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Abstract-In this paper a family of adaptive covariance estimators is proposed to mitigate

the problem of limited training samples for application to hyperspectral data analysis in

quadratic maximum likelihood classification. These estimators are the combination of
adaptive classification procedures and regularized covariance estimators. In these

proposed estimators, the semi-labeled samples (whose labels are determined by a
decision rule) are incorporated in the process of determining the optimal regularized

parameters and estimating those supportive covariance matrices that formulate final

regularized covariance estimators. In all experiments with simulated and real remote
sensing data, these proposed combined covariance estimators achieved significant

improvement on statistics estimation and classification accuracy over conventional
regularized covariance estimators and an adaptive Maximum Likelihood classifier

(MLC). The degree of improvement increases with dimensions, especially for ill-posed or

very ill-posed problems where the total number of training samples is smaller than the
number of dimensions.

Index Terms-Adaptive iterative classification procedure, regularized covariance

estimation, high-dimensional data, semi-labeled samples, hyperspectral data

I. INTRODUCTION

In quadratic maximum likelihood classification, each true class mean vector and
covariance matrix are usually unknown and must be estimated by the sample mean and

sample covariance matrix based on training samples. When the training sample size is

quite small relative to the dimensionality, the sample covariance matrix becomes highly
variable and consequently, this greatly decreases the classifier performance. In particular,

                                                  
1 The work described in this paper was sponsored in part by the U.S. Army Research Office under Grant
Number DAAH04-96-1-0444.
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when the number of training samples is less than the dimensionality, the sample

covariance matrix becomes singular and hence quadratic classifiers cannot be used. This
is unfortunate in the analysis of high dimensional data because in the high-dimensional

feature space, different classes sharing the same expected values can become separable
with very little error, provided that their covariance matrices are sufficiently distinct [1].

Thus, the second-order statistics can assume a preponderant role in remote sensing image

data classification, possibly allowing for the separation of classes spectrally close to each
other and therefore not separable well by analysis methods that do not take into account

second-order statistics (covariance matrices). This poses limitations on the number of
dimensions (or features) that can be used in remote sensing applications where training

samples are usually small compared to the number of dimensions available. This is

especially true for the analysis of hyperspectral data.
One way to deal with this is to employ a linear classifier that is obtained by

replacing sample covariance matrices for all classes by their average, Sw . Even if each

sample covariance matrix differs greatly, using the average can sometime lead to better
performance for small training sets because Sw  reduces the number of parameters to be

estimated and decreases the variance. This has been verified by several studies [2][3][4].

Even though a linear classifier may perform better than a quadratic classifier in the small

training set size case, the choice between these two is a quite sensitive matter. Several
more flexible regularized methods have been proposed in which a sample covariance

estimate is replaced by partially pooled covariance matrices of various forms, and a
varying degree of regularization is applied to control the number of parameters to be

estimated and consequently improve the classifier performance based on training

samples.
In [5], a regularized procedure referred as “ regularized discriminate analysis”

(RDA) is proposed, which is a two-dimensional optimization over four-way mixtures as
shown in the following:

ˆ S i(l,g ) = (1- g ) ˆ S i (l) +g
tr ˆ S i(l)( )

p

Ê 

Ë 

Á 
Á Á 

ˆ 

¯ 

˜ 
˜ ˜ 
I      0 £ g £ 1 (1)

                                                                                                                                                      



7/9/02 4

 The pair of regularized parameters (l,g) is selected by cross-validating on the total

number of misclassifications based on available training samples [5].

In [6], a covariance estimator is proposed which has the following form:

ˆ S i(ai ) =

(1 -a i)diag(Si ) + aiSi        0 £ ai £1
(2 -a i)Si + (ai -1)S          1£ a i £ 2
(3 - ai)S + (ai - 2)diag(S)   2 £ ai £ 3
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Ì 
Ô Ô 

Ó 
Ô 
Ô 

(2)

where S is the average of all sample covariance matrices. The regularized parameter ai  is

determined by maximizing the average leave-one-out log likelihood of each class:

† 

LOOLi =
1
N

ln[ f (xi,k |
k=1

Ni

Â mi / k,  ˆ S i/k(a i)] (3)

where Ni is the number of training samples in the class i.

