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ABSTRACT
 

digitized multispectral
A method of classification of 


on actual
 
images is developed and experimentally evaluated 


and satellite.
earth resources data collected by aircraft 


the characteristic

The method is designed to exploit 


states of nature that is
 
'dependence between adjacent 


conventional simple-symmetric decision
neglected by the more 


rule. Thus contextual informatibn is incorporated into the
 

The principle reason for doing this
classification scheme. 


accuracy of the classification. For
 
is to improve the 


would generally require

general types of dependence this 


more computation per resolution element than the
 

But when the dependence occurs
 simple-symmetric classifier. 


the elements can be classified
in the form of "redundance", 


thereby reducing the number of
 
collectively, in groups, 


Thus a potential exists for

classifications required. 


increased, rather than'decreased, efficiency.
 

method can be thought of as an image

Basically, the 


(extracts) the
 
partitioning transformation that delineates 


statistically homogeneous groups (samples) of elements and a
 



X 

sample classifier that classifies them. Various
 

possibilities are considered for both operations.
 

The main result is that a combination of the two is
 

found which consistently provi-ded the lowest error tates,
 

rivaling those obtaired when ground observational data was
 

used to dellneate the samples manually. The relative
 

efficiency of this method depends largely on the complexity
 

of the classification task. For relatively complex
 

classification, the time saved by sample classification more
 

than compensates for the extra time required for
 

partitioning. But for relatively simple classification the
 

simple-symmetric classifier is faster. Of course in the
 

latter case, efficiency is not as great a consideration
 

since the total CPU time involved is much less than in the
 

former case.
 



CHAPTER 1
 

INTRODUCTION
 

The general objective of this thesis is to advance the
 

state of the art of pattern recognition as it is applied in
 

a
remote sensing technology. This chapter opens with 


discussion of pattern recognition and remote sensing systems
 

that leads up to the specific problem -under investigation.
 

In the process much of the prevalent terminology is
 

that this problem
introduced. Other work is related to is
 

discussed in Section 1.3.
 

1.1 Pattern Recognition Systems
 

Man's most abundant source of information about a scene
 

is the radiant elestromagnetic energy which emanates from
 

it. The information is embodied in the spatial, spectral,
 

and temporal variations (patterns) of the radiance. The
 

general process of extracting information from patterns
 

(radiance or otherwise) is known as pattern recognition.
 

The most common form of pattern recognition is
 

"classification", the assignment of an observed pattern to
 

one of several prespecified categories (classes). This
 

requires a certain degree of experience; i.e. the
 

recognition system must know the possible classes and have
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some sort of un-ique characterization for each one.
 

Typically this exp6rience is "learned" from representative
 

"training" patterns'(or sets of patterns) that are supplied
 

as references for each class. -in the simplest case, each
 

set of patterns is a complete characterization of the class
 

it represents. Then classification is a straightforward
 

matter of comparison. More generally, a statistical
 

characterization might be the only adequate approach, and
 

the training patterns might be used to estimate statistical
 

quantities. Classification thet becomes a problem in
 

statistical decision theory.
 

Of course it is not always possible to prespecify the
 

categories that a pattern might belong to. 'This is often
 

true in scene analysis, where the number of possibilities
 

can be enormous. Then pattern recognition can take the form
 

of "description". In general, pattern recognition can
 

involve both classification and description. A complex
 

scene composed of rel-atively simple objects is often
 

described by classifying the objects and recording their
 

relative positions and orientations -in the scene. , This
 

description might be considered the final result, or it
 

might in turn be used to classify the scene itself.
 

All systems that extract information from a scene
 

consist of a data collection system and a data processor.
 

The purpose of the data collection system is to reduce the
 

scene to a manageable number of measurements (features)
 

without losing the desired information. Further reduction
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-

is often possible in the processor. The

(feature selection) 


choice of features obviously depends upon the information
 

that is desired, and conversely the information that can be
 

upon the choice of features. Most

extracted depends 


ways to the human
are similar in many
collection systems 


' 

eye, which forms features by "sampling" the spatial,
 

a

spectral, 'and temporal dimensions, thereby converting 


pulses. Spatial sampling.
scene into series of electrical 


scene on an
 can be accomplished by forming an image of the 


or by scanning
array of detectors (electrical or chemical) 


detector. The resolution
the image with an electrical 


a system is the projection of the detector
element of such 


the scene. It is

back through the optical system onto 


element.
commonly called a "pixel", short for picture The
 

size and
overall system resolution depends on both the pixel 


are normally about

the interval between samples, which 


equal.
 

Spectral sampling is accomplished by measuring the
 

element with detectors

radiance of each resolution 


spectral bands.

(channels) that are sensitive to different 


A prism, grating, or interference filter is often used to
 

energy spectrally before detection.
 
separate the radiant 


Temporal sampling is accomplished merely-by taking spatial
 

and spectral samples at discrete times.
 

Depending on the type of information that is desired,
 

emphasize or de-emphasize a particular dimension by
one can 


sampling it relatively many or relatively few times. A
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single black-and-white photograph, for example, emphasizes
 

spatial information since it is created by sampling only
 

once spectrally and once temporally. A color phot6graph
 

contains three spectral samples and thus emphasizes both
 

spatial and spectral information. The extent to which a
 

pattern is sampled falls under the category of "measurement
 

complexity". Under-sampling results in loss of information,
 

but over-sampling results in an excess of data to process.
 

Technically, the data dimensionally increases faster: than
 

its intrinsic dimensionality.
 

"Data dimensionality" refers to the dimension of the
 

measurement or observation space, in which a sampled pattern
 

can be considered an observation of a multi-dimensional
 

random variable. The probability density of this random
 

variable is a function of N variables (dimensions), where N
 

is the number of measurements. The "intrinsic"
 

dimensionality of a random variable X) is the minimum
 

dimension that another random variable (Y) can have if X is
 

uniquely related to Y. Thus it is the minimum number of
 

measurements that could be used to convey the same
 

information as X if the relationship were known.
 

Over-sampling increases the data dimensionality, but the
 

individual measurements tend to be more highly correlated
 

causing the information conveyed per measurement to
 

decrease.
 

The information that can be extracted from an image is
 

also limited by the sophistication of the processor which
 



1.2 

5
 

Just as the necessary measurement
 must handle the data. 


so does
the information being sought,
complexity depends on 


often an
 
the method of processing. The human mind is 


extremely good processor, particularly when the information
 

For this purpose the data
 is of primarily a spatial nature. 


image form,, which is known as an
 
is presented in visual 


system. By contrast, in a

processing
"image-oriented" 


"numerically-oriented" system the decision-making element is
 

plays little or no part.
and the visual image
a computer, 


are high load
 
Advantages of the computerized approach its 


high load,

(volume) capacity, comparatively low cost under 


and capacity to handle high measurement complexity.
 

Remote Sensing of Earth's Resources
 

subject before the engineering and
 
An important 


the present time is the processing

scientific'community at 


earth's surface as
 of scenes which represent tracts of the 


above. A typical scene consists primarily of
 
viewed from 


in a patchwork

regular and/or irregular regions arranged 


class of surface cover type.
 manner and each containing one 


These homogeneous regions are the "objects" in the scene. A
 

locate and classify the objects
basic processing goal is to 


in terms of tabulated
 and produce a description of the scene 


As in other image processing
"type-map".
results and/or a 


features (e.g. size,

applications, the locations and spatial 


of objects are revealed by changes in
 
shape, orientation) 


boundaries. 
 But
 
average spectral properties that occur at 




~22 POOR­

6

1.2 


unlike most other applications, the spatial features of an
 

object often have only a weak relationship to its class.
 

Research has shown, however, that many classes can be
 

distinguished reasonably well on the basis of their spectral
 

features, using statistical pattern classification
 

techniques. Current research is directed toward use of
 

temporal features as well, but not in this investigation.
 

Our interest is in. the numericallyoriened system
 

approach to processin-g these scenes. The input to the
 

system is in the form of digitized multi-spectral,sdanner
 

(MSS) data stored -on magnetid tape. A typical
 

multi-spectral scanner samples the spectral .dimension and
 

one spatial dimension. The second spatial dimension is
 

provided by the motion of the platform which carries the
 

scanner over the region of ihterest, generating a
 

-rasterotype scan. The temporal dimension is provided by
 

rescanning the region at di'fferent times.
 

Compdter'classifiication, of MSS data is typically done
 

by applying a "simple symmetric" decision rule to each
 

pixel. This means that each pixel is classified
 

individually. on the basis of its spectral measurements
 

alone. 'A basic premise of"'this technique is that the
 

objects of interest are large compared to the size~of a
 

pixel. Otherwise a large proporiion of pixels would be
 

composites of two or more classes, making statistical
 

-pattern class-ification unreliable; i.e. the prespecified
 

categories would be inadequate to describe the actual states
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of nature. (For later reference we shall call this "Premise 

A".) Since the sampling interval is usually comparable to 

the pixel size (to preserve system resolution), it follows
 

that each object is represented by an array of pixels. This
 

suggests a statistical dependence between consecutive states
 

of nature, which the'simple symmetric classifier fails to
 

exploit. To reflect this property, we shall refer to simple
 

symmetric classification as "no-memory" classification.
 

One method for dealing With dependent states is to
 

apply the principles of compound decision theory or
 

sequential compound decision theory. Abend Ill points out
 

that a sequential procedure can be implemented relatively
 

efficiently when the states form a low-order Markov chain.
 

However the prospect is considerably less attractive when
 

they form a Markov mesh, which is a more suitable model for
 

two-dimensional scenes. Furthermore, estimation of the
 

state transiti.on probabilities could be another significant
 

obstacle to implementation of such a procedure. A short
 

appendix on the compound decision approach is included in
 

this thesis.
 

The compound decision formulation is a powerful
 

approach for handling very general types of dependence.
 

This suggests that perhaps by tailoring an approach more
 

directly to the problem at hand, one can obtain similar
 

results with considerable simplification. A distinctive
 

in MSS data is
characteristic of the spatial dependence 


redundance; i.e. the probability of transition
 

http:transiti.on
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from state i to state j is much greater if j=i than if jHi,
 

because the sampling interval is small compared to the size
 

of an object. This suggests the use of an "image
 

partitioning" transformation to delineate the arrays of
 

statistically similar pixels before classifying them. Since
 

each homogeneous array represents a statistical "sample" (a
 

set of observations from a common population), a "sample
 

classifier" could then be used to classify the objects. In
 

this vay, the-classification of each pixel in the sample is
 

a result of the spectral properties of its neighbors as well
 

as its own. Thus its "context" in the scene is used to
 

provide better classification. The acronym ECHO (extraction
 

and classification of homogeneous objects) designates this
 

general approach.
 

A characteristic of both no-memory and compound
 

decision techniques is that the number of classifications
 

which must be performed is much larger than the )ctual
 

number of objects in the scene. When each classification
 

requires a large amount of computation, even the no-memory
 

classifier can be relatively slow. An ECHO technique would
 

substantially reduce the number of classifications,
 

resulting in a potential increase in speed (decrease in
 

cost). Whether -or not this potential is realized depends on
 

the efficiency of the partitioning operation.
 

The goal of the current investigation is to further the
 

development of the ECHO concept. In particular, various
 

processing options are devised, implemented, and tested on a
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wide variety of data sets. Input parameters are varied to
 

determine their effect, and performance comparisons are made
 

using no-memory classification as a norm.
 

