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ABSTRACT

‘mA method of classification of digitized multispectral
images 1is "developed and experimentally evaluated on actual
earth resources data coliected by alrcraft and satellite.
The method 1is designed to exploit tﬁe characteristic
dependence _between adjacent states of nature that s
neglected Ey the more conventional simple-symmetric decision
rule. Thus contextual information s incorporated into the
classification scheme. The principle reason for doing this
is to improve the  accuracy of the classification. . For
general types of dependence this would generally require
more computation ' per resolution element than the
simple-symmetric classifier. But when the dependence occurs
in the form of "“redundance', the elements can be ctassified
collectively, in groups, thereby reducing the number of
classifications required. Thus a poténtial exists for
increased, rather than' decreased, efficiency.

Basically, the method can be thought of as an image
partitioning transformation that delineates (extracts) the

statistically homogeneous groups (samples) of elements and a



sample classifier that classifies them. Various
possibilities are considered for bo£h operations.

The main resul? is that a‘combfnation of the two is
found which consistently provided the lowest error rates,
rivaling those obtained when ground observational data was
used to delineate the samples manually. The relative
efficiency of this method depends largely on the complexity
‘of the classification task. For relatively complex
Elassification, the time saved by sampie classification more
than compensates for the ‘extra . time required for -
sartitioning. But for relatively simple classification the
simple~symmetric c]assif{ér is faster, Of course in the
latter case, efficiency 1is not as great & consideration
since the total- CPU time involved is much less than in the

former case.



CHAPTER 1
INTRODUCTION

The general quehtive of this ‘thesis Is to advance the
state of the art of-pattern recognition as it is applied in
remote sensing technology. This_ chapter opens with a
discussion of pattern recognition and remote sensing systems
that leads up to the specific problem - under investigation.
In the process much of the prevalent terminology is
introduced. Other woék that is reiated_to this problem is

discussed in Section 1.3.

1.1 Pattern Recognition Systems

‘Man's most abundant source of information about a scene
is the radiant eleetromagnetic energy which emanates from
it. The information 1is embodied in the spatial, spectral,
and temporal variations ({patterns) of the radiance. The
general p}oéess of extractipg information from patterns
(radiance or otherwise) 1is known -as pattern recognition.
The most common form of pattern recognition is
"elassification®, the assignment of an observed pattern to
one of several prespecified categories (classes). This
requires a certain degree of experience; 1i.e. the

recognition sysfem must know the possible classes and have
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some sort of uniqgue charaéterization‘ for each one.
Typicé]]y this experience is "learned" from representative
"training" batterns'(br sets of pat@erhs) that are supplied
as references for each class. .In the simplest case, each
set o% patterns is a complete characterization of the class
it represents, Then <classification is a straightforward
matter of comparison. More gsenerally, . a stafistica]
characterization might be the only adequate approach, and
the training patterns might be used to estimate statistical
quantities. Classification then becomes a problem In
statistical decision theory. - e

Of course it is not always possible to presbecify the
categories that a pattern ﬁigﬁt belong to. "This is often
true in scene analysis, where the number of possibilities
can be enormous. Then pattern recognition can take the form
of Mdescription", In general, pattern recognitiom can
involve both <classification and description. A~ complex
scene composed of réLative]y simgle objects is .often
described by classifying the objects and recording their
relative positions and orientations .in the scene. _ This
description might be considered the final result, or It
might in turn be used to cTassify the scene itself.

A1l systems that extract information from a scene
consist of _ 5 data collection system and a data processor.
The purpose of the data collection system is to reduce the
scene to a manageable number of measﬁrements (features)

without losing the desired information. Further reduction
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(feature selection) is often possible In the processor. The
choice of "features obviously depends upon the information
that is desired, and converseiy the information that can be
extracted depends upon the choice of features. Most
collection systems are similar in many ways to the human
eye, which forms features by "sampling" the spatial,
spectral, ‘énd temporal dimensions, thereby converting a
scene into series of electrical pulses, Spatial sampling
can be accomplished by forming an image of the scene on an
array of detectors (electrical or chemical) or by scanning
the image with an electrical detector. The resolution
element of such a system is the projection of the detector
back through the optical system onto the scene. It is
commoniy called a “pixe!“, short for picture element. The
overall system'resqution.depends on both the pixel size and
the interval between samples, whieh are normally about
equal,

Spectral sampling s accompl ished by measuring the
rédiance of each resolution element with detectors
(channels) that are sensitive to different spectral bands.
A prism, grating, or interference filter is often used to
separate°_the radiant energy spectrally before detection.
Temporal sampling is accompl ished mere]y:by taking spatial
and spectral samples at discrete times.

Depending on the type of information that 1is desired,
one can emphasize or de-emphasize a particular dimension by

sampling it relatively many or relatively few times. A
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single black-and-~white photograph, for example, emphasizes
spatial information since it is created by sampling only
6nce spectrally and once temporally. A color photograph
contains three spectral samples and thus emphasizes both
spatial and spectral information. The extent to which a
pattern is sampled falls under the category of "measurement
complexity”. Under-sampling results in loss of information,
but over-sampling results in an excess of datq to process.
Technically, the data dimensionally Increases faster: than
its intrinsic dimensionalkty. r

"Data dimensionality" refers to the dimension of the
ieasurement or observation space, in which a sampled pattern
can be considered an observation of a multi-dimensional
random variable. The probability density of this random
variable is a function of N variables (dimensions), where N
is the number of measurements. The "intrinsic"
dimensionality of a random variable (X) is the minimum
dimension that another random variable (Y) «can have if X is
uniquely related to Y. Thus it is the minimum number of
measurements that could be used to convey the same
information as X if the relationship were known.
Over-sampling increases the data dimensionality, but the
individual measurements tend to be more highly correlated
causing the information conveyed per measurement to
decrease.

The information that can be extracted from an image is

also limited by the sophistication  of the processor which
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must handle the data. Just as the necessary measurement
complexity depends on the information being sought, so does
the method_ of processing. The human mind is often an
extremely good processor, particularly when the information
is of primarily a spatial nature.' Fsr this purpose the data
is presented in visual image form, | thch is Known as an
"imgge-oriented“ processing system, By contrast, 1in a
humerically-oriented”" system the decision-making element is
a computer, and the visual image plays little or no part.
Advantages of the computerized approach are its high toad
(volume) capactity, comparatively low cost under high load,

and capacity to handle high measurement complexity.

1.2 Remote Sensing of Earth's Resources

An important subject before the engineering and
scientific community at the present time is the processing
of scenes which represent tracts of the earth's surface as
viewed from above. A typical scene consists primarily of
regular and/or irregular regions arranged in a patchwork
manner and each containing one class of surface cover type,
These homogeneous regions are the I"objects" in the scene. A
basic processing goal is to Ioca;e and classify the objects
and produce a description of the scene in terms of tabulated
results and/or a “type-map". As in other image processing
applications,-the locations and spatial features (e.g. size,
shape, orientation) of objects are revealed by changes in

average spectral properties that occur at boundaries. But
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unlike most other applications, the spatial features of an
object_offen‘ have only a weak relationship to its class.
Research has shoWn, however, that many c}asses can be
distinguished reasonably well on the basis of their spectral
features, using statistical pattern classification
techniques. Current research Fs directed toward use of
temporal features as well, but not in this investigation.
Our iﬁterest is in . the ndmerical]yeoriented system
approaﬁh to processing these scenes. The input to the
system is in the form of digitized multi-spectral.séanner
{(MSS) data stored .on magnetic tape. - A fypical
multi-spectral scaﬁﬁér‘:sampleé'the séectra].dimension and
one spatial dimension. ' The second spatial dfmensipq is
provided by " the motion of the platform wﬁich carries the
scanner over the region “of fhtereét, generating a
Tasteréfype‘ scan. The temporal dimension 1Is provided by
rescanning the region at different times.
“Compdter'q]assif&cation: of MSS data is typically done
by applying a "simple symmetric" decision rule to each
pixel. - This means that each pixel is classified
individuaj]&. on the basis‘of it; spectral measurements
alone. A ‘bésic premise of " this technique {; that the
objects of interest are large compared to the si;?:of a
pixe1; Otherwise a large proportidﬁ of pixels would be
composites of two or more classes, making statistical
'péttern classification unreliable; i.e. the prespecified

categories would be inadequate to describe the actual states
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of nature.. (For later reference we shall call this "Premise
A".) Since the sampling interval is usually comparable to
the pixel size (to preserve system resolution), it follows
that each object is represented by an array of pixels. This
suggests a statistical dependence between consecutive states
of nature, which the simple symmetric classifier fails to
exploit. To reflect this property, we shall refer to simple
symmetric classification as "no;meméryﬁ classification.

One method for dealing with dependent states Is to
apply the principles of compound decision theory or
sequential compound décision theory. Abend |11 points out
that a sequential procedure can be implemented relatively
efficiently when the states form a low-order Markov chain.
However the prospect is considerably less " attractive when
they form a Markov mesh, which is a more suitable model for
two-dimenslional scenes. Furthermore, estimation of the
state transition probabilities could be another significant
obstacle to ‘implementation of such a “procedure., A short
appendix on the compound decision approach is included in
this thesis.

'The compound decision formulation is a powerful
approach "for handling very generé] types of dependence.
This suggests that perhaps by tailoring an approach more
directly to the problem at hand, one can obtain similar
results hith considerable simplification. A distinctive
characteristic of the spatial dependgnce in MSS data is

redundance; i.e. the probability of transition
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from state | to state J is much greater if ji=i than if J#i,
because the sémp]ing—interval is small compared to the size
of an object. This suggests the use of an ''image
partitioning” transformation to de]ineate- the arrays of
statistically similar pixels before classifying them. Since
each homogeneous array represents a statistical "sample" (a
set of observations from a common population), a "sample
classifier" could then be used to classify thé objects. In
this way, fhe'ciassification of each pixel in the sample is
a result of the spectral properties df its neighbors as well
as its own. Thus its “context"™ in the 'scene is used to
provide bétter c]éssification.' The acronym ECHO (extraction
and classification of homogeneous objects) designates this
general approach. '

A characteristic of both no-memory and compound
decision techniques 1is that the number of classifications
which must be performed 1Is much Jlarger ‘than the actual
number of objects in the scene. When each classification
requires a large amount of computation, even the no-memory
classifier can be relatively slow, An ECHO technique would
substantially  reduce the number of classifications,
resulting in a potential jﬁcreése in épeed (decrease . in
cost). Whether or not this potential is realized depends on
the efficiencﬁ of the partitioning operation.'

The goal of the current investigation is to further the
develaopment of the ECHO concept. In barticu]ar, various

processing options are devised, implemented, and tested on 2
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wide variety of data sets, Input parameters are varied to
determine their effect, and performance comparisons are made

using no-memory classification as a norm.

1.3 Related Work

The recent literature contains numerous references to
image partitioning algorithms. Robertson |2] divides them
into two main categories. “Boundafy seeking" algorithms
characteristically attempt to exploit object contrast.
These techniques include local gradient 13,4}, template
matching 151, two~dimensional funcfjon fitting 161,
clustering 6,71, and = gradients estimated from
variable-sizéd neighborhoods [8!. Two of these have been
imp]emente& with digitized multispectral Imagery.

Anuta 4], investigated a_multivariate extension of a
two-dimensional gradient operator. The gradient operator of
a unispectral image maps each pixel into a number which
reflects the average positive difference between that pixel
apnd its neighbors. The multivariate operator sums these
numbers over all spectral features for each pixe].‘ Since
the differences are generally larger for boundary pixels
than for non-boundary pixels, thresholding this sum (for
each pixel) at the."proper" level prov}des a boundary
enhanced version of the original image. This technique is
relatively fast, but it has several serious problems.
First, it 1is .inherently " noisy, which is typical of

differentiation techniques. it is also very sensitive to
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the threshold 1level  used. Furthermore the boundaries
derived by th{s technique often fail to close . upon
themsel ves. qu example, a boundary 1line may become
discontinuous or fade out completely, leaving the objects
amb iguously defined. In special cases where the object
shape is restricted 13,91, the true boundaries can sometimes
be deduced, but in general they cannot. This may not be a
serious drawback for applications such as ~image
registration, but closed boundaries are necessary for sample
classification. This 'particular problem is common to all
the boundary séeking algorithms mentioned above.

" . Wacker [7] develoPed an algorithm for MSS datarwhich
performs a clustef analysis (unsupervised classification) of
a small region of the image and then scans the result for
the oresence of a boundary. ~ The estimated boundary
structure for the entire iﬁage' is obtained simply by taking
the union of the boundaries found in all such regiéns.- This
is a much more'time~cpnsuming process, but it is less noisy
and less sensitive ta input parameters. 0f course It
suffers from the same open boundary problem as the other
boundary seeking algorithms.

The other category of image partitiohing alzorithms can
be calléa “object seaking® algorithms, ,which
characteristically exploit the internal regutarity
(homogeneity) of the objects. As the name implies, an
object seeking algorithm always produces well-defined

samples (and thus closed boundaries as well). There are two
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opposite approaches to object seeking, which we shall call
conjunctive and disjunctive., A conjunctive algorithm begins
with a very fine partition and simplifies it by
progressively merging adjacent elements toéether that are
found to bé simifar acco}ding to certain statistical
criteria ]10,11}1. A disjunctive algorithm begins with a
very simple partition and subdivides it until each element
satisfies a criterion of homogeneity. For exampte,
nobertson's algorithm ]2,12] is based on the premise that if
a region contains a boundary, splitting the region
arbitrarily will usually produce two subregions with
significantly different statistical charaqteristics.

Early work in the application of sample classification
to MSS data was reported by Huang [13]. His method of
“"oolling" requires classification of the individual pixels
in the sampie and is thus relatively inefficient. Wacker
and Landgrebe |14] investigated the ™minimum distance
" approach' using parametric and non-parametric methods. Both
studies relied on manual definition of the object
boundaries, based on actual surface (g}ound) observations,
to locate the samples that were classified.

We combined Rodd's conjunctive partitioning algorithm
with a minimum distance sample classifier and observed an
improvemént in classification accuracy over conventional
no-memory classification, but processing time was increased
{15]. Gupta and Wintz |16} added a test of seqond order

statistics to Rodd's first order test, but obtained
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essentially the same results as the first order test at
greater cost in processiné time., Robertson 12,124
implemented a disjunctive partigfoning algorithm with the
same minimum distance classifier. He obtained about the
same classification accuracy as conventional no-memory
classification with an order of magnitude Iincrease in
processing time. This pojnts' to one essential difference
between the disjunctive and conjunctive approaches, With a
disjunctive‘approach, every time a regioh 1is divided new
sample statistics must be calculated from raw data. With a
conjunctive approach, every timé€ two regions are merged the
statistics for the resultant region can be obtained merely
by "pooling" the statistics of tﬁe orig{nal two subregions.
This results .in a significant computational advantage for
the conjunctive approach. .

The current investigation 1is devoted to further
deQelopment of the conjuﬁctive approaéh. ‘A much faster
sample.classifier is proposed and tested. This proS]em Is
discussed in Chapter 2. New statisticél criteria are
proposed as well as new object seeking ltogic in Chapter 3,
Extensfve test results appear iIn Chapter 4, comparing
different afgorithms against’ each “other and against
conventional no-memory classification, The main result is
that the stability, classification accuracy, and speed of
the ECHO technique have been greatly Iimproved, Compared to
the no-memory classifier, consistently lower error rates are

observed usling an ECHO approach, and for a reasonably
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complex classification Its efficiency exceeds that of the

conventional method.
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CHAPTER 2
CLASSIFICATION

The motivation for object extraction is to enable
faster and more accurate classification of the pixels within
the object. In Section 2.3 we discuss the classification
algorithms that accomplish this. They are based on a
certain model of the objects to be <classified, which |is

described next.