In [7], a covariance estimator is developed which virtually is the combination of

RDA, LOOC, and the empirical Bayesian approach. There are two forms of this new
covariance estimation depending on the form of covariance matrices used. When the

ridge estimator is adopted, the proposed estimator is called as (bLOOC1) and has the
following form:

ˆ S i(ai ) =

(1 -a i)
tr(Si )

p
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(2 -a i)Si + (ai -1)Sp
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where the pooled covariance matricesSp
*  are determined under a Bayesian context and

can be represented as:

Sp
*(t) =

fi

fi + t - p -1i =1
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When the mixture of covariance and covariance-diagonal covariance matrices is used, the

proposed estimator is referred as (bLOOC2) and is defined as the following

ˆ S i(ai ) =

(1 -a i)diag(Si ) + aiSi                0 £ ai £1

(2 -a i)Si + (ai -1)Sp
*(t)          1 £a i < 2

(3 - ai)S + (ai - 2)diag(S)       2 £ ai £ 3
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The regularized parameters ai are determined by maximizing average leave-one-out log

likelihood.

As an extension of RDA, LOOC, the Empirical Bayesian covariance estimators,
bLOOC1 and bLOOC2 have appealing benefits possessed by these methods. For

example, like LOOC, bLOOC1 and bLOOC2 are quite flexible on the training sample
size. They can deal with a broad range of limited training sample sizes, from well-posed

(the number of training sample in each class Ni >> the number of dimensions), to poorly

posed (Ni ~ p), and ill-posed problems (the number of all training samples N < p, where

† 

N =
i=1

L

SNi), and the regularized parameters are customized for each class.

However, bLOOC1 and bLOOC2 suffer from drawbacks inherited from RDA,

LOOC and the Empirical Bayesian covariance estimators. First of all, they have a major
disadvantage of having no direct relation with classification accuracy. Most important of

all, even though instability of covariance estimates posed by limited training samples can

be reduced using a covariance mixture in the aforementioned approaches, the degree of
improvement is certainly limited. This is true because supportive matrices and

regularized parameters used in the covariance mixture are all based on limited training
samples only. In particular, when the training sample sets are so small, for instance ill-

posed or very ill-posed, the estimated covariance matrices can be over-tuned to

accommodate training samples only and they may not be good representatives of
statistics for the entire data.

On the other hand, in [8] we proposed an adaptive iterative quadratic maximum
likelihood classification procedure where the limited training samples problem is

alleviated by using additional semi-labeled samples to enhance statistics (mean vectors

and covariance matrices) estimation. As illustrated in Fig. 1, essentially it is formed by

adding a feedback loop (highlighted by dark arrows) to a conventional ML classifier. The

classifier starts with the initial classification where only training samples are used to

estimate the statistics. After the initial classification, a class label is assigned to the

unlabeled samples according to the ML decision rule. Subsequently unlabeled samples

become semi-labeled samples, because class label information is partially obtained. At

the following iteration, semi-labeled samples together with the training samples are used
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to re-estimate the statistics. To control the influence of each semi-labeled sample for

statistics estimation, a full weight is assigned to a training sample, and reduced weight is

assigned to a semi-labeled samples. We have shown that in an adaptive classifier started
with a reasonably good initial accuracy achieved by using training samples only, a

positive feedback process can be established where semi-labeled samples can provide
additional useful class label information and, when they are used, the estimation of

statistics can be enhanced and the classification accuracy can be improved. In return, the
class label information from semi-labeled samples can be further enhanced in the later

stages when better statistics estimation and higher classification accuracy are achieved.

However, when the number of dimensions is very high (up to a few hundreds), the
number of parameters in the covariance matrix estimation process increases dramatically

(approximate to the square of the dimensions). In such cases, using additional semi-
labeled samples alone may not be sufficient to reduce the variance of covariance

estimation.

