e iﬁﬁéﬁm&ti@nrﬁata 041571 Revised

LARS/Purdue Universisy

SYSTEMS APPROACH

TO THE

UEE OF REMOTE SENSING*

by

David Landgrebe

ABSTRACT

This paper is a tutorial dis-
cussion of earth resources infor-
mation systems which utilize sate~
llites as sensor platforms. It
is begun by pointing out that
information may be derived by
sensing and analyzing the spectral,
gpatial and temporal wvariations
of electromagnetic fields edinating
from the earth surface. After .
giving an overview system organi-
zation, the two broad categories
of asystem types are discussed.
These are systems in which high
guality imagery is essential and
those more numerically oriented.
Sensore are also discussed with
this categorization of systems in
mind.,

The multispectrel approach
an pattern recognition are de~
scribed as 2n exeumple data ana~
lygis procedure for numerically
orientad aystems, Thae steps
necesgsary in using a pattern
recognition scheme are described
and illustrated with data ob~
tained from Apollo IX., Both

‘manual and machine-ald training

technignes are described for the
pattern recognition algorithm.

#Presented at the International
Workshép on Earth Rescurces Survey
Systems at Ann Arbor, Michigan,
May, 1971. The work described in
this paper was supported by the
Hatlonal Asronautices and Space
Administration, under Grant #NCL
15-005-112,

Section I

INTRODUCTION: WHAT IS
REMOTE SENSING? How is informa-
tion conveved?

Imagine that you are high
above the surface of the earth
looking down on it and that you
want to survey the earth's sur-
face in order to learn about its
resourcesg and thus to manage them
better. How could this informa-
tion be derived? What must the
system to extract it look like?

The field of remote sensing
provides some of the answers.
Remote sensing is the science and
art of acquiring information about
material objects from measurements
made at a Aistance, without coming
inte physical contact with the
objects. In remote sensing, in-
formation may be transmitted to
the cbserver alither through force
fielde or electromagnetic fields,
in particular, through the

* Spectral,
* - Spatial, and

s

Temporal
variations of these fields. ‘Thare~
fore, in order to derive informa-

tion from these field variations,
one nmust be able to

* Measure the variation and

*  Relhte these measurements
to those of ﬁnew objects
or materials™"®
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If, for example, one desires a
map showing all of the water
bodies of a certain region of
the earth, it is clear that one
cannot sense the water directly
from spacecraft altitudes, rathex
only the manifestations of these
water bodies which exist at that
height. These manifestations,
in the form of electromagnetic
radiation, must therefore be
measured and the measurements
analyzed to determine which
points on the earth contain

. water and which do not.

Of the two types of fields
mentioned above, electromagnetic
fields provide perhaps the
greatest potential. The remainder
of these remarks will be confined
to fields of this type. Figure
1 provides a review of the spec~
trum of the electromagnetic
fields. The visible portion,
extending from 0.4 to 0.7 micro-
meters, is the most familiar to
us as it is this portion of the
spactrum to which our eyes are
sensitive; however, sensors can
be built to cover a much broader
range of wavelengths., The entire
portion from 0.3 to 15 micrometers,
referred to as the optical wave~
length portion, is particularly
of interest. The wavelengths
shorter than 0.4 micrometers
are in the ultraviolet region.
The portion above the visible
spectrum is the infrared region,
with 0.7 to approximately 3
micromaeters referred to as the
reflective infrared and the
region from 3 to 15 nicrometers
called the emissive or thermal
infrared region. In this latter
portion of the spectrum, snergy
is emitted from the body as a
result of its thermal activity
or heat rather than being
reflected from it.

In addition to the optical
wavelengths, the microwave range
is also useful in remote sensing.
Preliminary results using both
passive microwave and radar Sensors
indicate considerably promise for
this microwave portion of the
spectrum. For reasons of sim-
plicity and in the interest of
time, however, we shall limit our
considerations in the remainder
of this discussion to the optical
portion of the spectrum.

Figure 2 is a diagram of the
organization of an earth survey
system., It is necessary, of
gcourse, to have a sensor system
viewing that portion of the earth
under consideration. There will
necessarily be a certain amount
of on~board data processing.

This will perhaps include the
merging of data from othexr sources
such as sensor calibration and
data about where the sensor was
pointed.

One must next transport the
data back to earth for further
analysis and processing. This
may be done through a telemetry
system, as will be the case for
the EBarth Resource Technology
Satellite, or through direct
package return, as will be used
with SKYLAB. There usually then
is a need for certain preprocessing
of the data before the final pro-
cessing with one or more of the
data reduction algorithms. It is
at this point in the system, when
the data is reduced to information,
that it is usually helpful to
merge ancillary information,
perhaps derived from sources on
the surface of the sarth.