é.l Statistical Model of Multi-Spectral Scanner Data

As we have indicated, a typical scene consists
primarily of objects whose boundaries form a partition of
the scene. The partition is generally unknown at the
outset, bu; we csn at least assume that it is relatively
coarse compared to the size of a pixel. Each object in the
scene belongs to some class. For representation pu?poses,
each class is divided into one or more "subclasses'"., They
are also called 'spectral classes" (as opposed  to
"informatjonal classes") to indicate that they can be
distinguished spectrally although it may not be useful to do
so. Let Wij denote the jth subclass of the ith class. Let
F denote an object (repreéented by an array of pixels), and

let X denote a pixel in some object. (The underbar is used
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to {ndicate a g-dimensional variable (x_qu.), where ¢
hencefo}th denotes the number of spectral channels.) Then
Fawij denotes the event thqt F belongs to the subclass wij.
The a-ériori probabil{ty of this event is denoted by

P(Fewij ). In accordance Qith Section 1.2, we ignore any
statistical dependence of this event on the spatial features
of F. If there were a strong, known dependence then it
could be used to _help classify F,'but' that s not our
intention. A consequence of this assumption is that
P(iawij) = PQEEWEJI, and we denote both qdantities simply by
P(”ij}'

The pixels within a given  object of a given spectral
class are ‘complete]f characterized = by their class~-
condifiona],.ﬁoiﬁt, probability distribution function. For
no-memory classi?ication; such a compiete model = is
unnecessary; only the marginal distribution of each pixel is
required. Furthermore, the pixels within a single object
are wusually assumed to have a'commqn (i.e. stationary)
margingl distribution, which is due to the homogeneity of
the tyées of objects typiéal]y encountered in remote sensing
aoplications. Although the data is aigitized, it 1is
convenient to represent this q;variate distribution by a
contingous-ﬂarameter -probability density function (pdf)
whjch, fof subclass wij, is denoted by p{X=x[X ewij) or

simply by p(ilwij). (The vertical bar indicates conditional

probability).
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Two pixels in spatial proximity to one-another are
unconditionally correlated, with the degree of correlation
decreasing as the distance between them increases. Much of
this correlation is attributable to the effect of dependent
states, discussed in Section 1.2, which is the effect we
wish to exploit. For simplicity we shall ignore other
sources of correlation. Thus we assume that pixels within
the same object are class~-conditionally independent; i.e.
eaéh object is a "simple! sampie from one of the spectral
class populations. Then the joint pdf of the pixels can be
expressed as just the product of their ﬁargina! pdf's, This
approximation leads to fast, effective (though suboptimal)
processing algorithms, but theoretical predictions based on
" this simplified model should be interpreted cautiously.
This aspect of modeling 1is discussed at greater depth in
Appendix A. )

It is possible to express other statistical

characteristics in terms of the ones above, i wi denotes

the ith class, then

t .
PCLeH;) = PCU XeW; ) = PY; ;) 2.1.1
J B

where U denotes the union of events. The pdf of X,
conditional on this event, is given by

plalWp) = L 2 plxlW;;)PON;

j) 2,1,2

This equation defines the representation of a class in terms

of its subclasses. The unconditional pdf can be written in
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two ways:

r
1

p(x) =$2 p(xH; IPLW; ;) = 'zl". pCxIW;)P(H,) 2.1.5
J

Within this framework, all that is required to complete
the statistical model for a given scene (or class of scenes)
is to specify the spectral classes that are present and
assién an a-priori probabi{ity and conditionaﬁ-pdf tot!each.
Of course the.true distributions are assigned by nature, and
thé accuracy of the model depends on how well. we can
estimate them, Fortunately we are usua}]y able to obtain
estimates of the class-conditional pdf's based on training
samp]eg taken directly from the data set. For £his we
usually rely on aciual surface (ground) observations or
manua.l photo;rnterpretation to locate areas representing
each class of cdver-type. For the purpose of classifier
design{ we assume that 'the .s5ize of gach sample is
sufficiently 1large that the error in the <corresponding
distribution eétimate is negligible, The subject of
training is discussed further in Chapter h.i €

The distribution estimates can be parametric or
non~parametric in general, It has been found that the
multi-variate normal (MVN) distribution is a reasonable
model for MSS‘data 1171; i.e. p(ilwij)_= N(Mij,ggj;i),:where
MO, Csx) = Cl2mCl exp((x=t) '€ (x-m))) " 2 :2.1.8
(MAte that (x-M)' denotés the transpose of vector (grﬁﬂ. )

It follows that if'xﬁwij,
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CECCX-M,

) (X-H

"'ij)t) = C

J %13

where E( ) denotes statistical expectation. Thus Mij and
i are the mean vector and covariance matrix of the
subclass distribution. Note that in order to obtain a
parametric estimate of a MVYN distribution, it s only
necessary to estimate its first and second order moments.

This is the approach that we will use.

2.2 MNo-Memory Classification

tn order to introduce certain concepts that will be
useful later, we now review some COMMON techniques 'of
no~memory classification including (in one case) a

discussion of a bound on the probability of error.

2.2.1 Maximum A Posteriori Probability (MAP) Strategy

Let X be a pixel, as before, Under the hypothesis that
X eW;, the pdf of X is p(X=xIXeW; ), which is given by
equation 2.1.2. - Assuming that this function is accurately
known, the hypothesis is “simple'. The goal of
classification is to devise a strategy for choosing one of
the possible classes (hypothesés) based on x, the observed
value of X; i.e. we must specify a function, W{x), which
maps X info the set of possible classes. We can maximize
the probability of a correct decision by always choosing the
class, W;, which has the maximum a posteriori probability,

P(XeW;lX=x). To show this we merely write the probability of

a correct decision in the following form:



2.2.1 : RODUCEHEHY'OF’HIE "
%giﬁNéd;PAGE]S POOR

PCX e W(X)) =J’pc_>;' e W(x)1X=x)p(X=x) dx 2.2.1.1
X E:Rq
It is apparent that this qqantity is maximizéd with respect
to the decision function by .adoptiné the MAP decision rule,
To implement this strategy we use the mixed form of Bayes
rule to write
pP(X=x1X e W;IP(W.)

P(X & W;1X=x) = 2.2.1.2
’ p(X=x)

The denominator is independent of i, so we need only to seek
the I which maximizes the numerator. In other words, for a
ziven observation, x, W(x) is chosen such that

D(X=xIX & ¥(x)IP(W(x)) = max p(X=x|X ¢ WIP(W;)  2.2.1.3
. i :

This result can also be obtained as a special case of Baves

decision rule for winimum risk when @ "zero-one" loss
function is assumed (i.e. when the risk equals the
probability of error). Thus' it is often referred to as

"Bayes classifier®.
2.2.2 Maximum Likelihood (ML) Strategy

When all the classes are equiprobable, the MAP decision
rule reduces to

p(X=xIX € W(x)) = max p(X=xIX & W;) 2.2.2.1
i .

As a function of 1, the statistic p(X=x]Xe W;} 1Is called
the likelihood function, so this decision rule is called the

maximum likelihood strategy.
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The ML strategy is usually arreasonable approach even
when the c]asées are not equiprobable. In particular, the
MAP strategy tends to discriminate against classes whose
a=-priori probability is low; i.e. it encourages a relatively
large conditional probability of error when a "rare" class
occurs in order to minimize the overall error probability.
Thgs when one is interested in classifying the less abundant
classes (as well as the wmore abundant classes) with
reésonabie accuracy, the MAP strategy may not be as
desirable as one which makes more errors but distributes
them more equitably among the classes. With the ML
strategy, the conditional probability of error when the ith
class occurs depends only on the degree of statistical
“separability' (or "distance") between class i and the other
classes. |t is independent of the a-priorl probability of

class i.

2.2.3 Generalized Maximum Likelihood (GML) Strategy

0ften the a-priori subclass probabilities are unknown.
Then the hypothesis that X € wi is a composite hypothesis;
i.e. p(ilwi) = é:Aij p(ilwij) where the coefficients are
unknown. Of course‘Gé know that Aij > 0 and E:Aij =1, A
procedure that has been found to be useful ithhis situation
is to form maximum 1likelihood estimates of thé unknown
parameters under each hypothesis., Then the unknowns are
replaced by their estimated values, and a hypothesis is

selected by the ML strategy. We will refer to this
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procedure as the gengralized maximum likelihood strategy.
The: resultant decision rule can be simply expressed in the

following form:

Cp(x]VI(x))Y = max max p(iiwij) 2.2.3.1
i i

where V(x) maps X into_the set of spectral classes. Then
Ulx) is siﬁpIy defined to be the Informational <c¢lass
containing V(x).

We note that the GML strategy is equivalent to a ML
strategy over the set of spectral classes. Thus wﬁen all
spectral classes are equiprobabie, it maximlzes the
probabiltity of classifying the‘lobéervation into the correct

one.

2.2.4 Probability of Error For The GML Strategy

Let Vi denote the ith spectral class, and let E be the

event that X is classified 1into the wrong spectral class,

Then

P(E) = 2 P(EIX e V;)P(V;) | 2.2.4.1
J ;

I f Eij is the event that V; produces a larger likelihood

N

statistic than Vj, then

PCEIV;) = PBCU Eg5Ivy) & & PCE(;IV;) - 2.2.4.2
. [ i :
t#] . i#1
Thus 1t is of some intergst to Investigate the pairwise
error probabilities. _
iy Let Fij,(T) = P(Rij(.)i) >T|_>£2VJ°)'= P(Lij()i) >1n(T)|iE:V_L),

where Rij{ﬁ) and Lij(ﬁ) are the random variables:
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2.2-1}
p(X|Vi)

Rij(L) = = 1likelihood ratio 2.2.4.,3
p(XIV;) )

Thqn P(Eijlvj) = Fij(l). Unfortunately the conditionatl

distribution functions of Rij(g) and Li}(x) are not usually
explicitly available. But, if we can find the moment
generating  function, b;;Cud, corresponding to the
conditional distribution of- Lij(i) given X&Vj, then we can
bound Fij{T) as follows: |
Fis(T) & T 95500, 0 u 2.2.4.4
Furthermore
Fop(T) € T, ugl
This is known as the Chernoff bound |13].

By definition: ‘
by (u) = ECexp(uly (X)X ¢ V)) 2.2.4.5
When the subclasses are MVN, the expectation can be
explicitly evaluated |18|. The result is:

$..(u) =
1)

1~-u

lc. 1Y 1c,l <1
3 exp(~u(1-ud(M;=M:)" (uC;+(1-u)Cy) (M=)

i
lqu+(1-u)Cil

2.2.4.6
Substituting into 2.2.4.% provides the desired bound. In

particutar, for u = .5 we have:

Fig(M < 45050 0/T 2.2.4.7

e note in passing that -1n ¢ij(°5) is simply the Bhatta-

charyya "distance" between subclasses V; and V.
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e

Combining equations 2.2.4,1, 2.2.4.2, and 2.2.4.7 gives

an expression for a bound on P(E):

-

PCE) & X P(V;) Z ¢7;(.5) 2.2.b.8
j i
P#3
By dropping the terms for which Vi and Vj are in the same

class, this becomes & bound on the total probability of

error,
i

2.3 Sample Classification

For the purposes of this section we can assume that the
partition of the scene 1is known ‘and we simply want to
classify the objects. (In Chapter 3 we discuss conjunctlve
nartitioning algori;hmé for actually estimating  the
partition.) We shall treat each object separately, thus
ignoring any contextual information resulting from spatial
relationships of objeets. So we observe a set (sample) of
g-dimensional random variables, X = (Xq,...,X,), from a
comnon population, and our goal is to classify them.
2.3.1 Minimum Distance (MD) Strategy

- A Structured Approach to Classification

A structured approach is one in which the basic. form of
the processor is simply assumed, perhaps leaving dgrtain
parameters or options to the discretion of the user, A
reasonable procedure is to choose some characteristic that
differs from class to class, measure it for the samplé-to be
classiflied, and select the class whose characteristie most

closely matches this observation. Under our assumption of
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simple samples, each class Is completely characterized by a
known q-dimenéiona] pdf. Therefore; in MD classification,
the n data vectors are used to estimate the pdf of the
population, and the class is selected whose pdf is closest
to this estimate as measured by some appropriately defined
"distance measure' on the set of density functions, ldeally
one would liké to choose‘ the density estimator and distance
measure in some optimum manner, but in bracfice the best .
guidelines are nrovided by experimental investigations |14].
Mote that a possible drawback of the MD strategy is that the
sample size (n) must not be too small to obtain meaningful
density estimates.

When spatial correlation is introduced into the model
(Appendix A), each class is only partially characterized by
a simple q-dihénsiqna! pdf. Although perhaps not as
effective as a higher dimensional pdf would be, it’is still
a reasonable and valid character{stic for dlistinguishing
between classes. In fact if the spatial correlation Iis
class~invariant (such as that induced by the scanner), the
g-dimensional pndf might be just as effective as the higher

dimensional one.

2.3.2 M.,A.P. and M.L. Sample Classification

In contrast tec the MD strategy, the MAP strategy is a
completely non-structured approach. The decision rule s
determined solely by the criterion of minimum error rate

with no a-priori restrictions. 0Of course a greater degree
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of statistical FInformation is a]so‘required “{the a-priori
class probabilities). We can obtain the MAP decision rule by
direct extension of 2,2,1,3 if we consider X fas a
an-dimensional random variable to be classified. Let' x be
the set of variates (Xy,...,% ) and the event X=x be defined
as the joint event ii=£§’ i=1,...,n. Then, under the
hypothesis xewi, the pdf of X fs

1 ZP(wi.)p(x=xlwi.) 2,3.2.1
POW.) ] 1 !

p(X=x!wi)

I

1] .
1 2pw. ) I p(x =x 1w, .} :
POW.Y ] s L :

The MAP decision rule can be stated as follows: -

Pp{X=x{W{x)IP(W(x)) = max p(X=x[NE)P(Ni) 2.3.2.2
i

There is no minimum sample size required to implement this
strategy. For n=1 It simply reduces to MAP no-memory
classification (2.2.1.3),

Note that we have represented the joint pdf of a sample
in terms of the marginal pdf of one pixel. When spatial
correliation is present, this is no Tonger a fully adequate
representation. But as in the case of MD classification, It
still provides a useful statistic for distinguishingiclasses
while avoiding  the complexities of more rigorous
representations.

So far we have tacitly assumed that the decision rule
mﬁst assign the same class to all the pixels in the sample.
Hith this type of strategy, either all the pixels are

classified correctly or all are misclassified. Thus the MAP
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decision rule maximizes the‘average number of times that all
the.pixels in X are classified correctly. Rut performance
is generally measured by just the average number of pixels
in X that are classified correctly each time. We can show
that the MAP decision rule maximizes this criterion also.
Any decision rule that we adopt must assign a class to Li
for any - event X=x. We denote this mabping by Wi(x). Let
7¢-) be an indicator function, 1i.e. @ zero-one random
variéb]e which assumes the value 1 if and only if the event
specified in the arguement actually occurs., The number of

elements correctly classified in the sample is given by the

random variable

n = »
Moo= 2 Z(X, eW, (X)) 2.3.2.3
i=1 P
n ) n )
E(H) = X E(ZX; €W (X)) = 2 PX. eW, (X))
i=1 =1

M:i

jP(ii £ wi(x)!X=x)p(X=x) dx

1
XE-an
The integration implied here is a gn-dimensional one. Note
thét the event zq EH](x) is equivalent to X e Wi(x), so all
terms of this summation are identical, with the possibie
}exception of the decision function. Thus the .decision
function which maximizes one term also maximizes the others,
Thjs confirms that the optimum decision rule assigns the

same class to all the elements of the field. Denoting this

decision function by W(x), we have
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ECN) = n|fP(X € Wix)[X=x)p(X=x) dx 2,3.2.4
This, of course, is maximized by the MAP strategy (2.3.2.2).
The ML strategy follows directiy from the MAP st;ategy
by dropping the a;priori probabilities, The resﬁlt is
p{X=xl¥W(x)) = max p(X=x|W{) 2.3.2.5
.
2.3.3 G.M.L. Sample Classification
e can obtain the GML.decision rule by direct extension
of 2.2.3.1. The result is
?(X=le(x)) = m?x m?x p(X=xIwij) = m?x p(X=lei)
' ) ’ 2.3.3.1
Hle can also bound ;he probability of error for classifying
simple samples. The analysis of ~Section 2.2.4 carr%és over.

directly when X is replaced by X and the moment genherating

function 1s recomputed as follows:

(X,) 2,3.3.12

n
Rfj(A) = gzi Ri;
1]
Lo () = L..{X)
td m=1 '3

This is a sum of independent, identically distribu%eq_random

variables., Thus

q .
IT ECexpluly; (X)) 1Xpe ;) 2,3.3.3
m=1 o

’ E(exp(uLij (X))IXEVJ)

(ECexplul;; (X)) 1Xev; )"
(¢g;Cu)”

]

Equation 2.2.4,7 becomes

i
Fis(T) = PIRp;00 > TIXeV;) € Gy 50 AT 2.3.3.4
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It is a property of moment generating functions that

¢ij(u) < ¢Ij(0) = 1, so this bound is an exponentially
decreasing function of n when ¢ij(°5) £ 1, or equivalently
when the BRhattacharyya distance is non=-zero. Thus the
probability of error for the GML sample classification
strategy is bounded by a sum of exponentially decreasing
functions of the sample size.

