forest cover in situations where a grid of samples of known
cover type exists (such as the U.S.F.S. Forest Survey samples or the Washing-
ton state GRIDS data).

A recent comparison between the P-1 method of developing training statis-
tics and the Multi-Cluster Blocks approach resulted in classifications that
had no statistically significant difference (Nelson and Hoffer, 1979). This
study concluded that the P-1 technique has considerable potential for develop-
ing training statistics in situations where a grid sample of points of known
cover type exists. However, where such a data set is not already in exis-
tence, the Multi-Cluster Blocks would be the most effective techmique.

In summary, it would appear that (a) the technique used to develop the
training statistics can have a significant impact on the results obtained,
and (b) the availability and type of reference data may dictate which tech-

nique for developing training statistics would be most efficient and effective
in a given situation.

C. Comparisons Among Classification Algorithms

It is apparent from the above discussion that the method used to develop
training statistics can have a significant impact on the results. But what
about the effect of the classification algorichm?

There are many algorithms available to the analyst, of which the maximum
likelihood per point classifier is one of the most powerful and widely-used.
Results of three recent studies tend to indicate that if an effective set of
training statistics have been developed, the classification algorithm used




15

does not affect the accuracy of the classification results as much as had been
expected. In each of these studies, a single set of training statistics were
used for the classifications. A series of classifications were run, each of
which involved a different classification algorithm. The same set of test
fields were then used to evaluate the results of each of the classifications.

The first study involved a camparison between four different algorithms
on a mountainous, forested test site in southwestern Colorado (Bauer, et al.,
1977). Based upon classifications of Level II cover types (Anderson et al.,
1976), as well as Level III or individual forest cover types, the results
showed that appraximately the same classification accuracy was achieved with
each of the algorithms tested — Maximm Likelihood Per Point, ECHO, Layered,
and Minimum Distance to the Means —- as shown in Table 4. However, as is
also indicated in this table, the cost involved in classifying the data can
vary significantly, depending omn the algorithm used.

Results of another study in the same test site indicated no statistically
significant difference between the Maximum Likelihood Per Point and the Sum
of Normal Densities algorithms when they were applied to the identification
and mapping of both (a) major cover types (Level II) and (b) individual forest
cover types (Level III) (Nelson and Hoffer, 1979). .

The third study involved agricultural crops in three different data sets,
and compared the Maximm Likelihood Per Point, ECHO, Layered, Minimm Distance
to the Means, and Sum of Normal Densities classification algoritlms. Once
again, these results showed no statistically significant difference in classi-
fication accuracy among the algorithms compared (Scholz et al., 1979).

The results of these three studies tend to indicate that the particular
classification algorithm used may not be as important as had been previously
thought! However, this possibility needs to be further tested on a variety
of data sets.

The primary point that should be stressed in discussing computer classi-
fication of MSS data, is that no matter which classification algorithm is
utilized, the training statistics must effectively represent the spectral
characteristics of the various cover types present in that data set! If the
training statistics are not representative, the classification results will
not be satisfactory, no matter which classification algorithm is utilized
(i.e., garbage in = garbage out)!

D. Alternatives to "Per Point" Classifiers

In considering which classification algorithm is "best", one should con-
sider more than just the classification performance based on test data sets.
The qualitative characteristics of the classification output should also be
evaluated. For example, most classification algorithms classify each resolu-
tion element in the data individually. This often results in a "salt-and-
pepper" effect in the classification map obtained. Users often object to
such. a product because it is too "busy" and contains more detail than is
actually desired. To overcome this objection, computer programs have been
developed to post—process the classification results and "smooth" them to




Table 4. A comparison

Algorithms
Used

Maximum
Likelihood
Per Point

ECHO
Layered
Minimum
Distance

to the
Means

of four classification alpgorithms.

Eatimated Coat§/
Per
1000 Hectares

Analyst Timei/ Computer Timez/
Required Used
{(Hours) (C.P.U. Minutes)

a.17 7.5
0.25 4.5
0.5 4.3
0.17 2.8

§2.15
$1.38

$1.50

$0.87

1Time (cost) for developing training statistics not included,

2Based upon classification of every Landsat resolution element in one USGS 7%' quadrangle

(15,303 hectares or 37,190 acres).