An important part of the
system which must not be overloocked
ig indicated by the last block in




Figure 2, that of information
consumption, for there is no
reason to go through the whole
exercise if the information pro-
duced is not to be used. In the
case of an earth resource infor-
mation system, this last portion
can prove to be the most chal-
lenging to design and organize
gince many potential consumers
of this information are not
accumstomed to receiving it from
a space system and may indeed
know very little about the infor-
mation-providing capabilities,

Before leaving the matter
of the organization of an infor-
mation system, the necsssity of
having a thorough understanding
of the portion of the system
precaeding the sensor must be
pointed out. Consider Figure 3.
This figure shows a gsimplified
version of the energy exchange
in a natural environment. It
is possible, of course, to detect
the presence of vegetation on
the earth's surface by measuring
the reflected and emitted
radiation eménating from the
vegetation. One must understand,
however, that there are many
experimental variables active.
For example, the sun provides a
constant source of illumination
from above the atmosphere, but
the amount of radiation which is
reflected from the sarth's sur-
face depends upon the condition
of the atmosphere, the existence
of surrounding cbjects, and the
angle between the sun and the
earth's surface as well as the
angle between the sun and the
earth's surface as well as the
angle between the earth's surface
and the point of observation.
Even more important is the vari-
ation which will exist in the
vegetation itself. It is possible
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to deal with these experimental
variables in several ways. We
shall touch briefly on this point
lgter in the discussion.

Summarizing, then, it is
possible to derive information
about the earth's surface and the
condition of its resources by
measuring the spectral, spatial,
and temporal variations of the
electromagnetic fields emanating
from points of interest and then
analyzing these meamurements to
relate them to specific‘classes
of materials. To do so, however,
requires an adequate understanding
of the materials to be sensed and,
in order to make the information
useful, a precise knowledge is
reguired about how the information
will be used and by whom.

Section II

THE DUALITY OF SYSTEMS TYPEG:
When we consider the state-of-the-
art of remote sensing today, a
duality of system types becomes
readily apparent. Development in
the field has had two major stems
since it originated from two some-
what different types of technology.
These two types of systems will
ba referred to here as those with

« Image orientation, and

« Numerical orientation

An example of an image-oriented

system might be simply an aerial
camera and a photointerpreter.

The photographic £ilm is used to
measure the spatial variations of
the electromagnetic fields, and
the photointerpreter relates these
variations to specific classes of
surface cover, Numerically-
oriented syvstems, on the other

“hand, tend to involve computers




for data analysis. Although the
rhotointerpreter and the computer,
respecitvely, tend to be typical
in the two types of systems, it
would be an oversimplification
and indeed incorrect to say that
they are uniquely related to

these systems types. This
bacomes clearer upon further
examination.

Figure 4 compares the organ-
ization of the two system types.
Both types of svetems need a
sensor and some preprocesaing;
however, the distinction hetween
the types can perhaps be brought
out most clearly by noting the
location of the form image block
in the two diagrams. In the
image-oriented type, it is in
line with the data stream and
must precede the analysis block.
Numerically-oriented systems,
on the other hand, need not
necessarily contain a form image
block. If they do, and in Earth
Resources they usually do, it
may be at the side of the data
gstreamy as shown., It may thus
be used to monitor the operation
of the system and perhaps to do
some special purpose analysis
a8 needed. An image is, of
course, the most efficient way
to convey a large amount of
information to a human operator.
As seen, this is its principal
use in both types of systems,
but the use is different in the
two Ccasesg.

In considering the design
of information gathering syvstems,
it is of great importance that
the type of sensor as well as
the means of analysis to be used
are well mated to the type of
system orientation. Thus, let
us briefly consider the types
of imaging space sensors available.

Perhpas the single most
distinguishing characteristic of
earth resources information
gystems is that a very large amount
of data can be, and indeed must
be, gathered in order to derive
the desired information. Since
an image iz a very efficient way
to communicate large quantities
of data to man, let us arbitrarily
restrict ourselves to sensors
which are capable of creating
images. Shown in the table below
is a categorization of imaging
sensors into three broad classes:
Photographic, television, and
scanner, The table also provides

“example advantages and disadvan-

tagas of each.

In the case of photography,
the great advantage, of course,
is ‘the wery high spatial resolution
which can be achieved, but to
maintain this high resolution,
data return by direct package
return is reguired. Also, photog~
raphy as a sensor is useful only
in the visible and in a small part
of the reflective infrared portion
of the gpectrum.

Television has the advantage
that the signal occurs in elec~
trical form and thus is immediately
ready to be transmitted back to
the earth; storage of the data,
however, is not inherently present
in the system in a permanent form,
as it is in the case of photography.
Thus, for space systems purposes
one is not necessarily faced with
the task of carrying along a large
guantity of the storage media
{photographic film for the photog-
raphy case) when using a television
sensor. One may view this advan-~
tage elither as an advantage of
size and weight or as one of
efficiency in that a satellite
may be operated a very long time




SENSOR TYPE

EXAMPLE ADVANTAGES

EXAMPLE DISADVANTAGES

Photography Spatial Resolution
Television Size/Weight
Scanner Spectral Range

Data Return
Spectral Range
Mechanical Complexity

Types of Imaging Space Sensors

with a single servicing. Tele~-
vision sensors ave restricted
te approximately the same
spectral range as photography,
however,

Scanners can be built to
operate over the entire optical
wavelength range. They can also
provide a greater photometric
dynamic range. In order to
achieve these advantages, however,
they tend to be more mechanically
complex.

it is important to realize
that the advantages and disadvan-
tages here must be considered
only as examples since the advan~
tages and disadvantages in any
specific instance will depend
upon the precise details of the
system, General statements are
also difficult relative to the
tvpe of sensors which will be
best for image~oriented and
numerically-oriented systems.
There is a clear tendency to
favor photography for image-
oriented systems due to its
high spatial resolution capability
while multiband scanners tend to
be favored for numerically~
oriented systems since they make
available greater spectral and
dynamic ranges.