To illustrate how powerful this bound can be we now
consider a simple example. Suppose that the ith and jth
spectral class - densities are as depicted in Fig, 2.3.3.1.
The imean vectors are equal, which results in a high degree
of "overlap". Therefore the Bhattacharyya distance is only
0,11, and ¢;;(.5) =J0.8 = 0.894k. The actual conditional
error rate, Fijcl)' for no-memory classification (n=1), is
50%, which represents very poor performance. " This implies
that a Ypolling" classifier also has a 50% error. rate
rezardless of the sample size. But Figure 2.3.3.2 shows how
the GML performance improves as the sample size increases.
For a sample of just 40 observations the error rate is
practically insignificant. ;A]though we probability cannot
expect such dramatic performance 1in practice . (due to the
idealizations of our model), this still provides a strong

motivation for our effort to apply sample classification to

18S data.

2.3.4 Maximum Likelihood vs. Minimum Distance

let X = (11,...,Ln) be a simple sample from a MVHN
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population, and define the statistics
n
S, = 2 X 2.3.4.1
i:l‘ .
! ,
§2'= iéé iz il

The maximum 1ikelihood ‘estimates of the mean vector and

covariance matrix are:

W= 8/ - 2.3.54.2
_ S X

]

] g =]

L2 (% - - = §,/n - up!
n . .

i=1
The corresponding density .esfimatg is Jéimgn by equation
2.1.k. .

Two popular distance measures are the Bhattacharyya
digtance and the divergence, vawi is a class with dens{ty
H(ﬁi,gi;i) then the Bhattacharyya distance between this and
N(M,C;x) is given-by
B o= .25 ( In 1(C#Ci)/21% -+ (M=K )'(CH+C.) (M-M.) )  2.3.4.3

et ic; | oo _‘

and the divergence can be‘effic{ently calculated from

D = .5 tr((§1+g."il YCHC, + (MM I(M-MI'I) < 2q 2.3. 4.4
Computationally, D is faster than B, requiring about 2&(q+2)
ruitiplications plus 1 matrix inVersjon per class for each
(§1,§2) pair,@]assified. In additjon to:this, B requires a
determinant‘ and a logarithm, _ "(This does not Include
qqéntities‘ such as’ [Eii which can be" coﬁputed ohée and

saved.} However B appears to provide an advantage in terms

of classification accuracy, based on _experimental evidence
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l14}. And its direct relationship to the Chernoff bound
gives B some intuitive appeal as well.

In qrder for the ML strateg& to be computationally
competitive with D and B, the likelihood function must be
expressed in terms of 54 and §, as follows:

N

p(xiW.) = JI M(M,,C.;X.) 2.3.4.5
i . Po~i ]
i=1
© Qones 1Pexpl 3 (X: W TGTECK MY
. ‘n’”il exp & L5 B, 21 YAy TR
In p(XiW;) =

& -1 -1 -1
-.5(n Inl2nCpl + 2 (X5°C; X; -2Mi'Ci Xj +M;'Ci )
j=1

The guadratic term yields

%x etlx, = }r:‘,tr(c'lx X.') = tr(C-lix X:*)

j=1'—j ~ i #j j=1 1 _‘.j.’—j bl j=1"j—_j

50

In o(XIN.) = ~.5tr(CTls,) +M.'CTTS, - .5n(M o7 M. +1n]2nC. 1)
P R Sy s o P o&i = A

2.3.4.6

which can be computed with just .5q(q+5) multiplications,

once the non-data-dependent quantities have been

initialized. Thus the ML strategy fequires only 25%-50% as

many multipTicatioﬁs as 6 and no matrix inversions or
determinants.

It is interesting to express equation 2.3.4.6 in terms

of M and C. Substituting for $§; and §2 from eguations

~

2.3.4.1 and simplifying, provides:
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1 In o(XIW;) = -.5CInj2mC; | + tr( C; Lo qumt ) (- M )
n

vwhich we shall denote by LE(M,QO. By adopting the ML
strategy, one s essentially using this quantity as a
measure of the "similarity" of sample X to class W;, just as
5 and DM are used to measure their Ydissimilarity"

Therefore, rLE(M,g) can bhe interpreted as a measure of
dissimilarity between the distributions M{(M,C;x) and

{1;,Ci:x). However it is not a distance measure in the
i

sense of MWacker and Landgrebe |1k], because it satisfies

smp

none of the three basic properties of distance measures;
i.e. if f(i,j) is a "distance" between distributions
M ,C5x) and N(h Hj'i) then
1. fCi,i) » 0 ‘ 2.3.54.8
2. fCi, i) = f(j,j) =0
3. f(i,i) = f£(5,1)
One can force compliance with properties 1 and 2 by adding a

pias term as foilows:

1]

d(i,j) =Ly (i, 550 + Ly (M ,Qj) 2.3.4.9

5(In G311 + tr(gi (C; +(Mj “ﬂ;)(ﬁj -M;)*')) ~q)
[C; 1

vwhich can _be  recoghized as a form of one of the
Kullback~Leibler numbers {19]. Since the bias term 1Is
inéependent of i (the class number), use of this criterion
is still equivalent to the ML strategy, as long as G511 > 0.
Aiso, the quantity 'd(i,j)+d(j,i) Is equivalent to the

divergence, which satisfies all three distance measure

properties.
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The ML strategy has other compelling properties besides
computationa]‘efficiency. On theoretical grounds, for the
idealized coﬁdltions we have stated, it is the optimum
strategy (for minimum error rate) when the a-priori class
probabilities are equal, Also, the Chernoff bound for ML
no-memory classification can be extended to provide an error
bound for ML sample c]assification. Experimentally, under
non-idealized conditions, the ML strategy does appear to be
slightly better than MD (using B) on the whole, although it
is not consistently better. The experimental results appear
in Chapter b, Wacker's experimental results Fér
vullback-Leibler numbers |[1k] also lend some support to this
observation. ‘

Another important property is that for small sample
sizes the ML strategy does not break down as do the MD
strategies.. For a sample size of 1, it merely reduces to
no-memory classification, Finally, the summation in
equation 2.3.4.,5 is distributed as chi-séuared with ng
degrees of. freedom when W; is the correct hypothesis for
sample X. Therefore it can be used to construct a
significance test of this hypethesis. ~This is useful for
detecting samples that belong to none of the specified

classes.
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CHAPTER 3
IMAGE PARTITIONING

Once the partition is known, powerful techniques are
avaiiable for classifying the individual objects. Thus,
vihen the partition is unknown, an image partitioning
algorithm offers an attractive alternative to no-memory
classification. For reasons discussed in Section 1.3, the
algorithms considered here are the type we refer to as
_ conjunctive object-seeking. We have previously degcribed
this approach as a progressive merging of édjacent elements
which are found to be similar according to some statistical
criterion. Thus an algorithm consists of statistical tests
applied in some logical sequence. The "iogical sequence®™ is
the subject of Section 3.1, and the rest of the chapter

surveys some possible test criteria.

3.1 Partitioning Logic

In general it is not possibie to design an error-free
partitionipg algorithm. First of all, there is a certain
amount of ambiguity in defining the_"true“ partition due to
real effects such as pixels that overlap physical bourdaries
or émbiguity in the physical boundaries  themselves.

Secondly, two main types of decision errors can occur,
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leading to: (1) false boundaries, and (2) missed boundaries,
Also the combined effect of these two errors can produce
"approximate" boundarie;, which is not ‘actually a
weil-défined‘ category due to ‘the ambiguity of the true
partition. Since 6bject size and shape are not used as
classification features, Type-1l errors are generally. much
less 1ikely to lead to misclassifications than are Type-2
er;ors; This philosophy accounts for certain
simplifications in the partitioning logic. - ‘

. The basic approach that we have adopted (due to Rodd
11114) coﬁsists of two Y“levels" of tests. lnitially the
pi;els are divided, by a (hypothetical) grid, into small
zroups .of four (for. exampie). At the first level of
testing, each group becomes a unit cailed'a Yeell", provided
that it -'satisfies a relatively mild criterion of
homogeneity. Those groups that are rejected are assumed to
overlap a BOundary and their individual pixels are usually
classified by the no-memory method. These groups are
referred to as "“singular! cells., At this level it is
usually desirable to maintain a fairly low rejection rate to
reflect the relatively high a-priori probability of a group
being hOmogéneous. The gqa] at this level Is essentially
thg same as the goal of.thé houndary seeking techniqgues
discussed in Section 1.3,1.e. to detect as many pixels as
possible that lie along 'boundarie; without requiriég that

the ones detected form closed contours or even be.connected.
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At the second level, an individual cell is compared to
an adjacent "fieild", which is simply a group of one or more
connected cells that have previously been merged. If the
two samples appear statistically similar by some appropriate
criterion, then they too are merged. Otherwise the cell is
compared to another ?djacent field or becomes a new field
itself. By-successive1y "annexing" adjacent cells, each
field expands until it reaches its natural ‘boundaries, where
the rejection rate abruptly increases, thereby halting
further expansion. The field is then classified by a sample
classifier, and the classification is assigned to all its
pixels. |

This approach has the ‘important advantage that 1t can
be impiemented Usequentially'; i.e. raw data need be
accessed only once and in the same order that it is stored
on tape., This is important for practical, rather than
theoretical, considerations. The flow chart in Figure 3.1.1
indicates how it can be done. In this chart, the top of the
scene is referred to as north, and the general processing
sequence is from north to south,

A possible drawback of the approach described above is
that in certain hypothetical situations, Type-1l errors are a
certainty, For example, a U-shaped object would develop as
two separate fields which expand southward and eventually
meet at the base of the U. But since no provision is made

for merging such fields, a false boundary between them will
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Figure 3,1.1 Basic Flow Chart for a Two-Level, Conjunctive
Partitioning Algorithm
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result. Such a provision can of course be made, but only at
the cost of additional complexity. This does not appear to
be warranted by the relatively harmless natuvre of an
isolated Type-1 error. Thus‘the false boundary actually
results from a design simplification rather than a true
Jdecision error.

Many modifications (both large and small) to the basic
flow chart are, - of course, possible. For example, the
Level=1 test can be removed from the loop if performed in
advance and intermediate results saved on tape. (This is
particularly useful in a research environment.) Another
modification is described in Section 3.3.3. It involves
comparing a cell to as many as three different fields at

once, instead of one-at-a-time.

3.2 Unsupervised Mode

In order to imp]ément the sequential approach we must
specify two test criteria corresponding to the two levels.
in this section we consider ways to do this "unsupervised";
i.e. the test.criteria are independent of specific knowledge
of the spectral class distributions. Note that our usage of
this term is analogous, but not identica?,’ to the

conventional usage.

3.2.1 Unsupervised Annexation
Let X = (Ll,...,in) represent the pixels in a group of
one or more cells which have been merged by successive

annexations. Let Y = (¥3,...,Yy) represent the pixels in an
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adjiacent, non-singular cell. Since both X and Y will have
satisfied certain criteria of homogeneity, we assume that
each is a sample from a MVN bopuiation. " Let f and g
represént the corresponding density = functions. It is
desired to test the (null) hypothesis that f = g, This is a
composite hypqthesis, since It dﬁes not speci%y f and z.
The ﬁlikelihood ratio procedure' [20] pnévideé an effective
stétistic for testing this hypothesis, Van Trees 217
refers to it as the "generalized likelihood ratio”. Let

. '

{plx,yIf,g): g=F, feq}

{plx,ylf,g): feq , geQ, g#f}

HO(x,y)

Hy (x,y)
where p(x,vlf,z) is the conditional joint density of X and Y
.evaluated at xeR"9?  and yaRm9 and @ is a set of MVN density
functions. 'The assumption of class-conditiconal. independence
enables us to express the joint den§ity of pixels as the

product of their marginal densities. Thus:
. . . n m
plx,yIf,8) = p(xIf) plylg) = C JT fCx;NCIL aCy; )
) : i=1 i=1 ‘

The generalized 1jkelThood ratio is defined by:

- sup Hp(X,Y) max p(XIf) pl{Y[f) -
n 3 = 'FEQ 3-2.1.1

sup H (X, Y) max pIXIT) plYlg)
fe
gel

g#f

For an "unsupervised" approach to partitioning we take 2 to
be the foliowing set of functions of xeRY:

g = {N(M,g;i): MeRq, ¢ = symmetric,_bositive-definirg}

Siﬁce for any fef there exists a geQ that {s arbitrarily
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2,2.1
close to f, the condition "g#f'" "can be

denominator of 3,2.1,1. Therefore:

max N(M,C;X) MM, C:Y)

bl

dropped from the

A= {1
. max N(ﬂx,gx;X) ﬂ(ﬂyfgy;Y)
max MMy, C;X) N(ﬁy,Q;Y) max MN(M,C;X) N(i,C:Y)
max HN(lig,Cy:X) N(my,gy;Y) max N{k,,C;X) M(MV,Q;Y)
= Az - Al
where
n
N, C3X) =TT NG, CoXp)
! i=l .
i 1]
HC, €YY =TT NCH, C2Y5)

i=1

and in each case the maximization is with respect to the

mean vectors and covariance matrices.
Anderson |22{ shows that: -

¢ 1al/s181 N2

Ay 7

= n ) m : a N .5
hy = O ifg/nl” tAg/ml™ / TA/NTT )
where
H = n + ﬁ
— n - m
X =2 X%i/n Y =2 Yi/m

i=1 i=1

i

.
Ax ='21’(.2£i ~X) (X5-X)" Ay
1=

(in order to assure non-singular matrices with pr

we need n > g < m.) 122}
A= Ax * Ay

M o= (nX + mY)/N

m — —
o (Y- Y-Y)!
i=1

3.2.1.2

3.2.1.3



L2

3.2.1
L — ——
Ex-=_§a(1a-ﬂ)(ﬁi-m)' = Ay + n(X-M)(X-M)!

i=
m _ _
By'= 2 (isLG-' = Ay + mEW (Y1)
I= . )
B = Bx +By = A+ mX-DE-D
: ~ N

Inderson also suggests the fé]]owing modification:
Ay = Xpchg
where Aj; and X2 are oBtaided from hlxand A2 by replacing' the
number of pixels in each sample by ;hg number of degéees of
fréeedom; i.e. replace n by n~1, m By m=1, and N by M-2 in
formulas 3.2.1.2 and 3.2.1.3. ]n ‘either case; thF
statistics are invariant with respect to a linear
tr?nsfo}mation on the data vectors. |t follows that their
distributions under the nutl hypothesis are ‘independent of
the actual MVN population from wﬁich the sampfes.are drawn.
The test procedure is to - compare A ﬁith some decision
threshold T < 1, which depends in general upon n and m.ﬂ The
hhypothesis is accepted iIf X 3 T and rejected if A< T. In
the unsupervised mode, T is determingd by specifving the
de;ired Usize" (significance level) of the test, because the
power of tﬁé test ?q indeterminate.  In order tQ do.this,
hoﬁever, the distribution of A must be tabulated. 1Under
the null hypothesis a; and A, are independertly distributed
1221, so we can simplify the distribution theory and

E .
accomplish the same objective by the following procedure.

