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1. INTRODUCTION

’

A multispectral image is considered here to be a digitized
representation of the reflectance of a target in several regions
of the electromagnetic spectrum. Such images can be produced by
multispectral scanners [1l], or by digitiziné photographs [2].
Multispectral scanners have been flown in aircraft [3] and the
ERTS~1 satellite [4] for remote sensing of the earth's surface.

In a multispectral image, target area is represented by a
finite number of image points. For each image point there are
reflectance measurements (gray levels) in several spectral bands
(channels). The gray levels are quantized, often to either 64
or 256 values. Figure 1 shows an example of a multispectral image.

Processing a multispectral image ultimately leads to an
understanding of the target being sensed;.for example an image
may be processed to determine the population or crop yield of a
geographical area. Such processing usualiy involves several steps. .
In each step an image processor manipulates a deScription of the |
image to develop a new image description for usé by a succeediné

processor. Some proéessing steps seem to be best handled by
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people; but computer-implemented algorithms have been successful
in steps such as image coding [5] and classification [6].

In Figure 1 it is apparent to the eye that there are regions
of internal regularity in‘the image that differ from surrounding
regions. Such regions, which we wiil éall objects, occur when a
forest, body of water, or other part of the target corresponds to
more than one image point. VAlthough the human eye pérci9ve5'most

images as an arrangement of objects, most automatic coding and

classification algorithms. work with a point-by-point description

of the image as an input. The purpose'of the image partitioning
technique described in this paper is té take a "pognt—by—poinﬁ"
description of a multispectral image and produce an "arrangement-
of-objects" description. This is done by dividiﬁg Ehe image into
pieces, where the pieces approximate objects;

An arrangement-ofjgbjects description is often better than
a point-by-point description as an input to coding'or classification
algorithms. In image coding it is desirable to remove redundancy
from an image. If an image is divided into dbjects, information
about an object can replace a larger amouﬁt of information about
many image points. Classification of objects instead of indivi-
dual image points allows the measurement and use of texture and
other spatial characteristics, thus potentially improving accuracy
(7, 8, 91. |

Much of the previous work in image partitioning has employed

a;gorithms that search for points on the boundaries between
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adjacent objects [10, 11, 12, 13j. These methods work wel;lif ‘
the probability is large that two image pointé in the same object
are similar,and two image points in different objects are dis-
similar. Individual edge points are hard -to find if the image'
is noisy, or if adjacent objects differ mainly in texture [14].
Another difficulty is using‘edge points is that further process-
iﬁg must be done to link the edge points into closed boundaries
so that objects can be defined [15, 16].

Another basic approach to‘image partitioning, which we will
call the LBLOCK algorithm,has two steps [li, 18].

v(l) The image is divided into blocks of image points by a

regular rectangular grid. .
(2) Objects are built up from the;e blocks by ﬁerging adja-
cent blocks if they are "similar". |

The main difficulty in uéing LBLOCK algorithms is choosing the
block size. If blocks are too large, small objects will be mis-
sed, and irregular object boundaries will ‘be poorly approximated
by block boundaries. If blocks are too small, texture paéferns
larger than the block size will not be detected, and errors in
estimating the similarity between blocks will be increased
because of noise.

We present here a Recursive Image Partitioning (RIMPAR)
algorithm that dividés an image‘into successively smaller rec-
tangular blocks. At each step in the algorithm, a block is 'sﬁb-

divided unless
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Figure 1. A multispectral image.
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(1) the block's size (largest side) is less than a paraﬁater
MINSIZE; or . »
(2) it is likely that the image points within the block are
from a single oﬁject. | | |
Thug the RIMPAR algorithm partitions an image into'blocks so that |
each object is approximated by a set of.adjacent blocks. This
élgorithm works well with noisy or gradual object_boundaries, and
with objects of varying texture element size.

To present the basic properties of the RIMPAR algorithm, we
will first consider an ideal, continuous imége wifh infinite-;
resolution. Next we will discuss the impact of finite resolution
on the algorithm. Finally some results of applying the algorithm

to various multispectral imageswill be presented. -

2. PARTITIONING IDEAL IMAGES

The.continuous image model is ideal in the sense that any
part of an object, no matter how small, retains the statistical
properties of the object. We assume that in this ideal image,
we can estimate with zero error the mean gray—level‘value of any
part of the image. A RIMPAR algorithm designed to partition:
this ideal image will be presented in this section, and in the

next section we will discuss applications to non-ideal images.

2.1 Notation and Definitions
An image I is a set in the real plane that is surrounded by

a closed curve C of finite length, such that any set J surrounded
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by C satisfies JcI. Note that in our definition "image" refers
to a éet of points. The gray levels associated with an image
will be discussed separately below. The essential properties
of our "image" are its infinite resolution and the absence of
"holes" in the point set. A subimage of I is an image J such
that J¢I. From this point on in this paper, we Qill assume the
all point sets under discuséion‘ére images. |

A partition P of an image I is a finite set of images {I,,

Iz, oo, IL} such that

and for j#i,
1,0 = 4,
where ¢ is the empty set. Each IjeP will bevcallgd a block of Pf
The area of an image J will be denoted |J|. Two'subimages
of I, J; and J2, are said to be‘adjacent if J,UJ2 is an image,
and JinJdz = #.