3

The technology for pictori-
ally-oriented svstems is rela-
tively well developed. Sensors
best suited to this type of system

have been in use for some time,

as have appropriate analysis
techniques. This type of systen
alsc has the advantage of being
easily acceptable to thé layman

or neophyte, an advantage impor~
tant in the earth resources field
since, as it was pointed cut above,
many new earth resources field
since, as it was pointed out above,
many new data users are expected.
Similarly, it is well-suited for
producing subjective information
and is especially suited to ¢ir~
cumstances where the classes into
which the data is to be analyzed
cannot be precisely decided upon
beforehand. Thus, man with his
superior intelligence is or can
be, deeply involved in the analysis
activity. Pictorially-oriented
systems also have the possibility
of being relatively simple and
low=-cost. On the other hand, it

is difficult to use them for large
scale surveys over very large areas
involving very large amounts of
data.

In the case of numerically-
oriented systems, the technology
is much newer and not nearly so
well-developed, though very rapid
progress is being made. Because
the various steps involved tend
t0 be more abstract; they tend to
be less readily understandable by
the laymen. This type of system
is best suited for producing
objective information, and large~
scale surveys covering large areas




are certainly possible. Numeri-
cally-oriented systems tend to be
generally more complex, however.

In summary to this point, the
state of~-thedart iz such that there
are two general types of systems;
this duality exists primarily for
historical reasons and because of
differences of the points from
which technology development began.
One type is based on imagery, and,
therefore, a key goal of an inter-
mediate portion of the svstem is
the generation of high guality
imagery.
is less important and indeed may
not be necessary at all. It is
not appropriate to view these two
typas of systems as being in compe-
tition with one another since they
have different capabilities and
are useful in different circums
stances, These two stems of tech-
nology are approaching one another
so that the differences between
them is becoming less distinct.

We will proceed now to a
further consideration of numeri-
aallyw@ri&ﬁt%ﬁ svatems since
this type may be less familiar.
In particulay we shall ezamine a
type of data analysis useful in
this case.

Section IIX

THE MULTISPECTRAL APPROACH
AND PATTERN RECOGNITION: In
recent years considerable effort
‘has been dewoted to what is
referred to as the multispectral
approach for data am&lygza. An
initial understanding of what is
meant by the term "multispectral
approach” may be obtained by
considering Figure 5. Shown here
in the upper left of the figure

In the other case imagaﬁy‘
. tards,

is a reproduction of a conventional
color photograph of a set of color
cards. The remainder of the figure
shows photographs of the same colo:
cards taken with black and white
film and several different filters.
The pass band of each filter is
indicated beneath the particular
color and card set. For example,
in the .62-.66 micrometer band,
which is in the red portion of the
visible spectrum, the red cards
appear white in the black and white
photo, indicating a high response
or a large amount of red light
enerqgy being reflected from these
In essence the multispectyal
approach amounts to identifying any
color by noting the set of gray
scale values produced on the black
and white photographs for that par~
tigular color rectangle,

Beg a very simple example of ths

approach Figure 6 shows images of

an agricultural scene taken in threa

different portions of the spectrun. 5
Note that in the three bands alfalfa
has responses which are dark, light,
dark respectively whereas barﬁ soil
is gary, dark, white. Thus, alfalfs
can be discriminated from bare soil
by identifying the fields which are
dark, light, dark in order in these
three spectral bands.

Cne may initially think of the
multispectral approach as one which
a ?arg quantitative measure of the
color of a material is used to iden-
tify it. Color, however, is a tern
usually related to the response of
the human eye; the terminoclogy of
gpectroscopy which is more precise
is more useful in understanding the
multispectral approach. Another
reason for this is that it is appli-
cable beyond the visible region.



In order to understand this
approach and to see how a numeri-
cally-oriented system may be
based upon it, consider Figure 7.
Shown at the top is a graph of
relative response (reflectance)
as a function of wavelength for
three types of earth-surface cover
material: vegetation, soil, and
water. Let two wavelengths marked
A, and i, be selected. Shown in
ﬁ%a 1@@@% part of this figure is
the data for these three materials
at these two wavelengths, plotted
with respect to one another., For
example, in the upper graph soil
has the largest response at wave-
length A this manifests itself
in the 1%war plot in the fact
that soil has the largest abscissa
value (the greatest displacement
to the right).