Pick significance levels sq and s, such that
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s = 1-(1-s7)(1-sg), where s is the desired significance
Tevel. Test i; using a threshold T; such that P(2; < T;H)
= s;, 1i=1,2, where H denotes the event that the null
hypothesis 1is true. The null hypothesis is rejected if‘
either test produces a rejection. Thus the effective size

of the test is given by

1 - P(A1 » Ty, Az » TolH) = 1= P(ay » TyIH) PCap ) TalH)

1 - (1-;1)(1-52) = s
as desired. This procedure gives us complete freedom to
pick the ratio 52/51 > 0. As this ratio increases, the
power of the test against the alternative "M =M, Ex#gy"
increases, and the power‘against the alternative “ﬁx#ﬁy,
Engy" decreases.

We now review the distribution theory that is needed to

implement these tests. There is a transformation of A1

which, given. H, has an F-distribution wiﬁhzq and (MN-g-1)

degrees of freedom 123f. 1t is given by
Fy = (1BI -1)(N-g-1) ' 3.2.1.4
1Al q

Thus the test for a significant difference between the mean
vectors can be implemented by computing Fj and comparing it
to a thrésho]d‘tl determined by the relation P(Fy > tilH) =

51 Alternatively, it can be shown [18]| that
Bl -1 (-2) = (=2)amX-D ALE-T) = 72 3.2.1.5
1Al N ~

which (given H) has a 12

djstribution with N-2 degrees of
freedom [221. 12 is Hotelling's generalization of the

Student-t statistic, which is commonly used to test the
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hypothesis that the means of two univariate normal
distributions are equal given that the varlances are equal. ’

The following transformation of Ao has the

F-distribution (given-H) 123}:

G = =2 1n A,y . . 3.2.1.6
g = 29%+3q-1f1 + _1_ - _.l.__}
6{g+1)in-1 m-1 N-2
(a-1)(a+2){ 1 e KNSR T 2
uo= 6 2 2 2 "B
{(n-1) {m-1) (N=2)
v = g{a+l)
2
Wols o k2
Jul

(i=g=v/v)G , u >0

v
Z =
(1-=+2/w)C , u <0
W
: z ’ u >0
F .= B .
2 WZ e u <0

v(1l-Z)
Fg'has an f-distr{ﬁution with v and w degrees of freedom.
Thus the test is implemented by computing Fp and comparing
it to a threshold ty determined by the relation

P(Fp > tglH) =-s9.

Due to the complexity of the test 'For different
covariance matrices, it may be desirable to rely only on the
difference in mean vectorg (assuming that a difference
exists)."A common approach -is to simply assume that ali

covariance matrices are equal, thereby eliminating the need

— to test the statistic Fo: i.e. let s9=0. The test of Fl is
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probably fairly robust under departures from this assumption
anyway [231. An  alternative approach, which does not
require this assumption, 1is to use the Behrens-Fischer

statistic defined as follows 1221:

Zy= Yy X;(m/n)% , i=1,2,...,m & N. 3.2.1.7
— H
L = z;.i/rﬂ
i=1
m - _
D = (Z;-ZNZ;-D)'/rl)
~ =1
2

]

T m(X-1) ' 01X~
This has a Tz-distribhtion with m-1 degrees of freedom, or
equivalently the statistic

Fs = T {m-q) ' 3.2.1.8
(m-Lg :

nas an F-distribution with g and m-q degrees of freedom
under the hypothesis that Ex=my. Thus the test is imple-
mented by comparing Fz to a threshold tg which satisfies the
relation P(F3 > t3Lﬂx=My) = 5,

These multivariate tests all have the same weakness as
MD classification, namely the problam of estimating 2 MVN
density from a relatively small sample (sometimes known as
the Ydimensionality” problem). Tﬁis led to the constraint
a> q, a condition which is often not met. Even when the
condition islmet, poor estimatés can result, leading to
decision errors. One approach to this problem is to"réduce
g by deleting features. It is well-known, for example, that

a subset of features used to train a classifier from small
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training samples can sometimes produce better classification
results than the- full 'set [24]. With this approach,
however, one is fagea with the problem. of choosing the
subset. |

Another ‘approach is to'base the decision on the g,
unfvariate, marginal distributions; i.e. simply consider the
data in one spectral channel at a time, This has Dbeen °
tefmed a "multiple univariate" (MUV)" approach. 1In each
channel we test the univariate;hypoihesis that the means and
variances of"the two ~samples are equal. Since the
boundaries may be strong in some spectral channels an& weak
in others, we accept the null hxpothesis, only I; the
univariate hypothesié is accepted in all g channels.
Besides avoidiné the dimensionality problem, the MUV
procedure requires less computation and simp]e} distribution
theory. However, it must be pdinted out that in situations
where class separability is primarily a multivariate effect,
the MV procedure‘may be more advantageous.

In order to obtain the wunivariate tests we can follow
the same devélopment that léd to the multivariate :-tests
except - that g=1l and ' Axs Ay, ‘-A, gnd B are just
ong-dimensiona? mafribes (gcalars). Thus equations 3;2.1.#
and 3,2.1.5 s}mplify as follows:

Fp = T¢ = (¥=2)nm (X-T)2
* N A _ 3.2.1.9

! _ .
This has an F-distribution with 1 and (N-2) degrees of

freedom, under the null hypothesis, Equivalently we can say
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that the statistic

{(M-zggm (X-Y) 3.2.1.10
MA )

tas a Student-t distribution with N-2 degrees of freedom,

The statistic xp simplifies to

Az =~g/(1+K)N-2f(r) >.2.1- 0
where :
K = (m=-1)/(n-1)
ro= K Ax/Ay
. rn--;l_ .
MO ot

The statistic r has an F-distribution with n-1 anc m-l
degrees - of freedom, and it is independent of F; under the
null hypothesis }22}. But since f( +) is not monotonic, two
thresholds must be determined in order to implement a test
on this statistic. For a8 significance level s,, the
thresholds T' and T" must satisfy

P(r < T' or r > T"IH} = 59 3.2.1,12
F(TYY = FCT™) '

Alternatively one could resort to the trénsformation in

3.2.1.6.

3.2.2 Unsupervised Cell Selection

Heell selection' refers to the Level-l test, which is
used to detéct cells that apparently overlap boundaries.
Such cells frequently exhibit abnormally large sample

variances. Thus a possible criterion for a cell is to
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require that the sample vartance in each spectral channel
fall below some reasonable threshold. A simllar approach is

to form the ratio of the sguare root of the sample variance

*

to the sample mean and compare it to a threshold {(which we

L]

shall call "c")., This criterion has the advantage of being
i

independent of the scale of the data.

r

A possible multivariate approach is to place "an upper
Timit on the sample generalized variance, l&y/ml, that any
; : ¢

cell (Y) can have, This is equivalent to placing a lower

Timit on the value of the statistic max MN(M,C;Y). But again
; b, C .

—

we mention that the dimensionality problem seriously weakens
the MV approach. It can cause very‘pqor gstimation of the
generalized variance and increase the chance of a decision

error.

3,3 Supervised Mode

In tg?;— section we -develop a way to “supervisé" the
sequential partitioning process, using the known spectral
class " distributions. Our approach is based on the' same
composite hypothesis testing proéedure as. the unsupervised
approach. The effect‘of the spectral class distributions is
to greatly simplify each hypothesis, but paradoxically the
re;ultant . test criterion .is much more comp]iéated.
Fortunately, _much of . the computation <can be done

]

i
Wsequentially', i.e. relving on previous saved results.

3.3.1 Supervised Annexation

let X and Y be samples from a field and an adjacent
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cell as in Section 3.2,1, Ve follow the same development as
in that section, except that for a sdpervised approach to
partitioning we take § as:

e = {p(xlV;): i=1,2,...,k}

where k is the number of spectral classes. Note that this
is a considerably more restrictive conditiop than before.
The corresponding generalized likelihood ratio statistic is: -

v

max (p(X|V;) p(Y]|V;))
A= i 3.3.1.1
-, max (p(X]V,) p(Yle))
i,] .

J#I

Note that this s a multivariate statistic without the

constraint m > g that was necessary in the unsupervised
mode, llowever the maxima in formula 3.3.1.1 cannot be
expressed in a simple analytic form as in 3.2.1.,1, They Ean
only be obtained by exhaustive search, Furthermore, the
distribution of 3.3.1.1 is unknown under either hypothesis,
because it E;;ends on the true classes of X and Y. But in
" return we gain a statistic which should be more "sensitive"
to the presence or absence of a Boundary. This should
produce better performance and make the specification of a
decision threshold less critical. In fact, the experimental
results In-Chaptér L indicate that the threshold need not be
a.function of n, the current size of sample X, in order to
obtain good results. Furthermore, the results tend to be
fairly stable -over several aorders of magnitude of threshold

variation. Thus we will find it convenient to represent the

decision threshold as
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T = 107t ¢t 0 3.3.1.2
Un]ike the unsupervised approach, a constant decision

threshold of T=1 does not imply that the null hypothesis is

always rejected., But it does lead to the same final result

when the GML strategy is used to classify fhe objects. This
is because A can exceed 1 only if X and Y would be
classified the same by the GML rule anyway. Consequently,

the only practical values of T are those between 0 and 1.

Lacking any distribution theory to provide guidance in

choosing a suitable threshold in this range, we shall rely

instead on an empirical approach.

Ca]cufation of the generalized 1likelihood ratio
er?teripn' can be greatly simplified by the following
measures: '

1. Change the denominator of A to maf(p(XlVi)p(YiVj})., The
only effect of this change is t;'Jcause the value of A to
saturate at an upper limit of 1. It does not affect the

yvalue of A when A< 1. Since T is always less than 1,
the c%ange cannot affect any . decisions. The
stmplification that it affords 1is that A can now be
written as follows:

. max(pCX|V; Ip(YIV;))
A= i

I
(max -p(X|Vi))(max p(Y|V;))
i i
]
which is simpler to compute.

2. Compare In{a) to In(T) Instead of A to T.
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In A = -mgx(ln p(XIVvi) +1tn p(Y[V})) 3.3.1.3
: .
-mgx(]n p(X{V;)) ~max(1n D(Ylvi))
{ i

Besides . converting multiplications into {faster)
additions,ﬂ the quantity 1n'p(Y[V;) can be efficiently
computed by formula 2.3.4.6, The quantity In p(XlVT) can
be obtaineq by other‘means,_as-we shall see,
Assume for fhe moment that the log-likelihood function of
X is alféagy available in a.sforage érray G (say); i.e.
6CIY = In p(XIV{), 1=1,7,.:.,k
and J iE‘aﬁ integer sucﬂ that G(J) .= max G(i). Then
compﬁte ﬁhe first term o% Tn(a) usigg an intermediate
storage array ,g (say), as follows:
g(i)- =61 + 1n p(YIV{), 1=1,2,....k.
énd.j is an inﬁeger such that g(j) = max «(i). So:

i

In(p) = g(j) =CG{J) -max In p(YIV;)
. ) :

-1f the indication s to merge Y and X, then tlie new

iog-likeiihood function of tHe field is just the sum of
the 1og-iikelihood functions of X and Y. Therefore we
can simply update G ahd J as follows: ‘
G(i)‘=-g(T), i=1,2,...,k

J = '

and the preliminary assumption is justified, Thus we
avoid using formula 2.3.}.6 to compute 1In p(XIVj}.

When the point is reached - that the field X stops

expanding, it must- be classified. This would normally

require the sample mean vector and autocorrelation (or
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covariance) wmatrix, which would have +to be continually
updated as cells are added to the field. Recall however
that the GML strategy Is
p(X[V(X)i =. max p(XIVi) = max exp(G(i)) = exp(G(J))
Therefore V(x)I = Qd , SO éo additional updating or
computation is required to classify the field if the GML

strategy is used.

¥
3.3.2 Supervised Cell Selection

A useful statistic for cell selection is

-1 I . ) '_1m ¢l
Q;C(Y) = tric; ;Zix‘ii ) - 2M57C; izaii *omMyTCs M

where | is such that

in p(YIVj) = max In p{Y|V;) = max ~.5(m-ln!2ﬂci1 + Q;(Y))
i i ~ )

The decisfon rule is to accept the hypothesis ¢that Y |Is
homogeneous if Q;(Y) < ¢, where ¢ 1Is a oprespecified
threshoid. Otherwise the hypothesis is rejected. This
criterion has the particular advantage that it tends to
reject not only inhomogeneous cells, but Yunrecognizable"
cells as well, (Unrecognizable <cells are those which
represent spectral classes that the classifier has not been
trained to recognize.) Another édvantége of this criterion
is that its use of the log-likelihood function makes it
especially compatibie with the supervised annexation
criterion and the GML sample classifier,
As a final note, the distribution function

P(Q;(Y} > clYeVj) is chi=-squared with mq degrees of freedom.
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This can be used to provide Initial guidance in choosing c.
) J

3.3.3 Alternative Partitioning lLogic,

The 1logic of F?ggre 3,1.1.1 compares a cell to the
north, west, and east-adjacent fields (if necessary) seeking
a "match". If é.match is found, the merge takes place
immediately without regard to whether it is the "best" match
or not, Another approach that is used is to compare the
cell to all three fields at once {(if that many distinct
adjacent fields exist) and attempt to determine the best
match. In the supervised mode a match |is determined by
comparing the 1ikelihood ratio to a fixed threshold,. so a
reasonable definition for the best one is the field for
which this ratio 1is largest. Normally the east-adjacent
field would not exist at the time the other two compar?sons
are made, soO its 1ikeliﬁood ratio is supplied by "looking
_ahead"; i.e. the east~adjaéént cell is compared to its
north-adjacent field and if they match, the current cell is
compared to their union to obtain the likelihood ratio.

This approach has not been used in the unsupervised
mode, mainly because of the diffichlt& of determining the
best match. A ]ogicaj.approaéh wog]d be to choose the field
" for which the null hypothesis is least rejectable”; e.g
. choose the field which maximizes the minimum significance
level at which the null hypothesis would not be rejected.
In other words, if Aj} represents the observed value of As

for the jth field, then the field 1is chosen for which
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m P(a; < Aij[H) is maximum. The difficulty in actually
i 2 -

in
=1'
doing this is that the complete distribution function of Aj

would be required. Generally it Is available for only a few

isolated significance: levels.
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CHAPTER &

CLASSIFICATION RESULTS

Experimental results obtained in the investigation of
multispectral image partitioning techniques are presented in
this chapter. -Several different data sets of markedly
different characteristics are classified by these
techniques. In many respects they represent a cross-section
of MSS data. Both Jlow altitude aircraft data and 930 km
high LANDSAT-1 data are included. The ground resolution
varies from Uu.6m to 80m, and the size of physical.objects
varies from just a few pixels to thousands of pixels. Data
representation is 8 bits for aircraft data and 6 bits for
LANDSAT. Spectral resolution varies from 08.02 to 2.40
micrometers, while the number of spectral channels
available varies from 12 to k4, The actual number of
channels used for analysis varies between 3 and 6. The
number of spectral classes representing ground cover types
varies from 5-to 17, and the number of informational classes
varies from 5 to 1l.

The results are grouped by data set vrather than by
analysis technique to facilltate the comparison of different
analyses of a given data set. 1In order to provide a quanti-

tative measure of comparison, only data sets are used for
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which a substantial number of 'test areas™ are available.
By comparing the results of a given analysis on a point-by-
potnt basis with the desired result in each test area, one
can obtain an estimate of the accuracy {(or inaccuracy) of
the analysis. The ]a}ger and more numerous these: test
areas, the better this estimate will be. Thus one analysis
technique is regarded as belng better than another :If it
tends to achieve fewer misclassifications in the test areas.