Horizontal and vertical will refer to a set of perpendicular

coordinate axes that are fixed with respect to I. .The size of an
image JCI is the maximum of the horizontal and Vertical extent of
J.

A gray-level function g(-) is a function whose domain is an

image and whose range is a bounded interval on the real line. We
will use g (X) to stand for the gray level at a point XeI.” For a
given X, g(X) will be_codsidered a random variable whose distribu-

tion depends on X. A gray-level vector G(-) is a vector. of gray-
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level functions: G(X) = (g1(X), g2(X), ..., gN(X)), where each
gi(-)‘is a gray-level function.
Consider an image J. Let E[-] be expected value. We will

use the following notation:

M (J) = E[gi(X)]XeJ]

93
v w1
gl( )
M
gz
MG(J) =
M (T
gN( )
L. -

We call MG(J) the mean vector of J. Also let

2 = ) - 2
Sgi(J) El(g; (X) Mgi(X)) |XeJ]
zg;(J) = Elg; (X)*|XeJ].

An image J is G-reqular if for any subimage KcJ, MG(K)=MG(J).
A G-regular image is "homogeneous“ with respect to G in the sense’
that the mean values of the gray-level functions'{gi('), i=1, 2,
..., N} are constant throughout the image.

A subimage J of I is G-distinct if J is G—regular,-and if for

any subimage KSI that is adjacent to J, KuJ is not G—reguiar. In
other words, a G-distinct subimage is surrounded by subimages with

different mean values of the N gray-level functions of G.



.

A partition P is G-reqular if evefy block of P is G-regular.

P is called G-optimal if every block in P is G-distinct. Note

that a G-optimal partition is necessarily G-regular, but a G-
regular partition is not G-optimal iLf some pair of adjacent

blocks have the same mean vectors.

2.2 Properties of G-Rééular,lmages

Theorem 2.1 If K&J and J is G-regular, then K is G-regular.

Proof: Assume K is not G-regular. Then there is a BcK such .
that
Mg (B) # Mo (K) - (2.2)

But BCKcJ and J is G-reguiar, o)
M, (B) = M. (K) = M, (). (2.3)
Since Egn. 2.2 contradicts Egn. 2.3, K must be G-regular.

Theorem 2.2 If J; and J; are adjacent and G-regular, and

MG(Jx) = MG(Jz): then J = J,1J2 is G~regular. .

Proof: Consider any subimage K&J. Then

l%i%zl MG(J1) + T;TK MG(Jz)

: : 3
Mg (31) [3.0x] | [qznxl
x| x|

M. (K)

= M, (J1)

Therefore J is G-regular.

2.3 The Mean Test for G-Regularity
In this subsection we will show that to determine if an image
J is G-regular,we need only to test for the equality of the mean

vectors of L subimages of J, L > 2.
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Theorem 2.3 Consider an image J and any partition of J, P = {J;,

T2, eoeys JL}, L>2. If G* is a constant vector and MG(Ji)=Gf,
1<i<L, then Prob(J is G-regular) = 1. |
Proof: Let GJ be the event "MG(Ji) = G*, 1<i<L", and RJ be the
event "J is G-regular". RJ will stand for "J is not G-regular”.
The theorem can now be restated as:
~ Prob(rJ|GJ) =1 ' (2.4)
Since Prob(RJ|GJ) + .Prob(RT|GJ) = 1, the theorem holds if and
only if | -

Prob (RJ,: GJ)
Prob (GJ)

Prob (RT|GJ) = =0 - (2.5)

Prob (GJF) # 0 because we assume the existance of G-regular images,
so the theorem holds if and only if Prob(RJ,GJ) = 0. Now we will
derive a matrix equation expressing the joint event (RJ,GJ),and
show that the probability of satisfying this equation is zero.
If J is not G-regular, then there must be a partition P' of J,
P'= {01, O2) cee,s OM}, such that for i # j
MG(Oi) # MG(Oj).
If we let
|g.no,
cij = .—_l___l.l-
EA
then we can express the mean vectors of the blocks of P in terms
of the mean vectors of the blocks of P':
M

Mo (3,) = j£1 ciy MG(Oj)
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Now if~MG(Ji) = G¥%, lf;ﬁp; then MG(J)=G*, so if we let

O.
7|
then
. M _
_ d. M _(0.) = G*,
j£l J G( 3)

Consider the matrix E with elements eij defined by

€4 = G453 dj 1<i<L, 1<j<M.

Let G* = (g1%, g2%, ...; gN*). For every element gk(-) og G(*)
we can write

M

3

M
- = *-' *:
cij(oj) z d. M k(Oj) 9 * =9y 0

1 J 9

if and only if GJ. Thus GJ can be expressed by

~M (0 F 1 o
G |
4 M_ (O 0 .
gk( 2) .
[E] . = . 1<k<N - (2.6)
M (O o)
gk( " .
- - S

We now consider, forbany k, solution vectors of the form (Mg (01),
: ‘ k
M (02), eee, M (OM)) that satisfy Eqn. 2.6. The set of solution
Sy . 9k ,
vectors for Egqn. 2.6 is called the "null space" of the matrix E [19].

