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ABSTRACT

This study involved the evaluation of the characteristics of
multispectral scanner data relative to forest cover type
mapping, using NASA's NS$S-001 multispectral scanner to simu-
late the proposed Thematic Mapper (TM). The objectives were
to determine: (1) the optimum number of wavebands to
utilize in computer classifications of TM data; {(2) which
channel combinations provide the highest expected classifi-
cation accuracy; and (3) the relative merit of each channel
in the context of the cover classes examined. Transformed
divergence was used as a measure of statistical distance
between spectral class densities associated with each of
twelve cover classes. The maximum overall mean pair-wise
transformed divergence was used as the basis for evaluating
all possible waveband combinations available for use in
computer-assisted forest cover classifications.

INTRODUCTION

Early work in leaf spectra analysis (Billings and Morris,
1951; Gates and Tantraporn, 1952; Gates, et al., 1965;
Gausman, et al., 1969; Knipling, 1970; Wooley, 1971;
Gausman, 1977) provided much of the initial understanding

of the variations in the amount of radiant energy returned
from vegetated surfaces. Colwell {1974) identified the
value of hemispheric leaf reflectance as only one of several
important parameters responsible for these variations, and
cautioned against making inferences about scene reflectance
from leaf spectra information alone. Plant canopy modeling
efforts (Idso and De Wit, 1970; Nilson, 1971; Oliver and
Smith, 1972; Suits, 1972; Colwell, 1973) have identified
many of the parameters which account for variations in the
amount of radiant energy returned from the scene. The
selection of waveband combinations which will provide
accurate classification of the various earth surface
features requires an understanding of the reflective char-
acteristics of those features relative to the various wave-
bands available. Properties of the data consequential to
classification accuracy are not dependent solely on earth
surface, atmospheric, and illumination conditions. They are
also very dependent on the parameters of the sensor system
to be employed (Silva, 1978). Therefore, the need exists to
investigate these reflective properties employing data more
closely simulating the data which will ultimately be employed
for such classifications.

With parametric classifiers, the resulting classification
accuracy is dependent on (1) the degree to which the
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training classes (i.e., spectral classes) represent the
spectral variability of their respective cover classes, and
(2) the level of statistical "separability” among the train-
ing classes (Swain, 1978). The first condition is difficult
if not impossible to assess without conducting the actual
classification - the cxpense of which precludes evaluating
many different waveband combinations. One can justifiably
assume that the first condition is satisfied if the points
providing the data for establishing the training classes are
randomly generated, and are "sufficient" in number for each
class relative to the number of wavebands employed. The
number of samples statistically sufficient for the develop-
ment of training classes increases exponentially with an
increase in the number of channels employed in classifica-
tion {Duda and Hart; 1973). Duda and Hart (1973) pointed
out that, "beyond a certain point, the inclusion of addi-
tional features leads to worse rather than better perform-
ance." They provide an excellent review of the problem.
This problem has also been examined by Allais (1966),

Dynkin (1961), Fukunaga and Kessell (1971), Kanal and
Chandrasekaran (1971) and others. The level of statistical
"separability" can be computed from the mean vectors and
covariance matrices associated with each of the training
classes employing one of several statistical distance
measures (Kailath, 1967; Swain, Robertson and Wacker, 1971;
Wacker and Landgrebe, 1972; King and Swain, 1973).

METHODS AND ANALYSIS

Data Acquisition

The data were obtained on May 2, 1979 from the NASA NC-130
aircraft flying at an altitude of 20,000 ft. (MGD) over an
area immediately south of Camden, South Carolina. The
muitispectral scanner (MSS) data were obtained by the NASA
NS-001 multispectral scanner. (Table 1 shows the NS-001
scanner specifications as compared to the Thematic Mapper).
Color and color infrared photographs (1:40,000 scale trans-
parencies) were obtained at the same time, Cloud coverage
was minimal and atmospheric conditions were considered
excellent.

