Comparison of Scene Segmentations and Classifications:
SMAP, ECHO, and Maximum Likelihood!
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Abstract

Sequential maximum a posteriori (SMAP) segmentation, the Extraction and Clas-
sification of Homogeneous Objects (ECHO) segmentation, and maximum likelihood
(ML) estimation were compared in a supervised classification of multispectral data
collected from an airborne scanner. The generalization of SMAP provided larger and
fewer contiguous areas and a more visually acceptable map than ML or ECHO. Iterative
proportional fitting was used to to normalize error matrices and a Tukey multiple com-
parison test was used to examine differences in classification results. At a risk level of
o = 0.001, significant differences were found in all mean class classification accuracies:
SMAP > ECHO > ML (in order of decreasing accuracy). However, evaluation through
pairwise analyses of x statistics showed no significant difference (o = 0.1) between any
two classifiers. Iterative proportional fittings and a Tukey multiple comparison test
were found more sensitive and preferred over pairwise x analyses.

1 Classification Results and Comparisons

Results of classifications in remote sensing and other fields are often presented in terms of an
error or confusion matriz (Table 1). This matrix is more generally known as a contingency
table. Along the diagonal of this table are the number of pixels correctly classified. The
percentage of correctly classified pixels is commonly referred to as the overall classification
accuracy. There is generally no argument that such a global measure is insufficient for
comparisons of multiple classifications.

There are two types of errors shown in an error matrix. There are errors of omission [15]
which occur when the classifier has failed to recognize when a sample belongs to a class of
interest. In Table 1, 2 + 3 = 5 samples from class C were omitted from this class. There
are errors of commission [15] which occur when the classifier incorrectly assigns a sample
to a class of interest. In Table 1, there were 47 samples assigned to class C, but 54+ 1 =6

samples should not have been committed to this class.
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Table 1: An example of a confusion matrix (from [15]).

Ground truth

classes Total

A B C

Thematic A3 2 2 39

map classes B|10 37 3 50

cy 5 1 4 47

Number of ground | 50 40 46 136
truth pixels

When examining the results for a particular class, it is important to state the point of
view from which the results were interpreted: either the consumer or the producer [5,20].
Considering again class C in Table 1, the consumer’s accuracy is 41/47 = 87% while the
producer’s accuracy is 41/46 = 89%. Usually the producer’s accuracy is not equal to the
consumer’s accuracy, and neither can be considered class accuracy.

In many situations, it may be desirable to examine the interaction between classes in
a way that is not confounded by marginals or to make comparisons incorporating effects
of off-diagonal elements. Many have developed indices for comparisons between classes
and between separate classifications [16], however the kappa () coeflicient, developed by
Cohen [4], has been the most recommended [5-7,16]. Details of the computation of the
estimate & are given by Congalton [5], correcting a typographical error which had propagated
into many other works. A formulation for the large sample variance is given by Congalton
et al. [7]. Given these computational details, &£ can be computed and pairwise comparisons

can be made between independent &’s by:

However, & only indirectly incorporates the effects of off-diagonal elements. Perhaps a
better approach for comparing several alternative classifications was that taken by Zhuang et
al. [21]. In their work, error matrices were normalized using iterative proportional fitting (8]
and class accuracies were compared simultaneously.

Iterative proportional fitting is a simple technique which makes row and column totals



Table 2: Sample normalized error matrix.

0.801 0.118 0.081 | 1.000
0.114 0.831 0.055 | 1.000
0.086 0.050 0.864 | 1.000
1.000 1.000 1.000 | 3.000

simultaneously 100%. After the smoothing of zero counts [9], each iteration of the algorithm
requires two steps. First, rows are divided by row totals. Next, column totals are recomputed
and columns are then divided by these totals. Row and column totals are recomputed with
each iteration. A stopping criteria, such as maximum number of iterations or maximum
marginal change, terminates the procedure. Table 2 presents the normalized version of the
matrix in Table 1 after 26 iterations of this algorithm.