3Calculated on the basis of $250/C.P.U. hour plus $10/man~hour.

Classificationd’
Per formance
Level I1 Level III
93.87% 715.0%
92,.8% 73.0%
92.87 74.57
93.57 75.9%

aBased upon evaluation of test areas which were field checked and included 3,704 acres

(107 sample).

Level II = Coniferous forest, Deciduous forest, Grassland, Barren, and Water,

Level III = Ponderosa pine, Spruce/fir (< 807 crown closure); Spruce/fir (> 80% crown closure),
Mixed coniferous/deciduous, Aspen, Oak, Rangeland, Agricultural land, Barren and
Water.
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eliminate much of the salt-and-pepper effect.

Another approach to providing the user with a more useful result in-
volves techniques that utilize the spatial variability in the spectral data
to do the initial classification. One such classification algorithm is
referred to as the "ECHO" (Extraction and Classification on Homogeneous Ob-
jects) classifier (Kettig and Landgrebe, 1976). 1In essence, this algorithm
incorporates what a photo interpreter would call "texture" into the classifi-
cation. In this technique, the computer is programmed to define the boundary
around an area having generally similar spectral characteristics, and then
the entire area within the boundary is classified as a single spectral class.
A key aspect to this algorithm is that the boundaries of the forest stand or
agricultural field are defined by the computer. This results in an output
map that has an appearance somewhat like a standard forest type map obtained
by manual photo interpretation. In evaluating this type of classification
map, some users expressed a strong preference for the ECHO map output, whereas
others, who were involved with different applications, preferred the "per
point" classification output maps. It seems clear that different algorithms
having different characteristics must be available to be used as appropriate
in meeting a variety of user needs! There probably is no single "magical"
classification algorithm that will be completely satisfactory for all user
needs!

In considering different users and their particular information needs,
we should not assume that it is always necessary to apply a classification
algorithm to MSS data in order to produce the most useful output. An inter-
esting study by Kourtz and Scott (1978) involved the generation of forest fire
fuel maps using Landsat data and computer analysis techniques. It was found
that neither supervised or unsupervised classifications were satisfactory
because these techniques grouped the data into a relatively few, well-defined
categories, and important transition areas did not show. However, by using
some rather sophisticated computer enhancement procedures, output imagery was
produced which showed key features of interest and which was much more satis-
factory to the field personnel (i.e., the real "users"). Kourtz and Scott
point out that:

"Psychologically keeping the field personnel involved in the
interpretation process appears to be essential for this application."

This comment points out the necessity of working closely with users, and
to carefully evaluate their requirements in order to provide them with the
type of product that is most useful for meeting their particular needs. We
should also remember that Landsat data and computer processing techniques are
not appropriate for many applications, and it does more harm than good to
"oversell" the capabilities that such data and analysis techniques do have, or
try to force them upon users in inappropriate situations.
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V. WHAT ARE THE EXISTING CAPABILITIES?

During the past decade there have been a mumber of studies involving MSS
data and computer analysis techniques which have been directed at identifying
and mapping forested areas and individual forest species. What have we
learned? What can be done with these instruments and techniques?

In examining the literature, it is clear that (a) the technology is far
from "standardized", and (b) the spectral, spatial, and temporal character-
istics of the forest scene are complex. A majority of the studies to date
have involved relatively limited test sites, so it becomes difficult to reli-
ably extrapolate the results to larger geographic areas. In some cases, the
areas studied may not even be particularly typical of the region or the
characteristics of the various cover types. Different study objectives, a
variety of software and hardware, different analysis techniques, and diverse
levels of analyst experience all contribute to the difficulty in attempting
to assess the true capabilities and limitations of this technology. Perhaps
one of the most difficult aspects of such an attempt involves the fact that
different researchers use widely different approaches to evaluate their re-
sults. In some cases, the results have been evaluated qualitatively by
visually comparing the classification to an existing cover type map or to
aerial photos of the region. Although the method is subjective, it does
provide a quick, rough estimate of the accuracy of the classification. More
definitive evaluations of the computer classification results can be obtained
by more quantitative techniques.