Data Handling and Preprocessing

The across track change in scale of the imagery was ade-
quately reduced by employing a geometric model which
describes the ground resolution element dimensions as a
function of ajrcraft altitude, IFOV (instantancous field-
of-view) of the scanner, and change.in scan angle correspond-
ing to the analog signal integration interval.

A study of the data quality revealed an apparent correlation
between scan angle and response level (different for cach
channel). The relationships appeared to be sufficiently
high to obscure sources of variation otherwise correlated
with differences between cover classes. Therefore, an
empirically derived function was generated which described
the variation in response level by column {corresponding:
with scan angle). Data were employed from areas where no
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apparent stratification of cover class by column was
present.* The shape of these functions were evaluated
against both empirical (Anuta and Strahorn, 1973; Landgrebe,
Beih), and Simmons,.1977) and theoretical work {(Kondratyev,
1969; Jurica and Murray, 1973) prior to actual response
level adjustment. The final data product was considered
appropriate for the analysis.

Table 1. Comparison of the NASA NS-001 mu]tisgectral scanner
and the proposed Thematic Mapper (TM

NS-001 Multispectral Scanneg (1) Proposed Thematie Nappu“’
[ Bantviath frow Lc;:;_l;put E l:;r:i:;d;;—v-luv Level Input .
channet!  tum) wecn”sr7d) WEap Channel]  (em) wmeon”sahy NEap
2 Jo.as0.52 | 9.7 % 020°F 0.50 TTh Jewsosz | 2 w10’ 0.6y
2 fo.52-0.60 | 6.8 x 30°® 0.5 2 [o.52-0.60 | 2.4 x120"¢ 0.5%
> lo.63-0.69 | 5.0 x 1076 0.5 3 {o.63-0.69 | 1.3 x 10"" 0.5%
¢ 0.76-0.90 4 x 0" 0.5% . 0.76-0.90 e x 207! 0.5%
s [r.00-1.30 | 6.0 1078 1oy
6 Jr.55-1.75 | 6.2 x 207% 1.0 5 f1ss-1.1s w0 x 073 1.0
1 2. 002,35 2 2073 2.0 6 2.08-2,3% 5.0 % 1073 .0
’ 10.4-12.8 HA NE&T0.25%K ] 10.4-12.5 300% NE4T-0.5%K

M oata vas obtalned from the =Operations Manuml, N5-001 Hultispectral Scanner,® NASA; J5C-12718,
Auril 1977,

2003t was obtalned from Salononson, 1978,

enannel 7 (2.08-2.25 yu) was not operations at the time of the mission; all subsequept

refurences to *chonnel 7° refer to the 10.4-12.5 un wavebLand,

Development of Spectral Classes

A COMTAL Vision One/720, displaying a composite of channels

3, 4, and 5, in conjunction with the aerial photography, was
employed to ascribe cover class labels and ground condition
descriptions to line-column coordinates in the imagery in a
supervised fashion. This approach was considered more
appropriate than the unsupervised clustering approach, since
cover classes could be defined more nearly independent of
their spectral characteristics in the wavebands to be evalu-
ated. The method used to develop training classes was of
particular concern since the affect of different within-class
variances for each channel by cover class on cluster class
composition is not currently well understood {Bartolucci,
1978; Anuta, 1979). Once the training fields had been
identified, they were grouped according to cover class. The
cover class groups of training fields were then individually
clustered to resolve the cover classes into a set of spectral
classes. This provided training class statistics correspond-
ing to a set of spectral classes associated with each cover
class. Clustering at this stage provided a means of

*The function was generated using data obtained outside of
the area from which the data for this analysis was obtained,
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establishing the spectral classes on the basis of spectral
variability within each cover class, but did not completely
avoid the problem mentioned above. Failure to provide train-
ing statistics representing the spectral variability within
each cover class was considered more deleterious to the
o?jective of the study than clustering to obtain those
classes.