In this paper, a method of combining the adaptive quadratic classifier and
regularized covariance estimation is proposed to alleviate the extremely small training

sample problem in the analysis of hyperspectral data in general, and in particular to deal

with ill-posed and very ill-posed problems. Depending on the method of selecting support
covariance matrices and the regularization parameters, a group of new adaptive

covariance estimators are then introduced. The regularized parameters and supportive

Multispectral
Input Data

Classifier
Design Classification Classification

Output
Feature

Extraction

Training Samples

Compute the weighting
factor associated with each
semi-labeled sample, and
feed them back to re-
estimate statistics

Fig. 1 An adaptive classification procedure.



7/9/02 7

covariance matrices used in a covariance mixture are determined based on both training

samples and semi-labeled samples, and they are repeatedly updated until the highest
classification accuracy is reached.

Extensive experiments are performed using simulated data and real, aircraft-
acquired hyperspectral data. With simulated data, the experimental results indicate the

proposed adaptive covariance estimators can achieve equivalent classification

performance with a small training sample size to that obtained using large training
sample size. With hyperspectral data, the proposed adaptive covariance estimators can

improve the classification performance dramatically with limited training samples. In all
experiments the proposed methods outperform the conventional covariance estimators

(LOOC and BLOOC) and the adaptive quadratic classifier [8].

II. ADAPTIVE COVARIANCE ESTIMATORS
A new method is developed in the section that combines an adaptive classifier

with various regularized covariance estimation methods, i.e., LOOC, bLOOC1 and

bLOOC2. As an adaptive classifier, this method is an iterative approach, i.e., initially the
regularized covariance matrices are determined by using training samples only (in other

words, this method starts with the conventional covariance estimators, either LOOC or

BLOOC), and then they are continuously updated using currently updated semi-labeled
samples in addition to training samples until a convergence is reached where the

classification outputs change very little. The scheme is shown in Fig. 2, where

† 

Yij = (yi1,...,yimi
) are the training samples for the ith  class, whose pdf is )|( ii yf F , and

† 

Xij = (xi1
c ,...,xini

c ) are the current semi-labeled samples that have been classified to belong to

the ith  class.
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Depending on the covariance estimator with which the adaptive classifier is

combined, the proposed estimators have various forms. Adaptive LOOC is the

combination of the adaptive classifier with LOOC, and adaptive BLOOC is the

combination of the adaptive classifier with BLOOC. The optimal value of the regularized

parameter ai  is determined by maximizing the leave-one-out mixed likelihood,
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LOOLi =
1

mi + wik
k= 1

ni
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Here wik is the weighting factor associated with the kth semi-labeled sample from class i,

which is related to the likelihood of this sample belonging to i class. Since class label

information of semi-labeled samples is updated at each iteration, any improvement of
classification accuracy is reflected in the labels of semi-labeled samples. Hence, when
semi-labeled samples are used to determine the optimal value of ai , this criterion is more

directly related to the classification accuracy, alleviating the disadvantage of this criterion
aforementioned.

The direct implementation of the leave-one-out likelihood function for each class

with ni training samples and mi semi-labeled samples would require the computation of
(ni+mi) matrix inverses and determinants at each value of ai. Fortunately, a more efficient

Training Samples: Yij

Estimate
 Mi, Si, S

Select ai &
 Compute Si

Classification

Semi-labeled Samples:
Xij with weighting

factor: wij

Fig. 2. Flow chart of an adaptive covariance estimator procedure.
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implementation can be derived using the rank-one down of the covariance matrix [9]. In

addition, the computation of optimality can be further simplified if one assumes that
diag(S) ª diag(Si / k )

in the adaptive LOOC or adaptive bLOOC2 estimators and the approximation of
tr(Si / k )

p
I ª

tr(S)
p

I

in the adaptive bLOOC1 estimator. For notational purposes, in the following sections and

experiments, the adaptive LOOC, bLOOC2, and bLOOC1 without approximation is
denoted as ALOOC-exact (Adaptive Leave One Out Covariance Estimation), AbLOOC2-

exact, and AbLOOC1-exact (Adaptive Bayesian Leave One Out Covariance Estimation),

respectively, whereas the implementation with approximation is designated as ALOOC,
AbLOOC2, and AbLOOC1, respectively.