The dimension of the null space of E is the number of columns of

E (=M) minus the rank of E. Since the rank of E is greater than
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zero, the dimension q of the null space of E is less than M.
For a given E, we assume that (M_ (01), M_ (02), ..., M (0,0
_ 9k I 9% :
is random vector, continuously distributed in a bounded region of
M-space. (This assumption holds only if RJ, for if J is G-regular,
then all the vector elements are equal, and ‘the equation is satis=-
fied). Since the solutions of Egn. 2.6 occupy a subspace'of

dimension g<M, the solutionfvectonsoccur with zerxro probability.

Thus Egn. 2.6 holds with zero probability; and the theorem is proved.

2.4 VUniqueness of the G-optimal Partition

Theorem 2.4 The G-optimal partition P* of I is unique.

Proof: Assume there are two partitions P* = {Ii, T2, eo-, IM} and
P' = {J1, T2, eeeys JL} that are both G—optimal and P* # P', Since

p* % P', for some k there are adjacent blocks Ji and Jj such that
= n
Ik (Ji Ik)U(JjﬂIk)

Since Ik is G-regular
MG(Ik)
Ji and Jj are also G-regular so
Mg (330Ty) = Mg l3;)
But if P' is G-optimal then MG(Ji) # MG(Jj); This contradicts
Egqn. 2.7, so there can be only one G-optimal partition.
2.5 Partition Criterion

We assume that the blocks in the G-optimal partitioh P*¥ of I
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correspond to the objects in I. Therefore a good partition of I
is one that closely approximates P*, Figure 2 shows examples of
several partitions. 1In this subsection we present a criterion

function that is minimized by good partitions.

2.5.1 Criterion Definition

Consider the G-optimal-partition of I,P* = {0,, O2, sy OM},
an arbitrary partition P = {Ix,'Iz, ...,,IL},and a gray-level
£unction g().

We first define a criterion Vg(P) for the single gray;level
function g(-): .

L |I1.]| _
vg(p) __Z_ T g (I3) | - (2.8)

For a gray-level vector G(-) we define
Vg(P) = Z vgj(P) | o - (2.9)
We also define a partition error A Vé(P) for g(-),

= - p¥) | .. .
A Vg(P) Vg(P) Vg(P ) i o (2.10)

and a partition error for G(-),

(2.11)

i
il 1%
>
<
i

A VG(P) = VG(P) - VG(P*)>

2.5.2 Criterion Properties
M L [o,NI. :
Theorem 2.5: AV (P) = ] 7§ -———-1— (o (o ) = M_(I.))3.
9 i=1 5=1 |1| g3

Proof: From set theory,

Oi =

N

; (Ijﬂoi).



G-Optimal Partition ’ G-Regular Partition

Approximately G~Regular Partition

Figure 2. Partition types.
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Since IjﬂIk = g, j # k,

(Ijﬂoi)ﬂ(xknoi) =@, 3 # k.

" Therefore
L
lo.] = |z.n0; |
TR AL

and

V_(P*) = »§ 1] s2 (0,)

9 =1z 901
M L |o.nI.]|
= ] —=—d_ g2 (0;)
i=1 j=1 |1} -9

Now
‘ % By

V_(P) = —1 82 (1))

g =1 lz} ¢
SO

% Tl "Ifloﬂrlz
V_(P) - V_(P*) = (—I— 52 (1.) = —= J s (N ))
g g =1 0z} 9 3 = qx] ¢
L |rI.] M 10.01-.] _
) —--Jl-(s2 (1) - [ ——I=s2 (0,)).(2.13)
=1 |1 =1 Jryl 9t

The probability density function f(g(X)lXte) is given by :

M Jo,n1,]

£l lxery) = ] —T—-Tl- f(g(X)!XeO Y. : (2.14)
We can write
2 = 92 5= 2 B
Sg (T3) = 25 (1;) - ML (L))
u }o NI | | .
22 (1,) = —L 3 g2 (04 y | (2.15)

g j,‘ i=1 ]Ij[ g
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$g (Oi) = Zg (Oi) Mg~(oi) (2.16)
Now from Egns. 2.13, 2.15, and 2.16

L !I-lf[\.‘. lo.'I.I

j=1|1] {i=1 |z, g i .9 73
j=1|1| 5 |24 |

L |I. M lo.nzI.| _
) l_ll.{ y l_iT_ll Mé (Oi)-M; (Ij)} (2.17)
= i s

From Egn. 2.14 we have

N . : .
M (I,) = —2> J M (0,) (2.18)
g 3 izl lz.] 9 * |
3
‘and so
M |o,nI.| | , M |o.NI.]|
X J M?® (0.) - M?% (I.) = ) —x J Mm% (0.)
i=1 ]Ijl g 2 J i=1 1| g 1
M |o.NI.|
-(] ——I- m_ (0.))?
i=1 |1.]
T 3
M |o.Nnz.| \ % |0fx.|
= M2 (0.) - 2 ( —2J M (0.)) -
i=1 1. g 1 i=1 1.} g 2
J ‘ AR
M lognx Mo jonI.]
) Mo (©)) + (] ——-m_ (0))*
k=1 . |I.|] ¢ k=1 |I.] g
3 3
- M [oinI.l - :
( ] — - (2.19)
i=1  jr.| |
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The last equation follows from