1.3 	 Related Work
 

The recent literature contains numerous references to
 

image partitioning algorithms. Robertson 121 divides them
 

into two main categories. "Boundary seeking" algorithms
 

attempt to exploit object contrast.
characteristically 


template
These techniques include local gradient 13,41, 


matching 151, two-dimensional function fitting 161,
 

clustering 14,71, and gradients estimated from
 

Two have been
variable-sized neighborhoods 181. of these 


implemented with digitized multispectral imagery.
 

Anuta 141, investigated a multivariate extension of a
 

The gradient operator of
two-dimensional gradient operator. 


pixel into a number which
a unispectral image maps each 


reflects the average positive difference between that pixel
 

and 	 its neighbors. The multivariate operator sums these
 

numbers over all spectral features for each pixel. Since
 

the differences are generally larger for boundary pixels
 

than for non-boundary pixels, thresholding this sum (for
 

each pixel) at the "proper" level provides a boundary
 

image. technique is
enhanced version of the original This 


several serious problems.
relatively fast, but it has 


First, it is inherently noisy, which is typical of
 

It is also very sensitive to
differentiation techniques. 
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the threshold level used. Furthermore the boundaries
 

derived by this technique often fail to close. upon
 

themselves. For example, a boundary line may become
 

discontinuous or fade out completely, leaving the objects
 

ambiguously defined. In special cases where the object
 

shape is restricted 13,91, the true boundaries can sometimes
 

be deduced, but in general they cannot. This may not be a
 

serious drawback for applications such as -image
 

registration, but closed boundaries are necessary for sample
 

classification. This particular problem is common to all
 

the boundary seeking algorithms mentioned above.
 

Wacker 171 developed an algorithm for MSS datawhich
 

performs a cluster analysis (unsupervised classification) of
 

a small region of the image and then scans the result for
 

the oresence of a boundary. The estimated boundary
 

structure for the entire image is obtained simply by taking
 

the'union of the boundaries found in all such regions.- This
 

is a much more time-consuming process, but it is less noisy
 

and less sensitive to input parameters. Of course it
 

suffers from the same open boundary problem as the other
 

boundary seeking algorithms.
 

The other category of image partitioning algorithms can
 

be called "object seeking" algorithms, ,which
 

characteristically exploit the internal regularity
 

(homogeneity) of the objects. As the name implies, an
 

object seeking algorithm always produces well-defined
 

samples (and thus closed boundaries as well). There are two
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opposite approaches to object seeking, which we shall call
 

conjunctive and disjunctive. A conjunctive algorithm begins
 

with a very fine partition and simplifies it by
 

adjacent elements together that are
progressively merging 


found to be similar according to certain statistical
 

criteria 110,111. A disjunctive algorithm begins with a
 

very simple partition and subdivides it until each element
 

satisfies a criterion of homogeneity. For example,
 

is based on the premise that if
Robertson's algorithm 12,121 


a region contains a boundary, splitting the region
 

with
arbitrarily will usually produce two subregions 


significantly different statistical characteristics.
 

in the application of sample classification
Early work 


His method of
to MSS data was reported by Huang 1131. 


"polling" requires classification of the individual pixels
 

in the sample and is thus relatively inefficient. Wacker
 

and Landgrebe 1141 investigated the "minimum distance
 

Both
approach" using parametric and non-parametric methods. 


relied on manual definition of the object
studies 


(ground) observations,
boundaries, based on actual surface 


to locate the samples that were classified.
 

We combined Rodd's conjunctive partitioning algorithm
 

with a minimum distance sample classifier and observed an
 

improvement in classification accuracy over conventional
 

increased
no-memory classification, but processing time was 


1161 added a test of second order
1151. Gupta and Wintz 


statistics to Rodd's first order test, but obtained
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essentially thesame results as the first order test at
 

greater cost in processing time. Robertson 12,121
 

implemented a disjunctive partitioning algorithm with the
 

same minimum distance classifier. He obtained about the
 

same classification accuracy as conventional no-memory
 

classification with an order of magnitude increase in
 

This points to one essential difference
processing time. 


befween the disjunctive and conjunctive approaches. With a
 

every time a regioh is divided new
disjunctive approach, 


sample statistics must be calculated from raw data. With a
 

conjunctive approach, every timd two regions are merged the
 

statistics for the resultant region can be obtained merely
 

by "pooling" the statistics of the original two subregions.
 

This results -in a significant computational advantage for
 

the conjunctive approach.
 

The current investigation is devoted to further
 

development of the conjunctive approach. A much faster
 

sample-classifier is proposed and tested. This problem is
 

discussed in Chapter 2. New statistical 	 criteria are
 

proposed as-well as new object seeking logic 	 in Chapter 3.
 

4, comparing
Extensive test results appear in Chapter 


different algorithms against- each 'other and against
 

conventional no-memory classification. The main result is
 

that the stability, classification accuracy, and speed of
 

the ECHO technique have been greatly improved. Compared to
 

the no-memory classifier, consistently lower error rates are
 

observed using an ECHO approach, and for a reasonably
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complex classification its efficiency exceeds that of the 

conventional method. 
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CHAPTER 2
 

CLASSIFICATION
 

The motivation for object extraction is to enable
 

faster and more accurate classification of the pixels within
 

the object. In Section 2.3 we discuss the classification
 

algorithms that accomplish this. They are based on a 

certain model of the objects to be classified, which is 

described next. 

2.1 Statistical Model of Multi-Spectral Scanner Data
 

As we have indicated, a typical scene consists
 

primarily of objects whose boundaries form a partition of
 

the scene. The partition is generally unknown at the
 

outset, but we can at least assum6 that it is relatively
 

coarse compared to the size of a pixel. Each object in the
 

scene belongs to some class. For representation purposes,
 

each class is divided into one or more "subclasses". They
 

are also called "spectral classes" (as opposed to
 

"informational classes") to indicate that they can be
 

distinguished spectrally although it may not be useful to do 

so. Let Wij denote the 31h subclass of the ith class. Let 

F denote an object (represented by an array of pixels), and 

let X denote a pixel in some object. (The underbar is used 
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to indicate a q-dimensional variable ( c Rq ), where q 

henceforth denotes the number of spectral channels.) Then 

FcWij denotes the event that F belongs to the subclass Wij. 

The a-priori probability of this event is denoted by 

P(FeWi1 ). In accordance with Section 1.2, we ignore any 

statistical dependence of this event on the spatial features 

of F. If there were a strong, known dependence then it 

could be used to help classify F, 'but that is not our 

intention. A consequence of this assumption is that 

P(CVsWij) P(FeWijY, and we denote both quantities simply by 

P(4i).. 

The pJixels withina given object of a given spectral
 

class are completelI characterized by their lass­

condit'ional, joint, probab'ility distri'bution function. For
 

no-memory classification, such a complete model is
 

unnecessary; only the marginal distribution of each pixel is
 

required. Furthermore, the pixels within a single object
 

are usually assumed to have a common (i.e. stationary)
 

marginal distribution, which is due to the homogeneity of
 

the types of objects typically encountered in remote sensing 

aoplications. Although the data is digitized, it is 

convenient to represent this q-variate distribution by a 

continuous-parameter probability density function Cpdf) 

which, for subclass W is denoted by p(X=xIALW..) or 

simply by p(IWi}). -(The vertical bar indicates conditional 

probability). 
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Two pixels in spatial proximity to one-another are
 

unconditionally correlated, with the degree of correlation
 

decreasing as the distance between them increases. Much of
 

this correlation is attributable to the effect of dependent
 

states, discussed in Section 1.2, which is the effect we
 

wish to exploit. For simplicity we shall ignore other
 

sources of correlation. Thus we assume that pixels within
 

the same object are class-conditionally independent; i.e.
 

each object is a "simple" sample from one of the spectral
 

class populations. Then the joint pdf of the pixels can be
 

expressed as just the product of their marginal pdf"s. This
 

approximation leads to fast, effective (though suboptimal)
 

processing algorithms, but theoretical predictions based on
 

this simplified model should be interpreted cautiously.
 

This aspect of modeling is discussed at greater depth in
 

Appendix A.
 

It is possible to express other statistical
 

characteristics in terms of the ones above. If 14 denotes
i 


the ith class, then
 

P(_XC i ) = PCU XcW.) j P(WI.) 2.1.1 

where U denotes the union of events. The pdf of , 

conditional on this event, is given by 

pCxOW 1) = 1 2 p(XIWIj)PCWI1 ) 2.1.2
P(Wi ) J 

This equation defines the representation of a class in terms
 

of its subclasses. The unconditional pdf can be written in
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two ways:
 

p p((A)xIwi P(Wi 1 ) = . p( WI IP(1i 2.1.3
ji 

Within this Framework, all that is required to complete
 

the statistical model for a given scene (or class of scenes)
 

is to specify the spectral classes that are present and
 

assign an a-priori probability and conditional pdf toleach.
 

Of course the.true distributions are assigned by nature, and
 

thd accuracy of the model depends on how well we can
 

estimate them. Fortunately we are usually able to obtain
 

estimates of the class-conditional pdf's based on training
 

samples taken directly from the data set. For this we
 

usually rely on actual surface (ground) observations or
 

manual photo-interpretation to locate areas representing
 

each class of cdver-type. For the purpose of classifier
 

design, we assume that the -size of each sample is
 

sufficiently large that the error in the corresponding
 

distribution estimate is negligible. The subject of
 

training is discussed further in Chapter 4. c
 

The distribution estimates can be parametric or
 

non-parametric in general. It has been found that the
 

miulti-vari-ate normal (MVN) distribution is a reasonable
 

model for MSS data 1171; i.e. pCJWi) = NCMi 1 ,Cij;x),:where 
N(I,C ) (-12TTCI exp( (Z.-l)' z(.&-M)) - :2.1.4 

(Note that (x-M)' denotes the transpose of vector (x-tv.) 

It follows that if XEW
 

EQX) = Mij 
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E(C(X-M.i .X1-:14')- )')J =
S -I C.i
 

) denotes statistical expectation. Thus t.. and
 
where E( 


are the mean vector and covariance matrix of the
 
C.. 

"'IJ
 

in order to obtain a
Note that 


only
 

subclass distribution. 


a MVN distribution, it is 

parametric estimate of 


order moments.
first and second 
necessary to estimate its 


use.
This is the approach that we will 


2.2 No-Memory Classification
 

In order to introduce certain concepts that will be
 

now review some common techniques of
 
useful later, we 


one case) a
 
classification including (in 


the probability of error.
 

no-memory 


discussion of a bound on 


Maximum A Posteriori Probability (MAP) Strategy
2.2.1 


before. Under the hypothesis that
 Let X be a pixel, as 

pdf of X is p(Z=LjeWsi ), which is given by
XtWi, the 


is accurately
Assuming that this function
equation 2.1.2. 


known, the hypothesis is "simple". The goal of
 

devise a strategy for choosing one of
 
classification is to 


the observed
 
the possible classes (hypotheses) based on 4, 


we must specify a functi-on, W(x), which
 
value of X;. i.e.. 

possible classes. We can maximize 
maps x into the set of 


the probability of a correct decision by always 
choosing the
 

posteriori probability,
has the maximum a
class, Ii, which 


P(XEWiIj=A). To show this we merely write the probability 
of
 

a correct decision in the following form:
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PCX 	 WX)) =fPc WCA)jIX=x)pCX=x) dx 2.2.1.1 

Rq 

It is apparent that this quantity is maximized with respect
 

to the decision funct-ion by adopting theMAP decision rule.
 

To implement this strategy we use the mixed form of Bayes
 

rule to write
 

: p(_XxlX€W i)PCW.)
 