Given a normalized matrix, such as the one shown in Table 2, class accuracies (along
the diagonals) for several classifications can be compared simultaneously using the Tukey
multiple comparison method [14]. This method is preferable over pairwise comparisons
since the risk level, «, applies to the procedure as a whole and not particular comparisons.
Tukey’s method is designed to control the probability of making at least one Type I error in
the comparison of all pairs of treatment means, i.e., claiming a difference in classifications
when a significant difference does not exist. This method of comparison is useful for multiple
comparison of results of different treatments when the number of samples is the same (i.e.,
comparing classifier parameters or classification algorithms). Zhuang et al. [21] used this

method to compare results of three different algorithms for classifying LANDSAT TM data.

2 Scene Segmentation Algorithms

Unlike traditional point methods such as maximum likelihood (ML) estimation, scene seg-
mentation classifiers take advantage of the spatial information of samples in multispectral
imagery. Conceptual overviews of two scene segmentation algorithms are given below; refer

to the cited literature for details.




Figure 1: “Pyramid structure of the MSRF. The random field at each scale is causally
dependent on the coarser scale field above it. {2]”

2.1 Sequential Maximum a Posteriori Estimation

For many approaches to Bayesian image segmentation, pixel labels are modeled as Markov
random fields (MRF) and segmented by approximating the maximum a posteriori (MAP)
estimate of pixel labels (for an example, see the work of Besag [1]). Based upon this approach
to segmentation, Bouman and Shapiro [2,3] replaced the MRF model with a new multiscale
random field (MSRF) model. The MSRF is composed of a sequence of random fields having
coarse to fine scales (see figure 1). Each finer field is only dependent upon the previous
coarser field. Thus, the sequence of these fields form a Markov chain. Also, instead of using
the MAP estimate, a new estimate of pixel labels was used. It minimizes the expected
size of the largest misclassified region. This new estimator is calculated recursively and
was thus termed a sequential MAP (SMAP) estimator [2,3]. The result of this model and
estimator form a new method of Bayesian image segmentation which may be used in either a
supervised or unsupervised mode. Bouman and Shapiro [3] show that SMAP segmentation
provided significantly better results than maximum likelihood estimation for a SPOT image
with ground truth along transects. Details of the algorithm and comparisons to ML and a

couple of approaches of MAP estimation are given by Bouman and Shapiro [2,3].

2.2 Extraction and Classification of Homogeneous Objects

ECHO (Extraction and Classification of Homogeneous Objects) [11,13] is another algorithm
for scene segmentation. The scene segmentation process is a two-stage, conjunctive approach
(cell selection and annexation) and may be used in either a supervised or unsupervised mode.
First, data are divided into rectangular cells consisting of four or more pixels and subjected

to a test of homogeneity. Cells which cannot be called homogeneous (i.e., singular) are




assumed to overlap a boundary in the data. In the second step, annexation, adjacent non-
singular cells are tested for statistical similarity and are subject to annexation into a group
of cells comprising a homogeneous object. Tunable parameters include the number of pixels
comprising cells and threshold values for selection and annexation tests. Landgrebe [13]
reviewed results of extensive testing in which ECHO provided greater classification accuracy

at greater computational efficiency than did ML classification.

3 Objective

The objective of this study was to compare the SMAP, ECHO, and ML methods for scene
segmentation using two different methods: analysis of « statistics and iterative proportional

fitting/ Tukey multiple comparison.

4 Methods

The data used in this study, known as “Flightline C1,” is a 949 pixel x 220 pixel 12 band im-
age (wavelengths from 0.40-1.00 pm) acquired from an airborne scanner. The scene, scanned
during June 1966, covered a small portion of farmland in Tippecanoe County, Indiana. The
scanner had an IFOV of 3 mrads and was flown an altitude of 792 m above the terrain.
The sensor scanned approximately 440 degrees about nadir. A/D conversion used 8 bits.
Ground truth was available for most of the image. Figure 2 shows a composite image using
band 9 for both blue and green and band 1 for red. The image has a large percentage of areas
which appear homogeneous. Rectangular ground truth areas are outlined in white (fig. 2).

Training fields and spectral bands were selected to build spectral signatures that gave
adequate results for the ML approach. Then, ML, SMAP, and ECHO classified the known
agricultural areas outlined in figure 2 using the same training fields. For the ECHO clas-
sification, cell size chosen was 2 pixel X 2 pixel and the threshold values selected for both
selection and annexation tests was 2.0. For all classifications, signature classes were forced
to be the same as information classes—no subclass structure was used.