Relative error rate 1Is an (important measure of a
classification scheme, but it is not the only consideration.
Obviously speed is a desirable attribute, Although CPU
times are compared in this chapter, it is important to
remember that efficient coding has a lot to do with speed,
‘and no elaim is made that the research programs used here
are optimized. A less tangible consideration is the amount
of effort —and experience required to use a particular
analysis scheme. The schemes considered in: this
investigation were designed with simplicity in- mind,
requiring a minimum of user input. The results in this
chapter will help to assess the degree of experience :needed
to. provide this input, and they provide a data base of

experience from which to draw.

4.1 Analysis Schemes
Within the framework of Chapter 3, an analysis scheme
L}
is specified by choosing:

1. A Level-1 option and associated parameters
(threshold and cell size)
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2. A Level-2 option and assoclated parameter(s)
(significance Vevels or threshold)
3. A sample cfassifie} option,
It would be a hopeless, and probably pointless, task to try
to investigate all the possible combinations of these three
options., Instead the 1less Jlogical combinations were
arbitrarily eliminated 1in order to concentrate more effort
on evaluation of the remaining ones. Consequently. only
wholly unsupervised and wholly supervised methods are used
for the partitioning phase of processing. A(No "hybrid"
combinations of Levei-1 and Level-2 options are considered.)
Thus ~ partitioning is done in either the unsupervised or
supervised "mode". Furthermore, in the unsupervised mode,
no hybrids.of MV and MUV tests are used to test first and
second order statistics at Level-~2. At Level-1, only the
MUV ratio test (described in Section 3.2.2) is used in the
unsuperviség__mode. Although the Behrens-Fischer test
reﬁuires only one signifiéance level to be specified by the
user, it tests only first order statistics, provides
unattractively few degrees of freedom, and requires a
subgtantia] amount of computation. Consequently it was
eliminated as an option. Due to the advantages (enumerated
in: Chapter 2) of maxiﬁum likelihood sample classification
over miniﬁum distance cIaséifiers, it was the logicaf choice
for the classifier option. The results of this chapter are
based on the ML strategy. When subclasses are necessary the

zeneralized ML strategy is actually used, although it s
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refered to simply as a ML classifier.
After all the above simplifications, we basically are

left with four schemes to evaluate and compare:

1. unsupervised MUV partitioning and ML sample
ciassificatioq

2. unsupervised MV partitioning and ML sample
classification

‘3, supervised partitioh}ng and ML sample clas;ification‘

i . conventional ML no-memory classification.
Furthermore the cell size for the first three schemes was
eliminated as a variable by fixing it at a constant 2x2
pixels, which 1is the minimum size that can be used in the
unsupervised mode of partitioning. This choice appears to
prévide a regsonable compromise between speed and reso]ugion
for MSS data.

A common element of all four schemes is the process of
Meraining". This is the process by which each main class is’
modeled statistically with the aid of data vectors
{patterns) known to belong to that class. tf the training
data for a class exhibits a multimodal structure, then it is
usually divided into two or more subclasses, each
corresponding to a mode. This serves two purposes. 1) [t
enables each subclass to be modeied approximately by a MVN
distribution which is completely characterized by a mean
veétor and covariance matrix. These can be estimated easily
from the data vectors assigned to that subclass., (2) Data
from a single physical object is usually reasonably urcimodal

and symmetrical in distribution. O0ften, those objects: which
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are multimodal can be divided into a few smaller objects
which are unimodal., Although multimodal training data may
be representative of a particular main class as a whole, it
is. not representative of the 1individual objects which
compose that class. Since it is the individual objects that
muét be dealt with, the definition of unimodal- subclasses Is
a logical step to taka., in’ otﬁer words, p(x|W;) C(eqn.
2.3.2.1) cannot be expressed in terms of p(xiW;) (eqn.
2.1,2). Each component (mode) of p(x|W;} must be known.

The training and tést data for a given scene compose a
set of labeled observations which we shall refer to as
"reference data™. There are many possible methods of using
a finite amount of reference data to train a classifier and
estimate its error rate. Theoretically the best training
(i.e. the _léwesf'error rate) is obtained by using all the
available reference data for training. If the same data is
used for testing, this is called the “C-method".
Theoretical and experimental results indlcate that, for the
Jayes classifier at least, the C-method produces an
optimistic (negatively biased) estimate of the error rate;
but the bias and variance of the -estimate decrease roughly
as the reciprocal 6f the number of observations used [18].
In contrast, the "U-method" requires test data to be
independe&t of training data. The most common procedure
(called "sample partitioning") is to use a relatively small
nroportion (p) of the reference data for training and the

remainder for festing. In this case the error estimate is
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unbiased and its variance decreases as the reciprocal of the
number of test data; but the actual error rate tends to be
larger than with the C-method, and its variance is p~?r times
larger than the error variance by the C-method.

The interpretation of results is usually somewhat
easier for the C-method, because the question of whether or
not the training 1is Yrepresentative" of the test data does
not arise. For comparative purposes our interestiis in
relkative {rather than absolute) performance, so the bias
induced by the C-method tends to cancel out. There s no
reéson to believe that the bias would be significantly
greater for one scheme than for the others. ¢

On the other hand the U-method is routinely used in
conventional analysis work where absolute performance 1is
emphasized. Effective representation is- obtained in .aost
cases bpy_—_using a fairfy large training data set that
consists of observations drawn from the same general regions
as ‘the test data. For some of the data sets used in our
investigation, reasonably good training statistics ‘are
available from previous conventional analyses. By rusing
available training we obtain results with minimum effort,
anﬂ the results relate direét%y to those obtained by
conventional methods.

For those data sets where previous training 1is
undvailable or inadequate, neither the C-method nor the
U-method is used. Instead, the available test areas are

sampled at an interval sufficient to provide a reasonably
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large tralining set. Like the C-method this method is

simple, It produces representative training, and it
eliminates human hias In selecting the training set. 1t
al§o induces considerably less bias into the error estimate
than the C-method does. Of course, once the training set is
obtained, feature selection and subclass definition may have

to be done before training is complete. An example of this

process is described in the next section.

L.2 Run 71052800 - Crop ldentification

H

MSS data collected over a particular region at a
narticular time and stored on digital magnetic tape s

" W number., Run 71052800 is a set of 12

catalogued by run
channel data collected over flightline 221 in Indiana on
August 12, 1971 during the 1971 Corn Blight Watch Experiment
IéSl. The correspondence between channel numbers and
spectral bands is indicated in Figure 4,2.1. Channels 1-7
cover the visible portion of the spectrum, 8-11 1lie in the
refiective IR portion, and 12 is a thermal IR sensor. It is
evident from the figure that there is a considerable amount
of redundancy in the coverage of the visibie spectrum. In
other words, the data in channels 1-7 will tend to be
strongly correlated, causing the information in these
channels to be rather redundant, at ‘teast more so than in
the {R channels.

The area covered by this run 1is a rectangular strip of

agricultural land about 1.6 km wide and 13,8 km long. It is
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sampled 222 times along its width and 137k times along its
length. The scanner was carried by aircraft at an altitude
of » 1524m with an Jinstantaneous Fie]d-of;view of three
milliradians.

This data set was chosen for analysis for several
reasons, (1) A large number of test areas, containing
84,855 pixels, were available from a previous crop
identification study [25]. (2) The complexity of the
classification is hizh , providing an opportunity to see how
well the new techniques perform in such a situation. (3)
The data set contains a combination of some very challenging
classes and intermediate classes, as well as some easy
classes to identify. The 11 main classes are: corn, sov,
wheat (mostly harvested), rye, hay,  lespedeza {(a grass),
pasture, wooded pasture, forest, 1idle fields, and non-farm.
The latter two categories tend to be "catch<all" types which
are characteristically difficult to identify by conventional
methods. The reason for this will be discussed later.

No previous training statistics were available for this
data set, s0 training data was obtained by sampling the test
areas as pe? Section ﬁ.l. The resultant ratio of the amount
of test data to-fhe.amount of training data is approximately
5:1. The LARS system (LARSYS) STATISTICS processor 126] was
used to compute the statistics of each main class, and
SEPARABILITY 126! was.used to compute transformed divergence
values for every palrwise combination of main classes and

every combination of & channels. The bpurpose of this is
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Yfeature selection™; i.e. due to high correlation between
channels, it is usually possible to find a subset of the
available channels that discriminates between the main
classes almost as well as the complete set. Typically only
7 or b4 of the 12 available channels are used to analyze
aireraft scanner data, resulting in a large time savings..
For the present study, on the basis of the transformed
divergence resulfs, the best set of 6 channels s
(2,4,10,11,12) plus either channel g8 or channel 9,
(Recalling the discussion of Figure 4.,2.1, this vresult is
not surprising,.) Channel 8 maximizes the aver

transformed divergence (averaged over all class pairs), and
channel 9 maximizes the minimum transformed divérgencte for
any pair of classes. The difference between the two s
slight, so channel 8 was selected arbitrarily. Based on
histograms—of the training data it was decided to subdivide
some of the training classes. The LARSYS CLUSTER processor
{26] was used to cluster these classes into 2 or 3 modes and
SEPARABILITY was used to determine the divergence ?etween
modes. Histograms, cluster quotients, and divergence walues
were examined to determine if the mddes of each class were
distinet, and if two modes wére not distinct, they were
recombined {pooled) into a single mode. The final result is
2 subclasses each for corn, soybeans, lespedeza, and idle, 3
subclasses of pasture, and only 1 “subclasg" for each of the
remaining classes, a total of 17 spectral classes. The

LARSYS MERGESTATISTICS processor was used to merge them into
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a single LARSYS statistics deck. Expecting to further
reduce the number of channels needed, SEPARABILITY was again
applied. It was found that although most class pairs can be
distinguished on the baéis of some set of & or fewer
channels, there is no one set of & channels which can
adequately do this for all class pairs. Thus it was decided
to do B-channel <classification. This ended the training
phase of the ana}ysisf

Next the data set was classified by a number of differ-
ent schemes. The LARSYS CLASSIFYPOINTS processor |26] was
used to perform ML no-memory classification. The LARSYS
SAMPLECLASSIFY processor [26] was used to perform minimum
distance (Bhattacharyﬁé) 'sampié classification of the test
areas. In the latter case the processor is essentially
given a-priori knowledge of the boundaries. Max imum
likelihood sample classification of the test areas was
accomplishé;*;y modifying the SAMPLECLASS!FY software. To
avoid confusion this processor will be vreferred to as
"SAMPLECLASS!FY (ML)", and the minimum distance version will

ve.referred to as "SAMPLECLASSIFY (MD)".

Unsupervised, MUV partitioning and supervised
partitioning schemes were implemented using
LARSYS-compatible processors that - were developed

specifically for this investigation. The unsupervised, MV
version cannot be used for this data set, because it
requires that the number of channels be less than the cell

size, which is not the case. The results of all these
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analyses are presented in the remainder of this section.
Fisure 4,2,2 shows classification performances achieved
by: the various processors indicated above. Note that
prgcessor #2 is equivalent to cell selection without
annexation., Thus comparing the results of #2 with the
results of #1 (CLASSIFYPOINTS) gives a good indication of
the effectiveness of Level-l alone, And comparing the
results of #2 with the results of #3 and #4 indicates the
effectiveness of just the annexation (Level-2) phase of
processing. \
Also note that processor #5 should /éive about the same
results as If . the entire partitioning phase were done
flgw]essly, Thus one can think of the results of #5 as a

nerformance Ygoal'. This goal, however, is not a strict

pound (ore on this later), ¢

Both "average" and "overall" error rates are shbwn in
Fizure k.2.2. The former is just a straight average (over
all classes) of the observed class-conditional error rates.
The latter is a weighted average, where the error rate of
each class is weighted by the proportion of test data in
that class. These proportions are given in Table ﬁ.z.ll
Assuming that these proportions coincide roughly with the
actual porportions of the classes in the data set, then the
cverall error rate can be taken as an estimate of theé

unconditional probability of error.
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Table 4.2.1 Relative Influence of EFach Class on Overall
Performance - Run 71052800

Percentage of Total

Class Test Pixels
Coén 43.1
Sovy 22.4
Hheat 17.6,
Idle 4.9
Hon-Farm 5.3
Lespedeza 3.0
Pasture 1.8
Hay 1.5
Wooded Pasture G.8
Rye 0.5

Forest 0.4
J -
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Thé class-conditional error rates are given 1in Figure
.2.3. The -results are grouped by class for easy
comparison. Several observations are wofth?‘of mention at
this point. ‘ .

Observation 1

Both the ungupervised and supervised modes are
effective at reducing fhe efror rate. As expected, the
supervised mode has a fairly consistent ‘qdvantage. It
perforﬁed béftér‘ for & of tﬁe 11 classes, and its-average
and overall error rates are lower. The actual reduction in
error -rate due to the Supergised mode is 10.8% (average) and
8.1% (oyerall). 

Observation 2.

AS'oné.wouid expect, -the - relative effectiveness of the
ECHO approach is highly class dependent. The e%fect varies
from stighf degradation for some clésses to vast improvement
for others.

. Observation 3

The classes where the greateét: gains are made are
wheat, wooded pasture, 1Iidle, and noﬁ—farm.‘ It has already
been observed that the latter two are "catch-all! categories
which are  typically difficuit to' identify using
CLASSIFYPOINTS. "The reason for this 1Is that such classes
tend to have re}akive}y braéd probability density functions
which ovériép with. those of other classes but at a'Iower

likelithood level. Recalling the case of Figure 2.3.3.1, the
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conditional error rate for the ™"broad" distribution Is 50%,
while the conditional error rate for the "narrow"
distribution is Jjust 17.k%. |If other ciasses overlap the
"tails" of the broad distribution, then this discrepancy
pecomes even greater., But when a sample of data from the
broad distribution is made avallable for classification, it
usually consists of a mixture of .values both near and far
fram the mean. This makes it possible for the classifier to
determine the correct classification of the sample.

The wooded pasture class also has a relativelé:broad
distribution due to |its c&mposition and spatial texture.
Note that this does not necgssafily imply that wooded
pasturé'is statistically inhomogeneous or bimodal. We refer
to it as a "compound" class. (See Appendix C.,) In this
panticular case it might at first appear that the method of
using test areas to evaluate performance is biased in:favor
ofisample ciassifieté.' Iin other words, the large error rate
observed for CLASSIFYPOINTS may be due to the assignment of
many test points to the classes forest and pasture, which
may actually be accurate labels for those particular pixels.
This arguement 1s invalid on several counts. First Sf all,
the number of test points classified as forest or pasture
accounts for only 12 of the 44 percent error rate. The
requction in error rate brought about by supervised
partitionlﬁg is 40 percent, or 3.3 times as great as the

maximum possible error attributable to this cause.
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Secondly, whenever CLASSIFYPOINTS classifies an area in a
"salt and pepper" manner, the information is highly
unreliable. If the area actually were that way, Premise A
(Section 1.2) would be violated. Thirdly, even if wvalid
point-by-point classification were possible, most analysts
are not interested in the actual classification of each
individual pixel. Instead their goal is to produce a "type
map" which consists of a partition of the region with a
zeneral label assigned to each element of the partition. An
element containing a mixture of trees and pasture for
example would be labeled "wooded pasture'.

These points are illustrated in Figures Uu4.2.4, 4.2.5,
and-—H:;2,0% Figure 4.2.4 shows a section of Run 71052800
(lines 101-300) that has been classified by CLASSIFYPOINTS.
fach class has been assigned a gray level and displayed
electronically to form the image. The "classification
noise" is readily apparent. In contrast to this, Figure
4.2.5 shows the same section as classified by ECHO
(supervised). The random errors have, for the most part,
been eliminated. This map 1is much closer to the desired
result than is the CLASSIFYPOINTS output. Figure 4.2.6
shows the centers of these two maps in greater detail. Each
class is represented by an assigned symbol (or blank), and
each symbol represents one pixel. The four rectangular
areas are test areas designated as wooded pasture. This

class is displayed as a blank space to emphasize the



Figure 4.2.4 Gray-Scale-Coded Classification Map
- Produced by CLASSIFYPOINTS

Figure 4.2.5 Gray-Scale-Coded Classification Map
- Produced by ECHO
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contrast between it and the others. The diversity of
symbols in the test areas testifies to the inadequacy of
CLASSIFYPOINTS for classifying such textured regions. Most
of 1this confusion is avoided by the ECHO technique. .