N W lX[)(x) 	 = pC~I 2.2.1.2 
p 	 p(X=_x) 

The denominator is Independent of i, so we need only to seek
 

the- i which maximizes the numerator. In other words, for a 

ziven observation, x, W(x) is chosen such that 

o(X=xX C ','(x))P(W(x)) = niax pCX=xLX e WI)P(W I) 2.2.1.3 

This result can also be obtained as a special case of Bayes 

decision rule for iiinimum risk when -a "zero-one" loss 

function is assumed - (i.e. when the risk equals the 

probability of error). Thus' it is often referred to as 

"Bayes classifier". 

2.2.2 	 Maximum Likelihood (ML) Strategy
 

When all the classes are equiprobable, the MAP decision
 

rule reduces to
 

p(_6=xAL WCx)I) = max p(X=xLX e W i ) 


As a function of i, the statistic p(X=x&X s Wi ) is called
 

the likelihood function, so this decision rule is called the
 

maximum likelihood strategy.
 

2.2.2.1 
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The ML strategy is usually a,reasonable approach even
 

when the classes are not equiprobable. In particular, the
 

NAP strategy tends to discriminate against classes whose
 

a-priori probability is low; i.e. it encourages a relatively
 

large conditional probability of error when a "rare" class
 

occurs in order to minimize the overall error probability.
 

Thus when one is interested in classifying the less abundant
 

classes (as well as the more abundant classes) with
 

reasonable accuracy, the MAP strategy may not be as
 

desirable as one which makes more errors but distributes
 

them more equitably among the classes. With the ML
 

strategy, the conditional probability of error when the ith
 

class occurs depends only on the degree of statistical
 

"separability" (or "distance") between class i and the other
 

classes. It is independent of the a-priori probability of
 

class i..
 

2.2.3 Generalized Maximum Likelihood (GML) Strategy
 

Often the a-priori subclass probabilities are unknown.
 

Then the hypothesis that X e Wi is a composite hypothesis;
 

i.e. p(IW1 i) = J i p(xIW11 ) where the coefficients are 

unknown. Of course we know that Aij >, 0 and Aij = 1. A 

procedure that has been found to be useful in this situation 

is to form maximum likelihood estimates of the unknown 

parameters under each hypothesis. Then the unknowns are 

replaced by their estimated values, and a hypothesis is
 

selected by the ML strategy. We will refer to this
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procedure as the genqralized maximum likelihood strbtegy. 

The: resultant decision rule can be simply expressed in the 

following form: 

p(xIV(,)) = max max p(2IWij) 2.2.3.1 
i J 

where V(x) maps A into the set of spectral classes. Then
 

11(x) is simply defined to be the informational class
 

containing V(x).
 

We note that the GML strategy is equivalent to a ML
 

strategy over the set of spectral classes. Thus when all
 

spectral classes are equiprobable, it maximizes' the
 

rrobability of classifying the observation into the correct
 

one.
 

2.2.4 Probability of Error For The GML Strategy
 

Let Vi denote the ith spectral class, and let E be the 

event that X is classified into the wrong spectral class. 

Then 

PCE) = ZPCEIXX V.)P(Vj) 2.2.4.1 

If Ei] is the event that Vi. produces a larger likelihood
 

statistic than V, then 
PEIV]) = PC U EijlV 3) . X PCEijV 1) 2.2.4.2 

i i 

Thus it is of some interest to investigate the pairwise
 

error probabilities.
 

Let Fij(T) P(Rij (1) >TIseV1 )= P(Lij() >lnCT) IXV 1),
 

where Ri](C) and Lj(X) are the random variables:
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R..(L) = =____likelihood ratio 	 2.2.4.3 
pC IV1 )
 

LI . QX) = In Rij(X)
 

Then P(EijlV j ) = Fij(l). Unfortunately the conditional
 

distribution functions of Rj(L) and Lij(X) are not usually
 

explicitly available. But, if we can fi.nd the moment
 

generating function, *ij(u), corresponding to the
 

conditional distribution of- Lij(2X) given XCVI, then we can
 

bound FIj(T) as follows:
 

2.2.4.4
TU4ij(U),
F11CT) u 0 < u 


Furthermore
 

F. C(T) .~< Tu-I.j.(u), u < 1 

This 	is known as the Chernoff bound 1181.
 

By definition:
 

2.2.4.5
4i (u) = E(exp(uL..(X))IZ £ V.) 


When the subclsses are MVN, the expectation can be
 

explicitly evaluated 1181. The result is:
 

4i. (u) = 

CJ 'Ii exp(-u(l-u)CM._M.)'CuC.+(1u)C(l_.))

uC.+(1-u)CI -J
 

j 	 U)Iiii(~+1uC5( 

2.2.4.6
 

Substituting into 2.Z.4.4 provides the desired bound. In 

particular, for u = .5 we have: 

FIj(T) 4 4).(.5)/T 2.2.4.7 

We note in passing that -In 4ij(.5) is simply the Bhatta­

charyya "distance" between subclasses Vi and Vj. 
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Combining equations 2.2.4.1, 2.2.4.2, and 2.2.4.7 gives
 

an expression for a bound on P(E):
 

P(E) Z V) S 	 2.2.4.8 
it 

By dropping the terms for which Vi and Vj are in the same
 

class, this becomes a bound on the total probability of
 

error.
 

2.3" Sample Classification
 

For the purposes of this section we can assume that the
 

we
partition of the scene is known and simply want to
 

classify the objects. (in Chapter 3 we discuss conjunctive
 

partitioning algorithms for actually estimating the
 

partition.) We shall treat each object separately, thus
 

ignoring any contextual information resulting from spatial
 

relationships of objects. So we observe a set (sample) of
 

q-dimensional random variables, X = (11,...,n), from a
 

common population, and our goal is to classify them.
 

2.3.1 	 Minimum Distance (MD) Strategy
 

- A Structured Approach to Classification
 

A structured approach is one in which the basic form of
 

the processor is simply assumed, perhaps leaving certain
 

parameters or options to the discretion of the user. A
 

reasonable procedure is to choose some characteristic that
 

differs from class to class, measure it for the sample-to be
 

classified, and select the class whose characteristic most
 

closely matches this observation. Under our assumption of
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simple samples, each class is completely characterized by a
 

known q-dimensional pdf. Therefore, in MD classification,
 

the n data vectors are used to estimate the pdf of the
 

population, and the class is selected whose pdf is closest
 

to this estimate as measured by some appropriately defined
 

"distance measure" on the set of density functions. Ideally
 

one would like to choose the density estimator and distance
 

measure in some optimum manner, but in practice the best­

.guideli-nes are provided by experimental investigations 1141.
 

Note that a possible drawback of the MD strategy is that the
 

sample size (n) must not be too small to obtain meaningful
 

density estimates.
 

When spatial correlation is introduced into the model
 

(Appendix A), each class is only partially characterized by
 

a simple q-dimensional pdf. Although perhaps not as
 

effective as a higher dimensional pdf would be, it is still
 

a reasonable and valid characteristic for distinguishing
 

between classes. In fact if the spatial correlation is
 

class-invariant (such as that induced by the scanner), the 

q-dimensional pdf might be just as effective as the higher 

dimensional one. 

2.3.2 M.A.P. and M.L. Sample Classification
 

In contrast to the MD strategy, the MAP strategy is a
 

completely non-structured approach. The decision rule is
 

determined solely by the criterion of minimum error rate
 

with no a-priori restrictions. Of course a greater degree
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of statistical information is also required .'(the a-priori
 

class probabilities). We can obtain the MAP decision rule by
 

direct extension of 2.2.1.3 if we consider X !as a
 

qn-dimensional random variable to be classified. Let' x be
 

the set of variates nx
1,....n) and the event X=x be defined
 

as the joint event X i=1,...,n. Then, under the 

hypothesis XeW., the pdf of X is 

p(X=xIW.) : 1 P(W ij)P(X=xlW. ) 2.3.2.1 
P(W.) I 

n 
I Pal. ) I PCX- xmW. 

P(W.) j j m=1 iJ 

The MAP decision rule can be stated as follows:, 

p(X=xIW(x))P(W(x)) = max p(X~xIWi)PCW i) 
i 

2.3.2.2 

There is no minimum sample size required to implement this
 

strategy. For n=1 it simply reduces to MAP no-memory
 

classification (2.2.1.3).
 

Note that we have represented the joint pdf of a sample
 

in terms of the marginal pdf of one pixel. When spatial
 

correlation is present, this is no longer a fully adequate
 

representation. But as in the case of MD classification, it
 

still provides a useful statistic for distinguishing classes
 

while avoiding the complexities of more rigorous
 

representations.
 

So far we have tacitly assumed that the decision rule
 

must assign the same class to all the pixels in the sample.
 

With this type of strategy, either all the pixels are
 

classified correctly or all are misclassified. Thus the MAP
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times that all

decision rule maximizes the average number of 


But performance
the pixels in X are classified correctly. 


by just the average number of pixels
is generally measured 


We can show
in X that are classified correctly each time. 


that the MAP decision rule maximizes this criterion also.
 

rule that we adopt must assign a class to J i
Any decision 


Let

for any- event X=x. We denote this mapping by Wi(x). 


i.e. a zero-one random

Z(') be an indicator function, 


the value 1 if and only if the event
variable which assumes 


specified in the arguement actually occurs. The number of
 

elements correctly classified in the sample is given by the
 

random variable
 

n 2.3.2.3i71 ZC 8 W.(X))m i=1 

nn 

EC) = E(Z(.i e W.(X))) = i=1 

I i X))
 
i=! 

n 
2 P(Xi e Wi(x)IX=x)P(C=x) dx 

n

Rq
 x e 

is a qn-dimensional one. Note 
The integration implied here 

that the event X. esW(x) is equivalent to X c W.Cx), so all 

terms of this summation are identical, with the possible 

the .decisionof the decision function. Thus
exception 


term also maximizes the others.
function which maximizes one 


This confirms that the optimum decision rule assigns the
 

to all the elements of the field. Denoting this
 same class 


decision function by W(x), we have
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E(N) njfP(X e W(x)JX=x)p(X=x) dx 2.3.2.4
 

This, of course, is maximized by the MAP strategy (2.3.2.2).
 

The ML strategy follows directly from the MAP strategy 

by dropping the a-priori probabilities. The result is 

p(X=xjW(x)) = max p(X=xiW ) 2.3.2.5 

2..3.3 G..L. Sample Classification
 

IWe can obtain the GML decision rule by direct extension 

of 2.2.3.1. The result is 

p(X=xLV(x)) max max p(X=xlW.) = max p(X=xlV)
I i IJ
 

2.3.3.1
 

We can also bound the probability of error for classifying
 

simple samples. The analysis of Section 2.2.4 carries over.
 

directly when X is replaced by X and the moment generating 

function is recomputed as follows: 

n 

R i(X) = fl R- .X m ) 2.3.3.2 

n 
L .CX) = Z L(X )
IijIm=1
 

This is a sum of independent, identically distributced random
 

variables. Thus
 
n 

E(exp(uLi 1 (0))IX t V ) = fl E(exp(uLij(X-))I ¢'Vj) 2.3.3.3 
- ~ i m1 . ... 

= (E(exp(uLiJ CX))jXeVj) )
n 

( ij(u))n
= 

Equation 2.2.4.7 becomes
 

F j(T) P(RI- (X) > TIXsVj) ij(.5 2.3.3.4
 



28

2.3-3 


It is a property of moment generating functions that
 

Cj(u) Cij(0)1, so this bound is an exponentially
< = 

decreasing function of n when ij(.5) 1, or equivalently
 

when the Bhattacharyya disotance is non-zero. Thus the
 

probability of error for the GML sample classification
 

strategy is bounded by a sum of exponentially decreasing
 

functions of the sample size.
 