M |o.nI.|
._._l___l_ =l
i |

=] I.
i ] 3

Using Eqn. 2.18 we simplify Eqn. 2.19 to

% lgigfil M2 (o ) M2 (T )
o3 ) = Mg (I3}

s 2 , g
i=1( |14 )
y lgiriil M2 (0,) - 2 M_ (0;) M‘l(I ) + M (I.)?
= 121 |T.] 9 O3 g i’ g 73" g 7
3 |
M |o,nI.| : .0y .
= —=J (M (0,) - M_(I.))%.
=1 |14 g g I3

? |1, | ? !oinr.l B .
vV _(P) -~ V_(P¥*) = —— ——d- m_(0,) -M_ (I.))%
g g =101 4= jrgl ¢ T g I

M inI.l L,
=] ) —21 (Mg (0;) = M (T0)%.

Theorem 2.6: 4 Vg(P)»= 0 if and only if P is g-regular.

Proof: First assume A Vg(P) = Q. From Eqn. 2.12.this implies .
[OiﬁIj-I (Mg(Oi) - Mg .(Ij)')2 = 0, 1<i<m,-1<j<L. Therefore if
(OiﬂIj) # ¢, we must have Mg(oi) = Mg(.Ij)' | |
Consider a block Ij of P, and any subimage K__c_:,Ij. We can write
K= u O0NK | (2.20)
i=1 - :
For each i, 0,MK # ¢ implies oian # ¢ and M, (0,). =M (1.).

g J

(OinK) = M, (Oi) = M (Ij'), 1<i<M, when OiﬂK # 8.

Since (OiﬂK) € 0;, M 3 g

g
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Therefore each term on the right side of Eqn. 2.20 has the same
mean Mg.(Ij), so Mg (K) = Mg (Ij), and Ij is g-regular. Since
- every block Ij of P is g-regular, P is g—regularr

Now assume P is g-regular. Consider each IOiﬂIjl (Mg(oi).
- M (Ij))z, 1<i<M, 1<j<L. We will show if [oinxj|7! 0, then
Mg (Oi) = Mg (Ij). S | ‘
If loiﬂIjl # 0 then (OiﬂIj) # §. We can write

L .
Oi = jgl Qiﬂ Ij 1< lim

For every nonempty‘term on the right side of Egqn. 2.21 we have

(OiﬂIj)goi so
Mg(oian) =M (0,)1gicM, 1<j<L.
We can also write
M
;=Y 1,004 1<3<L
and since each Ij is g-regular, if (Ijﬂoi) # @,
Mg(OjOIj) = Mg(oi), 1<igM, 1<j<L.
From Egqns 2.22 and 2.23 we have if (Oian) # ¢. then
Mg(Oi) = Mg(Ij) 1<i<M, 1<j<L.

Therefore A Vg (P) = O.

Theorem 2.7: A Vg (P) = O if and only if P is G-regular.

Proof: From Eqn. 2.1l we see that AV

N
. G (P) = jzl Ang
and only if Avé (P) = 0, 1Zj<N.. (Note from Eqn. 2.8 that each

. J I
A Vg (P) > Q). From Theorem 2.6, AVg (P) = O if and only if
3 j '

(p) =0 if

(2.21)

(2.22)

" (2.23)

] - . :
P is gj-regular, 1<j<N. Therefore AVG (P) = 0 if and only i P is -
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G-regular. .
From Eqn.2.12 it is clear that AVg(P) : 0, and so AVG(P) > 0.

Therefore from the preceeding two theorems it follows that VG(-)‘is-

minimized by the G-optimal partition P*,'andbalsoihy any G-reqular

partition. The alqorithm presented in the next section nroduces

a partition Pf that tends to minimize V (Pf), so P

G £
mately G-regular. A G—regulér partition is sub-optimal, but is

is approxi-

a simple matter (in the ideal case) to transform a G-regular par-
tition to the G-optimal partition, by merging adjacent bloéks that
have identical mean vectors. Therefore a‘paftition that is approxi-
mately G-regular can be made approximatély G—optimaL by merging

adjacent blocks having identical mean vectors.

2.6 PARTITIONING ALGORITHM FOR IDEAL IMAGES
Fig. 3 is a floﬁ chart of the basic RIMPAR algorithm. | The:
algorithm is recursive in the sense that every image J (except
when J=I) that is dividéd into two parés)is é subimage of a pre-
viously divided image. “
The partitioning of each J into {J,, Js} is. assumed to be

carried out under the following constraints., .