III. EXPERIMENTAL RESULTS

A. Experiments with Simulated Data

In this section, the experimental results from computer-generated data are

presented. Six proposed covariance estimates, namely, ALOOC, ALOOC–Exact,
AbLOOC1, AbLOOC1-Exact, AbLOOC2, and AbLOOC2-Exact are used. Six

experiments presented in [10] were performed, and two of them are presented in this

paper. Results of the other experiments are contained in [9]. The dimensions p are chosen
to be 10, 40, and 60, which represents poorly posed (p=10), ill-posed (p=40) and very ill-

posed (p=60) problems, respectively. To benchmark the performance of these covariance
estimators, all labeled samples (1000/class) are used as training samples, and the

accuracy is called supervised learning. Also, the pseudoinverse of a covariance matrix is

also used to replace the inverse of a covariance matrix in the quadratic decision rule when
it is singular. Notice here all accuracies are obtained by using an independent generated

data set (10,000/class) as a testing data set. Hence they are called hold out accuracies [1].
In experiment 1, all three classes have the identity covariance matrix. The mean

of the first class is at the origin. The mean of the second class is taken to be 3.0 in the

first variable and zero in the others, and the mean of the third class is 3.0 in the second
variable and zero in the rest. The mean accuracy is plotted in Figure 3.
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Fig. 3 Mean accuracy for experiment 1.

The following results may be observed: 1) at all dimensions, the adaptive

covariance estimators outperform the conventional covariance estimators, the adaptive
MLC [8], and Euclidean distance classifier where only mean vectors are used on the

decision rule, and the improvement increases with dimensions. 2) At higher dimensions

(p=40 and 60), the adaptive covariance estimators achieves higher accuracy than the one
supervised sample covariance estimators where a large number of training samples were

used. 3) Even though the performance of the conventional covariance estimators LOOC
and BLOOC declines dramatically with increasing dimensionality due to the small

training sample problem, or Hughes phenomenon [11], the performance of the adaptive

covariance estimators varies very little. The mean accuracies obtained by these
approaches are very close to the optimal value. This indicates the Hughes phenomenon

has been greatly alleviated. 4) Furthermore, the standard deviation (not shown here, but

available in [9]) is reduced by about 10-50 fold, which indicates the final estimated

statistics are more representative of the true ones. 5) All adaptive covariance estimators

yield similar final classification accuracies, indicating their performance is comparable.

This means that computational time can be reduced greatly by using the approximated



7/9/02 11

version of these approaches. 6) The pseudoinverse approach has the worst performance

among all methods.
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Fig. 4 Mean accuracy for experiment 2.

In experiment 2, all three classes have different spherical covariance matrices and

different mean vectors. The covariance of class one, two, and three are I, 2I, and 3I,
respectively, where I represents the identity matrix. The mean vectors are the same as

those in experiment 1. The mean classification accuracy for each estimator is graphed in
Fig. 4. Here similar results can be seen as those from experiment 1. In addition, note that

contrary to the first experiment, for this data set, the separability of classes due to the

second order statistics increases with dimensions. This suggests the potential for dramatic
improvement of accuracy as long as the class statistics can be estimated precisely in the

high dimension space. Except for the methods bLOOC1 and bLOOC-exact, the

performance of the other four conventional covariance estimators and the Euclidean
classifier deteriorate drastically when the number of dimensional increases. However, the

final accuracy from all adaptive covariance estimators increases with dimensions, and
values of the final accuracy are quite close and much higher than those obtained by the

conventional covariance estimators. This demonstrates the preponderant role of the
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second order statistics and the importance of precisely estimating them in the analysis of

high dimensional data.