To illustrate how powerful this bound can be we now
 

consider a simple example. Suppose that the ith and jth
 

spectral class densities are as depicted in Fig. 2.3.3.1.
 

The mean vectors are equal, which'results in a high degree
 

of "overlap". Therefore the Bhattacharyya distance is only
 

ij(.5) =rO-?. = 0.8944. The actual conditional
6.11, 	and 


error 	rate, F.j (1), for no-memory classification (n=l), is
 

50%, 	which represents very poor performance. This implies
 

that 	 a "polling" classifier also has a 500. error, rate
 

regardless of the sample size. But Figure 2.3.3.2 shows how
 

the GM4L performance improves as the sample size increases.
 

For 	a sample of just 40 observations the error rate is
 

practically insignificant. Although we probability cannot
 

expect such dramatic performance in practice .(due to the
 

idealizations of our model), this still provides a strong
 

motivation for our effort to apply sample classification to
 

MSS data.
 

2.3.4 	Maximum Likelihood vs. Minimum Distance 

Let X = (2i.t.,Xn) be a simple sample from a MVN 
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Population, and defi'ne thie statistics
 

n 
-, = xi 2.3.4.1 

n 

, 2 i=1 x 

The maximum likelihood estimates of the mean vector and 

covariance 'atrixare: 

M = Si/n 2.3.4.2 

n
 
nE1 ( -X i -L)' $2/n-L.) - M' 

n =l
 

The corresponding density estimate i-s .given by equation
 

2.1.4. 

Two popular di-stance measures are the Bhattacharyya 

distance and the divergence. If Wi is a class with density 

UUAsC' ;x) then the Bhattacharyya distance between this and 

NXM,CLx) is given- by 
.25 In I C+Ci)/212 -+ (t-. P)(C+Ci (-L-) 2.3.4.3 

IL IC.Il- -


and the divergence can be ef-ficiently calculated from
 

D .5 tr((C +C. )(C-+C. + (M-M.)(M-M.)')) -2q 2.3.4.4 

Computationally, D is faster than B, requiring about 2q(q+2)
 

multiplications plus 1 matrix inversion per class for each
 

(.,$2) pair.classified. In addition to this, B requires a
 

determinant and a logarithm. (This does not include
 

quantities such as' IC.I which can be- computed once and
 

saved.) However B appears to provide an advantage in terms
 

of classification accuracy, based on -experimental evidence
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the 	Chernoff bound
 
1141. And its direct relationship to 


gives B some intuitive appeal as well.
 

order for the ML strategy to be computationally
In 


D and B, the likelihood function must be
 
competitive with 


as follows:
expressed in terms of -1 and S2 


2.3.4.5

pnXIW 


j=1
 

-
n 	 -M)))7
 
= C.2 nexp(

j=l 
(Cj -1M 'C: (Aj 

In p(XIW i) = 
I n 

-2UCi i 1 CiXj+Mi
-.5n lnI2rrCtI +~ CXj'C~ Xi 

The 	quadratic term yields
 

nI-1X 
 -1 	 n
 

X Str(C X = tr(ccZ xX.')Zj 	 j= l-- J-­
- ]i
~
j 


so
 
i )
1i + In l2
i' 	 .
 

In p(XIW.) = -.Str(C S ) +Ml C. S - 5n( 

2.3.4.6
 

.Sq(q+5) multiplications,
which can be computed with just 


quantities have been
 
once the non-data-dependent 


as

Thus the ML strategy requires only 25%-50% 
initialized. 


no 	 matrix inversions or
 as 	 D and
many multiptications 


determinants.
 

in terms
equation 2.3.4.6
It is interesting to express 


S, and S2 from equations

of 	L and C. Substituting for 


2.3.4.1 and simplifying, provides:
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1 In p(XIW i) = -.S(ln 2 7CIl + tr(C (C+Q-M1)(k-Li)') ))
 
n 

2.3.4.7 

which we shall denote by Li(Ct). By adopting the ML
 

strategy, one is essentially using this quantity as a
 

maeasure of the "similarity" of sample X to class Wi, just as
 

5 and P are used to measure their "dissimilarity".
 

Therefore, rLi(,C) can be interpreted as a measure of
 

dissimilarity between the distributions NCQC;x) and
 

?l(LliCi;x). However it is not a distance measure in the
 

sense of Wacker and Landgrebe 1141, because it satisfies
 

none of the three basic properties of distance measures;
 

i.e. if fMij) is a "distance" between distributions
 

N(L1 ,Ci;x) and N(M,C;x) then1 

1. f(i,j) >, 0 	 2.3.4.8 

2. f(i,i) = fj,j) 0 

3. fMi,j) = f(j,i) 

One can Force compliance with properties 1 and 2 by adding a
 

bias term as follows:
 

d(i,j) 	 = -Li(Lj,Cj) + Lj(jijC ) 2.3.4.9 

= .5(In JCil + tr(C I(Cj +(Lj -Ji) ij -Mi)')) -q) 

which can -be ' recognized as a form of one of the
 

Kullback-Leibler numbers 1191. Since the bias term is
 

independent of i (the class number), use of this criterion
 

is still equivalent to the NL strategy, as long as IC3 I > 0.
 

Also, the quantity d(i,j)+d(j,i) is equivalent to the
 

divergence, which satisfies all three distance measure
 

properties.
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The ML strategy has other compelling properties besides
 

a-priori
strategy (for minimum error rate) 


computational efficiency. On theoretical grounds, for the 

idealized condltions we have stated, it is the optimum 

when the class 

Also, the Chernoff bound for ML
probabilities are equal. 


no-memory classification can be extended to provide an error
 

bound for ML sample classification. Experimentally, under
 

does appear to be
non-idealized conditions, the ML strategy 


on the whole, although
slightly better than MD (using B) it
 

is not consistently better. The experimental results appear
 

4. Wacker's experimental results for
in Chapter 


I141 also lend some support to this
Kuliback-Leibler numbers 


observation.
 

for small sample
Another important property is that 


sizes the ML strategy does not break down as do the MD
 

1, it merely reduces to
strategies. For a sample size of 


Finally, the summation in
 no-memory classification. 


equation 2.3.4.5 is distributed as chi-squared with nq
 

is the correct hypothesis for
degrees of. freedom when Wi 


it can be used to construct a
sample X. Therefore 


significance test of this hypothesis. This 	is useful for
 

the specified
detecting samples that belong to none of 


classes.
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CHAPTER 3
 

IMAGE PARTITIONING
 

Once the partition is known, powerful techniques are
 

available for classifying the individual objects. Thus,
 

when the partition is unknown, an image partitioning
 

algorithm offers an attractive alternative to no-memory
 

classification.., For reasons discussed in Section 1.3, the
 

to
algorithms considered here are the type we refer as
 

conjunctive object-seeking. We have previously described
 

this approach as a progressive merging of adjacent elements
 

which are found to be similar according to some statistical
 

criterion. Thus an algorithm consists of statistical tests
 

applied in some logical sequence. The "logical sequence" is
 

the subject of Section 3.1, and the rest of the chapter
 

surveys some possible test criteria.
 

3.1 	 Partitioning Logic
 

In general it is not possible to design an error-free
 

partitioning algorithm. First of all, there is a certain
 

amount of ambiguity in defining the "true" partition due to
 

real effects such as pixels that overlap physical bourdaries
 

or ambiguity in the physical boundaries themselves.
 

Secondly, two main types of decision errors can occur,
 



3.1 

36
 

leading to: (1) false boundaries, and (2) missed boundaries.
 

of these two errors can produce
Also the combined effect 


"approximate" boundaries, which is not actually a
 

well-defined' category due to the ambiguity of the true
 

size and not used
partition. Since object shape are as
 

are generally, much
classification'features, Type-i errors 


less li'kely to lead to misclassifications than are Type-2
 

for certain
errors. This philosophy accounts 


simplifications in the partitioning logic.
 

The basic approach that we have adopted (due to Rodd
 

two "levels" of tests. Initially the
1111) consists of 


pixels are divided, by a (hypothetical) grid, into small
 

groups -of four (for. example). At the first level of
 

testing, each group becomes a unit called a "cell", provided
 

mild criterion of
that it-'satisfies a relatively 


homogeneity. Those groups that are rejected are assumed to
 

overlap a boundary and their individual pixels are usually
 

are
classified by the no-memory method. These groups 


referred to as "singular" cells. At this level it is
 

usually desirable to maintain a fairly low rejection rate to
 

reflect the relatively high a-pr.iori probability of a group
 

being homogeneous. The goal at this level is essentially
 

the same as the goal of the boundary seeking techniques
 

pixels
discussed in Section 1.3, i.e. to detect as many as
 

possible that lie along -boundaries without requiring that
 

even be connected.
the ones detected form closed contours or 
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At the second level, an individual cell is compared to
 

a group of one or more
 an adjacent "field", which is simply 


that have previously been merged. If the
 
connected cells 


two samples appear statistically similar by some 
appropriate
 

merged. Otherwise the cell
criterion, then they too are 
is
 

or becomes a 
new field
compared to another adjacent field 


each

itself. By successively "annexing" adjacent cells, 


it reaches its natural boundaries, where
 field expands until 


rate abruptly increases, thereby halting

the rejection 


is then classified by a sample
further expansion. The field 


the classification is assigned to all its
 
classifier, and 


pixels.
 

it can

This approach has the -important advantage that 


raw need be
 
be implemented "sequentially"; i.e. data 


and in the same order that it is stored
 
accessed only once 


tape. This is important for practical, rather than
 
on 


The flow chart in Figure 3.1.1
theoretical, considerations. 


In this chart, the top of the
 
indicates how it can be done. 


general processing
scene is referred to as 	 north, and the 


south.
sequence is from north to 


approach described above is
A possible drawback of the 


a
 
that in certain hypothetical situations, Type-i errors are 


object would develop as
For example, a U-shaped
certainty. 


expand southward and eventually

two separate fields which 


But since no provision is made
of the U.
meet at the base 


a false boundary between them will
 for merging such fields, 
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YES YES
 

J/ ONE CELL WEST
 
NO
 

11 A FIELD? YES-ISCURRENT CELL•IND
 

~S 	 ROW?
s CURRENT CELL THE FIRST IN 

YES IS WEST-ADJACENT CELL SINGULAR
 

OR ALREADY IN A FIELD?
 

0
 
MRE ACCEPT COMPARE WEST-ADJACENT CE LL TO
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Figure 3.1.1 	Basic Flow Chart for a Two-Level, Conjunctive
 
Partitioning Algorithm
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result. Such a provision can of course be made, but only at
 

the cost of additional complexity. This does not appear to
 

be warranted by the relatively harmless nature of an
 

Type-1 error. Thus the false boundary actually
isolated 


a true
results from a design simplification rather than 


decision error.
 

Many modifications (both large and small) to the basic
 

flow chart are,- of course, possible. For example, the
 

the loop if performed in
Level-i test can be removed from 


on tape. (This is
advance and intermediate results saved 


in research environment.) Another
particularly useful a 


in Section 3.3.3. It involves
modification is described 


cell to as many as three different fields at
comparing a 


once, instead of one-at-a-time.
 

3.2 Unsupervised Mode
 

In order to implement the sequential approach we must
 

specify two test criteria corresponding to the two levels.
 