(1) If the vertical extentFOf J is greater than MINSI%E,
partition J with a horizontal line. Otherwise partition
J with a vertical line. ﬁecall.that for the size:of J
to be greater than MINSIZE, either the horizontal or
vertical extent of J must be greater than MINSIZE. |

(2) The partition of J is made so that

|31+ |32,
MIN ( ) > .
5l Jal =P



B .
Ny 4 =7

J

J1

(X ‘ YN

J < MINSIZE -
?

YES

PARTITION
J
INTO
{Jl ’JZ}
SUCCESS
GET Jﬁ
3 FROM
STACK
FAIL
. /.
— ( sTop )
PUT J,
ON . .
STACK

Figure 3. Basic RIMPAR flow chart.




-17-
Thus the area of each block of the partition of Jvis
at least lOOKD% of the area of J.

RIMPAR generates a sequence of partitions Pé, Pi, eee, Pe
of I.: W In Fig. 4 we show an example of such a sequence of partitions.

The following theorem shows that each membex Pi+1 of the sequence

of partitions is an improvement over the preceeding member Pi.

Theorem 2.8: VG(Pi+l)'< VG(Pi)’ 0<i<f-1.

Proof: Consider a partition of I,Pi={I;,Iz, R § J},where J

-1’
is the block that is partitionéd into {J.:, J.} to produce Pi+l from

P.. Let g(*) be an arbitrary gray-level function of G(+).

vV _(P,) = Lfl -I—Iiéz(x.) +'-[-J—|- S2(J)
R A
and
L-1 ]Ii[ \ I, | \ J )
Vq(pi+l = Ay T;T— Sg(Ii) + 7] sq(J3) + i Sq(Jz)-
fherefore |
vV _(P.)=-V_(P,,.) = —lil— sz(:r)--!-f—l—l- sz(Jl)-l—J—z—l- S2(J2)
A ET T T
1 I
=T;T leIZé(J1)+|leZ;(Jz)—(IJxlMg(Jx)+lJZIMg(J?))2(TBWJj

=130 25 T+ T [ME(30)= |32 [ 2 (320432 M2 (32)

1

=T 19 Mg () +] 2 | M;(Jz))-(ljxqu(Jx)+]J;[Mq(Jz))if

By l.lSl. ng IJI = ,Jl l+|J2 l P) the above Ieducyes to
| V (I )"'U ( } )"’l lll l( ( - ]2 2.25
' » P-- M J M \. . P




Py

Figure 4. Sequehce

P, L Ps

of partitions generated by RIMPAR
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Therefore for every g(+) of G(-), V (P ) v (P l) > 0; and there-
fore VG(Pi)—VG(Pi+l) 1'0. VG(Pi)=VG(Pi+l) if and.only”if MG(Jx)=
MG(Jz)- Therefore, since we assume that RIMPAR_decides'to partition
J, MG(JI)#M (J2) and Ve (P ) >V (P1+1)
' When RIMPAR reaches the box labeled "STORE J" in Fig. 3, J

is accepted as one of the blocks of the final paftition'Pf. From
the flow chart it is evident‘that J is accepted_fof-?f only if the
size of J is less than MINSIZE, or if M (J1)=M (sz.‘ The alqorithm
is structured SO that at any point in the sequence of alqorlthm
‘'steps, all parts of I that are not included in the already-accepted
blocks of Pf are elther in J, or on the stack. Thereforelno part
of I is excluded from testing by the algorithm, and every block Ij
in Pf satisfies either |

(1) the size of Ij is less than MINSIZE; or

(2) Ij is G-regular.
The following theorem shows how these properties allow partition
error to be controlled by MINSIZE. |

Theorem 2.9: Consider any image I and any e€>0. There exists a

value of MINSIZE such that RIMPAR produces a final partition Pf,
satisfying AV _ (P_)<e. |
S N
Proof: From Egn. 2.11 we see that AV.(P_)= ) AV_ (P_.) so the
—root | GUETEy Mgy e B
theorem holds if AVé (Pf)<e/N, 1<j<N. For an arbitrary g(-) in G(-)
: 3 _ S
we have
M L [OiﬂI |
av_(P)= ) ] ____.2_.(M (0;)-M_ (1)) 2.
9 i=1l j=1  |I|

We assume that for 1<i<m and 1<j<L
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- 2
(M (0,)=1_(1,))2<D

where D is some constant. Therefore

RPN .

V_ (P.)<— Y - lo.nI.].