B. Experiments with real Hyperspectral data

In the following experiments, three hyperspectral data sets that represent different

scenes, i.e., geological, ecological and agricultural, are used. The detailed information

about these data sets is shown in Table 1, and classification results are illustrated in Table

2. It took substantial effort to label the large number of samples for these data sets. For

example, those in Exp. 3 were gathered by visual comparison of the remotely sensed

spectra to a library of laboratory reflectance spectra [10]. Those in Exp. 4 were also

visually identified; while those in Exp. 5 were from an available ground truth map. All

these processes are quite time consuming (more than a few hours for visually

identification) and tedious. By comparison, to collect the small number of training

samples is a far easier task.

Table 1. Data information for experiment 3, 4, and 5

Sites Bands
Labeled
Samples

Total Training
samples

Exp. 3 Cuprite, Navada. (Geological) 191 2744 28
Exp. 4 Jasper Ridge, California. (Ecological) 193 3207 16
Exp. 5 Indian Pine, Indiana. (Agricultural) 191 2521 25

In all these experiments, the total number of training samples is much smaller

than the dimensions; they all represent very-ill posed problems. It is seen that similar to

the results from simulated data, the adaptive covariance estimators outperform

substantially the conventional covariance estimators and Euclidean classifiers. For

experiment 3 and 4, some adaptive covariance estimators achieve the accuracy very close

to the resubstitution one, for example, ALOOC-exact and AbLOOC2 in experiment 3,



7/9/02 13

and ALOOC-exact and AbLOOC2-Exact in experiment 4. Again, the Pseudoinverse

method has the poorest performance.

Table 2. Mean Classification Accuracy (%) Experiment 3, 4 and 5

Overall Mean Accuracy (%)
Accuracy Experiment 3 Experiment 4 Experiment 5

LOOC 74.6(17.2) 91.6(3.1) 52.4(3.7)

ALOOC 90.2(7.9) 97.4(1.2) 67.8(5.1)

Difference 15.2(-9.3) 5.7(-1.8) 15.4(1.4)

LOOC-Exact 82.1(5.8) 92.8(2.2) 67.2(4.1)

ALOOC-Exact 93.2(2.6) 97.2(1.7) 74.1(4.7)

Difference 11.14(-3.18) 4.39(-0.5) 6.87(0.61)

bLOOC2 78.8(3.7) 88.1(5.5) 52.9(9.1)

AbLOOC2 94.1(3.7) 95.7(4.6) 70.8(7.5)

Difference 15.3(-0.0) 7.61(-0.9) 17.8(-1.6)

bLOOC2 -Exact 80.2(4.1) 90.7(9.9) 64.5(4.5)

AbLOOC2 -Exact 91.5(5.3) 98.2(1.1) 72.6(6.1)

Difference 11.35(1.17) 7.47(-8.81) 8.0(1.6)

Resubstitution Accuracy 94.0 (2.7) 98.1(3.5) 94.0 (2.3)

Euclid 40.8(5.6) 95.4(1.5) 65.5 (6.5)

PseudoInverse 26.57 (1.0) 66.57(3.2) 20.63(0.5)

Adaptive MLC 80.2(10.0) 90.4(2.3) 66.4(6.3)

IV. CONCLUSION

A new family of adaptive covariance estimators is presented which is produced by

combining an adaptive classification process with various regularized covariance

estimators, i.e., LOOC, bLOOC1 and bLOOC2. They are proposed as a means to

mitigate small training sample problems in general, and in particular, for the poorly or ill-

posed problem where for high dimension data the number of training samples is

comparable to the number of features or where the sum of all training samples is even

smaller than the number of features. A set of experiments on simulated data and real

hyperspectral data are performed and reported. Additional such experiments are

described in [9].
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For simulated and real data, the proposed adaptive covariance estimators offer

similar performance. They all outperform conventional regularized covariance estimators,

and the Euclidean classifier. In addition, the improvement of performance increases with

dimensionality. They also appear more robust against variations in training sets as

indicated by the decreased standard deviation among the repeated test trials for most of

experiments.

In conclusion, the proposed adaptive covariance estimators have the advantage of

both an adaptive classifier and a regularized covariance estimator and are able to produce

higher classification accuracy than either used alone. This method is also robust in the

sense that from all experiments performed where training samples are randomly selected,

the mean classification accuracy has been improved and for most of them the standard

deviation of multiple trials has been reduced.
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