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ABSTRACT

The use of clustering algorithms for unsuvervised classifica-
tion of multi-dimensional data sets has come into wide usage in the
remote sensing field. The data variables analysed generally come
from the same general type of sensors and thus have similar dynamic
ranges. When dissimilar data types such as encountered in geophysi-
cal remote sensing data sets, e.q., gravity, magnetics, gamma ray,
dynamic ranges and distributions may be very different. The work
reported here studies the problem of clustering algorithm perfor-

mance relative to data range and normalization methods.
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Introduction

A problem in analyzing geophysigal‘data is to find any
structure hidden in the data set. A usual approach that
most analysts will follow is to apply an unsupervised clas-
sification procedure or clustering to the data. Many cluster
aloorithms, such as those implemented in_LARSYS,[6] utilize
the "distances" between the data points. Naturally these dis-
tance-using methods are very sensitive to linear transforma-
tions of the data, since scaling often radically alters the
interpoint distances. On the other hand, scaling may be used
to correct some biased situations in which the data's nu-
merical values of one feature are relatively high enough to
dominate other features. Without any adjustment by scaling,
clustering of all features simultaneously mavy be identical
to clustering of the dominant feature alone.

The problem addressed here is to find a repeatable pro-
cedure which can determine a set of weights wl,wz,...,wn of
scaling for a data point x from a given n-feature data set.

The scaled point y is given by

Multidimensional scaling has been studied extensively

in the discipline of behavioral sciences [1,2,3]. However,



most of their methods and techniques may not bé used directly
for geophysical data owing to the nature of the data; Most |
data sets in behavioral sciences are gualitative descriptions
taken from human subjects with personal variation. There-
fore, scaling problems are oriented towards finding appropriate
methods of aseigning numerical values to qualitative de-
scriptions and removal of subjective variation.

Geophysical data sets are usually relatively large; the
sample size is often in the order of thousands. Such large
sizes may justify easily the assumption that data tend to
form clusters, and it makes better sense to talk about separa-
bility existing among clusters. We will see that this may
lead to a method for determining the weights of scaling. For
the purpose of controlled experimentation, we will use an arti-

ficial data set throughout this study.

Scaling: a tool to achieve equal importance among features

The effect of scaling on a clustering algorithm may be
considered as modifying the implemented distance measure.
Take, for example, the Fuclidean distance used by.ISODATA [4]
clustering algorithm. The distance between two points X7 and

X, 1is given by:

2
1 Xl 2 (2)

Now, if clustering is applied to the scaled points ¥4 and Yor

then the distance is given by:



2 .
where Wy = w; 2 0

The distance defined by (3) is known as modified Euclidean

distance. It can be seen that if W, = 1, (3) is the same as

k
(2), so (2) may beconsidered a particular case of (3). What
the Euclidean distance means is that the difference of x; and
X in all the features are contributed with equal importance
to the distance. However by varying the weights in the
modified Euclidean distance, the importance of each feature
can be emphasized and de-emphasized, or even a feature may

be excluded by setting its corresponding weight to zero.

It is natural for a clustexing algorithm to adopt an
unmodified distance measure rather than a modified distance
measure because it has no prior knowledge of the relative
importance of the features. However, as can be seen from (2),
the actual importance depends on the numerical values of
each feature relative to others. Unfortunately, the numerical
values of a feature, often determined by the particular
process bv which that feature is measured,. is not in general
consistent with the concept of equal importance that has
been built in to a clustering algorithm. Scaling is used to
correct the elusive relative importancé accidentally repre-
sented bv the numerical values of the data.

Hence a method for determininag weights of scaling con-
sists of essentially a criterion to determine the-relative
importance among features and a procedure to carry out the

criterion.



Clustering processors available at the Laboratory for Apnplica-

tions of Remnte Sensing

There are four availéble processors, all of which are dis-
tance-using: (1) CLUSTER (in Larsys), (2) EIGENCLUSTER (in
Larsysdv), (3) VARCLUSTER (in Larsysxp), and (4) ISOCLS (in EOD-
Larsys) .

The CLUSTER processor (Larsys User's\Manuai, Vol. II, p.