The wheat class too has a broad distribution, prébably
due to the fact that the wheat is mostly harvested.,
lihatever the cause, it adds further support to the arguement
that classes with broad distributions tend to benefit the
most by sample <classification. To clarify this “point
further, the classification improvement is plotted in Figure
4.2,7 vs, the common logarithm of the generalized variance.
in the ‘case of a class with subclasses the average
seneralized variance is  used. For this data, the
correlation between these quantities is 0.81,

Of course a broad distribution does not necessarily
imply thég__parti;ioning and . sample. classification. will
-praduce dramatic improvements over CLASSIFYPOINTS. For
example, another class may have about the same distribution,
in which case no classification scheme can reliably
distinguish between them. Or the class may be so unlike any
other class that CLASSIFYPOINTS leaves no room for
improvement. -Also the broad distribufion may be caused by
inadequate training (i.e. not representative), in which case
accurate classification may be impossible until the training
is‘ corrected. Nbviously the mechanisms which léffect‘
classification performance in a multidimensional,

1
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mubticlass, multi-subclass situation -~ are very complex.
ObsérQation 3 provides only limited insight into the overall
process. |

> Observation &4

The supervised ECHO results for «class idle actually

surpass the performance "goal' set Dby processor #5, A
s K
conceivable explanation for this is that idle test areas may

by

actually .consist of several physical objects containing
. C

different subclasses of idle. Since the ECHO processor can

classify such objects separately, It can actually provide an
; )
advantage over SAMPLECLASSIFY (ML) which must classify eagh

test area as a whole,
Observation 5 - '
As expected, processor #2 (Leveil-1 partitioning) can
provide a ‘ﬁairly significant degree of improvement’ on its
own. Again the effecta.is strongly class dependent.: The
effiect would probably be much greater if not for the

correlation that exists between adjacent pixels.

The main parameter that is required for the supervised
! 1
mode is the annexation threshold, t. Figure 4.2,8 shows how

! . :
the average errvor varies for seven values of- t.. O0f these,

the optimum value is t=5, although 2all values trie& gave

significantly better performance than CLASSIFYPOINTS, The

5 4 L
Level=-1 threshold, being of much .lesser importance, was not

1

varied in this study, It was previously estab!ished'at c=

90 by processing a small subregion of the data set several

I



31

30 _
" CLASSIFYPOINTS
25k
Opt. Unsupervised
20}
~ F
=
X a
§ -
§ 154
=R, S SAMPLECLASSIFY (ML)
s [
~
E -
b SAMPLECLASSIFY (MD)
10
5 -~
. t
0 | ] H [} [ ] [ & 'l ]
0 1 2 3 4 5 6 7 8

Figure 4.2.8 Effect of Amnnexation Threshold (t) on Average Performance
. ~ Run 71052800



THE
REPRODUCIBILITY OF
- ORIGINAL PAGE IS POOR Y

times while varving c. Thié value provides a sufficliently
low rejection rate that the occurrence of singular cells is
limited mainly %o patterns resembling boundary lines (as
desired). Thus the classification “results are not
necessarily optimized with respect to ¢, But they are
believed to be near that optimum, ‘ ' :

Figure 4.2.,9 shows the behavior of the overall errvor
vs. t, It is very similar to the average error except that
the results are shifted downward due to the heavy influence
of the corn_class. lts minimum also occurs at t=5. :

The analogous results for the unsupervised mode cannot
be presented as easily because the performance is a Ffunction
_of two variables, the significance levels. For the same
reason, the optimum performance cannot be determined as
easily. Tables #%.,2.,2 and L4,2.3 give average and overall
error rates—for eight different combinations of significance
levels. The Level-1 threshold was maintained at a constant
c=:0.25, Cells found K to be singular at this tevel were
classified as small samples rather than as individual
pixels; i.e. "cell=spiitting” was not in effect. The best
results occur at about s,= ,005 or .001 and s;= .001.
Pogsibly a lower value of s; would produce better results,
but this is bevond the capability of the current processor.

Figure 4.2.10 shows how the processors compare with re-
gard to both error rate and CPU time, In terms of time, the

unsupervised mode is the fastest by far because it performs
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Table 4.2.2 Matrix of Average Error Rates (%) for Eight
combinations of Significance Levels
- Run 71052800

Ay °1 ] .oo1 .005 .025 .100°
.000 24 .6 24,3

.001 21.0 23 .4

.005 21.3 21,9 23.9
.025 21,8

Table 4.2.3 Matrix of Over

Combinations o
- Run 71052800

all Error Rates (%) for Eight
f Significance Levels

) 51 .001 .005 025 .100
> ( .
.000 20.1 20.1 .
.001 18.7 19.7
.005 18 .4 19.3. 20.4
..025 19.5
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the fewest c]as;ifications. CLASSIFYPOINTS is_ the slowest

-

4

hecause it performs the most. The supervised mode ~is in
betLeen and provides the lowest error rate, :

i One of- the factors influencing CPU time is the si;e (in
pi;é1s) of an average object, since the larger the objects
th; greater the _number of pixels that can be classified at
one'time. A rough indication of this factor is obtai;ed by
dividing the number of test areas into the total number of
test pixels. As indicated on Figure 4.2.10, for this data
set an average test area (object) is equivalent to a square,

17 hixels wide,

4.3 Run 72064412 =~ Classification Of Satellite Data

Three :LANDSAT passes over a region in Indiana on
different dates were combined to produce this data set,
Only daté from the first‘date, August 25,1972, is used for
anéTysis in this study. Four spectral channels are
avéi?able on LANDSAT-1. The spectral bands are indicated in

Figure 4,3.1., The instantaneous field of view for the three

-
4

visible band channels 1is 86 microradians. The region
covered by the data set is a recténg!e 45.1 km wide and 53.1
km long; It is-sampled 804 times along its width a;d 673
times lengthwise, for a total of 541,092 pixels. A 21.% km
by 43.5 km subregion. (containing 210,100 pixels) was
analyzed. This region was previously the subject‘of a.study
of strip mine activity (unpubiished). The analyst provided

voth training statistics and ‘test areas.” Briefly, the

* Courtesy of John Berkebile, LARS.



CHANNEL
NUMBER
4 ¢ }
kK o b {
25 . 1
ir F |
WAVELENGTH
. , . . . I(micrometers)'
] N o7 8 9 1.0 1.1

Pigure 4.3.1

Correspondence Between Channel Number and Spectral Band for LANDSAT-1 Scanner

L8



(Slﬁfl//_

38
§.3.

metihod of training was to perform both a manual analysis of
designated training areas, using maps and aerial
photography, and an unsupervised clustering analysis of the
MSS data corresponding to each- training area. The manual
analysis was used to associate each cluster class with an
informational class, and the statistics of the cluster
classes became the training statistics. Training and test
areas have no pixels in common. The number of test pixels
is 19512, a fairly large number for a LANDSAT analysis. The
main classes are agriculture, forest, recent-mine; pit
(containing ‘various grades of water), revegetated .minep
residential, and clouds. The numbers of subclasses are 3,2,
4,2,1,1, and 1 respectively, a total of 1k. Test areas weré
supplied only for the first 5 of 7 main classes. All &4
channels are used in the analysis.

Figure 4.3.2 shows the average and overall error:rates
of the various processors. The weights for overall.error
are listed in Table #.3.1. The class~conditional error
rates are given in Figure 4.3.3. As for Run 71052800, the
number of channels used is too large to permit unsupervised,
IV processing. 0On the whole, the results appear iguite
similar to those of Run 71052800, in spite of the
considerable ‘differences between the two runs. Both the
average and overall error rates are significantly reduced by
the ECHO techniques{ with the supervised mode providing a

cens istent -advantage over the unsupervised mode.
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#2 Supervised Partitioning, t=0
#3 Optimum Unsuperv

#5 SAMPLECLASSIFY (ML)

#6 SAMPLECLASSIFY (MD)

Processor Key
Figure 4.3.2



Table 4.3.1 Relative Influence of Each Class on Overall
Performance - Run 72064412

Percentage of Total

Class ' Test Pixels
Forest 42,1
Agriculture 24,6
Recent Mine 19.1
Revegetated Mine 11.0

Pit 3.2
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The behavior of the pit class. is misleading and
requires further discussion. Normally water is one of the
easiest clésses to identify usiné CLASSIFYPOINTS, vet the
17.6% error . rate’is_ by far the highest of any class.
Therefore it is apparent that something Is wrong with either
the original training statistics or test areas. As it turns
out, Premise "A" .(Séction 1.2) has been 'violafed, and this
has caused the pit test areas to contain many pixels that
overlap both pit and mine or revegetated mine classes.
Consequently the pit class results are not truely indicative
of performance, but they are included here for the sake of
completeness. This accounts for the relétiVely high average
error rate of the unsupervised mode, which is still lower
than the average CLASSIFYPOINTS error rate. With the
exception of this clasg, it can again be said that no class
is significant]y degraded, while some are greatly improved.

The rgéent-mine class is another that bears comment,
Notice that ﬁrocessor #5 performs only slightly better than
CLASSIFYPOINTS. Consequently one cannot expect partitioning
to imptove_the accuracy, since the classifier seems unable
to use the Information effectively. The root of the problem
is that about half of the test areas in this class are
actually labeled "partially revegetatedAmine", and some of
these appear as revegetated mine to the sample classifier.
Apparently these categories are spectrally too similar to

distinguish reliably even on a sample basis. Confusion of

‘ OF THE
EPRODUCIBILITY
%RIG]NAL'PAGE 1S POOR
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this sort is also the source of almost all the recent-mine
wisclassifications that CLASSIFYPOINTS makes, so there is
very little other type of error for the sample classifier to
correct.

The performance of the supervised mode is again plotted
for seven values of the annexation threshold, t (Figures
4L.3.4 and 4.3.5). -Again the optimum value Is t=5, Notice
that the overall errof approaches bétﬁ SAMPLECLASS!FY
results quite closely. ‘For this study the Level=1 threshold
was held at a «constant c= 55, This phoice reflects the
lower number of channels and higher incidence of sihgular
cells as compared to the alrcraft data. ‘ -

The effect of ¢ was briefly investigated when for t= &,
the values c= 55 and c= 80 were compared, The higher value
causes slight Improvements in the agriculture and forest
classes and slight declines in the others. The overall
error rate is unchangéd however. The effects are notilarge
endugh to be of any serious concern here.

The performance of the-unsupervised mode is given in
Tables 4,3.2 and 4.3.3 for seven different combinations of
significance levels, Of these, the best combination‘Is S5
.001 and Sif .Oﬂé. The Level-1 threshold was maintained
between‘C.ZO'and 0.25, and cel?-sp}}tting was not in egfect.
For comparison, the data was also processed with“ceilwsplit-
;iég in effect using the "optimum™ s; and s, above. The pit

class performance improved to about the same level as the

I
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Table 4.3.2 Matrix of Average Error Rates (%) for Seven
Combinations of Significance Levels
- Run 72064412

5) 51. .001 .005 .025 100
.000 13.1 11.8

.001 12.0 10.4 10.9 11.8
.005 11.1

Table h.3;3 Matrix of Overall Error Rates (%) for Seven
Combinations of Significance Levels
- Run 720864412

—s5 °1 .001 .005 .025 .100
.000 12.3 9.5
.001 9.5 7.1 7.9 8.9
.005 .0
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other processors, but this is overshadowéd by degraded per-
formance in the other classes. In contrast to ¢his,?a.non
celil-splitting version of the supervised mode was tried with

= 4 and c= 55, and the class~by=-class performance was uni-
%o:mly- worse than with the cell-splitting version. . This
might imply that the supervised Level-1 test 1is more
effective than the unsupervised Level~1l test or simpf; that

a better Level-1 threshold exists (for the unsupervised

test) than the one-uséd here. The evidence is inconclusive

¢

on this minor point. .

Figure 4.3.8 shows how the processors compare with
reéqrd to both overélﬂ error rate and'CPU.;Ime. As ‘before,
thé unsupervised mode is fastest, and.the supervised mode s
most accurate. Due to the 'great]y-reduced number of pixels
per physical objec; compared to aircraft data; the
difference in speed for the three"processérs is much less
significant. |
4.4 Run 71052501 - Forest Cover Mapping
‘ " Corn Blight Watch Experiment flightline 218 is a 1.6 x
16.1 km strip of land in southwestern Indiana. In contrast
to the relatively flat flightline 221, [t is on'a ﬁma;urely
dissected, westward sloping plateau characterize? by
abundant stream valleys and a well-integrated dr;inage
syétem." "Most of the 1land area is “in slope, with flat,
narrow ridge tops and steep valley walls.” 1271

Consequently row crops (corn and soybeans) are in the

]
H
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minority compared to forage crops. About 60% of the land is
covered by hardwood forest with a few, small stands of white
nine., MSS data was collected over this region on the same
date and 5y the same means as Run 71052800 and labeled
71852501. The région was sampled 1605 times lengthwise and
222 times across its width, In contrast to 71052830, a sun
angle correction transformation was applied to the ;data.
This data set was previously the subject of a forest. cover
mapping study 1271, and the analyst's training statistics
and test areas are Qsed‘in the present investigation. Six
main classes are considered: deciducus forest, coniferous
forest, water, forage, corn, “and soy; A composite c1a§s
(forest and forage) was deleted : by the analyst, who
recognized the Inabi]}ty of CLASSIFYPOINTS to handie such
data adequately. Our previous results on wooded pasture
indicate —that this woﬁld have been unnecessary {f ECHO
techniques had been available to him. In contrast to the
nreviously described ahalyges, the training 1Is as simple as
possible, involviné no clustering or subclasses.. The
available reference data (53,516 pixels) was simply divided
into non-overlapping test and training areas at a ratic of
abéuf 13:1. Based on tﬁe transformed divergences, the best
set of 3 channels is (6,10,12), which is used in the present
investigation.

Figure 4.4.1 shows the average and overall performances

of the —-various processors, The weights for overall
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penformance are given in Table 4.4.1. The orig{naT analyst
has indicated that these are in roughlg the same proportion
as :the actual occurrence of the classes in the  data set,
Thus the overall error rates are estimates of the éctuali
probabilities of error. The class-conditional error'rates
are shown in .Figure bL.4.2. Several observations can be
mades

Observation 1

Again the average and overall error rates are
significantly reduced by the ECHO techniques, with the
supervised mmode pgoviding the greatest advantage.

Observation 2

This is the only data set "analyzed to which the MV
version of  the unsupervised mode (processor #3) s
applicable for the number of channels deemed necessary: Its
performance can be described as erratic. It performed much
better than CLASSIFYPOINTS for the deciduous class and much
better than all processors (except SAMPLECLASSIFY) forlthe
forage class. However It had an especially difficult time
digtinguishing between soybeans and corn. :

Qbservatibn 3

With the exception of the coniferous class, the super-
vised mode (processor #55 again equaled or greatly improved
upgn the., performance of CLASSI1FYPOINTS. And- the
unsupervised, MUV mode did aimost as well. in regard'to the

"apparently" poor coniferous performance, there are
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Table 4.4.1 Relative Influence of Each Class on Overall
Performance = Run 71052501 )

Percentage of Total

Llass Test Points
Deciduous Forest 64.8
Forage 23.6
Corn 5.4
Soy 5.4
Water 0.7
Coniferous Forest 0.2

Table u.ulz Classes Ordered By Generalized Variance

Common Logarithm

] of Generalized Improvement Over
Class Variance CLASSIEYPOINTS
Forage - 8.02 +8.7 %
Deciduous Forest 6.06 +3.9 %
Water : ' 6.01 0 2
Soy 5.78 +0.5 %
Corn 5.01 +0.3 %

Coniferous Forest L ,33 -4.6

e
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extenuating circumstances'to consider,. It has already been
mentioned that only a few small stands of white pine are
known of in the entire data set. The original analyst used
most of these pixels to ensure good training statistics,
leaving only four areas, averaging only 22 pixels (or 5 1/2
cei]s) each, for testing purposes. With such an extremely
small sample, a difference of b4.6% is entirely
insignificant. It represents the misclassification of only
1 cell. Thus the coniferous results are included here only
fo; completeness. No conclusion can be drawn Trom them,
Onservation b
The classes which benefit the most by the new
techniques are deciduous forest and forage. Once again
these are the classes with the largest genera{ized
variaﬁces, as can be seen from Table 4.4.2, The correlation
coefficient for this data is .81, which |is coincidentally

the same as for Figure 4.2.7.