It i3 readily apparent that
two materials whose response as
a function of wavelength are
different will lie in different
portions of the two-~dimensional
space*. When this occurs one
speaks of the materials involved
&s having unique spectral signa-
tures. This concept will be
pursued further presently; how-
aver, at this point it is impor-
tant to recognize that the con-
cept of a spectral signature is
a relative one--one cannot know
that vegetation has a unigue spec-
tral signature, for example, until
one sees the plots resulting from
the spectral response of other
materials within the scene to be
analyzed. WNote also that a larger
number of bands can be used. The
response at hs could be used and
the data plotfed in three dimen-
sions. Four or more dimensions
indeed have meaning and utility
even though an actual plot of the

data is not possible.

So far no spatial or temporal
information has been involved, :
only spectral. Temporal information
can be utilized in several ways.
Consider Pigure &, Time is alwayse
a parameter of the spectral response
of surface materials, As an
example, consider the problem of
discriminating between soybeans
and corn. Under cultivation, thesa
two plants have aygrﬁxxmatal} 140~
day growing cycles. Figure 8 i1lliu-
strates what the two-dimensional
response plot might be for fields
of these two plants with time as
a parameter. Upon planting and for
some period thereafter, fields of
soybeand and corn would merely
appear to be bare soil from an
ohservation platform above them.
Eventually though, both plants
would emerge from the soil and in
time develop a canopy of green
vegetation, mature tc a brownish
dry vegetation, and diminigh.

Thue, as viewed from above the
fields of soybeans and corn would,
in fact, always be mixtures of
green vegetation and scil. In
addition to the vegetation of the
two plante having a slightly
different response, as a function
of wavelength, the growing cycles
and plant geometrys are different;
thus, the mixture parameters
might {(and in fact do) permit an
even more obvious difference be-.

4%een the two plants than the

spectral response difference of

the plant leaves themselves. This
is the implication in Figure & as
shown by the rather large differ-
ence between them 30 days from
planting date (partial canapy)

as %smgar&ﬁ to 75 days (full canepy.
*This space is r@f@rr&ﬁ to as fea-~
ture space.




Thus, one way in which temporal
information is used is simply
in determining the optimum time
at which. to conduct a survey of
given materials,

A second use of temporal
information is perhaps less
obvious. Consider the situation
of Figure 8 at the 75 days and
100 day point. In this case the
separation of the two materials
is relatively slight. However,
if this data ig replotited in
four-dimensional space, Ay and Aj
at 75 days as dimensions one and
two and A3 and )Xo at 100 days as
dimensions three and four, the
small separability at the two
times can often be made to augment
one another,

A third use of temporal
information is simply that of
change detection. In many Barth
Resources problems it is neces-
sary to have an accurate histor-~
ical record of the changes taking
place in a scene as a function of
time.,

Let us move now to consider
how one may devise a procedurs
for analyzing multispectral
data.3:4 In the process, one
further facet of the multispectral
approach must be taken into
account. The radiation from all
soybean fields will not have
precisely the same spectral
response, singe all will not have
had the same planting date, soil
preparation, moisture coanditions
and so on. Indeed, response
variation within a class may bs
expected of any earth-surface
cover, The extant of responss
differences of this type certainly
has an effect upon the existence
of a spectral signature, that is,
the degree of separability of one

material from another. Considar,
for example, a scene composed of
sovbeans, corn and wheat fields:
if five samples of each material
are drawn, the two-dimensional
response patterns might be as
shown in Figure % indicating some
variability exists within the
three classes. Suppose now an
unknown point is drawn from the
scane and plotted, as indicated
by the point marked U.

The design of an analysis
gystem in this case comes down to

+ partitioning this two-dimensional

feature space in some fashion,

such that each such possible unknown
point is uniguely associated with
one of the classes. The engineering

and statistical literature of the

world abounds with algorithms or
procedures by which this can be
done.3:6 One very simple one is
shown in Figure 10. In this case
the conditional centroid or center
point of each class is first
determined. HNext the locus of
points eduidiktant from these three
centroids is plotted and results
in the three segments of straight
lines as shown®*, These lines form,
in effect, Jdecision boundaries.

In this example the unknown point
"U" would be associated with the
class soybeans as a result of the
location of it with respect to

the decision boundaries.

This technigue of analysis is
referred to as pattern recognition,
and therse are many more sophisti-
cated procedures resulting in both
linear and nonlinear decision
boundaries. However, the procedure

ﬁwﬁan more than twe dimensions
{spectral bands} are being used,
note that this locus would becons
a surface rather than a line.




of using a few initial samples

to determine the decision bounda-
ries is common to a large number
of them.. The initial samples

are referred to a&s training sam-
ples, and the general class of
classifiers in which training
samples are used in this way are
referred to as supervisaed
clagsifiers.

Up to this point, the
implication has been that photog-
raphy or multispectral photography
is the sensor to be used in
generating data for this type of
an analysis procedure. wWhile
indeed this data source can be
used, a perhaps more appropriate
one is a device knovn as a multi-
spectral scanner. Figure 11
diagrams such a device as might
he mounted in an aircrafi.