The normalization procedure reviewed by Zhuang et al. [21] and briefly described ear-



igure 2: Color composite of flightline C'1. Areas with ground truth are outlined in white.
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lier was implemented in the GRASS geographic information system [18] (see Appendix A).
Error matrices for each method were normalized using iterative proportional fitting (with
smoothing of zero counts). By extracting class accuracies along the diagonals of normalized
matrices, classifier performance was represented as a two factor statistical experiment.
Following the procedure of Zhuang et al. [21] for the two factor experiment, (1) proba-
bilities that individual classes were correctly classified were assumed inherent for a classifier,
(2) classifiers were assumed independent, and (3) map classes were assumed approximately
independent. The Tukey critical distance (w) between treatment means was computed us-

ing [14]:

s
w = ¢a (p,v) N
where
¢« (p,v) = critical value of the Studentized range at a given risk level, a
P = number of sample means of classifiers
v = number of degrees of freedom associated with MSE
3 =+vVMSE
ny = number of observations in each of the p samples

If any two population means differed by a distance greater than the Tukey critical distance,

they were judged to be different.

5 Results

Table 3 gives the eight classes defined for the image in figure 2 as well as the distribution
of pixels in testing and training fields. For an initial set of training samples, principal
component analysis and a preliminary classification with ML indicated that four features
were adequate for classification. After examining distance metrics for the defined classes
(Table 3) between all possible combinations, four channels were selected. These four bands,
1, 6, 10, and 12, corresponded to wavelength intervals of 0.40-0.44, 0.52-0.55, 0.66-0.72, and
0.80-1.00 pm.

Small sections (128 x 219) of the classified scene are given for each of ML, SMAP, and

ECHO in figure 3. For descriptive purposes only, four of the texture features of Haralick




Table 3: Thematic classes defined for flightline C'1.

# Pixels Used

ID | Class Training | Testing
1 | Soybeans 175 24423
2 | Corn 108 10286
3 | Oats 120 5472
4 | Wheat 107 9538
5 | Red Clover 190 11574
6 | Alfalfa 7 3106
7 | Rye 21 2340
8 | Bare Soil 24 1170
Totals 822 67909

(a) ML estimation.
Coontrast:  0.950
Correlation:  0.801
Variance: 3.384
Entropy: 1.007
# Contig. Areas: 1542
Avg Area Size: 18.26

(b) SMAP segmentation.
Contrast:  0.195
Correlation:  0.893
Variance: 3.327
Entropy: 0.892
# Contig. Areas: 535
Avg Area Size: 52.64

(c) ECHO segmentation.
Contrast: 0.941
Correlation:  0.806
Variance: 3.435
Entropy: 1.009
# Contig. Areas: 1442
Avg Area Size: 19.53

Figure 3: Small segments (128 x 219) of classified images for (a) ML estimation, (b) SMAP
segmentation, and (¢) ECHO segmentation. Co-occurrence texture features (contrast, cor-
relation, variance, and entropy) were computed for each segment.



et al. [10] (contrast, correlation, variance, and entropy) and the number and average size of
contiguous areas were computed for each section. These are also given in figure 3. For the
entire image, there were 15349, 7312, and 14531 contiguous areas produced for ML, SMAP,
and ECHO, respectively. Average areas were 13.6, 28.6, and 14.3 pixels®. Texture features
were not calculated for the entire image.

Error matrices of the classifiers for all ground truth fields (fig. 2) are given in Table 4.
Overall accuracy and & statistics are given in Table 5. Standard normal deviates for pair-
wise comparisons were zen, = 0.72, z¢, = 0.39, and z,,, = 1.11, indicating no significant
differences at the a = 0.1 level.

Each 8 x 8 matrix had approximately 20 random zeros. Therefore, a Bayesian estimate
of element probabilities (see Appendix A) was used to smooth matrices through the addition
of pseudo-counts. Smoothed versions of these are presented in Table 6. Marginal totals
(not shown) remained the same as those in Table 4. After smoothing, iterative proportional
fitting was used to normalize the matrices (Table 7) so that row and column totals were
simultaneously ~ 100%. By extracting class accuracies along the diagonals of the normalized
matrices in Table 7, a two factor experiment was completed (Table 8). The results of Tukey’s

Studentized range test for a risk level of @ = 0.001 are given in Table 9.