In this section we consider ways to do this "unsupervised";
 

i.e. the 	test. criteria are independent of specific knowledge
 

of the spectral class distributions. Note that our usage of
 

this term is analogous, but not identical, to the
 

conventional usage.
 

3.2.1 Unsupervised Annexation
 

Let 	X = (.K1,... n) represent the pixels in a group of
 

cells which have been merged by successive
one or more 

annexations. Let Y = (1lg... Y) represent the pixels in an 
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adjiacen't, non-singular cell. Since both X and "Ywill have
 

satisfied certain criteria of homogeneity, we assume that
 

each is a sample from a MVN population. Let f and g
 

represent the corresponding density functions. It is
 

desired to test the (null) hypothesis that f = g. This is a
 

composite hypothesis, sionce it does not specify f and g.
 

The "likelihood ratio procedure" 1201 provides an effective
 

statistic for testing this hypothesis. Van Trees 121]
 

refers to it as the "generalized likelihood ratio". Let
 

H0 (x,y) = {p(x,ylf,g): g=f, fCf}
 

H1 (X,Y) = {p(x,ylf,g): fcs , gsf, g~fJ 

where p(x,ylf,g) is the conditiohal joint density of X and Y
 

.evaluated at xR n and yeRm , and fl is a set of MVN density
 

functions. The assumption of class-conditional independence
 

enables us to express the joint density of pixels as the
 

product of their marginal densities. Thus:
 

n m
 
p(x,ylf,g) p(xlf) p(ylg) - ))(f g(y-))
rl f(Ai 1
i=1 i=1
 

The generalized likelihood ratio is defined by:
 

sup H0 (X,Y) max p(XIf) p(YIf)
 
A = fes 3.2.1.1 

sup HI(X,Y) max p(Xlf) p(YIg)
-

flQ
 

gtf
 

For an "unsupervised" approach to partltioning we take n to 

be'the foliowing set of functions of x.Rq: 

, C =S {(LC;X): Rq symmetric, positive-defini.te}
 

Since for any feQ there exists a ggc that is arbitraril.y
 

http:positive-defini.te
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I 

close to f, the condition " " can be dropped from the
 

denominator of 3.2.1.1. Therefore:
 

maxN(LC;X) NI(,C;Y)
 
< 1A : 


max ,NCLx,Cx;X)M( y,Cy;Y) 

max N(Mx,C;X) N(MLy,C;Y) max N(M,C;X) N(ii,C;Y) 

max N(Cx,Cx;X) N(CMy,Cy;Y) max N(tlx,C;X) N(MEy,C;Y) 

= A2 A, 

where 
n 

N(M, C;X) = flN (j,C;z&
i=1
 

N(L],C;Y) = Ii N(fL,C;- 1 )1=1 

and in each case the maximization is with respect to the
 

mean vectors and covariance matrices.
 

Anderson 1221 shows that:-


A1 = ( IAI/IBI )N/2 3.2.1.2
 

A2 = C lAX/nin lA/mlm / IA/WINN 5 3.2.1.3 

where 

! = n + M 

n m
 
=SLi/n -i7m
i=1 i=1
 

n m
 
A = ZCXi-KDXv-b' Ay = - ­

i=1 i=1
 

(In order to assure non-singular matrices with pr
 
we need n > q < m.) 1221
 

A = Ax + Ay 

L, CnX + mX 
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n 
=
Bx (Ii-I DC-M)' =A, + nY-.)D(-Rd)1
i=1
 

m
 

Byv= (Y I-E)(Y-I )' Ay + _ 
 _Ll-~
 

B=_x + By = A + rn y-VX-Y)' 
N 

Anderson also suggests the following modification:
 

A1 = A1"A 2 

where A1 and A2 are obtained from Al,and A2 by replacing'the
 

number of'pixels in each sample by the number of degrees of
 

freedom; i.e. replace n by n-i, m by m-i, and N by N-2 in
 

formulas 3.2.1.2 and 3.2.1.3. In either case; the
 

statistics are invariant with respect to a linear
 

transformation on the data vectors.. It follows that their
 

distributions under the null hypothesis are 'independent of
 

the actual MVN population from which the samples are drawn.
 

The test procedure is to -compare X with some decision
 

threshold T <I, which depends in general upon n'and m. The
 

hypothesis is.accepted if A >, T and rejected if A < T. In
 

the unsupervised mode, T is determined by specifying the
 

desired "size" (significance level) of the test, because the
 

power of the test is indeterminate.* in order to do~this,
 

however, the distribution of A must be tabulated. rUnder
 

the null hypothesis XI and ' 2 arelindependently distrdbuted
 

1221, so we can simplify the distribution theory and
 

accomplish the same objective by the following procedure.
 

Pick significance levels s. and s2 such that
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is the desired significance

s = 1-C1-S1 )(1-s 2 ), where s 


level. Test q. using a threshold T1 such that P(Xi < TiIH)
 

= si, i=1,2, where H denotes the event that the null
 

is true. The null hypothesis is rejected if
hypothesis 

either test produces a rejection. Thus the effective size 

of the test is given by 

1 - P(X1 I T1 , 2 T T2 1H) = I- PCll > T1IH) PCX 2 I T2 [H) 

1 - (1-sl)(1-s2) = s 

as desired. This procedure gives us complete freedom to 

As ratio increases, thepick the ratio s2/s1 T 0. this 


CxAyi

the test against the alternative "M=Myt 


power of 


power against the alternative '
 increases, and the 

C,-C " decreases. 

is needed toWe now review the distribution theory that 


There is a transformation of X1
implement these tests. 


with q and (N-q-1)
which, given, H, has an F-distribution 


degrees of freedom 1231. It is given by
 

3.2.1.4(_LL -10)-lzF1 
JAI q
 

Thus the test for a significant difference between the mean 

vectors can be implemented by computing F1 and comparing it 

> t1jH) = to A threshold t, determined by the relation P(F1 


s1 Alternatively, it can be shown 1181 that
 
. 


T
= ' 3.2.1.5(jj1 -1)(N-2) = (N-2)nm(1-')'A1(1-Y) 
IA. N 

which (given H) has a T2 distribution with N-2 degrees of
 

1221. T2 is Hotelling's generalization of the
freedom 


to test the
Student-t statistic, which is commonly used 
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hypothesis that the means of two univariate normal
 

distributions are equal given that the variances are equal.
 

The following transformation of A2 has the
 

F-distribution (given H) 1231:
 

-2 In 3.2.1.6
G = X2 


g = 2q2+3q-1lI._ + 1 ­

6Cq+l)tn- rn-i N-2
 

(q-l)(q+2)
 

+ 92-U 6 u 6 Cn-)2 +(rn-i) 2 -(N-2) 2 
{(n-1)2 

v = 
2 

,, 1= v+2
 
lul
 

S=((1g-y/y)G , ii >0 

v
 

(1-.+2/w)C , u <0 
w
 

S , u >0
 

iZ ,, u <0
 
v(l-Z)
 

F2 'has an F-distribution with v and w degrees of freedom.
 

Thus the test is implemented by computing F2 and comparing 

it to a threshold t2 determined by the relation 

P(F2 > t2 1H) =-s2 . 

Due to the complexity of the test for different
 

covariance matrices, it may be desirable to rely only on the
 

difference in mean vectors (assuming that a difference
 

exists). A common approach -isto simply assume that all
 

covariance matrices are equal, thereby eliminating the need
 

-- to test the statistic F2 ; i.e. let s2=O. The test of F1 is 
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probably fairly robust under departures from this assumption
 

which does not
 
1231. An alternative approach,
anyway 


use the Behrens-Fischer

require this assumption, is to 


follows 1221:
statistic defined as 

= Y,i- x'(rn/n) i=1,2,...,m < n. 

ifm
 

m~ - )(Z- )'/(ml)2 (7-C
-m 


T = mCZ-)'D 1-Yc-) 

This has a T2-distribution with m-I degrees 
of freedom, or
 

equivalently the statistic
 

3.2.1.8
 
= 2F3 


(m-i)q
 

and m-q degrees of freedom
 
has an F-distribution with q 


Thus the test is imple­
under the hypothesis that Mx=,,y. 


which satisfies the
 
mented by comparing F3 to a threshold t3 


relation P(F3 > t3lx=.oy) = s. 

the same weakness astests all have
These multivariate 


namely the problem of estimating a MVN
 
HD classification, 


sample (sometimes known as
 
density from a relatively small 


the constraint
 
the "dimensionality" problem). This led to 


Even when the
 
n > q, a c6ndition which is often not met. 


poor estimates can result, leading to
 
condition is met, 


One approach to this problem is to reduce
 decisionerrors. 


q by deleting features. It is well-known, for example, that
 

classifier from small
 a subset of features used to train a 


http:t3lx=.oy
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training samples can sometimes produce better classification
 

results than the- full set 1241. With this approach,
 

however, one is faced with the problem. of choosing the
 

subset.
 

Another approach is to'base the decision on the q,
 

univariate, marginal distributions; i.e. simply consider the
 

data in one spectral channel at a time. this has been
 

teemed a "multiple univariate" (MUV)" approach. In each
 

channel we test the univariate *hypothesis that the means and
 

variances of- the two samples are equ6l. Since the
 

boundaries may be strong in some spectral channels and weak
 

in others, we accept the null hypothesis, only if the
 

univariate hypothesis is accepted in all q channels.
 

Besides avoiding the dimensionality problem, the MUV
 

procedure requires less computation and simpler distribution
 

theory. However, it must be pointed out that in situations
 

where class separability is primarily a multivariate effect,
 

the MV procedure may be more advantageous.
 

In order to obtain the univariate tests we can follow
 

the same development that led to the multivariate :tests 

except that q=1 and Axe Aye A, and B are just 

one-dimensional matrices (scalars). Thus equations 3.2.1.4 

and 3.2.1.5 simplify as 
F1 = T2 (N-2)nr -­

follows: 
2 

N A 3.2.1.9 

This has an F-distribution with 1 and (N-2) degrees of
 

freedom, under the null hypothesis. Equivalently we can say
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that 	the statistic
 

\N-Hnm(X-Y) 


has a Student-t distribution with N-2 degrees of freedom.
 

The statistic X2 simplifies to
 

3.2.1.11
 
-
X2 = (I+K)N 2f ( r) 

where 

K = 0m-1)/(n-1) 

K Ax/Ayr= 

rn-1 .
 

f(.r) =Cr+K)N.2
 

The statistic r has an F-distribution with n-1 and m-i 

degrees-of freedom, and it is independent of F1 under the 

null hypothesis 1221. But since f( * ) is not monotonic, two 

thresholds must be determined in order to implement a test 

on this statistic. For 'a significance level s2 , the 

thresholds T' and T" must satisfy 

< T I or r > T"IH) = s2 3.2.1.12P(r 


f(T') = f(T")
 

Alternatively one could resort to the transformation in
 

3.2.1,6.
 

3.2.2 	 Unsupervised Cell Selection
 

"Cell selection" refers to the Level-I test, which is
 

used to detect cells that apparently overlap boundaries.
 

Such cells frequently exhibit abnormally large sample
 

variances. Thus a possible criterion for a cell is to
 

http:3.2.1.12
http:3.2.1.11
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require that the sample variance in each spectral channel
 

fall below some reasonable threshold. A similar approach is
 

to form the ratio of the square root of the sample variance
 

to the sample mean and compare it to a threshol-d (which we
 

shall call "c'). This criterion has the advantage of being
 

independent of the scale of the data.
 