Basically the devicéa consists
of a multiband spectrometer whoss
ingtantaneous fleld of view is
scanned across the scene. The
scanning in this case is accom~
plished by a motor-driven scannin
mirror. At & given instant the
device is gathering energy from
a single resoclution elemapt. The
energy from this element passes
through appropriaste optics and
may, in the case of the wvisible
portion of the spectrum, be
directed through a prism., The
prism spreads out the enerqgy
according to the portion of the
spectrun; detectors are located
at the output of the prism. The
dutput of the detectors can then
be recorded on magnetic tape or
transmitted directly to the oround.
Cradings are commonly used as
dispersive devices for the infrared
portion of the spesctrum.

A most important property of
this type of system is that all

energy from a given sceng element
in all parts of a spectrum pas
through the same optical aperture
Thue, by s.multaneously sampling
the output of all detectors one
haa, in effect, determined the
regponse as a function of wave-
length in ] ; i
the scane

instant.

0f course, the scanning miz:
causes the scene to be scanned
across the field of view trans-
verse to the direction of platforn
motion, and the motion of the plat-
form {(aircraft) provides the
appropriate motion in the other
dimension soc that in tine every
elemant in the scene has been in
the instantanecus field of wview
of the instrument.

As an example of the use ol
this type of sensor and analysic
procedurse, reaults of the
analysis of a flightline will be
oresented in byxief form®, The
particular exemple involves tho
classification of a ons-mils by
four-mile ares into classes of
agricultural sionificance. Four~
dimensional! data (four spectral
bands) wers used for the classi
fication and the actual glassifi-
cation scheme is known as maximan
likelihood diserimination.? The
data are shown in Figure 12 along
with & conventicnal panchrowatic
air photo of the scene in which
the correct classgification of each
field has been added to the photo
by handé. The symbols on the a
photo and tiheir associated classos
are as follows: § - soybeans, 7
sorn, O - oats. W - wheat,

L s G i D S G T 5 W NS OR

This example was originally
genarated by Profegsor Roger

Hoffer of L&RS/Purdus.




A - alfalfa, T ~ timothy, RC =
red clover, R ~ rye, SUDAN =~
gsudan grass, P - pasture, DA -
diverted acres, and H - hay.

Figure 13 shows the results
of the classification. Two sim-
ple classes are shown. All
points of the scene classified
as row c¢rops {either corn or
soybeans) are indicated in the
center of the figure. OCn the
right are indicated all points
classified as cereal grains
(either wheat or oats).

A quantative evaluation of

the accuracy was conducted by
designating for tabulation the
correct class of a large number
of fields in the flightline.
The result of this tabulation is
shown in Figure 14. It is seen
that all results for all classes
are above 80% correct.

The same procedures using
aircraft data have been utilized
for a wide number of classifica-
tion taske in addition to crop
species identification. Some of
these are as folilows: Tasts of
agricultural and engineering
spils, mapping and delineating
soil types, mineral content,
organic content and moisture con-
tent of the soil; geologic
feature mapping; water guality
mapping and mensuration using
both reflective and emissive
spectra; forest cover identifi-
cation and tree species deline-
ation; and delineation into
geographic and land~use mapping
categories.

Saction IV
SOME PROCEDURAL DETAILS IN

THE USE OF PATTERN RECOGNITION:
With the basic concept of pattern
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‘on how it may be applied.

recognition in mind, it is possibie
to proceed to some further details
One of
the most inportant of these

details is the definition of the
classes into which the data are

to be categorized.

There are two conditions that
a class must meet in order to be
useful. The class must be separable
from all others and it must bBe of
informational value. For example,
1t does no good to define a class
called iron ore deposits if the
spectral response which irdén ore
provides is not sufficiently dis-

- tinct from all other earth-surface

materials over which data are to

be gathered. On the other hand,

if no one is interested in locating
the iron ore deposits within the
region to be surveyed, there isi
reason to define such a class. We
shall see presently that one may
name classes of informational

value and then check their separa-
bility, or vice versa.

2 second matter is determining
the point at which a class actually
becomes defined. In an agricul-
tural surve:, simply naming a
glass soybeans does not define it
precisely encugh. For example,
what percent ground cover is
required before a given resolution
element should have its classifi-
cation changed from bare soil to
soybeans? What percent of a
resclution element may be covered
with weeds and sc on? The fact
of the mabter is that the class
becomes precisely defined only by
the training samples to be used
for it. Thus, an important step
in the procedure is the selection
of training samples which are
sufficiently typical of the whole.
glass in question.




One must also racagnaza that
the definition of a class ls
always a relative matter. That
is, it is relative to the other
classes used in the same classi-
fication. The effect of the
decision boundaries is to divide
up the feature space (see Flgure
%) into non-overlapping regicns
depending on the relative location
of the class training sets rela-
tive to one another.

It should alsc be noted,
however, that as a result, every
point in the space automatically
becomes associated with one of
the named classes., It is there-
fore necessary that the list of
classes be exhaustive so that there
is a logical class to which every
point in the scene to be analyzed
may be assigned.

As a result of these factors
it is apparent that the selection
of training samples is especially
important. There are two ap«a
proaches to cbtaining training
data; we shall refer to them here
as the signature bank approach
and the extrapolation mode.

Using the signature bank
approach, the researcher first
decides on a list of appropriate
classes and then draws from a
signature bank previously col-
lected data on the classes of
material identical to those
selected. This approach has a
considerable amount of aesthetic
appeal., Presumably cne could
accumulate a very large bank of
data from typical classes and
thereafter alwayes have training
data avallable for any situation
without further effort.