The performance of the supervised mode is plotted for.
fiée values of the annexation threshold, t (Figures 4.4.3
and 4.4.4). The optimum performance occurs at the va&ue t=
h.. At this value, the overall error rate is reduced from
12.9 vpercent to just L4.,2 percent. For this study the
Leyei-l threshold was hel& at c= 60, so again the results
are'not necessarily optimized with respect to c¢c. ‘

The performances of the unsupervised modeg are given in

Tables &4.4.3 through 4.,4.,6 for wvarious combinations of
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Table 4.4.3 Matrix of Average Error Rates (%) for Four
' ‘Combinations of Significance Levels (MV mode)

= Run 71052501

S .
o1 | 025 .050 .100 .
.000 11.3 9.2 11.6
7.6
.001 14.1

Table 4.4.4 Matrix of Overall Error Rates (%) for Four:
Combinations of Significance Levels (MV mode)

- Run 71052501

S
onG1| .025 .050 .100
.000 5.6 k.7 5.9
ho6™
.001 6.0

* result of "cell-splitting"
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Table 4.4.5 Matrix of Average Error Rates (%) for Six
Combinations of Significance Levels (MUV mode)
- Run 71052501

N\C1) L0053 . 025 .100
2
.000 | 24.8 9.6 | 8.b
| 7.8"
.001 11.4 9.1
i
.005 : 9.3

Table 4,.4.6 Matrix of Overall Error Rates (%) for Six
Combinations of Significance Levels
- Run 71052501

. S1]  .o0s5 .025 .100
Sg
.000 7.3 k.5 .8
5. 8%
©.,001 6.5 5.9
*.,005 5.4

+ result of "cell-splitting"
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significance levels. The study was done using a constant
Level-1 threshold of 0.45, This unusually large value is a
reflection of the narrow autocorrelgtion functions of the
forest class (Appendix A). Cell splitting was found to
reduce the average error rate some, but it has little or no
affect on the overall error rate,. The best results for the
MUy versién occur at about s,= 0 and s,;= .100, whiie'the MV
version is best at s,= 0 and s;= .050.

Figqré 4.4.5 shows how the processors compare with
regard to both overall error rate and CPU time., The gmall
number of classes and Fhannels has reduced the time required
to do a single classification to such, 6 a low point that a-
processor's speed depends on considerations other than the
number of classifications that it must perform, Thus the

speed advantaze of the unsupervised modes has disappeared,

4.5 RUN 72032803 - Classification of Satellite Data

This LAMDSAT-1 data set covers a 66.3 km long by 111 km
wide region in 11linois on August 9, 1972, The region was
sampled 837 times lengthwise and 1920 times along its width,
The subregion analyzed is 40.3 km by 46,3 km and contains
406,400 pixels. This area was chosen because it contains a
large set = of reference data (15,067 pixels), cdrresponding
to actual surface observations |28|. The 5 main classes are
corn, soy, other-agriculture (inc]uding alfaitfa, grass,
oats, pésturé; and ﬁheat), woods, and town. Traininé data

was obtained by sampling the test areas as indicated in

REPRODUCIBILITY OF THE
ARFICGINAT. PAGR 18 POSE
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Supplementary Data
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Figure 4,4.5 Error Rate and CPU Times for Five Classification Schemes

- Run 71052501
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Section 4.1. The resultant ratio of test data to training
data is about 5:1. Examination of the training data
indicated that no subclasses were needed. All four channels
were used in the analysis, because the separability of the
classes is %airly low.

Figure 4.5.1 shows the average and- overall performances
achieved by the various classification schemes; The weights
for overall error are given in Table 4.5.1. The
class-conditional error vrates appear in Figure &4.5.2.
Several observa;ions are worthy of mention:

Observation 1

Once agzain supervised ECHO greatly reduced the average
and overall error rates and performed as well or much better
than CLASSIFYPOINTS on every class. On three of the five
classes, both the supervised and unsupervised modes
out-performed even SAMPLECLASSIFY (ML).

Obser;;tion 2

The unsupervised mode did very well in terms of overall
error rate, but 1its average error rate is s]fghtly greater
than that of CLASSIFYPOINTS due to unusually  poor
performance in the "woods™ class. The reason for this
behavior is unknoﬁn, but it suggests that the un;upervised
mode tends to be less stable than the -supervised mode.

Observation 3- -

This is the only data set in which a “rown" class has

been included. We would anticipate a fairly broad
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Table 4,5.,1 Relative Influence of Each Class on Overall
Performance ~ Run 72032803

Percentage of

Class . Total Test Pixels
Corn 67.1
Soy 18.8
Other-Ag. 10.2
Town 2.9
Woods . 0.9

Table .5.2 Classes Ordered According to Generalized
Variance = Run 72032803

Common Logarithm of Improvement (sup. mode)
Class —Generallized Variance Over CLASSIFYPOINTS
Other-Ag. 4.38 + 14,0
Town 3.63 ‘ + 21.7
Soy 3,50 + 1.6
Corn 2,61 + 21.3

Woods 2.27. 0.0
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F
distribution for this <c¢lass and therefore a potentially
large Improvement in classification accuracy by the ECHO
technique. The results bear this out. Table L4.5.2 shows
that the town class ranks second in terms of generalized
variance and First in terms of classification improvement.

But uniike the aircraft data sets, the overall correlation

between these quantities is fairly low.

¢ The performance of the supervised mode is plotted'vs. t
in Figures 4.5.3 and 4.5.4. The best results occur at t=3
and t=h, The Level-1 théeshq}d was held constant at ¢=50
for this study, and cell-splitting was not used. The effect
of ¢ was ‘briefly investigated for t=3 by trying the values
c=30 and c=80. Only class "other" was significantly
affected., For ¢=30 its error rate‘increased 5.4% and for
c=80 it increased just 0.3%. Thus performance again abpears
to be quite-;;;ble with respect to c.

Table 4.5.3 shows the éverage and overall erfor rates
of the unsupervised mode for seven combinations of parameter
values. Cell splitting was not used. The best performance
occur;,For 5240, s1=.005 and ¢=.25 or .20. c¢=.25 préduces
the Jlowest overall error, and ¢=.,20 produces the lowest
average error. The walue .25 was finally Jjudged as 'best"
for this data for two reasons. (1) The value .20 produces
an: excessive nuTber of singular cells, The wvalue .25

produces a pattern of singular cells more closely resembling

boundaries, as desired. (2) The high average error rate for
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Figure 4,5.3 Effect of Annexation Threshold (t) on Average Performance
~ Run 72032803
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- Table 4,5.3

Effect of Parameters on Performance

(unsupervised mode)

IR S, A
. 001 .25 . 005 40.3%  38.8%
0 .25 .001 36.2 35.5
0 .25 .005 42.8 29.7
0 .25 .025 41.7 36.1
0 .20 .001 42.5 32.3
0 .20 .005 35.2 32.1
0 15 .005 38.9 35.2

121
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c=.25 is due solely to the behavior of the 6inority'élass
Bwoods'™. (A11 the other c!ésseg are at their -optimum
performances for this value.)' This behavior is believed to
be‘ an anoma]ous- effect attributable mainly to the <small
amount of test data available for woods (.9%). This belief
is supported by the unusual observétion that for s3j=s.025,
.005, and 1,001, the e}ror rates for tﬂis class are 56.9%,
89.2%, and uB8.5% respectively,. A similar éffecf also
occurred inm the supervised mode. For t=2, 3, 4, and 5, the
error rates aré 14.6%, 28.5%, 31.5%, and 9.2% respectively.

Figure 4,5.5 coméares the overall error and CPU times
of the various processors. In thié case the partitioning
schemes require more CPU time ‘than'the non-partitioning
séﬁemes. This can be attributed to the low number of
spectral c]ésses combined with a small.number of pixels per
physical object.

Ve a1so~ note that processor #2 performeds only
one-fourth as many actual classifications as #1 (since the
cell size was 4), and yet they required the same CPU time.
The same effect occurred on Run 71052501. This indicates a
.significant margin for improvement of the efficiency (speed)
of the superviééd mode. The cause.of'the“Iﬂéfficiency is
thaf the ECHO processors are coded in FORTRAN, whéreaé the
classification subrou;ine- in CLASSIEYPOINTS Is- codéd in

assembler language for optimum efficiency.
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Figure 4.5.5 Error Rate and CPU Time for Four Classification Schemes
- Run 72032803
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4,6 General Observations

Having studied four significantly different data sets,
it 'is now possib]e to make some general observations.
Strictly spga%ing, our - observations (and therefore our
conclusions) apply only to these data sets. But due to the
consistency of the fesu]ts, it is reasonable to expect -other
data sets to exhibit similar behavior as long as they are
reasonably similar to these. This .assumes, of course, that
representative training data is " available and that training
is done ‘in accordance with the assumptions of the model.

Observation 1

First of all it is apparent that the new Fechniques'are
effective for a wide range of variables including
classification parameters (number of'ciasses; subclasses,
channé]s[ etc.) and data ‘paramefers (spatial, spectral, and
messurement _resolution and spatial correlation).

Observation 2 3

Equally important is the stability of the performance
with respect to the processor's input parameters. For the
supervised mode the performance is very stable. The main
input parameter is the annexation threshold, t. On all four
data sets all valués tried gave better performance than
CLASSIFYPOINTS. Furthermore the value " t=4 gave optimal, or
near optimal, performance Iin every case. The{e is- some
evidence to suggest that as the number of channels

increases, so does the optimum value of t.
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For the unsubervfsed MUV mode the main input parameters
are the significance'levels sy and sp, in that order. The
results seem to be fairly stable with respect to them, but
their optimum vélues tend to be elusive. For the four data
sets the optimum value of s, vérieg among .001, .005, and
.100. s, is wusually effective at arodnd .001 or G.
Presently = there is no way to predict the optimum
combination, which means that in order to use this mode one
will generally have to settle for suboptimal results. In
most cases however, the results are still ‘somewhat better
than CLASSIFYPOINTS. |

A secondary parameter is the cell selection threshold
c. A suitable value can-gener;lly be obtained by brécessing
a small subregion of the data set with different thresholds
until one is found which produces a pattern of singular
cells that resémbles object boundaries {(as opposed to random
noise). In {E;' unsupervised mode c¢=.25 most frequently
produced this‘effect, but when spatial correlation was low,
a larger value was needed. In the supervised mode, ¢
depends on the number of channels, g. As a rule of thumb,

= 15q appears to be a reasonable empirical guideline (at
least for 3 & g 6)., But a ]aréer value (c= 20qg) was
required when the spatial c&rrelation was low.

Observation 3

Another type of stability is the senslitivity of the

processor to the particular characteristics of a class. For
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example, CLASS!FYPOINTS is sensitive to the variance of the
class pdf. 1t tends to become Munstable®" when a class with
a relatively broad distribution is encountered. Since a
single pixel contains no information about the variance of
its class, . CLASSIFYPOINTS is better suited for
distinguishing classes that differ in mean rather than in
variance. .

The partitioning schemes, on the other hand, use both
the mean and variance of the data in an object -in order to
classify it. Consequently they tend to be much more stable
in this respect. But in return they should be somewhat
sensitive to the typical size of the objects of a particular
class. One would expect them to become unstable as the size
of the objects approaches the cell size. Some evidence of
this was detected {(e.g. pit class), but the problem was
avoided for —the most part by choosing a relatively small
cell width (2 pixels). |If the object size approaches this
value, then Premise A is violated and CLASSIFYPOINTS also
becomes unstable, as observed for the pit class.

Observation &4

The main advantage of the unsupervised mode appears to
oe speed when classification time, as opposed” to
partitioning time, is the limiting factor. In other words,
when the classification 1is relatively complex, involving
many spectral classes and many channels,.one can save a

significant amount of time by extracting and classifying
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objects rather than classifying on a point-by-point basis.
This s partich]ar]y true when the number of classes s
large, because the .time Frequired for unsupervised
partitioning is independent of the number of <classes. The
largest number of spectral classes considered in this
investigation 1is 17, for which the unsupervised mode
required Tess than half = the time that CLASS!IFYPOINTS
required. It Iis not uncommon tc see analysts using many
more than this, a trend attributable to the increasing siie
of areas classified (encompassiﬁg more classes) and to the
increasing use.of unsupervised clustering techniques for
subclass definition.

It seems advisable at this point to inject a word of
caution against the use of clustering beyond that wh}ch is
necessary to achieve reasonably unimodal training classes.
"Creating" more subclasses reduces the number of pixels
available é;;_subclass for training. Thus the chance that
each subclass is representati&e of an actual spectral class
in the data. set is reduced. Also the narrow distributions
that result cause the classifier performance to be more
sensitive to non-stationary class statistics over a large
area,. Finally, as the number of subclasses increases, the
effeciive size of "“the objects in the scene decreases, thus
reducing the ‘potential advantage of a sample classifier.

Observation 5

The MV version of the unsupervised mode is not generally
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applicable to all situations because of the relation between
cell size and number of chénnels. In one case in which it
ﬁas applicable it performed e}ratically,' but its oyerall
performance Qas as good as the MUV version. Although cases
probably exist for which the MV version provides a
significant advaﬁtage over the MUV version, nohe have yet
been encountered.

Observation 6

The supervised mode consistently provided the Tlowest
average and overall error rates (excluding SAMP;ECLASS[FY),
and for complex classifications it |is more efficient than
CLASSIFYPOINTS. (This 1is in spite of. the fact that it is
programmed considerably less  efficiently ‘than
CLASSIFYPRINTS.) For the four data sets studied, the
" average reduction in class-average and overall error rates
from the rates provided by CLASSIFYPOINTS is 7.1% and 9.6%
respectivel;f__For comparison, the corresponding values for
SAMPLECLASSIFY (ML) are 10.8% and 9.9%. For SAMPLECLASSIFY
(MD) they are 8.7% and 8.9%. Thus we conclude that the ML
strategy is an effective means of sample classification for
MSS data, and that supervised partitioning is an effective

means of applying it when the true partition is unknown.
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CHAPTER §
CONCLUS ION

5.1 Summary

The general problem that we have investigated 1is the
application of sample classification techniques to MSS data.
The purpose of this is to incorporate "memory" into the
classification process, thereby improving performance and
reducing the number of items that must be individually
classified., To begin, we modeled the objects in the scene
as simple samples from multivariate normal populations.
Then we motivated the Investigation by showing that the,
classificafion scheme which achieves the minimum error rate
when object boundaries are known, is a particular type of
sample classification (MAP). Furthermore, the closely
related strategy (GML) that we use in practice has an error
rate that 1is upper bounded by a sum "of exponentially
decreasing functions of the sample size,

When object boundaries are unknown, the technique that
is commonly used is to é!assjfy each resolution element
independently of the others {no-memory classification).
This of course 1Is suboptimal, because spatially . adjacent

states of nature are usually strongly dependent. However an
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optimal strategy (Appendix B) would require a complete
statistical description of this dependence as well ‘as a
large number of classifications and a large amount of
computation pef classification., As an intermediate approach
we chose to exploit the pafticulaé nature of the dependence
by applying an image-partitioning trans formation to the data
set prior to actual classification. In particular we
focused our attention on what we call the conjunctive
object-seeking approach. The- basic algorithm that we
implemented requires two "levels" of statistical tests that
are appiied in a logical sequence in order to “merge
adjacent elements of the scene that are spectrally similar.
The likelihood ratio procedure led us to multivariate tests
of first and second order statistics using criteria whose
distribution functions are known under the null hypothesis.
This enables—us to relate the size of the test to the
decision threshoid. The power of the test depends on the
alternative hypothesis. Due to the “dimensionality probiem"
the “multiple-univariate” versions of these tests are
actually more usefui in practice. :

The likelihood ratio procedure can also be adapted to
provide a supervised mode of 'bperation. The test statistic
is more complex, but it'is multivariate and yet free of the
dimensionali;y problem. Experimental results indicate that
it adds a significant measure of stability to the

processor's performance. Consequently [t consistently
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provided the lowest class-average and overall error rates,
approaching those attained by direct sample classification
of the test -areas. Also, visual inspection of the results
indicated that the classification map -produced by this
method is much closer to the "type-map" form that is usually
desired than is the map produced © by no-memory
classificat}on.