Data Analysis

The mean vector and covariance matrix computed for each of
the spectral classes define the individual statistical
density associjated with each respective spectral class. A
measure of statistical distance between all pair-wise com-
binations of the spectral classes provides information on
the "separability" of these spectral classes. This
“separability” represents an a priori estimate of the
probability of correct classification (Swain, Robertson, and
Wacker, 1971) for measurements provided by each channel or
channel combination. Only pairs of spectral classes belong-
ing to different cover classes are of interest, since low
separability between different spectral classes of the same
cover class does not affect classification accuracy.

Transformed divergence was used to compute the separability.
Divergence is defined as:
Py (x)

D = slp;(x) - Po(x)] en EET;T dx (1)

where: pl(x) statistical density of
spectral class 1
statfstical density of
spectral class 2

H

p,(x)

or computationally, for the Gausian multivariate case:

D = % tr [(}:l - ):2)():i1 - xél)} + % tr [(21-1 + zél)(m1 - '"2)

(ml - mz)T] (2)

where: I is the covariance matrix and m
is the mean vector associated with
the respective spectral class, and

tr {trace) is the sum of the
diagonal elements.

Since divergence increases without bound as the statistical
distance between the two classes increases, a saturation
transform is employed, resulting in a measure (i.e., trans-
formed divergence) which corresponds more closely with per-
cent correct classification (see Fiqure 1). After a certain
level of statistical difference has been attained, virtually
no confusion exists between the two class densities, and
percent correct classification "saturates" toward. 150%. The
resulting transformed divergence is provided by:

TD = 2000 [1 - exp{-D/8)] (3)




There are some disadvantages to the use of transformed
divergence as a measure of statistical difference between
class densities*, but because of relative computaticonal
efficiency it is used in lieu of the alternative measures.

Figure 1. Probability of correct classification regressed
agai?st transformed divergence. (Swain et al.,
1971
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Transformed Divergence

Transformed divergence (TD) values were computed for each
pair of spectral classes representing different cover
classes, for each channel and channel combination. These
mean pair-wise TD-values were then sorted for ecach set of
combinations involving the same number of channels. The
seven channel combinations providing the highest mean pair-
wise TD-values were obtained. Additional programs were
written to generate summaries of the mean TD-values for each
pair of cover classes {i.e., over all spectral classes
representing the cover class pair) and each cover class

*Tt should be pointed out that transformed divergence is not
"metric" in multivariate normal distribution functions of
non-equivalent covariance matrices (Landgrebe and Wacker;
1972). That is, a pair of class densities having non-
equivalent covariance matricies yet having equal mean
vectors could have a transformed divergence value of zero.
Also, there is no estimate for a lower confidence limit for
the regression relation between transformed divergence and
percent correct classification (Swain, Robertson, and
Wacker; 1971).
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(i.e., over all cover class pairs involving the jth cover
class; j = 1,...,12) for these seven channel combinations.

RESULTS AND DISCUSSION

To define the optimum number of channels to use in a class-
ification, the relationship between cost of misclassification
and the probability of error must be determined. Otherwise
there is no meaningful way to compare classification cost to
classification accuracy. It can be observed from Figure 2
that the increase in transformed divergence (the correlate
to probability of correct classification) drops off sharply
after three channels, and very little is gained by using
more than four channels. This result is similar to those
obtained previously with the Michigan M-7, 12-channel
scanner (Coggeshall and Hoffer, 1973), and the skylab
13-channel S$-192 scanner (Hoffer et al., 1975). The shape
of the relationship shown in Fig. 2 indicates that trans-
formed divergence increases logarithmically as the combina-
tion level increases linearly*. The spread of the points
representing the five highest ranked channel combinations
for each combination level represents the difference between

Figure 2. Averaged transformed divergence for the best five
waveband combinations for each combination level.
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*To simplify the following discussions, "combination Tevéf"
will refer to the number of channels involved in any partic-
ular set of channel combinations.
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successively ranked averaged transformed divergence. As
seen in Fig. 2, the mean difference between successively
ranked mean separabilities decreases logarithmically as the
combination Tevel increases linearly. This implies that the
rank of overall mean separability as a feature selection
criterion decreases in value as the number of features
comprising the selected feature subset increases.