However, such an approach
would place stringent constraints
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on the sensor systenm Since .
absolute measurements of scene
radiance would be necessary if they
are to be .eferenced to a future
data~gathering mission., Purther,
the extent to which detailed and
sophisticated classes could be
utilized would be limited by the
ability to determine and adjust
for the instantaneous values of

all the other experimental para-
meters, such as the vondition of
the atmosphare, the sun and view
angle, possible seasonal variations
in the vegetation, the natural
statistical distribution of the

data for various classes, etc.

In short, while such a procedure
is possible, it will result in
more stringent reguirements on the
sensor svstem and considerably
data preprocessing in order to
abhieve this maximum utility.
Alternatively, it would have to
be raestricted to cases in which
only relatively simple classes
were necessary.

The extrapolation mode, on
the other hand, has somewhat
different charactexistics. In
this case, training data for each
of the clasnes are obtained by
locating within the data to be
analyzed specific examples of
each of the classes to be
utilized. The classification pro-
cedure, therefore, will amount to
an extrapolation from points of
known classification within the
scene to the remaining portions
of the data. This approach has
the advantage of requiring less
exactness in the calibration capa-
bility of the sensor system and in
the knowledge of the other experi-
mental wvariables since only varia-
tion of these factors within the
data gathering mission, and not
those from mission 4o mission must
be accounted for. On the other




hand, it has

the disadvantoge
of requiring

sowe knowledge about
the scene to be analyzed before
the anelysis can proceed. In

the case of populataed or access.
sable areas, this knowledgs
usually comes from ground obser-
vations. In the case of
inaccessable arcas as wall as
accessable and/or populated ones,
it could perhaps also come from

a very limited, low-altitude
alrcraft mission., The reletive
cost of this additional infor-
mation often turns out to be lovw.
The extrapolation mode was used
in both the preceding example and
the one to follow,

To illustrate these detalls
and procedures, an example followe
in which a pattern-recognition
scheme was trained and then used
to classify a relatively lazge
amount of data. Data for this
experiment were collected aboard
the Apollo § space vehicle as a
part of the experiment known as
8065. This example was selected
because in addition to illustrating
the steps described above, it
provides the first indication of
how these technigues may perform
on space data.’»® Both the ground
resolution and the spectral reso-
lution of this data are similar
to those which will be obtained
by the Earth Resources Technology
Satellite; however, since the
8065 experiment involved photo-
graphic sensors, the results
obtained may be on the condsrve-
tive side of those from ERTS since,
as previously indicated, photography
does not ordinarily provide the
optimal type of data for this
analysis procedure. Further, since
the sensors were photographie, some
preliminary processing steps to
prepare the data for analysis were
necessary. These steps involved

. bringing
' the sama

' red version of the particular |
' used, a portion of Southern Ca
ornia, Arizona, and Northern I

€irst scanning the photography
& rotating drum microdensitracer)
to eonvert it to digital form, then

the images gathered ova:
scene in the different

spectral bands iﬁtﬁ’ﬁp@&%gi align-
ment with one another.” '™ These

and

steps are not typlcal and are be
the scope of the discussion at &
We will proceed from the point
which the preprocassing steps
vided four-dimensional (four spe
tral bands) data for analysis. @
four spectral bands involved were
.47 to .61 micrometers, .53 ®o..715
micrometers, .68 to .83 migrometors,
and .51 to .82 micrometexs, Thess
bands were determined by the film
and filter combinations used on the
four cameras.

Figure 13 shows a colox infrae

In the lower left of the lrrigated
area of very great importance
agriculturally. Alsc shown in
ﬁgﬁgﬁﬁfig a computer-generated g¢ra
sgare printout of one band of the
Adage. The scene covers about
10,000 square miles and contains
ghout fiv: million points.

In order to test the separ-
ability of various classes, two
analysie tasks were carried out.
the first, involving agricultural
classes, was carried out in the
arez designated by the small rec
tangle in the lower left of the
printout. Flgure 16 shows a high
resulution printout of the sane
area. The individual fields of
thé scene are clearly evident in
this printout. To begin with some
relatively simple classes warxe
defined. These were glven vege-
tation, bare soil, water, and
salt fiegs. PFigure 17 shows the




result of clasegifying the data
into these categories. The
accuracy of this classification
was judged to be verv high and as
a result it was decided to atteipt
a classification with more detailed
categories, The result of this
classification is shown in Figure
18. It is seen that the classes
used were barley, alfalfa, sugar
beets, bare scoil, selt flat, and
water. A guantative asssesment

of the accuracy in this case indi-
cated an average accuracy of
approximately 70%.

The second analysis task
carried on this data set was
done over the whole frame. Classes
of geologic interest was defined
in this cass and an attenpt was
made to achieve what amounts to
as a geologic map of the area.
The result of this classification
is shown in Figure 19. &ome, but
not ali, of the classes used are
indicated at the bottom <f this
figure. The results of this
classification was comnpared with
existing geclogic maps of the
area by a professional geologist,
and again the results were judged
to be highly satisfactory.