CLU-17 to CLU-20) [11] uses the famous ISODATA algorithm [4, 5, 6].
Briefly the processor initializes a user-entered number of cluster
centers along the diagonal of the parallelpiped whose boundaries

are one standard deviation from the ensemble mean. Next it starts
an iterative process of assigning data points to the nearest cluster
centers by computing and comparing the Euclideén distances from

the data points to the centers. After each iteration, it updates
the positions of cluster centers and then repeats thé iteration
until a user-entered percentage of data points do not get feas—
signed.

The EIGENCLUSTER processor is almost identical to the CLUSTER,
except that cluster centers are initialized with the help of prin-
cipal component analysis.

The VARCLUSTER processor is a substantially modified version
of EIGENCLUSTER to allow automatic reduction or increase of the
number of clusters, if the processor sees appropriate. Still a user
needs to specify the number of clusters for the purpose of initializing

cluster centers. Combination of two clusters may occur if their

transform divergence [6] is lower than a user-specified threshold value



Split of a cluster may occur if its &ariance is greater than
a preprogrammed value, meanwhile this value is set to 3 for
Landsat data.

The ISOCLS (The EOD-Larsys manual, p. 9-1 to 9-53) processor
is a close relative of VARCLUSTER but different in the follow-
ing aspects: (1) its distance measure is the Ll—norm; (2) it
has no cluster center initialization. At the beginning of
program execution, the ISOCLS takes the entire ensemble as
one cluster, and splits it using the variance criterion;
later it may combine using the transform divergence criterion.
For more detailed comparisons, see [7].

There are some'non—distance—using clustering algorithms.

An example is the CLASSY [8,9]. CLASSY uses a prior knowledge
to replacé the distance measure. Another interesting clustering
processor is the AMOEBA [10] which is a spatial clustering

algorithm.

An example showing the effect of scaling

An artificial two-feature data set consisting of three
well-separated clusters of Gaussian samples is chosen to
demonstrate the effect of scaling. The numerical values of
the data, as shown by the scatter plot in Fig. 1, range from
15.14 to 226.8 for the first feature (x-axis) and 3.455 to
6.51 for the second feature (y-axis). This particular choice
of feature values is intended to create a situation in which
a feature dominates over other features. Furthermore, two
of the clusters are deliberately arranged in such a way that

they are separable only in the less dominant feature but not
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distinguishable in the dominant feature. Clustering using
both features by a distance-using algorithm cannot reveal the
above clusteré easily. This is illustrated in Fig. 2(a)
which is a cluster map created by VARCLUSTER processor using
both features. It can be seen that the processor found two
clusters only instead of three. This result is the same

as the result obtained by clustering with the dominant
feature alone, shown in Fig. 2(b). However, as shown in

Fig. 2(c), the three clusters can be separated by clustering
with the less dominant feature alone. The above exercise
confirms that a hidden structure in some less dominant
features may not be revealed in the presence Qf a dominant
feature. Next we apply a sequence of scaling that alters the
relative dominance or importance of the features, and then
perform clustering on the scaled data using both features.

In this sequence of tests, the data values of the less
dominant feature are multiplied by 20, 22.5, 25, 27.5, 30 and
32.5, while the data values of the dominant feature remain
unchanged. The gradual increase of the multiplier has the
effect of increasing the importance of the second feature
relative to the first feature. The cluster maps are shown

in Fig. 3(a) through Fig. 3(f). It can be observed that the
cluster processor continued to fail to distinguish the two
close clusters for any multiplier up to 27.5, but suddenly
from 30 onwards, the two clusters were distinguishable.
Further experiments show that all clusters can be revealed for

multipliers up to 1000. The finding is summarized in Fig. 4.
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Cluster maps produced by VARCLUSTER on the test data set I:
(a) using both features, (b) using the first (dominant)
feature, and (c) using the second (less dominant) feature.
Note the symbols serves for identifying clusters only.
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: Cluster maps produced by VARCLUSTER on the scaled data of
test data set I. The second feature is multiplied by the
number indicated below each map, while the first feature

remains unchanged.
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Methods of determining the weights of scaling'

There are three known methods of determining the weights
of scaling, all of them are suitable for machine implemen-
tation.