The best combined sources of information for distinguishing
between various cover classes nced not have as a subset the
best single source of information. This is indicated in
Table 2, which shows, for example, that the single chapnel
having the highest mean TD-value (i.e., channel 6) is not
included in the 2, 3, and 4 channel combination levels
having the highest mean TD-values. By comparing Table 2
with Table 3, it can be observed that the best channel or
channel combination for each combination level, on the basis
of mean overall separability, is not necessarily superior on
a per cover class basis. '

Table 2. Channel combinations, ranked by overall mean TD-
value for combination levels one through six.

COMBINATION LEVEL

1 2 3 4 S 6

6 3,4 3,4,5 1,3.4,5 1,3,4,5,6 1,2,3,4,5.6
3 3,5 3,4,6 3,4,5,6 2,3,4,5,6 2,3,4,5,6,7
1 2,4 3,5,6 1,3,4,6 1,2,3,4,5 1,3,4,5,6,7
S 2,5 2,4,5 3,4,5,7 1,3,4,3,7 1,2,3,4,6,7
2 3,6 2,4,6 2,4,5,7 3,4,5,6,7 1,2,4,5,6,7
4 4,6 2,5,6 2,3,4.,6 2,4,5,6,7 1,2,3,4,5,7
7 1,4 1,3,4 1,3,5.6 1,2,3,5,6 1,2,3,4,6,7

Table 3. Best channels and channel combinations by TD-
value for each cover class. TD-value is in
parentheses.

COMBINATION LEVEL

1 2 3 4
soil 3(1820) 24(1941) 256(1987) 1346,2346,1356(1992)
past 6(1476) 35(1878) 345(1971) 3457(1987)
crop 3(1390) 34(1836) 345(1971) 1345(1991)
pine 2(1435) 34(1780) 346(1912) 3456(1960)
pihd 2(1580) 16(1833) 356(1982) 3456(1397)
hdwd 3(1688) 34(1881) 134(1533) 2346(1952)
sghd  3{1691) 35(1933) 346(1960) 1345,1346,2346(1972)
tupe 6(1658) 34(1896) 245,345(1979) 2457(1992)
syca 5(1753) 35{(1979) 345(1994) 1345,1316,1356(1999)
ccut 6(1329) 16(1707) 356(1889) 3456(1947)
rmveg 4(1270) 14(171389) 134(1941) 1345(1990)

watr 5(1853) 25(1988) 246,256(19993) 1345,1346,1356(2000)

SOIL, bare soil; PAST, pasture; CROP, row and cereal crops;
PINE, pine forest; PIHD, pine-hardwood mix; HDWD, old age
hardwood; SGHD, second growth hardwood; TUPE, water tupelo;
SYCA, sycamore hardwood; CCUT, clearcut areas; MVEG, marsh
vegetation; WATR, river water and quarry water.




8

Examination of the transformed divergence averaged for cach
cover class pair indicated that the proper sclection of a
single channel may provide greater separability between two
cover classes than a combination of two or three channels,
More specifically, the channel combination with the highest
mean separability for a particular combination level does
not necessarily provide a greater separability for all cover
class pairs than channel combinations of a lower combination
Tevel, when the combination of the lower level is not a
subset of the combination of the higher level, Examples of
this relationship are: soil vs. water has a mean TD-value
of 1942 in channel 6 and a mean TD-value of 1824 in channel
combination 3,4; PIHD vs. CCUT has a mean TD-value of 1835
in channel 6 and a mean TD-value of 1641 in channel combina-
tion 3,4; PINE vs. MVEG has a mean TD-value of 1424 in
channel 1 (the channel ranked third on the basis of mean
overall TD-value) and the mean TD-value of 1182 in channel
combination 3,4 (the number one ranked channel combination
of all combinations involving two channels). The same
relationship holds for many other cover class pairs. Such

a relationship was not found when the lower level channel
combination was a subset of the higher level channel combina-
tion (as would be expected).