A possible multivariate approach is to place 'an upper
 

limit on the sample generalized variance, IAy/ml, that any
 

cell (Y) can have. This is equivalent to placing a lower
 

limit on the value of the statistic max N(itC4Y). But again
 

we mention that the dimensionality problem seriously weakens
 

the MV approach. It can cause very poor estimation of the
 

generalized variance and increase the chance of a decision
 

error.
 

3.3 	 Supervised Mode
 

In this section we develop a way to "supervise" the
 

sequential partitioning process, using the known spectral
 

class' distributions. Our approach is based on the same
 

composite hypothesis testing procedure as the unsupervised
 

approach. The effect of the spectral class distributions is
 

to greatly. simplify each hypothesis, but paradoxically the
 

resultant test criterion is much more complicated.
 

Fortunately, much of the computation can be done
 

"sequentiallyt', i.e. relying on previous saved tesults.
 

3.3.1 	 Supervised Annexation
 

Let X and Y be samples from a field and an addacent
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cell as in Section 3.2.1. We follow the same development as
 

in that section, except that for a supervised approach to
 

partitioning we take Q as:
 

S= {p(AlVi): i=1,2,...,k} 

where k is the number of spectral classes. Note that this 

is a considerably more restrictive condition than before. 

The corresponding generalized likelihood ratio statistic is: 

max (p(XIV i) p(YjVi)) 
A = i 3.3.1.1 

max (p(XIV i ) p(YIV.)) 
i'j 
joi 

Note that this is a multivariate statistic without the 

constraint m > q that was necessary in the unsupervised
 

mode. However the maxima in formula 3.3.1.1 cannot be
 

expressed in a simple analytic form as in 3.2.1.1. They can
 

only be obtained by exhaustive search. Furthermore, the
 

distribution of 3.3.1.1 is unknown under either hypothesis,
 

because it depends on the true classes of X and Y. But in
 

return we gain a statistic which should be more "sensitive"
 

to the presence or absence of a boundary. This should
 

produce better performance and make the specification of a
 

decision threshold less critical. In fact, the experimental
 

results in Chapter 4 indicate that the threshold need not be
 

a function of n, the current size of sample X, in order to
 

obtain good results. Furthermore, the results tend to be
 

fairly stable-over several orders of magnitude of threshold
 

variation. Thus we will find it convenient to represent the
 

decision threshold as
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10-
T = t , 0 3.3.1.2 

Unlike the unsupervised approach, a constant decision 

threshold of T=1 does not imply that the null hypothesis is 

always rejected. But it does lead to the same final result
 

when the GML strategy is used to classify the objects. This
 

is because A can exceed 1 only if X and Y would be
 

classified the same by the GML rule anyway. Consequently,
 

the only practical values of T are those between 0 and 1.
 

Lacking any distributioh theory to provide guidance in.
 

choosing a suitable threshold in this range, we shall rely
 

instead on an empirical approach.
 

Calculation of the generallzed likelihood ratio
 

criterion can be greatly simplified by the following
 

measures:
 

1. Change the denominator of A to max(p(XIVi)P(YIVj)).. The
 

only effect of this change is to cause the value of A to
 

saturate at an upper limit of 1. It does not affect the
 

,value of A when A < 1. Since T is always less than 1,
 

the change cannot affect any -decisions. The 

simplification that it affords is that A can npw be 

.written as follows: 

max(p(XlVi)P(YIVQ))
 
A = I 

(max-P(XV i ) ) ( max p(YIVj))
i j 

which is -simpler to compute.
 

2. Compare ln(A) to ln(T) instead of A to T.
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In A = max(in p(X1V1 ) +ln p(YlVi)) 3.3.1.3
 
i
 

-max(In p(XIVi)) -max(ln p(YIV1 )) 
i i 

Besides. converting multiplications into (faster) 

additions, the quantity ln'p(YIV i) can be efficiently 

computed by formula 2.3.4.6. The quantity In p(XIV 1.) can
 

be obtained by other means, as we shall see.
 

3. Assume for the moment that the log-likelihood function of 

X is already available in a storage array G (say); i.e. 

GMi) = In p(XIVi), i=1,2,.;.,k 

and J is an integer such that G(J) - max Gi). Then 

compute the first term of In(A) using an intermediate
 

storage array ,g (say), as follows:
 

gCi) =Gi) + In p(YIVi), i=1,2,...,k.
 

and j is an integer such that g(j) = max gi). So:
 

In(A) = g(j) '-G(J) -max In p(YIVi)
 

If the indication is to merge Y and-X, then the new
 

log-likelihood function of the field is just the sum of
 

the log-likelihood functions of X and Y. Therefore we
 

can simply update G ahd J as follows:
 

GMi =-g(i,), i=1,2,...,k
 

U =4
 

and the preliminary assumption is justified. Thus we
 

avoid using formula 2.3.4.6 to compute In p(XIVi).
 

When the point is reached that the field X stops
 

expanding, it must be classified. This would normally
 

require the sample mean vector and autocorrelation (or
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covariance) matrix, which would have to be continually 

updated as cells are added to the field. Recall however 

that the GML strategy is 

p(XIV(X)) max p(XIVi) = max exp(G(i)) : exp(G(J)) 

Therefore V(X) = Vj , so no additional updating or 

computation is required to classify the field if the GML 

st'rategy is used. 

3.3.2 Supervised Cell Selection
 

A useful statistic for cell selection is 

-1 m - -I1 
+ m1A'CJA
Qj(Y) trCC3 i' 2' 


_Ji=l-1 1=1j+ _M j~ 

where j is such that 

In p(YIVj) = max In p(YIV i) max -.5(m.lnI2nCiJ + QI(y))
Ji i
 

The decision rule is to accept the hypothesis that Y is
 

homogeneous if Qj(Y) < c, where c is a prespecified
 

threshold. Otherwise the hypothesis is rejected. This
 

criterion has the particular advantage that it tends to
 

reject not only inhomogeneous cells, but "unrecogn'izable"
 

cells as well. (Unrecognizable cells are those which
 

represent spectral classes that the classifier has not been
 

trained to recognize.) Another advantage of this criterion
 

is that its use of the log-lfkelihood function makes it
 

especially compatible with the supervised annexation
 

criterion and the GML sample classifier.
 

As a final note, the distribution function
 

P(Qj(Y) > cIYcVj) is chi-squared with mq degrees of freedom.
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This can be used to provide initial guidance in choosing c.
 

3.3.3 	 AlternativePartitioning Logic,
 

The logic of Fi'gure 3.1.1.1 compares a cell to the
 

north, west, and east-adjacent fields (if necessary) seeking
 

a "match". If a match is found, the merge takes place
 

immediately without regard to whether it is the "best" match
 

or not. Another approach that is used is to compare the 

cell to all three fields at once (if that many distinct 

adjacent fields exist) and attempt to determine the best 

match. In the supervised mode a match is determined by
 

comparing the likelihood ratio to a fixed threshold,. so a
 

the field for
reasonable definition for the best one is 


which this ratio is largest. Normally the east-adjacent
 

field would not exist at the time the other two comparisons
 

are made, so its likelihood ratio is supplied by "looking
 

ahead"; i.e. the east-adjadent cell is compared to its
 

match, the current cell is
north-adjacent field and if they 


their union to obtain the likelihood ratio.
compared to 


has not been used in the unsupervised
This 	approach 


mode, mainly because of the difficulty of determining the
 

best match. A logical approach would be to choose the field
 

for which the null hypothesis is "least rejectable"; e.g
 

field which maximizes the minimum significance
choose the 


level at which the null hypothesis would not be rejected.
 

.Inother words, if xi] represents the observed value of xi
 

field, then the field is chosen for which
for 	 the ]th 
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min P(i < xijIH) is maximum. The difficulty in actually
 

i=1,2
 

doing this is that the complete distribution function of X1
 

a few
would be required. Generally it is available for only 


isolated significance levels.
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CHAPTER 4
 

CLASSIFICATION RESULTS
 

Experimental results obtained in the investigation of
 

multispectral image partitioning techniques are presented in
 

this chapter. Several different data sets of markedly
 

different characteristics are classified by these
 

techniques. In many respects they represent a cross-section
 

of NISS data. Both low altitude aircraft data and 930 km
 

high LANDSAT-1 data are included. The ground resolution
 

varies from 4.6m to 80m, and the size of physical objects
 

varies from just a few pixels to thousands of pixels. Data
 

representation is 8 bits for aircraft data and 6 bits for 

LANDSAT. Spectral resolution varies from 0.02 to. 2.40 

micrometers, while the number of spectral channels 

available varies from 12 to 4. The actual number of
 

channels used for analysis varies between 3 and 6. The
 

number of spectral classes representing ground cover types
 

varies from 5-to 17, and the number of informational classes
 

varies from 5 to 11.
 

The results are grouped by data set rather than by
 

analysis technique to facilitate the comparison of different
 

analyses of a given data set. In order to provide a quanti­

tative measure of comparison, only data sets are used for
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"test areas" are available.
which a substantial number of 


By comparing the results of a given analysis on a point-by­

point basis with the desired result in each test area, one
 

can obtain an estimate of the accuracy Cor inaccuracy) of
 

the analysis. The larger and more numerous these: test
 

areas, the better this estimate will be. Thus one analysis
 

being befter than another if it
technique is regarded a's 


in the test areas.
tends to achieve fewer misclassifications 


rate important of a
Relative error is an measure 


it is not the only consideration.
classification scheme, but 


desirable attribute. Although CPU
Obviously speed is a 


this chapter, is important
times are compared in it to
 

to do with speed,
remember that efficient coding has a lot 


the research programs used here
and 	no claim is made that 


optimized. A less tangible consideration is the amount
are 


a part-icular
of effort and experience required to use 


The schemes considered inr this
analysis scheme. 


were designed with simplicity in- mind,
investigation 


results in this
requiring a minimum of user input. The 


the degree of experiencezneeded
chapter will help to assess 


to. provide this input, and they provide a data base of
 

experience from which to draw.
 

4.1 Analysis Schemes
 

Within the framework of Chapter 3, an analysis scheme
 

is specified by choosing:
 

1. A Level-1 option and associated parameters
 
(threshold and cell size)
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2. A Level-2 option and as sociated parameter(s)
 
(significance levels or threshold)
 

3. A sample classifier option.
 

It would be a hopeless, and probably pointless, task to try
 

to investigate all the possible combi.nations of these three
 

options. Instead the less logical combinations were
 

arbitrarily eliminated in order to concentrate more effort
 

on evaluation of the remaining ones. Consequently. only
 

wholly unsupervised and wholly supervised methods are used
 

for the partitioning phase of processing. (No "hybrid"
 

combination's of Level-i and Level-2 options are considered.)*
 

Thus partitioning is done in either the unsupervised or
 

supervised "mode". Furthermore, in the unsupervised mode,
 

no hybrids of MV and MUV tests are used to test first and
 

second order statistics at Level-2. At Level-1, only-the
 

MUV ratio test (described in Section 3.2.2) is used in the
 

unsupervised mode. Although the Behrens-Fischer test
 

requires only one significance level to be soecified by the
 

user, it tests only first order statistics, provides
 

unattractively few degrees of freedom, -and requires a
 

substantial amount of computation. Consequently it was
 

eliminated as an option. Due to the advantages (enumerated
 

in.Chapter 2) of maximum likelihood sample classification
 

over minimum distance classifiers, it was the logical choice
 

for the classifier option. The results of this chapter are
 

based on the ML strategy. When subclasses are necessary the
 

generalized ML strategy is actually used, although it is
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refered to simply as a ML classifier.
 