Now with an overview of the
experiment and the results achieved
in mind, let us examine the pro-
cedures used to obtain the results.
In the case of an agricultural
problem the classes of interest
usually exist in well defined
fields. It is thues, realtively
easy to locate sample fields of each
class from which to draw training
samples. In this case, ground
observations from & relatively
small region on the ground can be
used to dexive a sufficient number

" this case it may be more difficult

frostt
st

of training samples for each. clas:
The number of training samples nec-
essary for »2ach class depends

upon the number of spectral bands
to be used among other things.

But generally no more than a few
hundred are required, fewer in
simpler situations. Thus, Figure
20 depicts a typical situation r
this type of classification.
fields outlined here are a typical
sat of training fields for such

a classification task.

%

The classification of a

' natural area presents a slightly

different situation, however. In

to manually locate training samples
since boundaries betwsen different
materials will be mors difficult

to locate. Over the last year or
tow research has been directed
towards samples in the circumstance:
One such proc@édure involkves the use
&f & type of glassifies not
utilizing training samples and thus
referred to as an unsupervised
classifier. The basic idea behind
nonsupervised classifiers bacomes
apparent by considering the next
several figures.

Assume that one has soms two-
dimensional data as shown in Figuie
2l. Assume alsc that one knows
thera are three classes of material
representad in this data, but the
correct assoclation of the indivi-
dual points with the three classes
is unknown. The approach is to
initially assume that the three
classes are separable and check
this hypothesis subseqguently.

There are algorithms {csm%gﬁw;
3 2 % 5 5% & ¥ Ae As
tational progedures) available™ ™'

which will automatically associate

P
Aol b o




a group of such points with an
arbitrary number of mode copters
or cluster points. These pro-
cedures, known as clustering tech-
nigques, can be used to so divide
the data and the
such a ?Kﬁﬁ%ﬁ?g@
in Pigure 22.

might he as shown
There remaing,
then, the matter of checking to
be sure that the points asgigned
to a single cluster all belonged
to the same class of material,

In passing it is worth noting a
comparison between supervised
and non~superxrvised classifiers,
In the supervised case, one
generally names classes of infor-
mational value and then checks

to see if the clusters resulting
are indeed associated with the
classes of informational wvalue,

Figure 23 shows the result
of applyving such a clustering
technique to some multispectral
data, The algorithm was instruc—
ted to form five cluster points.
Comparison of the clustering
resultz with the data in image.
form shows that the clusters
indeed were associated with
individual fieldas., Cluster four,
for example, was assoclated with
fields in the upper left and
lover right, clusters two and
three with the field in the
lower left, and so on. Such a
technique used to speed the
training phase of the classifier
by aiding the human operator in
obtaining points grouped according
to the class that they came fromy
the statis of each cluste
point can be immediately coumputed
from the
that decieslon boundaries ave
located., The operator is thus
relieved of the necessity of
locating and seperating ipndividual

#
y
4 e
38
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fields for training each class.

The value of such a procedure
is even greater in cases where the
houndary between classese i§ not so
distinct in the data, Figure 24
shows the result of clustering
data for a soils mapping classi-
fication, Here it would be more
difficult to select samples
assoclated with specific soil
types. As a result of the
clustering, the operator has only
to assoclate the soll type with
each cluster point and training
samples are immedliately available
for further processing.

It was this latter procedure
which was ued in deriving training
for the geolcogic map in the Apolilo
% data. Figure 25 shows the out-
line of cluster plots from which
training was derived. In this
case it was only negessary to
guickly mark regions containing

at least the samples of the claszes

desired, thus greatly simplifying
and speeding the training of the
classifier in this case. The
specific steps to be followed then
ayesz

1} decide upon the list of classes,

and determine the general locality
of examples of these classes based
on limited ground observation.

This information may be from a low

altitude aircraft pass, information

available from a perhaps ocut-of-~
date or lnaccurate map or limited
grogad survey.

2} designate these regions to the
clustering algorithm and after
clustering identify the specific
clusters associated with the
classes of interest.

&
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ON THE SPEED AND COST OF DATA
PROCESSING

Let us return agalip ¢
question of processing speed
and sconomics. Recall it was
mentioned earlier that is
order to deal with the large
volume of data, s y%kiﬁx care
must be exercised in the choice
of method such that one of great
throughput capability wmng‘ he
possible. It was alsc pointe
out that the aspeces of zim
city and processing of a pa

nature contribute in this 4
tion. Perhaps it is now mwore
apparent why the wa?tizgﬁsﬁfai
approach iz valuable in thisg
respact., ALl of the data rele~
vent £o a single resolulion
alement on the ground is collected
and available for processing ab
the same instant of time. ‘Thus,
rather than requiring the pro-~
cessing of several different
imag@” {e.g. From g@?*?&& Giffop~
ant & ?ﬁ&ﬁi@m hands) one must only
process a singls @%%ﬁ? a% @ tlme,
The maﬁhﬁvﬂixv ] Wi hma of
muleivari a1