In terms of efficiency, the partitioning schemes varied
from better to worse than the no-memory classifier to which
they were compared, depending on the gomp]exity of the
classification., But given comparable programming’
efficlency, it appears tﬁat this balance would be shifted

significantly in favor of the partitioning approach.

5.2 Recommendations for Further Work

Parameter Selection

One would expect that the optimum vatues of (Input
parameters such as si, s,, and t are statistically dependent
in'some complex way oh factors such as class separability,
spatial correlation, number of channels, average object
siée, and cell size. Therefore it éou]d be beneficial to
investigate the possible use of such information to predict
the optimum input parameters. As we have -noted, this
appears to be needed more in the unsupervised mode than in
the supervised mode.

Use of Texture

In this investigation we have restricted ourselves to
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the assumptian that pixels are class-conditionally
uncorrelated, However in Appendix A we have shown-not only
that they are .corre}éted but that-tﬁe correlation function
is‘elass-depéndent. We have also indicated how a sample
classifier could be designed to eff?ciéat]y exploit this
dependence for improved discrimination between classes.
This effect could be investigated through direct’ sample
classification of test areas, similar to the investigation
doée by Wacker and Landgrebe. If the degree of improyemgnt
proves to be significant, then it 1is likely ‘that the
performance of the partitioning schemes can also be
significantly improved by redesigning them to exploit

spatial correlation.
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APPENDIX A
SPATIAL CORRELATION

In Chapter 2 we assumed, for simplicity, that pixels
within the ) same object are statistically (independent
observations from some subclass population. Then the joint
p&f of "the pige]s can be expressed in terms of the marginal
pdf of a single pixel. A more general approach is to al]ow.
for some correlation to exist between each pixel (X, say)
and the other pixels in the object that 1ie within some
"neighborhood" of X. Spatial correlation can be inherent in
the object, and it can also be induced by the scanner. For
example, a 1line scanner induces a certailn amount of
correlation along each scan line because its bandwidth is
constrained to reduce detector noise. Also, one commonly
finds that adjacent pixels actually overlap. In LANDSAT-1
data, for example, the overlap is 29%. Due to the position
invariance of these effects -and to the homogeneity of the
objects, it is reasonable to assume that the
class-conditional, joint pdf of the pixels 1in the
neighborhood of X is invariant with respect to the position
of X within the object (as we previously did for the

marginal ~pdf of X alone). This of course neglects any
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non-stationary effects of .the scanner such as banding,
variable sun-angle, non-uniform sampling, and d.c. drift,
rnuch of which can, 1in principle, be corrected for in the
data. Another reasonable assumption for most types of
objects is Mtranspose symmetry®; i.e. the Joint pdf of a
spatial array of pixels is invariant with respect to the row
or column transpose of the array. A possible consequence of
this is discussed later.

¥
Assuming (as before) that the pixels in an object are

y

jofntly MVN, then all that is required to specify the}r pdf
is! a mean vector and covariance function matrix (i.e,
interchannel covariance matrix as a function ‘of
di;placement). iIf X(m,n) represents the data vector for the
scene element whose spatial coordinates are m and n (line

and column numbers), then we can estimate this matrix for a

given object—by computing the following average:

clm,n) = 1 2 (X(m+k,n+1) -MCm,n)) (X(k,1) -MC0,0))" Al
~ N k,1 .
=1 2 X(mtk,n+1)X'(k,1) =~ M(m,n)M'(0,0)
N k,1
where
M{m,n) =

1 Z X{m+k,n+1)
N k,1

and N is the number of terms in the summation. To measure
"local" chqracteristics (e.g. for a particular spectral
class), the summations include only pixels from a single
obfect. To measure the characteristics of a larger region,

the summations extend over that region. These measurements
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have been made for several data Eefs, and some typical
results are presented in Figures Al-A5 (aircraft data) and
Figures AG~Al0 (sateilite data). The quantity Rij(m,n)
which appears in . these figures is the correlation

coefficient, which is related to the covariance by

Ryj(m,n) =C;;(m,n)/ JT;;€0,0) €;,(0,0 A2
where Ci}(m,n) is the i,j th element of matrix Clm,n). This
normalization provides easler comparison of the various
functions. Local correlation was measured within the test
areas to ensure that only pixels from the same cbject were
used. The. results were averaged 6ver aill the test.- areas for
a given class to obtain the final estimate for. that class.
Regional correlation is generally gréater' than local
correlation for a given displacement, because it includes
the effect of dépendent states as well as the
class-conditional (local) correlation effects.

The measurements indicate that  intraclass spatial
correlation is a significant effect. Naturally  the
strongest correlation occurs between adjacent pixels, and
the effect diminishes rapidly to a fairly low feveI, The
"knee' in the curve generally occurs at a displacement of
about 2 pixels, An important point (s illustrated by
Figures A2 and A3, which compare the c]asse§ "deciduous
forest" and "forage". We observe a definite class
dependency for the spatial- correlation functions. The

relatively narrow corretation functions for forest indicate



133

a broader spatial frequency spectrum, thus a faster rate of
change, than the forage class. The implication is that this
characteristic can be measured and used by a sample
classifier to distinguish these two classes. Thus the
Wtexture' of a sample contains potentially useful
information about its identity. This comes as no surprise,
but it is not always obvious how to explolt such information
in’a numerically-oriented pattern recognition system., When
spectral information is also available and both are observed
in-a multivariate measurement space, even the human system
may be unable to use all the information contained in the
sample. We shail now briefly discuss how the classifiers
described in Chapter 2 can se generalized to accomplish such
classification.

To design a true MAP or ML classifier for a spatially
correlated -sample, X = (Xy,...,X,), 1is conceptually a
straightforward matter, ziven the mean vector and covariance
function matrix of each c¢lass. These can be used to
construct the ng-dimensional matrix: .

C. = E(QE(X) IXEWi) L A3

i
where

Q; (X) =l{(il-ﬂi)’,...,(ﬁn-mi)')' (XMt e (XM ")
bearing in mind the spatial arrangement of the pixels. Then
for the hypothesis X € Wi, the 1log-likelihood finction

evaluated at X is given by i

p(X|XeW;) = -.5C Inl2mC; | + tr(gglgg(X)) ) ' Al
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For large samples, th}s rapidly becémes too cumbersome to be
practical. Also, a covariance matrix would have to be
constructed for each class for eéch unique spatial
arrangement of pixels 'to be classified.

For large samples with. re]aﬁively small correlation
distances {(small neighborhoods), a more practical approach
would be to implement é minimum distance decision rule based
on Jjust the marginal joint pdf of a neighborhood, which
contains all the information that characterizes a class
population. In fact, assuming transpose symmetry holds,
this information is contalned in the marginal, joint pdf of
just one quadrant of the neighborhood. To estimate this pdf
from a sample, we -estimate the mean vector and covariance
function matrix according to formula Al éut we construct
only the covariance matrix of an array of pixels
corresponding to one quadrant of é neighborhood, thereby
avoiding hoth problems assocfafed with the max imum
likelibhood approach.

We note that when assuming transpose symmetry, the:
covariance matrix estimate can be improved for any given
displacements, {(m,n), by averaging E(m,n) and g(-m,n) to
obtain-the final estimate.

Also, the above strategy can be easily modified (for
simplicity) ‘by truncating the tail of the intraclass

correlation function as desired, thereby reducing the

dimension of -the required covariance matrix. Since the knee
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in the correlation function generally occurs at about 2
pixels, this might be a reasonable correlation distance to
use.

Finally, the choice of distance measure 1is arbitrary.
lowever, an interesting possibility is the use of -L;(M,C)
(from Section 2.3.4), appropriately meodified for the higher
dimensional space. We have seen that it is essentiélly the
same as using a Kullback-lLeibler number, but computationally
it is much more efficient. Due to -its relationship to the
likelihood function and its lack of distance measure
properties, a strategy that uses this criterion can perhaps
best be described as a modified maximum likelihood strategy

(modified to avoid an ng-dimensional matrix).
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APPENDIX B
THE COMPOUND DECISION APPROACH

Let X"=(Xq,..,X,) denote a set of pixels (g-dimensional
random variables) with dependent states (classes). As in
Section 2.1 we assume class-conditional independence. The
goal is to classify each pixel into the set of classes W =
(Wy,....45) (i.es classify X" into W) such that the
expected number of misclassified pixels is minimized. As
shown in Section 2.3.2, this is accomplished by decision
functions wi(xn) such thét

PeX; & Wi (xM X =x") = max P(Xj e Wj1X"=x"), i=1,...,n B1
J

A simpler, though suboptimal procedure is to classify the
pixels "seéuential]y“ without "looking ahead"; i.e. let the
ith decision function be based only on the observations xi =
(Xg,.++sXxj). This is equivalent to setting n=i in equation
Bl. Making this change and applying Bayes rule provides:

pCxi=xt g e (x1)) PCH; (x13) = max p(xi=xlix;ew;)PCw;) B2
. J

Before proceeding we shall shorten the notation by
expressing the right hand side of B2 as:

max p{x' |A;IP(A}) B3
Ay €W

where A; denotes both a «class and the event that X; is a
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random variable from that class. Similarly Ai will denocte a
Vegto} of | classes and the event that these are thé true
clésses of the set Xi. . Defining j=i~1 and applyving the law
of total probability to B3 provides: |

nax 3 p(x! 147 a0) PeAjIATY PCATY | Bl

A'EWJ . \
= max 25 p(x}IA ) PLA; IAJ) D(xJIAJ) P(AS)
As .

A
Defining the quantity 0j(A1,...,A;) = p(x! 1A1) P(Al), it s

apparent that 34 can be computed recursively as:

max 3 Qi(Apae.-sAp) o i ‘ ' :  BS
A Aj

vihere ) ‘

01(AL, v s AT) = DUXTTAD) PCATIAT) QuCAL,.ur,ap) 86

but the number of terms in the summation grows as m’,
if the states form a first order Markov chain, B4
reduces to simply:

max Rj(A;) A U : B7
A . - . ! - -

where

Bl

RiCA;) € plx;1A1) 5 ptx? 1a%) Peah)
Al '
but it can be computed recursively as:

Ri(AT) .= plxjlAp) %% PCAIA;) R3(A5) B8
. 3 . . !

. For a kth order. Markov chaln (k>1). we define j=i-k," and
B4 reduces to:

max p{xilA; ) P p(X;- 1[A,_1)§E esse 2 Ry (A,,...,AJ+1) B9
Aj - Ap-1 CAi-z Aje

k]
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where
RICAT o veshsyg) £ p(%5,1 18,0 3 p(xJ [AT) PCAT) 810
_ N

= plx;,q 1A ,) %:.P(Ai 1A yreeer A R (AL e, A)
J
The number of summation terms in B9 and B10 is only mK

To obtain this relatively efficient classifier we have
assumed a sequential approach, Markov chain dependence
between state;, and class-conditionally _independent data
vectors. 1In spite of these simplifications it Is clear that
the computational and memary requirements of the compound
decision approach are considerably greater than the

no-memory approach.
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APPENDIX C
COMPOSITE CLASSES

Let p(xfwl) and p(xlwz) be two-univariate normal class
densities. Let Wg be a third class that 1is a composite
(spatialiy) " of the two ground cover-types represented by
these densiFies. The problem is to determine the density of
this clasg. We shall assume that the conditional density of
a pixel containing 100%a% of c&ass -1 and 100(1-a)% of class
2 is also normal with mean M(a) = a*M; + (l-a)My and
variance V{(a)l= a*V1 + (l-a)Vz, where Mi and Vi represent the

mean and variance of the ith class. Thus

1 — -
p(x|w3) = J N(M(a),v(a);x) pl(a}) da cl
0 .

for some distribution p(a) which depends on the overall
proportion of each class and the “texture" of the composite.
Assume for example that the overall proportion of each
class is 0.5, and consider three different cases of texture:
Case 1 - Maximum Variance
If the texture of the composite is very coarse compared
to the size of a pixel, then a pixel will usually contain
either one class or the other, not both. p(a) 1is

approximated by .5{s(a)+§la-1)}, where §(*) represents the
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Dirac delta function. Thus p(x|Wz) is approximately
.5(p(xlw1)+p(xlw2)), which of course is bimodal in general.
We - refer - to. this as a "mixture" "class, because the
constituents retain their inAividﬁaf characteristics. - The
normal way to handle such a class is to élﬁster the &ata and
treat- each mode as a subc]aé;. Thus a mixture of Wy and W,
canpot be treated as a dfstinct'xthird class by -a Gauissian
classifier. ﬁbf course, post-processing couid be applied to
the classifier output to search for such a mixture,” if

~-

deaired.)'_

( Case 2 -~ Minimum Variance
If the textﬁre of the compésite is very fine; then p(é)
is approximated by S(a".S),fand"ﬁ(x1w3) is approximately
normal  with mean (My+My)}/2 and -variance CV1+V2)/2. This éan
(and should) be treated as a distinct third class. We:refer
to it as. a Ycompound” class, because the constituents lose
their individuality.

Case 3 - Intermediate Variance

' When the texture of the composite is on the.same  order
as the pixel size (e.g. Figures Cl and C2), a randomly
selected 'pixel can contain any proportioqs of the two
ciasses. As.é first~order approximation to p(a) we consider
the 'strictly periodic pattern in Figure Cl1 and let the
coordinates (X,Y) of the pixel be uniformly distributed
random varliables over nthe area covered by the pattern.

Assume for simp]icity that the orientation of the pixel
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square is the same as the square elements in the pattern.
Symmetry consideratiqns ’rgquire that p(a) be unchanged if
the point (X,Y) is uniformly distributed over the region 0
x €1, 0 &y < min(x,1-x). In this region alx,y) = x=2xy+y.
By transformation of random variables it follows that:

pla) = - 1n |2a~1] , 0 ¢ ag 1 ' - €2
which is shown in Figure ci. The variance of this
distribution is intermediate between Cases 1 and 2.

Figure C3 shows two hypothetical c]éss densities,
p(x]W;) and p{x|{Ws), and the density of their composite,
p(x{Wz) (obtained by numerical evaluation of formula Cl1
using formula C2). As in Case 2, p(x|Ws) forms a distinct,
unimodal class, but its variance is larger due to the spread
of p(a).

Another intéresting case is the pattern shown in Figure
C2. Here the texture is primarily one-dimensional. (This
tendenéy can be observed for ‘instance in a few of the
objects in Figure 4.2.4.) When the detector size matches
the 1ine width, p{a) is uniform on the interval 0 ( a £ 1.
lts variance is greater than that of formula €2, which
results in the composite class p(x]Wy) shown in Figure C3,
Important points to notice are that it 1is unimodal,
relatively broad, and it forms a distinct compound class.
As Mg=-Mj] increases relative to the variance of Wy and W,
p(xiWy) tends toward uniform on the interval (Mj,Mg). Thus,

if other classes lie in this interval, observations from the
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compound class will ténd to be misclassified at a high rate

H .
by a no-memory <classifier., OFf course, much 1less confusion

t

should result if classification is done on a samﬁle basis.
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