6 Discussion

The SMAP segmentation yielded larger contiguous areas (fig. 3) than did both the ECHO
segmentation or the traditional ML estimation. The image classified by SMAP appeared to
have the least speckled (“salt and pepper”) appearance (fig. 3), which is desirable for many
applications of thematic mapping. Quantitatively, the co-occurrence texture features and
area calculations in figure 3 agree with this assessment.

From the normalized class accuracies given in Table 8, it is clear that SMAP classification
performed better than ML and ECHO classifications for every class. The results of Tukey’s
multiple comparison test (Table 9) showed that this distinction was statistically significant
at the a = 0.001 level. All three classifications fell into separate Tukey groupings (indicating

statistically significant differences), with ML classification being the least accurate according




Table 4: Error matrices for (a) maximum likelihood classification, (b) SMAP, and (¢) ECHO

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8
1 24005 43 238 41 12 0 44 40
2 1571 8080 274 3 358 0 0 0
3 309 6 4248 340 560 2 7 0
4 5 0 67 9374 0 0 92 0
5 76 276 301 3 10213 705 0 0
6 18 39 272 11 319 2446 1 0
7 10 0 3 736 0 0 1591 0
8 152 0 0 0 0 0 0 1018
(a) maximum likelihood estimation
Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8
1 24241 3 106 20 11 0 28 14
2 1230 8789 137 1 129 0 0 0
3 209 6 4462 295 498 1 1 0
4 1 0 19 9504 0 0 14 0
) 65 32 190 2 10989 296 0 0
6 17 30 229 10 150 2669 1 0
7 8 0 2 642 0 0 1688 0
8 108 0 0 0 0 0 0 1062
(b) SMAP segmentation
Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8
1 24100 18 167 54 10 0 40 34
2 1100 8720 173 4 289 0 0 0
3 302 8 4204 387 548 1 22 0
4 2 0 19 9459 0 0 58 0
) 70 124 195 2 10810 372 1 0
6 20 44 260 12 290 2479 1 0
7 9 0 2 595 0 0 1734 0
8 120 0 0 0 0 0 0 1050
(c) ECHO segmentation
Table 5: Classification statistics.
Overall Accuracy | & Gr METHOD
89.8 0.870 { 0.000783 | ML
92.1 0.899 | 0.000850 | ECHO
93.4 0.915 | 0.000854 | SMAP
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Table 6: Smoothed error matrices for (a) maximum likelihood classification, (b) SMAP, and
(c) ECHO. Matrices were smoothed through the addition of pseudo-counts.

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8
1 24005.228 42.953  237.973 40.942 11.936 -0.018 43.991 39.995
2 1570.963 8080.106  273.992 2.975 357.978 -0.007 -0.004 -0.003
3 308.972 5.989 4248.060  339.992 559.994 1.996 6.998 -0.001
4 4.943 -0.019 66.989 9374.123 -0.025 -0.007 91.998 -0.002
5 75.932  275.982  300.990 2.972 10213.129  705.003 -0.005 -0.003
6 17.982 38.995  272.000 10.993 318.997 2446.036 0.999 -0.001
7 9.986 -0.005 2.997 736.006 -0.006 -0.002 1591.024 -0.001
8 151.995 -0.002 -0.001 -0.003 -0.003 -0.001 -0.000 1018.016

(a) maximum likelihood estimation

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8
1 24241.232 2.950 105.973 19.942 10.934 -0.017 27.991 13.994
2 1229.958 8789.116  136.990 0.975 128.974 -0.007 -0.004 -0.003
3 208.971 5.989 4462.063  294.991 497.993 0.996 0.998 -0.001
4 0.943 -0.019 18.989  9504.125 -0.026 -0.006 13.996 -0.002
5 64.932 31.977  189.989 1.972 10989.140  295.997 -0.005 -0.003
6 16.982 29.994  229.000 9.993 149.994 2669.039 0.999 -0.001
7 7.986 -0.005 1.997  642.004 -0.006 -0.002 1688.025 -0.001
8 107.995 -0.002 -0.001 -0.003 -0.003 -0.001 -0.000 1062.016