s

in n@*ﬁllmi m ﬁﬂ&%%&ﬁ f@w& aé
Enown and well undaerstood. Pur

it is possible to carry out
laxy processing steps such
bration $V%ﬁdﬁiw&m ; :
calibration ?%ﬁﬁhﬁzg
conpression schenes™
at the point o
further conpressing
and simplifying the

bt |
ﬂﬂ 5
o o o} i o

P
&

e

@ Mg which will be necessary
downs troam, ¥ ;

y far implementations of the
ﬂ?afﬁwuzaatﬁén algorithn used in
the above @za&mlas have been mads
on general purpose digital con-
puters, such as wes used to gen-
srate the above examples, and
gpecial purposs agalog pro-
cesscrs.* Neither of thése
implementations can be effectively
used to judge the cost of compu-
tation and throughput rates which
could be possible with available
technology. It seems clear that
speclal purpose operational
implementations would give conszid-
arabiy graater throughput than
those now achievable, For example.
& few years ago vhen special pur-
pose digltal array processors
&awa on the market, it was indi-

4 that the speed for equivalent
grm&psain@ steps on these special
purpose processors step on a
gensral purpese computer. To our
knowledge, studies with regard
0 operational costs of imple~
menting these type of algorithms
have not yvet been conducted
ﬂ?thevgh studias in related fields
ﬁnVngﬁgg crboard aaaaillt§ image

pvrocessing ave avallable.”
¥ At this point it is not unress-

onable to specsulate that data cow
“ﬁﬁ%ﬁ&ﬁn by an ordsy of magm&tuaw
warried out at the smensor williscon
be poussible without seriously
affecting the data quality.

“39 SPARC Processor of the Willow
¢ bmxa&&r&@? University of
gan iz an @ufa tanding exanple




ON THE USE OF SPATIAL INFORMATION

S0 far we have discussed the
uge of spectral and temporal vari-
ations to derive fnformstion from
measuremants of %&@b*tﬁm§6§%§iﬁ
energy arriving at the sensor.

It is alsc pwsﬂiblﬁ to utilize
spatial information within the
multispectral approach in crder
to further incresase the amount
and accuracy of information

that can be derived. One such
approach to accomplish this is

the sg.call per field classi<
fiar,?T f@ %Q In essence, the

use of spatial information in

this ap@rﬁmch results from the fact
that points in a near vicinity to
cne another are likely to be
menbers of the szame class. Con-
sider for example, the siiuation
az shown in Pigure 18, Here one
might be willing to say, "I don't
know what all the points in cluster
number 4 are, but whatevey they
are I am willing to say thay they
are all members of the same class.
What is this classg?" Thus, in
this case one sees a situstion
where a set of points rather than
an individual point is available
for a single classification. In
essence then, the mathematics of
the situation permits one to use
this set of points to sstimate

the statistical distribution func~
tion of the points. This estimaeted
distribution can then be compared
with the distribution of each
training set to decide a@ﬁm the
proper classification. Thus, one
is comparing a point set to a sat
of distributions as compared &
comparing a single (vector) ?@iﬁi

to a set of distributions. As may
be seen in the reference, a gen-~

erally higher classification

accuracy iz achieved by this. mode.
One does have the preliminary
problem thcugh of grouping all
points into point sets, Mhéﬁ

may be either aceomplished E
boundary drawing algorithm
through the use of ﬁlﬁﬁt&f&ﬁg
its@lf as shown in Figure 19.

CONCLUSION

In summary, pattern recog-
nition and tha multispectral
epproach have been described as
an analysis procedure which will
prove useful in coping with the
large quantities of data to be
gaﬁh%r&ﬁ by Earth Resources sensors.
This approach was illustrated with
two examples, one using airborne
scanner data another using muléi-
spactral space photography. The
manner in which temporal varia~
tions in the data can be utilized
to increase the guantity and
acouracy of information derivable
has also been described, Training
procedures were identified as an
important step in using this
pattern “%&@gﬂi*i@n approach and
the use of clustering to aid én
this process was described.
Finally, the per field classifier
was desciibed as a way in which
spatial variations in the data in
addition to spectral ones can be
used to improve the guantity and
accuracy information derivable.

In addition to data volume,
remote sensing information systoms
in the earth resources disciplines

¥ The mean and variance of this
astinated distribution correspond
roughly to tone and texture used by
thie humasn photo interpreter.




are characterized by the large
number and variety of users of the
information to be generated. Many
different techniques will be
needad working together to supply
the information needed by all users.
It is our belief that the one
described here will ultimately
take its place beside the already
established ones as & significant
technique. :

17
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Figure 2. Organization of an Earth Survey System.
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Figure 5.

Multispectral Photography of
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Figure 6. Multispectral Response of Corn, Alfalfa, Stubble,
and Bare Soil.
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Figure 13. Spectral Pattern Recognition of Row Crops
and Cereal Grains.,
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Figure 17. Classification of Apollo 9 Data Into Green Vegetation,
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Illustrated by All Other Colors).




Figure 18,
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Figure 20. High Resolution Printout with Training Fields.
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Clustered Data Using Four Spectral Bands.

Figure 24.




Figure 25. Cluster Fields for Machine Aided Training.