. After all the above simpli-fications, we basically are
 

le-ft with four schemes to evaluate and compare:
 

-1.unsupervised MUV partitioning and ML sample
 
classification
 

2. unsupervised mV partitioning and ML sample
 
classification
 

'3.supervised partitioning and ML sample classification
 

!4.conventional ML no-memory classification.
 

cell size for the first three schemes was
Furthermore the 


eli:minated as a variable by fixing it at a constant 2x2
 

pixels, which is the minimum size that can be used in the
 

unsupervised mode of partitioning. This choice appears to
 

provide a reasonable compromise between speed and resolution
 

for MSS data.
 

A common element of all four schemes is the process of
 

"training". This is the process by which each main class is
 

modeled statistically with the aid of data vectors
 

that class. If the training
(patterns) known to belong to 


data for a class exhibits a multimodal structure, then it is
 

usually divided into two or more subclasses, each
 

corresponding to a mode. This serves two purposes. 1) It
 

enables each subclass to be modeled approximately by a MVN
 

distribution which is completely characterized by a mean
 

vector and covariance matrix. These can be estimated easily
 

from the data vectors assigned to that subclass. (2) Data
 

from a single physical object is usually reasonably un-imodal
 

and symmetrical in distribution. Often, those objects-which
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are multimodal can be divided into a few smaller objects
 

which are unimodal. Although multimodal training data may
 

be representative of a particular main class as a whole, it
 

is. not representative of the individual objects which
 

compose that class. Since it is the individual objects that
 

mu~t be dealt with, the definition of unimddal subclasses is
 

a logical step to take. in' other words, p(xjW i ) (eqn.
 

2.3.2.1) cannot be expressed in terms of p(IW i ) (eqn.
 

2.1.2). Each component (mode) of p(sIW i ) must be known.
 

The training and test data for a given scene compose a
 

set of labeled observations which we shall refer to as
 

"reference data". There are many possible methods of using
 

a finite amount of reference data to train a classifier and
 

estimate its error rate. Theoretically the best training
 

(i.e. the lowest error rate) is obtained by using all the
 

available reference data for training. If the same data is
 

used for testing, this is called the "C-method".
 

Theoretical and experimental results indicate that, for the
 

Zayes classifier at least, the C-method produces an
 

optimistic (negatively biased) estimate of the error rate;
 

but the bias and variance of the estimate decrease roughly
 

as the reciprocal of the number of observations used 1181.
 

In contrast, the "U-method" requires test data to be
 

independent of training data. The most common procedure
 

(called "sample partitioning") is to use a relatively small
 

proportion (p) of the reference data for training and the
 

remainder for testing. In this case the error estimate is
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unbiased and its variance decreases as the reciprocal of the
 

number of test data; but the actual error rate tends to be
 

larger than with the C-method, and its variance is p-2,times
 

larger than the error variance by the C-method.
 

The interpretation of results is usually somewhat
 

easier for the C-method, because the question of whether or
 

not the training is "representative" of the test datb does
 

not arise. For comparative purposes our interest;is in
 

relative (rather than absolute) performance, so the bias
 

induced by the C-method tends to cancel out. There is no
 

reason to believe that the bias would be significantly
 

greater for one scheme than for the others.
 

- On the other hand the U-method is routinely used in
 

convention3l analysis work where absolute performance is
 

emphasized. Effective representation is- obtained in .iost
 

cases by -using a fairly large training data set that
 

consists of observations drawn from the same general regions
 

as-the test data. For some of the data sets used in our
 

investigation, reasonably good training statistics are
 

available from previous conventional analyses. By ,using
 

available training we obtain results with minimum effort,
 

and the results relate directly to those obtained by
 

conventional methods.
 

For those data sets where previous training is
 

unAvailable or inadequate, neither the C-method nor the
 

U-method is used. Instead, the available test areas are
 

sampled at an interval sufficient to provide a reasonably
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large training set. Like the C-method this method is
 

simple, it produces representative training, and it
 

eliminates human bias in selecting the training set. It
 

also induces considerably less bias into the error estimate
 

than the C-method does. Of course, once the training set is
 

obtained, feature selection and subclass definition may have
 

to be done before training is complete. An example of this
 

process is described in the next section.
 

4.2 Run 71052800 - Crop Identification 

MSS data collected over a particular region at a
 

particular time and stored on digital magnetic tape is
 

catalogued by "run" number. Run 71052800 is a set of 12
 

channel data collected over flightline 221 in Indiana on
 

August 12, 1971 during the 1971 Corn Blight Watch Experiment
 

1251. The correspondence between channel numbers and
 

spectral bands is indicated in Figure 4.2.1. Channels 1-7
 

cover the visible portion of the spectrum, 8-11 lie in the
 

reflective IR portion, and 12 is a thermal IR sensor. It is
 

evident from the figure that there is a considerable amount
 

of redundancy in the coverage of the visible spectrum. In
 

other words, the data in channels 1-7 will tend to be
 

strongly correlated, causing the information in these
 

channels to be rather redundant, at least more so than in
 

the IR channels.
 

The area covered by this run is a rectangular strip of
 

agricultural land about 1.6 km wide and 13.8 km long. It is
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sampled 222 times along its width and 1374 times along its
 

length. The scanner was carried by aircraft at an altitude
 

of, 1524m with an instantaneous field-of-view of three 

mii iradians. 

This data set was chosen for analysis' for several 

reasons. (1) A large number of test areas, containing
 

84,855 pixels, were available from a previous crop
 

identification study 1251. (2) The complexity of the
 

classification is high , providing an opportunity to see how
 

well the new techniques perform in such a situation. (3)
 

The data set contains a combination of some very challenging
 

classes and intermediate classes, as well as some easy
 

classes to identify. The 11 main classes are: corn, soy,
 

wheat (mostly harvested), rye, hay,, lespedeza (a grass),
 

pasture, wooded pasture, forest, idle fields, and non-farm.
 

The latter two categories tend to be "catch-all" types which
 

are characteristically difficult to identify by conventional
 

methods. The reason for this will be discussed later.
 

No previous training statistics were available for this
 

data set, so training data was obtained by sampling the test
 

areas as per Section 4.1. The resultant ratio of the amount
 

of test data to the amount of training data is approximately
 

5:1. The LARS system (LARSYS) STATISTICS processor 1261 was
 

used to compute the statistics of each main class, and
 

SEPARABILITY 1261 was used to compute transformed divergence
 

values for every pairwise combination of main classes and
 

every combination of 6 channels. The purpose of this is
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"feature selection";' i.e. due to high correlation between
 

channels, it is usually possible to find a subset of the
 

available channels that discriminates between the main
 

classes almost as well as the- complete set. Typically only
 

are used to analyze
3 or 4 of the 12 available channels 


aircraft scanner data, resulting in a large time savings..
 

For the present study, on the basis of the transformed
 

the best set of 6 channels is
divergence results, 


(2,4,10,11,12) plus either channel 8 or channel 9.
 

result is
(Recalling the discussion of Figure 4.2.1, this 


not surprising.) Channel 8 maximizes the averae
 

transformed divergence (averaged over all class pairs.), and
 

channel 9 maximizes the minimum transformed divergence for
 

any pair oi classes. The difference between the two is
 

slight, so channel 8 was selected arbitrarily. Based on
 

was decided to sub-divide
histograms-of the training data it 


some of the training classes. The LARSYS CLUSTER processor
 

1261 was used to cluster these classes into 2 or 3 modes and
 

SEPARABILITY was used to determine the divergence ietween
 

modes. Histograms, cluster quotients, and divergence values
 

were examined to determine if the mddes of each clasis were
 

were
distinct, and if two modes were not distinct, they 


recombinedl (pooled) into a single mode. The final result is
 

2 subclasses each for corn, soybeans, lespedeza, and iLdle, 3
 

subclasses of pasture, and only I "subclass" for each of the
 

remaining classes, a total of 17 spectral classes. The
 

LARSYS MERGESTATISTICS processor was used to merge them into
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a single LARSYS statistics deck. Expecting to further
 

reduce the number of channels needed, SEPARABILITY was again
 

applied. It was found that although most class pairs can be
 

distinguished on the basis of some set of 4 or fewer
 

channels, there is no one set of 4 channels which can
 

was
adequately do this for all class pairs. Thus it decided
 

to do 6-channel classification. This ended the training
 

phase of the analysis.
 

Next the data set was classified by a number of differ­

ent schemes. The LARSYS CLASSIFYPOINTS processor 1261 was
 

used to perform ML no-memory classification. The LARSYS
 

SAMPLECLASSIFY processor .1261 was used to perform minimum
 

distance (Bhattacharyya) sample classification of the test
 

areas. In the latter case the processor is essentially
 

given a-priori knowledge of the boundaries. Maximum
 

likelihood sample -classification of the test areas was
 

accomplished by modifying the SAMPLECLASSIFY software. To
 

avoid confusion this processor Will be referred to as
 

"SAMPLECLASSIFY (ML)", and the minimum distance version will
 

oe. referred to as "SAMPLECLASSIFY (MD)".
 

Unsupervised, MUV partitioning and supervised
 

partitioning schemes were implemented using
 

LARSYS-compatible processors that were developed
 

specifically for this investigation. The unsupervised, MV
 

version cannot be used for this data set, because it
 

requires that the number of channels be less than the cell
 

size, which is not the case. The results of all these
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analyses are presented in the remainder of this section.
 

Figure 4.2.2 shows classification performances achieved
 

byi the various processors indicated above. Note that
 

prOcessor #2 is equivalent to cell selection without
 

annexation. Thus comparing the results of #2 with the
 

results of #1 (CLASSIFYPOINTS) gives a good indication of
 

the
the effectiveness of Level-i alone. And comparing 


results of #2 with the results of #3 and #4 indicates the
 

effectiveness of just the annexation (Level-2) phase of
 

processing.
 

Also note that processor #5 should give about the same
 

results as if the entire partitioning phase were done
 

flawlessly. Thus one can think of the results of #5 as a
 

performance "goal". This goal, however, is not a strict
 

bound (more on this later).
 

Both "average" and "overall" error rates are shbwn in
 

Figure 4.2.2. The former is just a straight average (over
 

all classes) of the observed class-conditional error rates.
 

The latter is a weighted average, where the error rate of
 

each class is weighted by the proportion of test data in
 

that class. These proportions are given in Table 4.2.1.
 

Assuming that these proportions coincide roughly with the
 

actual porportions of the classes in the data set, then the
 

overall error rate can be taken as an estimate of the
 

unconditional probability of error.
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Table 4.2.1 	 Relative Influence of Each Class on Overall
 
Performance - Run 71052800
 

Percentage of Total 
Class Test Pixels 

Corn 43.1 

Soy 22.4 

1'heat 17.6 

Idle 4.9 

Non-Farm 4.3 

Lespedeza 3.0 

Pasture 1.6 

Hay 1.5 

Wooded Pasture 0.8 

Rye 0.5 

Forest 0.4 
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The class-conditional error rates are given' in Figure
 

4.2.3. The >resdlts are grouped by class for easy 

comparison. Several observations are worthy of mention at 

this point. 

Observation 1 

Both the unsupervised and supervised modes are
 

effective at reducing the error rate. As expected, the
 

supervised mode has a fairly consistent advantage. It
 

performed better for 8 of the 11 classes, and its-average
 

and overall error rates are lower. The actual reduction in
 

error rate due to the supervised mode is 10.9% (average) and
 

8.1% Coverall).
 

Observation 2
 

As-one would expect,-the- relative effectiveness of the
 

ECHO approach is highly class dependent. The effect varies
 

from slight degradation for some classes to vast improvement
 

for others.
 