(b) SMAP segmentation

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8
1 24100.230 17.951  166.975 53.942 9.934 -0.016 39.990 33.994
2 1099.957 8720.114 172.991 3.975 288.976 -0.007 -0.004 -0.003
3 301.973 7.989 4204.069  386.993 547.994 0.996 21.998 -0.001
4 1.944 -0.019 18.989 9459.124 -0.026 -0.006 57.997 -0.002
5 69.933  123.978  194.990 1.972 10810.136  371.998 0.995 -0.003
6 19.982 43.994  260.000 11.993 289.996 2479.036 0.999 -0.001
7 8.986 -0.005 1.997  595.004 -0.006 -0.002 1734.026 -0.001
8 119.995 -0.002 -0.001 -0.003 -0.003 -0.001 -0.000 1050.016

(c) ECHO segmentation
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Table 7: Normalized error matrices for (a) maximum likelihood classification, (b) SMAP,
and (c) ECHO. Matrices were normalized through iterative proportional fitting.

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8 | total
1 0.932 0.010 0.031 0.001 0.002 -0.000 0.009 0.015 | 1.000
2 0.029 0.932 0.017 0.000 0.022 -0.000 -0.000 -0.000 | 1.000
3 0.018 0.002 0.851 0.017 0.108 0.001 0.002 -0.000 | 1.000
4 0.001 -0.000 0.027 0.915 -0.000 -0.000 0.058 -0.000 | 1.000
5 0.002 0.042 0.025 0.000 0.814 0.117 -0.000 -0.000 | 1.000
6 0.001 0.013 0.049 0.000 0.055 0.882 0.000 -0.000 | 1.000
7 0.001 -0.000 0.001 0.067 -0.000 -0.000 0.931 -0.000 | 0.999
8 0.016 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.985 | 1.001
total | 1.000 1.000 1.000 1.000 1.000 1.000 1.060 1.000 | 8.000

(a) maximum likelihood estimation

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8 | total
1 0.965 0.001 0.017 0.000 0.001 -0.000 0.008 0.007 | 1.000
0.014 0.976 0.006 0.000 0.004 -0.000 -0.000 -0.000 | 1.000
0.010 0.003 0.903 0.008 0.076 0.000 0.000 -0.000 { 1.0060
0.000 -0.000 0.015 0.965 -0.000 -0.000 0.020 -0.000 | 1.000
0.002 0.008 0.021 0.000 0.900 0.069 -0.000 -0.000 | 1.000
0.001 0.012 0.038 0.000 0.018 0.931 0.000 -0.000 | 1.000
0.001 -0.000 0.001 0.027 -0.000 -0.000 0.972 -0.000 | 0.999
8 0.008 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.993 | 1.001
total | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 | 8.000

(b) SMAP segmentation

~N OO W

Map Ground Truth Classes
Classes 1 2 3 4 5 6 7 8 | total
1 0.949 0.005 0.027 0.001 0.001 -0.000 0.005 0.012 ] 1.000
0.018 0958 0.011 0.000 0.014 -0.000 -0.000 -0.000 { 1.000
0.016 0.003 0.882 0.010 0.086 0.000 0.004 -0.000 | 1.000
0.000 -0.000 0.016 0.943 -0.000 -0.000 0.041 -0.000 | 0.999
0.002 0.023 0.021 0.000 0.864 0.090 0.000 -0.000 | 1.000
0.001 0.012 0.042 0.000 0.035 0.909 0.000 -0.000 | 1.000
0.001 -0.000 0.001 0.046 -0.000 -0.000 0.950 -0.000 | 0.999
8 0.013 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.988 | 1.001
total | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 | 8.000

(c) ECHO segmentation

~N O R W
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Table 8: Performance summary for (a) maximum likelihood classification, (b) SMAP, and

(c) ECHO.