One quantitative evaluation technique involves a sample of individual
areas of known cover types which are designated as "test areas." The cover
types into which the test areas were classified are tabulated by the computer
and these results are then compared to the cover types actually present on
the ground. Definition of a statistically sound set of test data is not an
easy task however. Arbitrary selection of test areas often results in defini-
tion of a test data set that is very typical, and consequently the results
tend to be biased. Some studies have even used the training data to evaluate
the classification! Such an approach is not valid, however, since accurate
classification of the training data merely indicates the spectral separability
of the various cover types. The training data sometimes is not an accurate
representation of the spectral characteristics of the study area, in which
case the classification will be somewhat inaccurate regardless of how accur-
ately the training data is classified. To effectively and reliably evaluate
the classification results, a statistically defined set of test data should
be used.

In addition to the use of test areas to evaluate the classification re-
sults, another quantitative technique involves a comparison of acreage esti-
mates obtained from the computer classification of satellite data to estimates
obtained by some conventional method, such as manual interpretation of aerial
photos or statistical summaries soch. as obtained by the USFS Forest Survey,

In considering the resnlts ohtained by computer classification of MSS
data, we should also remember that the characteristics and quality of the
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reference data can influence the evaluation of classification results. The
definition of what constitutes forest land, for example, can influence the
decision as to whether a particular location in the data was classified by

the computer correctly or incorrectly. Im addition, the computer classifi-
cation results are frequently compared to data obtained through manual in-
terpretation of aerial photos. Since photo interpretation (or most any other
method of defining ground “truth") is not always 100% accurate, it is possible
that a certain amount of error may be involved in the evaluation of the classi-
fication results due to identification errors in the reference data.

So where do we stand in terms of the capability to identify and map
forestland and individual forest species using MSS data and computer-aided
analysis techniques? In general, it would appear from the literature that
major categories of land cover, such as forested areas, rangeland, and agri-
cultural land can be identified and mapped with a fairly high degree of
accuracy and reliability, generally 80-95Z (Heller, 1975; Hoffer, 1975 a & b,
1978a; Kalensky, 1975; Dodge, 1976; Schecter, 1976; Williams, 1976; Odenyo,
1977; Miller, 1978; NASA, 1978). Estimates of total forest acreage using
Landsat data and computer classification techniques were generally within +
10% of those obtained by U.S. Forest Service Forest Survey (Dodge, 1976;
Aldrich, 1979). 1In one study, the forest acreage estimate for a nine-county .
area in Virginia that was less than 1% different from the Forest Survey esti-
mate (Roberts, 1979), and another study reported that estimates of forest
acreage for the entire State of Michigan obtained by classification of Land-
sat data were within 2% of those obtained by the U.S. Forest Service (Hoffer,
et al.,, 1978c). Thus, it would appear that quite accurate acreage estimates
of forestland can be achieved, at least over reasonably large areas. Such
estimates were less accurate on smaller areas in each of the last two studies
cited.

In addition to being able to identify forested versus non-forested areas
quite accurately, the literature cited above indicates that the capability to
differentiate between deciduous and coniferous cover types seems to be rather
good (e.g., 70-90%Z) unless they occur in mixed stands. In mixed stands, the
spatial characteristics of the Landsat scanner system result in a spectral
response that is approximately proportional to the relative percentage of
cover types present, but is also influenced by variations in stand density
(Kan, 1975; Dodge, 1976; Williams, 1976; Hoffer, 1978a). Identification and
mapping of individual forest species generally has been significantly less
accurate, with results varying considerably, ranging from 50 or 60%Z to per-
haps 70 or 80% in some cases. In some studies conducted with Landsat data,
the accuracy was very low for various individual species (NASA, 1978; Hoffer,
1975a & b, 1978a). However, a study by Rhode and Olson (1972) using aircraft
data having better spectral characteristics than Landsat provides indicated
that perhaps certain species or groups of species can be accurately differen-
tiated and identified, at least if they are found in pure stands. Spectral
similarity among species often causes confusion between individual species
within the deciduous or coniferous category. <Variations in stand density as
well as topographic effects cause significant differences in spectral response,
thereby resulting in additional difficulties in being able to obtain highly
accurate species differentiation (Hoffer, 1975a & b; Williams, 1976).
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VI. WHERE DO WE GO FROM HERE?