9 F 1] i=1 321 13
M L

Now } ) IoiﬂIjI is just the area of the blocks of P, that
i1 521

overlap boundaries of objects (objects are blocks in P*). The
object boundaries have a finite total aré length S,. The smallest
side of a block in Pf is greater than KD-MINSIZE (gee the algorithm
constraints). Therefore the number of overlapping blocks is less
than ST/(KD-MINSIZE). ,Sihce the area of each overlappinag block is

less than (MINSIZE)?,

M L Sq" (MINSIZE) *
D1 loynr.] < (2.24)
i=1 §=1 J Ky* (MINSIZE)
and
DS,
AVg(Pf)< (MINSIZE).
HEN
Therefore if we set
[I]KDe . : C o
MINSIZE = ——— o o - (2.26)
DS N : -

then AVg(Pf)<e/N and therefore AVG(Pf)<e

It is interesting to note that to insure that the right hand
side of Eqn. 2.24 decreases with MINSIZE, the §igg.of'ovef1apping
blocks must decrease more slowly with MINSIZE thanlthe area of over-
lapping blocks. Therefore RIMPAR must limit block.size rather than

block area.
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3. PARTITIONING REAL IMAGES

We now consider the application of RIMPAR to images with a
finite number of points. o |
3.1 Sufficient Gray-Level Vectors

In order for RIMPAR to produce a partition that is meanianul,
the blocks of the G-optimal partition P* should correspond to areas
of the target we wish to consider as single entities. A gray-level

vector G for which P* satisfies this goal is called sufficient. In

other words, G is sufficient if for any adjacent areas H,; and H; in

I such that H; anq H, represen£ different target entities, MG(H‘)
7 Mg (H2).

The first logical candidate for gray-level functions is thé
set Gi(*)=(g1(*), g2(*)y v.., g,(*)) corresponding to the reflectance
in the n channels of the multispectral image. In many anplications
Gy () or even a subset of él(-) may be sufficient. However, if for

adjacent areas H,; and H; M (H1)=Mg (Hy), 1<i<n, then G, (+) is not

g

sufficient. This would be the caselif I and H, had identical

means in all channels,but different variances in some channels. To
handle such situations we propose sets of gray-levél funétions
Gk(-)=(g§('), gzk(-),'..., gﬁ (<)) where g§(X).is én unbiased.estiméte
of E[}gi(Y))k/¥eN(Xﬂ and N(X) is a small neighborhood of X, consist=
ing perhaps of X and thé eight nearest neighbors of,x. If any .

Hi1 and H, had gray-level distributions that differ in at least one

of the first r moments of at least one of the first n channéls, then

G()=(G1(*), G2(*), ..., G_(+)) is sufficient.
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_Thé gray-level veétor can be further generalized ﬁo distinquish
between adjacent target areas that differ in either pattern&or
dependence among neighboring points. The procedure in the;é cases
is to define gray-level functions with mean values that reflect
these differences.

3.2 Testing G-IRegularity

Since a :eal’image has a finite number of image points, we can
only estimate the mean vector for any subimage J. Therefore test-
ing G-regularity cannot be done with zero error,_and'it is desirable
to find a test that tends to minimize testin§ errors.

Recall that to determine if J is G-regular, we partitién'J
into {J; ,J21} and ask "MG(J’)=MG(J2)?" In this subsection we discuss
the implementation of this test. B
3.2.1 Partitioning the Gray-Level Vectof

To determine MG(Jx?# MG(Jz) it is sufficient to dEtermine
Mgi(J;)#Mgi(Jz) for some qi(°)eG(-). Therefore it is not necessary
to use all gray-level functions to decide MG(Jx)#MG(Jz)- If we
partition G(+) into éubvéctors (Gy (), Gz(-), ..., Gp(f)), then we
can test for G-regularity as shown in Fig. 5. This testing scheme
has two advantages:

(1) All graj level functions need not be evaluated for each J.
(2) Testing subvectors instead of iﬁdividual gray-level func-
tions allows the use of redundancy to smooth out noisy

estimates. | ‘

3.2.2 A Test Statistic

We calculate an estimate 2%3(;k) of MQi(Jk? by



No

l

J is not
G-reqular

q=q+l Yes q<l>

J is G-regular

Figure 5. G-Regularity Test

>
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i IJ l Xed,

Throughout this section x| stands for the number of points in any

imaqe K. Let

5= (] (65 (=15 (7)) (6, (x)-1 @) T+ 16,001, (7))
m 2 Xed, €1 XeJ 2 E
> T
(G (=M (T2))73
and
!JIIIJ2I A A T —1 A A )
= 7] u%iwnq%iwﬂ)s -u%iwnﬂ%iwﬁ) (3.2)

The statistic T? has been used [20] to test the equality of the mean
vectors of two multiva;iate Gaussian distributionsin the following
way: the two mean vectors are considered equal (aé significance
level a) if

(]g| -2)r

T <~————F

(3.3)
(|3} -x-1) -

|J]|-r-1 (o)

where r is the number of gray-level functions in Gi(-), and
Fr,iJi—r—l (¢) is the upper 1000% point of the F distribution with
r and |J|-r-1 degrees of freedom. In our application we have no
guarantee that the distributions f(Gi(X)/qu ) and f(Gi(X)/Xel ) are
multivariate Gaussian, but the distributions are probably close
enough to Gaussian to allow the use of T? with some success. We

will approximate Eqn. 3.3 by first noting that since [T]>>r [21],

(|7]-2)r
|71 Fr,[J]-r-l (@) =xZ (o).

(lJ]-r-l)

1 ' .
Mo (3 )= —— ] G; (X)  k=1,2 (3.1)
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where X; (a) is the upper 1004% of the x? distribution with r
degrees of freedom. For a given ¢, x;(a) increases with r.