(a) The dynamic range method

In this type of scaling, the data in each feature are
linearly transformed (scaled) to a fixed dynamic range, for
eXample, 0 to 255. All features, after scaling, have the
same dynamic range. The idea of equal feature importance
or dominance is now in the sense of equal dynamic range.
Almost any type of data stored on magnetic tapes undergo
this kind of scaling, therefore extra processing effort may

-not be necessary.

Procedure l(a): Clustering with scaling determined by
the dynamic range method (0-255)
(1) For each feature i, find from histogram the minimum
value Ci1 and the maximum value Cio-

(2) Compute the scaled data using

Yy = (%) 7 cyp)%255/ (e, = eyy)

(3) Cluster the scaled data

However if the geophysical data is available in Larsys
MSS tape format and the ID record in calibration code 6 mode
(i.e., the calibration values Cl is the minimum value and
C2 is the maximum value), a much simpler procedure can be

used.
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Procedure 1(b): Clustering with scaling to fixed
dynamic range (0-255) for data in
LARS MSS tape format
(1) Use the following CHANNEL card
CHANNEL 6(1/0.,255./,2/0.,255. /,..,n/0.,255. /)

in *CLUSTER, *EIGENCLUSTER or *VARCLUSTER.

(b) The variance method

This method is similar to the dynamic range method,
except that'thé scaled data now have unity variance. Since
variance is a better measure of the spread of data than the
dynamic range, thus it has a lower chance of mishandling the
situation in which data appear to occupy a wide dynamic range
but actually concentrate in a narrow range. Now the concept
of equal feature importance is in the sense of equal variance.

Procedure 2(a): Clustering with scaling determined

by the variance method
(1) For each feature i, find from statistics calculation
the standard deviation of the feature, o -
(2) Compute the scaled data:

vy = x3/04

(3) Cluster the scaled data

Procedure 2(b): Clustering with scaling determined by the
variance method for data in LARS MSS tape
format

(1) For each feature i, find from the ID-record the
minimum value cil’ the maximum value Ci2’ and from

statistics calculation the standard deviation ;-
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(2) Compute values a; = cil/di, bi = ci2/0i
(3) Use the following CHANNEL card
CHANNEL 6(1/a,,b,/, 2/aysby/s. .. n/a b /)

in *CLUSTER, *EIGENCLUSTER or *VARCLUSTER.

(C) The separability method

Since a geophysical data set is usually large and it
seems more prébable that the data form clusters. To be con-
sistent with the primary objective of finding hidden clusters,
the scaling should be such that it emphasizes a feature if
clusters appear separable in that feature, and vice versa.
~Hence, the weights of the scaling are chosen in such a Qay
that features having equal separability among possible clusters
are equally important. The determination of weights in-
volves single-feature clustering and cross-comparison of
differences in the means of cluster pairs with comparable
separability. Since differences in the means are compared,
the separability is preferrably measured by normalized
distance [6] defined as

L i L
norm g,+0,

Scaling weights are the multipliers that are needed to bring
the differences in the means to approximately the same value
in all features for cluster pairs of comparable separability.
For example, if in feature #1 a pair of clusters is 2 units
apart and have a normalized distance of 3, and in feature #2,
another pair of clusters (not necessarily the same pair in

feature #1) is 100 units apart but have a normalized distance

of 2.9. Since the normalized distances 3 and 2.9 are



comparable to each other, therefore the scaling weights are
determined as dividing 100 by 2, i.e., 50 for feature #1,

and unity for feature #2.

Detection of separable clusters in a feature depends on
solely single-feature clustering. This in turn demands a
more powerful cluster processor. Since only separable clusters
are of interest, the processor must be able to combine less
separable clusters and delete unqualified clusters. Among
the existing cluster processors available to users at LARS
only the VARCLUSTER in Larsysxp and the ISOCLS in EOD-Larsys
have this special capability.

After single-feature clustering, tables containing
cluster pairs for each feature may be formed. Screening
of validity of these pairs must be carried out to prevent mis-
behaving clusters from influencing the final decision of
scaling weights. To guide screening, a more conventional
separability measure such as transformed diverogence may be
used. Cluster pairs having separability below a threshold
(i.e., not separable), e.g., 1300, should be discarded. Also
clusters consisting of relatively few samples should be re-
moved.