Since the launch of lLandsat-1 in 1972, there has been rapid progress in
developing computer-aided analysis techniques and in understanding how to
effectively use such techniques. Many of the limitations as well as the
capabilities of the Landsat MSS type of data are now understood reasonably
well, 1In the years ahead, it is anticipated that the spectral and spatial
characteristics of the Thematic Mapper scanner system (to be launched on
Landsat-D in 1981) will allow significant improvements to be realized in the
capability to map forest cover types using computer analysis techniques. The
Thematic Mapper will obtain data in seven relatively narrow wavelength bands
and will have 30 meter spatial resolution, as compared to the four relatively
broad bands and 80 meter resolution of the MSS systems on Landsats 1, 2, and
3. Table 5 shows a comparison between the current Landsat scanner systems
and the Landsat-D Thematic Mapper system.

It is becoming more and more apparent that for some applications, the
spectral data obtained by satellite MSS systems should be supplemented with
data from other sources in order to .improve the computer classification re-
sults. For example, the use of soils data in conjunction with Landsat MSS
data enables upland hardwood to be separated from swamp hardwoods more reli-
ably than can be done using Landsat data alone. Likewise, the combination of
soils and Landsat data allow areas of wetlands to be identified more reliably
than is possible using only Landsat data (Ernst and Hoffer, 1979). Another
recently completed study in the Rocky Mountains of Colorado involved use of
topographic data (elevation, aspect, and slope) in conjunction with Landsat
MSS data to map individual forest cover types. The results indicated that,
as compared to using Landsat data alone, a 15% improvement in classification
of forest cover types was achieved through use of the combined Landsat plus
elevation data (Fleming and Hoffer, 1979).

The combination of satellite MSS data and soils, topographic or other
data types into digital data bases, along with existing and developing com-
puter processing capabilities offers a tremendous potential for providing
resource managers with timely, accurate, and reliable data in the most use-
able format. Different analysis techniques will have to be developed, how-
ever, to handle the different types of data in ways that are both theoreti-
cally sound and operationally feasible. Much work also remains to be done in
defining effective digital processing techniques for analyzing Synthetic
Aperture Radar (SAR) data. The 25-meter resolution X~Band SAR data obtained

by the Seasat satellite has indicated an excellent potential for satellite-
borne SAR data collection systems. The value of such data, particularly when
used in conjunction with MSS and ancillary data, would seem to offer tremen-
dous possibilities for resource assessment in the years ahead.

This past decade has witnessed tremendous developments in remote sensing
data collection and analysis techniques. As new and more sophisticated instru-
mentation and data processing capabilities are developed, we must continue to
realistically assess the potentials and limitations of these capabilities. If
the natural resources of the world are to be managed effectively and efficient-
1y, it is vital to have accurate, reliable, and timely information concerning




Table 5., Comparison of spectral and spatial characteristics of the MSS on Landsats 1, 2, and 3 and
the Thematic Mapper Scanner on Landsat D,

1/

MSS (Landsats 1, 2, & 3)~ Thematic Mapper (Landsat D)
Spectral Spatial Spatial
Region Bandwidth ( m) Resolution (m) Bandwidth ( m) Resolution (m)
Visible 0.5-0.6 80 0.45-0.52 30
0.6-0.7 80 0.52-0,.60 30
0.63-0.69 30
Near IR 0.7-0.8 80 0,76-0.90 30
0.8-1.1 80
Middle IR - 1.55~1.75 30
2.08-2.35 30
Thermal IR - 10.4-12.5 120

1Landsat 3 had a thermal infrared band, but it did not function properly and was turned off.

1¢
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the various resources of concern. It seems clear that remote sensing and
computer—-aided analysis techniques are starting to and will continue to play
a significant role in providing this information.
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