Therefore we use the following test: decide M KJ‘)=MG (T2)
i i
T2< T
m
where T is an experimentally determined constant.
3.2.2 Efficiency of Partitions

If it is found that M. (J.)# M. (Jz), then J is partitioned
o i 1
into J: and J:. Although any partition {J,,J2} is suitable for

the mean test, some partitions of J have advantages to offer in
later steps of RIMPAR. For example, if J: happens to be G-regular,

then J: will not be partitioned later. To evaluate various. par-

~

titions of J (with respect to G, (*)) we deflne the Eartltlon

efficiency n (Jx, Jz) by

( ) —-——-IJIHJ”(M (1) (T2)) T ¢
Ji1,J2)= Ji1)—-M J2 M

n CRESECALE (3.4

The partition efficiency indicates the improvement of the partition
criterion due to partitioning J into {Ji1, J2}. This can be shown
by referring to Egn. 2.25 and noting that

1

5+410% 77 Mg

(31,T2)
l1| i

(p

2

v, (P.)-V
Gi 3 Gy

when Pj+l is derived from Pj by replacing J by {J,, J:}, |
To achieve partitions with high efficiency,:RIMPAR tries several
partitions of each J, and picks the partition with the highest
efficiency. The trial partltlons are qenerated by (K -1) equallv—
spaced horizontal llnes, and (K -1) equally-spaced vertical lines.

Here KD is the same as in Egqn. 2.26.
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The test for C-reoularitv is anplied onlv to the most efficient
partition of J.
3.2.4“ Storage and Retrieval of Subimages

In the computer implementation of the G-regqularity fes;}
much processing time is used to retrievé the gray levels of J,
and various subimages of .J, for use in calculating the nn.(31,32)
and T?. The following steps are taken to minimize retrieial
time;

(1) The total image I is initially stored 6n tape. Before
partitioning,iI is t:ansferred_té avdisc that allows
almost direct‘access to any line of qray-levels.

(2) If at any point in RIMPAR we have 1< MAXCOR, then thé
gray-levels of J are transferred to gore; :Ali suh-
images of J can then be retrieved from core instead of
disc. Arrays in the FOhTRAN program are d?namically
allocated to maximize MAXCOR, the amount of core avail-
able for image storage.

(3) As J is retrieved from either core or disc, the sums
and sums of squares of the gray-levels of biocks of J
formed by 2(KD~1) equally-spaced horizontal ana vertical
lines are calculated. These partial sums are stored in

~core and are used to calculate the nci(Jx, J2)'s for thé

2(Ky-1) trial partitions, and v for the most efficient

—

-

partition. ’
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‘3.3 Choice of MINSIZE
. In an ideal image, MINSIZE can be made arbiﬁrariy small to

limit partition errors.due to blocks that overlan ohject boun-
daries. In a real image, it is still desirable to minimize 6véf4
lap errors, but if MINSIZE becomes too sméll} the mean eétima#es
necessary for deciding G-regularity become poor. Considef é
partition block J. For any,éray—level function g(+) we can form
an estimate ﬁg(J) of Mg(J) as féllows: |

- 1

M (3) = — ] g.

g 3] xeg
Here we use|J| to stand for the number of points in J. We défihe

a block error by

By (M)=E [ ()-1) (30)* ], | (3.5)
whereE[*] is expected value and Mé(J)=Mg(Ok) where k satisfies

loynal=max  lo,nal. S (3.6)

i<j<m- _

~

We now derive a rough approximation Eg(J) to Eq(J), and we will
select MINSIZE to minimize ég(J).

The value of Eg(J)‘for a particular J is highly depenqént on
whether J is g—regular. Therefore to find an'éxpression for
Eg(J) for a "typical" J, we consider two errors: Eg(J/R), the egror
for a g-regular J, and Eg(J/R)( the error for a non-&-regular J.

Thus we write (3.7)

Eg(J)=Eg(J/R)Prob(R)+Eg(J/§)Prob(R)=(Eg(J/R)-Eg(J/R))?rob(R)+Eg(J/R)
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where R and R stand for the events that J is g-regular and J is
not g-regular respectively.

Expanding Eqn. 3.5 we get

iy ) 1 2! : 2 ’_ 1 B
E, (3)=E I« (45 (3) =M1 (3))+ 01 (D) =1 () ] =E [(mgm)—Mq (1)) + g () =1 (3))

From the well-known variance of the sample mean [22] we get
sk - - | |
E (=3 + M_(3)-M'(3))2 o (3.8)
g IJI g g ‘ :

Now if J is g-regular, Mg(J)=Mé(J), so
S2(0,)
E (J/R)agi_li_
g 7]

(3.9)
where k is defined in Egqn. 3.6. To form a rough approximation to
Eqn. 3.9,we substitute Q for S;(Ok), where ( is a "typical” object

variance. For |J| we substitute the smallest possible [J],

(MINSIZE/KD)z. This results in

A
R KZQ, . } ) ‘
E_(J/R)=—2 < o | (3.10)
g (MINSIZE) 2 :