Procedure 3(a): Clustering with scaling determined by

the separability method
(1) For each feature i, perform step (2) to (6)
(2) Do a single-channel clustering
(3) Delete clusters which (a) have only one sample; or (b)

have a size less than a preprogrammed percentage of

the average cluster.



(5)

(6)

(7)

(8)

(10)

(11)

(12)

15

Form a table of cluster pairs. The first column is the
absolute value of difference in the mean, next column
is the normalized distance, and the third column is the
transform divergence.

(screening of the cluster pairs) Remove from the table
the cluster pairs if (a) the value of transform diver-
gence 1s less than a programmed threshold, say, 1300;
or (b) the means of the cluster pair are equal.
(Optional second screening of cluster pairs by cluster-
ing of the normalized distances as a data set) Cluster
the normalized distances and select a subset which ap-
pears ﬁo form a group.

For each pair in the table for the first feature, pick
up those pairs in other features that are within a
pre-programmed amount of its normalized distance.

If not all features has a weight assigned, repeat step
(7) with a less restrictive pre-programmed amount.
(Determination of scaling weights) The weights are
multipliers given by the ratios of their absolute values
of difference in the mean

Average the scaling weights

Do linear transformation of the data

Cluster the scaled data

In the above procedure, the steps (1) through (6) are

for the preparation of cluster pair tables, one for each

feature. The steps (7) through (10) are for the cross-

comparison of normalized distances (which measures the separability)
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of cluster pairs from feature to feature. Such a comparison

usually requires a complex decision rule and may be subject

to instability.

A simple but still effective alternative is

to compute a mean-distance-to-normalized-distance ratio which

simply indicates quantitatively a cluster pair's Euclidean

distance per unit separability. The scaling weights are

the ratios of these ratios.

Procedure 3(b):

(9")

(10")

distance per unit separability (steps
to replace (7) to (10) in Procedure
3(a))

For each feature i, do step (8) and (9)

From the cluster pair table, compute and

store in the fourth column of the table the

mean-distance-to-normalized-distance ratio
for all the cluster pairs.

Compute the average ratio ry from the fourth
column of the table

Find the smallest roin from the ratios Ly

Tore-esl - Compute the scaling weights W

by

w. = ri/r

i min

Example of scaling weights determination

The above three methods for determining scaling weights

were applied to the test data set I shown in Fig. 1. Informa-

tion were extracted from the ID-record and statistics cal-

culation are listed in Table 1(a). From these information,

Weight determination by computing Euclidean
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the weights can be determined easily by the dynamic range

method and the variance method. These weights are shown in

Table 1(b).

Table 1: (a) Information that can be used for
determining scaling weights; (b)
scaling weights.

(a)
Standard
Min Max Deviation
feature {1 15.14 226.8 51.17
feature #2 3.466 6.51 0.84
(b)
Scaling Weights
Method Wy W, Comment
dynamic range . 1:68 (226.8-15.14/(6.51-3.466)=68
variance 1:71 5.17/0.84 = 71

Since the separability method is more complex, the weight
determination procedure is detailled presented as follows.

First, cluster pair tables are going to be derived from
the single-feature clustering maps of Fig. 2(b) and 2(c). 1In
the first feature, although there are three clusters found,
actually there are two only because the third cluster is
eliminated owing to too few samples. The cluster pair table,

thus, has only one row, as shown in Table 2(a).
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Table 2: Cluster pair tables
(a) Feature #1
Cluster Dist. between Normalized Transform Mean distance/
ij the means Distance Divergence normalized distance
1,2 100.3 2.56 1926 39.06
average 39.06
(b) Feature #2
Cluster Dist. between Normalized Transform Mean distance/
ij the means Distance Divergence normalized distance
2,3 1 2.564 2000 0.390
3,4 1 2.5 2000 0.4
2,4 1 2.564 2000 - 0.39
average 0.393

In the second feature, there are a total of 5 clusters

found, but two of them, having too few samples, are discarded.

Its cluster pair table is shown in Table 2(b).