The additional average separability achieved for each cover
class, by increasing the combination level, varies greatly
between cover classes and combination levels, but generally
decreases logarithmically with increasing combination level,
Figure 3 can be thought of as a "separability response
surface." The apparent length of the lines connecting
different combination levels of the same cover class is
proportional to the added separability resulting from the
information in the additional channel. Note that the
greatest increase in separability due to the addition of the
second channel occurs with second growth hardwood. As one
would expect, the smallest increase in separability occurs
with that cover class with the highest single channe)
separability (soil, in this case). It should be noted that
the lines connecting the different cover classes are present
meroly te indicate relative differences of separability and
in no way imply any functional relationship.

Figure 3 plots the maximum transformed divergence observed
for each cover class in each combination level. This dis-
plays the maximum separability attainable for each cover
class if the waveband combinations were selected on the basis
of each cover class TD-value alone. As is clearly shown,

the specific waveband combination resulting in each partic-
ular TD-value for any given waveband combination level is

not constant over the different cover classes. In compar-
ing Figures 3 and 4, it is apparent that the shapes of the
curves increase in similarity with an increase in waveband
combination level and are nearly identical in shape after
combination level 4. This indicates that the separability

by cover class provided by the best overall channel combina-
“tion (Fig. 3) is nearly identical to the separability by
cover class provided by the best channel combination for

each individual cover class (Fig. 4) beyond waveband combina-
tion levels of 4, Thus, the best four waveband combination,
based on overall transformed divergence, should provide very
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close to the maximum classification accuracy for each
individual cover type. However, if one were interested only
in a particular cover type, high classification accuracy
could be achieved using less than four channels of data.

Figure 3. Averaged transformed divergence provided by the
overall best waveband combination by waveband
combination level and cover class.

2000

1900+

_.
o
S
Q

1700

1600+

1500

-
F-y
(o3
[=]
1

Averaged Transformed Divergence

1300+

6 7
1235 15
T LI 12 3 Waveband
Soll Syca Walr Tupe Pind Hawd Past Ceut Crop Sqha Mveg e COMbination Level

Cover Class

Figure 4. Averaged transformed divergence provided by the
best waveband combination for each cover class
by waveband combination level and cover class.

17004

3
o
Q

oy
W
(@]
o
1

1300+

1300 Y/ 67
1270 T T T T T T 3 3 4 SW:weband

2 .
Solt Syca Watr Tupe Pind Hawd Past Ccut Crop Song Mueg o Combination Level
Cover Class

Averaged Transformed Divergence




10
SUMMARY AND CONCLUSIONS

Based upon the results of this study, one would not expect
a computer-based classification employing more than four
channels to provide much improvement in classification
accuracy. The highest overall mean separability was
provided by channels 1, 3, 4, and & (0.45-0.52, 0.63-0.569,
0.76-0.90, and 1.0-1.3 um). This channel combination did
not always provide the highest mean separability by cover
class nor by pairs of cover classes. A different set of
cover classes, or even a subset of the cover classes
considered in this work, could result in other channel
combinations yielding higher predicted classification
accuracies. .

Results such as these are highly data and application
dependent. The conclusions pertain to channel subsets
selected for classification and in no way imply that
scanner systems need only obtain data in those channels 1in
order to adequately provide remote sensory data to the
various disciplines. Similar studies involving different
cover classes and different scasons need to be conducted
along with follow-up studies involving actual classifica-
tions.
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