If J is not g-regular, then we assume that J overlaps two

objects Ok (see Eqn. 3.6) and Oq. Therefore

lo,nJ| 10" | . oy oy
Mg(J)= 7] Mg(ok)+(1-fTET—f ) Mq(qq)aé o (F)=M_ (O,
sO
. o ha] 2
-M? = - - 2
(Mg(J) Mg(J)) (1 7] ) (Mg(Ok) Mg(oq))

In order to roughly approximate Eqn. 3.8 when J is not g-regqular,

we substitutec O for Sé(J), where ¢ is called the contrast ratio

and is defined by
S2(J)
‘ C:_..(g_.__..
sg(ok)
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where J is a typical non g-reqular block_and Ok is a typical
object. The parameter C depends basically on how different.
neighboring objects are. We alsoassume that (Mq(ok)-Mq(oq))zz
Sg(J), so c0 is also substituted for (Mg(ok)-Mg(Oq))’. For |J|

we again substitute the smallest |J|, (MINSIZE/K,)?. Thus we have

cK20 cO

E_(J/R)em— + — _ (3.11)
9 - (MINSIZE)? 4 |
lo,ng} 2
where for (l-—————) we have substituted its greatest possibhle

1
value, 1/4.

To approximate Prob (R) we consider a simple model in which a
non-g-regular block J is its largest possible size, a square
MINSIZE x MINSIZE. We consider a typical object O to be a B x B
square. Assuming the upper left hand corner of J i; eQually
likely to coincide with any point of O,
_ 2 MINSIZE ‘
Prob (R) :———;——— (3.12)

Now we can approximate Eqn. 3.7 using Eqns. 3.10, 3.11, and 3.12:

- cKéQ ere) KéQ 2 MINSIZE K30
E (J)=(——-—- + — - ) ( ) + :
9 (MINSIZE) ? 4 (MINSIZE) ? B (MINSIZE) 2
Q o :
=— C(MINSIZE) + 4(c~-1)K_%+ 2K_B L (3.13)
2B D D
MINSIZE - (MINSIZE)?

To choose a value for MINSIZE, values for c¢ and é gré specified

using knowledge of the image under.considératiohand KD is chosen to .
give efficient partitions with reasonablé computatiqn time. ﬁext.
Eg(J) is calculated for MINSIZE=l1,2,...,B; and the value for which‘

Eqn. 3.13 is a minimum is chosen.
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4., APPLICATION kRESULTS

We have presented an algorithm for dividing a mulﬁisnectral
image into parts, where each part is likely to corresnond to
a single target entity., The algorithm has been imnlemented on an

IBM 360/67 general-purpose digital compﬁter at the Laboratdry-for

Applications of Remote Sensing, Purdue University. RIMPAR has

been applied to several types of multispectral images, and details

of these experiments are described elsewhere [231.

An indication of the quality of the partitions broducéd
by RIMPAR is given by the following results.‘RIMPAR partitions
were compared to partitions produced by equally-spaced horizénﬁal
‘and verﬁicalvlines for two images. Image Il was scanned from an
airplane and consists of 40,000 image points. Iméqe.I2 was scanned
from the ERTS-1 satellite and has 12,000 image points. Both images
depict agricultural scenes, but the qround resolution of I1 is
abhout lOm2 , and for Izwit is about~6000m2 .

We approximate the partition criterion Vg(P) ( Eqn. 2.8 ) hy
using number of points fof area, and the sample variance of each
block Ij for S§<Ij)' The approximate criterion Gg(P) was calculated
for a RIMPAR partition and several reqular-grid partitions of
Il and I2. The twé partition types were compared by observing the
number of partition blocks required by eaéh to give a particular

approximate criterion value.

For Il.the RIMPAR partition PR achieved 6§(PR)=324'0 with
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595 blocks, and the reqular-grid partition Pe achieved Gq(P’)=324.1

with 1932 blocks. For I

Vq(PR)fG,zl w1th 340 blocks, and Vq(PG)=

27

6.20 with 1034 blocks. The RIMPAR processing time for Il was 3.89

CPU minutes, and for I, it was 1.0 CPU minute.

Nearly eaqual criterion values indicates that for both imaqes,'

R
images, Since Pp has many fewer blocks, the average block size is

much less in PR than in PG. Any processing task for which a part-'

itioned image is an input works better with largef blocks, assun-
ing the blocks preserve the information in the image. Therefore

we conclude that for this data RIMPAR forms better partitions

~—

than the regular-grid algorithm.

The regular-grid partition P_ can be .used as an input to the

G

LBLOCK algorithm described in the INTRODUCTION. This will produce
a new partition Pé such that Vq(Pé) may be only slightly higher

than Vg(P’). However,lthe small size of the blocks in‘PG will
probably lead to many LBLOCK errors; that is, errors in deciding
the similarity of adjacent blocks. LBLOCK could also be applied
to P, , and the larger average block size would tend to minimize

LBLOCK errors.

P_ and PG represent about equally the information contained in the -
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