Map Segmentation Algorithms
Classes ML SMAP ECHO
Soybeans 0.932 0.965 0.949
Corn 0.932 0.976 0.958
Oats 0.851  0.903 0.882
Wheat 0.915 0.965 0.943
Red Clover | 0.814  0.900 0.864
Alfalfa 0.882 0.931 0.909
Rye 0.931 0.972 0.950
Bare Soil 0.985 0.993 0.988

Table 9: Results of Tukey’s Studentized range test for maximum likelihood classification,
SMAP segmentation, and ECHO segmentation (¢ = 0.001, v = 13, MSE = 0.00003,
do (p,v) = 10.224, w = 0.0199). Means with the same letter are not significantly differ-

ent.

Tukey Grouping Mean n; | METHOD
A 0.950625 | 8 | SMAP
B 0.930375 | 8 | ECHO
C 0.905250 | 8 [ ML
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to this test procedure. According to overall accuracies (Table 8), ECHO performed better at
classification than ML, though the number of contiguous areas and the average size of these
areas in figure 3 were close to the same.

The results of Tukey’s multiple comparison test were in contrast with the three pair-
wise comparisons using z-tests of differences in £ values. The latter analyses showed no
significant differences at a risk level of @ = 0.1. This indicated that, in this instance, the
iterative proportional fitting/Tukey multiple comparison method was more sensitive to dif-
ferent classifications. Visual analyses of classified images led to the conclusion that & was
too conservative.

Notice in figure 3 that, even though ECHO (and ML) had higher entropy, the segmen-
tation by SMAP was much different at the right edge and in the lower left test field. If the
training fields and spectral classes had been optimized for SMAP instead of ML, this may
have changed.

Bouman and Shapiro [3] showed in their tests that SMAP outperformed ML. However,
their ground truth was located along transects instead of being contained in rectangular
regions. The manner in which test samples were selected had an obvious effect on accu-
racy determination—rectangular test fields will naturally favor methods which yield larger
contiguous areas. For classifying remotely-sensed imagery of rectangular and thematically
homogeneous (agricultural) fields, this approach to delineating test fields is arguably appro-
priate. When the objective is to determine the appropriate class and perhaps the corre-
sponding area, a segmentation should be the most accurate for areal units despite spectral

impurities.

7 Summary

The SMAP algorithm produced better (o = 0.001 for Tukey multiple comparison) results
that ML and ECHO, in this instance, for supervised classification of a scene of agricultural
fields. Unlike a natural scene, the one used in these classification had the characteristic of
being thematically homogeneous. SMAP appeared better at producing maps with larger

contiguous areas and with a less speckled appearance. The resulting thematic map for
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SMAP was visually more acceptable than those produced by the other methods. ECHO
segmentation outperformed ML estimation, which produced the most speckled map.

For these classifications, Tukey multiple comparisons of normalized class accuracies was
more sensitive that pairwise x analyses. For the latter, no significant difference was detected

at a risk level of o = 0.1.
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A Tterative Proportional Fitting with Smoothing of Zero Counts

Before normalization of an error matrix using iterative proportional fitting (as described ear-
lier), random zeros (as opposed to fized zeros) in the matrix should be eliminated. Feinberg
and Holland [9] developed a method for smoothing with pseudo-counts using a Bayesian
estimator of the probability for a matrix element p;;:

. N
Bij = o (@i + k)

where z;; is an entry in the ¢th row and the jth column of the matrix and N = 37, ; z;;. In
Bayesian analysis, the probability p;; is regarded as a random variable. The density function

7 (ps;) is proportional to:
kXi;—1
IIr;~"
4J
The expected value is estimated as:

X X
NZ

Ex[pii] = A =
and k, the number of pseudo-counts, is calculated as:

Nk
i (N — xi)”

The following calculation procedure was given by Zhuang et al. [21]:

For smoothing a contingency table with pseudo-counts, first we calculated the
“expected value,” NJ;;, instead of \;; for simplicity of computation. Next, k
was computed with the formula given above. Third, the k£ pseudo-counts were
allocated to the individual entries of the ezpected value table, and the entries
were multiplied by the ratio k/N. Finally, the contingency table was added to
the table obtained in the third step entry by entry, and the result was multiplied
by N/(N + k) to preserve the original total of N.
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