Since transform divergences are
tables, there is no further deletion
weights are computed as the ratio of

normalized-distance ratios, then the

1:99.3(39.06/0.393).

high enough in both the

of rows. Now the scaling

the mean distance-to-

scaling weight is WoiW, =

It should be pointed out that if the second feature is

multiplied by 100,

variance Gaussian distribution.

then each cluster will have an equal

Regarding 1:100 as the best

scaling weights, then we rate the separability method (1:99.3)

as the best among the three methods.

However, it was
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indicated previously that any multiplier larger than 30 is
sufficient, so both the dynamic range method (1:68) and the
variance method (1:71) provide adequate scaling, and further-

more they are much more simple procedure.

Data patterns that cause failure of the methods

There exist some data patterns that may méke some scaling
methods do not function properly or even fail.

A malfunction of the separability method occurs if a
feature's histogram does not show (by multimodal) the pos-
sible clusters adequately. This is illustrated in Fig. 5(a)
where the cluster #1 is four times larger than the other
clusters, and it dominates the histogram of the second feature.
Clustering of the second feature (Fig. 5(c)) only indicated
presence of two clusters only. Although the separability
method may still yield adequate scaling weights, but it did
not function properly.

A second pattern that causes the failing of the variance
method is shown in Fig. 6(a) where one of the clusters is
located relatively far away from other clusters and yields
a misleading large overall variance value. The standard
deviations of the first and second features are found to be
51.17 and 3.1 respectively. The variance method will yield
the scaling weights WyiW, = 1:16.5 (51.17/3.1). The weights

are not sufficiently large enough to bring about separation

of the three clusters.
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The variance method of scaling may fail for this type of data
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- A third pattern that may cause failure of the separability
method is shown in Fig. 7(a). The data, if investigated from
histograms only, do not seem to contain four separate clusters,
either viewed in the first feature only or viewed in the
second feature only. This is an example of the situation
where some clusters do not appear to be separable in single
features but actually separable if all features are taken into
consideration. Single feature clustering yields only two
clusters. The scaling weights thereafter obtained are mis-

leading.

Discussion of method failures

If it happens that the data, in some features, occupy a
wide dynamic range but actually concentrate in a narrow range,
the dynamic range method may yield insufficient scaling
weights. However, this is an unlikely situation if data can
be stored adequately on magnetic tapes where this type of
scaling has been used implicitly. Also, this method as well
as the variance method may fail in the situation where a
feature has relatively few clusters relative to other features.
Both methods tend to provide large weights for the feature
having fewer clusters and thus over-emphasize that feature.

The criterion of equal feature importance seems untrue.

It is observed that the separability method has a higher
incidence of failure when using artificial data sets. The
separability method depends on the availability of good single-

feature clusters for weight determination. Too few clusters,
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as in the case of artificial data sets (3 or 4), may fail to
provide just two good clusters. However large data sets
including geophysical data usually contain 5 to 15 separable
clusters. With that many clusters, there is a better

chance of having some good clusters after some misbehaving

clusters are discarded.

Summary

It is conceived that any distance-using clustering algorithm
has the built-in criterion of equal importance among all the
features. However,due to the mechanism of élustering algorithms,
this criterion is strongly influenced by the numerical values
of the data, which unfortunately are not necessarily consistent
with that criterion. The purpose of scaling is to transform
the numerical values of the data to achieve consistency.
Méthods of determining the weights of scaling center on
what sense the equal feature importance criterion is achieved.
The dynamic range method is in the sense of equal dynamic
range; the variance method is in the sense of equal variance;
the separability method is in the sense of equal separability.
Judging from the primary objective of finding hidden structure
in a data set, the separability method appears to bé the most
superior in terms of criterion. As common to all criterion-
using tools, no single criterion is successful for all types
of data. There exist some data sets for which these methods
may fail.

It is also conceived that all of the three methods will

be successful for the type of data which contains relatively
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large (about ten) number of clusters, when the number of
potential clusters are about the same in each feature and
the sample size is large (thousands). Geophysical data
belong to this t?pe of data. o

In many cases, which method to use depends on the cost.
Obviously, the cost of using the dynamic range method is
almost identical to the cost of clustering itself, the over-
~head cost is almost none. The variance method requires the
knowledge of standard deviations, thus the overhead is the
cost of performing statistics calculation. The separability
method is the costliest of the three methods. Overhead in-
cludes the cost of those single-feature clusterings and ex-

aminations of the clusters.
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