Observation 3
 

The classes where the greatest gains are made are
 

wheat, wooded pasture, idle, and non-farm. It has already
 

been obse.rved that the latter two are "catch-all" categories
 

which are typically difficult- to identify using
 

CLASSIFYPOINTS. The reason for this is that such classes
 

tend to have relatively broad probability density functions
 

which overlap with those of other classes butat a lower
 

likelihood level. Recalling the case of Figure 2.3.3.1, the
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conditional error rate for the "broad" distribution is 50%,
 

t"narrowl
whiLe the conditional error rate for the 


distribution is just 17.4,%. If other classes overlap the
 

"tails" of the broad distribution, then this discrepancy
 

becomes even greater. But when a sample of data from the
 

broad distribution is made available for classificati6n, it
 

usually consists of a mixture of values both near and far
 

from the mean. This makes it possible for the classifier to
 

determine the correct classification of the sample.
 

The wooded pasture class also has a relatively:broad
 

distribution due to its composition and spatial texture.
 

Note that this does not necessarily imply that wooded
 

pasture is statistically inhomogeneous or bimodal. We refer
 

to it as a "compound" class. (See Appendix C.) In this
 

panticular case it might at first appear that the method of
 

using testareas to evaluate performance is biased in:favor
 

of;sample classifiers. In other words, the large error rate
 

observed for CLASSIFYPOINTS may be due to the assignment of
 

many test points to the classes forest and pasture,-which
 

may actually be accurate labels for those particular pixels.
 

This arguement is invalid on several counts. First of all,
 

the number of test points classified as forest or pasture
 

accounts for only 12 of the 44 percent error rate. The
 

reduction in error rate brought about by supervised
 

partitioning is 40 percent, or 3.3 times as great as the
 

maximum possible error attributable to this cause.
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Secondly, whenever CLASSIFYPOINTS classifies an area in a
 

"1salt and pepper" manner, the Information is highly
 

unreliable. If the area actually were that way, Premise A
 

(Section 1.2) would be violated. Thirdly, even if valid
 

point-by-point classification were possible, most analysts
 

are not interested in the actual classification of each
 

individual pixel. Instead their goal is to produce a "type
 

miap" which consists of a partition of the region with a
 

general label assigned to each element of the partition. An
 

element containing a mixture of trees and pasture for
 

example would be labeled "wooded pasture".
 

These points are illustrated in Figures 4.2.4, 4.2.5,
 

and 4.2.6. Figure 4.2.4 shows a section of Run 71052800
 

(lines 101-300) that has been classified by CLASSIFYPOINTS.
 

Each class has been assigned a gray level and displayed
 

electronically to form the image. The "classification
 

noise" is readily apparent. In contrast to this, Figure
 

4.2.5 shows the same section as classified by ECHO
 

(supervised). The random errors have, for the most part,
 

been eliminated. This map is much closer to the desired
 

result than is the CLASSIFYPOINTS output. Figure 4.2.6
 

shows the centers of these two maps in greater detail. Each
 

class is represented by an assigned symbol (or blank), and
 

each symbol represents one pixel. The four rectangular
 

areas are test areas designated as wooded pasture. This
 

class is displayed as a blank space to emphasize the
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Figure 4.2.4 Gray-Scale-Coded Classification Map 
- Produced by CLASSIFYPOINTS 

Figure 4.2.5 Gray-Scale-Coded Classification map 
- Produced by ECHO 
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contrast between it and the others. The diversity of
 

symbols in the test areas testifies to the inadequacy of
 

CLASSIFYPOINTS for classifying such textured regions. Most
 

ofzthis confusion is avoided by the ECHO technique.
 

The wheat class too has a broad distribution, pr6bably
 

due to the fact that the wheat is mostly harvested.
 

Whatever the cause, it adds further support to the arguement
 

that classes with broad distributions tend to benefit the
 

imiost by sample classification. To clarify this "point
 

further, the classification improvement is plotted in Figure
 

4.2.7 vs. the common logarithm of the generalized variance.
 

In the case of a class with subclasses the a erage
 

.eneralized variance is used. For this data, the
 

correlation 	between these quantities is 0.81.
 

Of course a broad distribution does not necessarily
 

imply that partitioning and: sample. classification, will
 

produce dramatic improvements over CLASSIFYPOrNTS. For
 

example, another class may have about the same distribution,
 

in which case no classification scheme can rel'iably
 

distinguish between them. Or the class may be so unlike any
 

other class that CLASSIFYPOINTS leaves no room for
 

improvement. -Also ihe broad distribution may be caused by
 

inadequate training (i.e. not representative), in which case
 

accurate classification may be impossible until the training
 

is corrected. Obviously the mechanisms which tiffect
 

classification performance in a multidimensional,
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mul)-ticlass, multi-subclass situation are very complex.
 

Observation 3 provides only limited insight into the overall
 

ptdcess.
 

Observation 4
 

The supervised ECHO results for class idle actually
 

surpass the performance "goal" set by processor #5. A
 

conceivable explanation for this is that idle test areas may
 

actually consist of several physical objects containing
 

different subclasses of idle. Since the ECHO processor can
 

classify such objects separately, it can actually provide an
 

advantage over SAMPLECLASSFY -(ML) which must classify each
 

test area as a whole.
 

Observation 5
 

As expected, processor #2 (Level-i partitioning) can
 

provide a fairly significant degree of improvement on its
 

own. Again the effect- is strongly class dependent.j The
 

effect would probably be much greater if not for the
 

correlation that exists between adjacent pixels.
 

The main parameter that is required for the supervised
 

mode is the annexation threshold, t. Figure 4.2.8 shows how
 

the average error varies for seven Values of- t. Of these,
 

the optimum value is t=5, although all values tried gave
 

significantly better performance than CLASSIFYPOINTS, The
 

LeVel-I threshold, being of much lesser importance, was not
 

varied in this study. It was previously established at c=
 

90 by processing a small subregion of the data set several
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times while varying c. This value provides a sufficiently
 

low rejection rate that the occurrence of singular cells is
 

limited mainly to patterns resembling boundary lines (as 

desired). Thus the classification results are not 

necessarily optimized with respect to c, but they are 

believed to be near that optimum. 

Figure 4.2.9 shows the behavior of the overall error
 

vs. t. It is very similar to the average error'except that
 

the results are shifted downward due to the heavy influence
 

of the corn class. Its minimum also occurs at t=5.
 

The analogous results for the unsupervised mode cannot
 

be presented as easily because the performance is a function
 

of two variables, the significance levels. For the same
 

reason, the optimum performance cannot be determined as
 

easily. Tables W.2.2 and 4.2.3 give average and overall
 

error rates-for eight different combinations of significance
 

levels. The Level-I threshold was maintained at a constant
 

c=:0.25. Cells found, to be singular at this level were
 

classified as small samples rather than as individual
 

pixels; i.e. "cell-splitting" was not in effect. The best
 

results occur at about S2= .005 or .001 and sl= .001.
 

Possibly a lower value of s, would produce better results,
 

but this is beyond the capability of the current processor.
 

Figure 4.2.10 shows how the processors compare with re­

gard to both error rate and CPU time. In terms of time, the
 

unsupervised mode is the fastest by far because it performs
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for Eight
Table 4.2.2 Matrix of Average Error Rates C%) 

Combinations of Significance Levels
 

Run 71052800
 

.025 .100
.001 .005 


24.-6 24.3
.000 


23.4
.001 21.0 


23.9
21.9
.005 21.3 


21.8
.025 


Table 4.2.3 Matrix of Overall Error Rates CM) for Eight
 
Combinations of Significance Level.s
 

Run 71052800
 

.025 .100
.001 .005 


20.1 20.1
.000 


19.7
.001 18.7 


-19.3.
.005 18.4 


19.5
.025 


20.4 
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the fewest classifications. CLASSFFYPOINTS is the slowest 

because it performs the most. The supervised mode is in 

between and provides the lowest error rate. II 

One of-the factors influencing CPU time is the size (in
 

pixels) of an average object,-since the larger- the objects
 

the greater the number of pixels that can be classified at
 

one time. A rough indication of this factor is obtai-ned by
 

of test areas into the total number of
dividing the number 


test pixels. As indicated on Figure 4.2.10, for this data
 

set an average test area (object) is equivalent to a square,
 

17 pixels wide.
 

4.3 	 Run 72064412 Classification Of Satellite Data
 

Three LANDSAT passes over a region in Indiana on
 

different dates were combined to produce this data set.
 

Only data from the first date, August 25,1972, is used for
 

analysis in this study. Four spectral channels are
 

available on LANDSAT-1. The spectral ands are indicated in
 

Figure 4.3.1. The instantaneous field of view for the three
 

visible band channels is 86 microradians. The region
 

covered by the data set is a rectangle 45.1 km wide and 53.1
 

lkm long. It is-sampled 804 times along its width and 673
 

times lengthwise, for a total of 541,092 pixels. A 21.4 km
 

by 43.5 km subregion, (containing 210,100 pixels) was
 

analyzed. 'This region was previously the subject of a study
 

of strip mine activity (unpublished). The analyst provided
 

both training statistics and test areas.* Briefly, the
 

* Courtesy of John Berkebile, LARS. 
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met.hod of training was to perform both a manual analysis of
 

designated training areas, using maps and aerial
 

photography, and an unsupervised clustering analysis of the
 

MSS data corresponding to each- training area. The manual
 

analysis was used to associate each cluster class with an
 

informational class, and the statistics of the cluster
 

classes became the training statistics. Training and test
 

areas have no pixels in common. The number of test pixels
 

is i9512, a fairly large number for a LANDSAT analysis. The
 

main classes are agriculture, forest, recent-mine; pit
 

(containing various grades of water), revegetated mine,
 

residential, and clouds. The numbers of subclasses are 3,2,
 

4,2,1,1, and 1 respectively, a total of 14. Test areas were
 

supplied only for the first 5 of 7 main classes. All 4
 

channels are used in the analysis.
 

Figure 4.3.2 shows the average and overall error:rates
 

ofithe various processors. The weights for overal!:error
 

are listed in Table 4.3.1. The class-conditional error
 

rates are given in Figure 4.3.3. As for Run 71052800, the
 

number of channels used is too large to permit unsuperVised,
 

!V processing. On the whole, the results appear :quite
 

similar to those of Run 71052800, in spite of the
 

considerable 'differences between the two runs. Both the
 

average and overall error rates are significantly reduced by
 

the ECHO techniques, with the supervised mode providing a
 

consistent advantage over the unsupervised mode.
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Table 4.3.1 Relative'Influence of Each Class on Overall
 
Performance Run 72064412 

Percentage of Total 

Class Test Pixels 

Forest 42.1 

Agriculture 24.6 

Recent Mine 19.1 

Revegetated Mine 11.0 

Pit 3.2 
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The behavior of 
 the pit class- is misleading and
 

requires fUrther discussion. Normally water is one 
of the
 

easiest classes 
 to identify using CLASSIFYPOINTS, yet the
 

17.60 error rate is by far the highest of any class.
 

Therefore it is apparent that something is wrong with either
 

the original training statistics or test areas. As 
it turns
 

out, Premise "A" (Section 1.2) has been violated, and this
 

has caused 
 the pit test areas to contain many pixels that
 

overlap 
both pit and mine or revegetated mine classes.
 

Consequently the pit class results 
are not truely indicative
 

of performance, but they are 
included here for 
 the sake of
 

completeness. 
This accounts for the relatively high average
 

error rate of the unsupervised 
mode, which is still lower
 

than the average CLASSIFYPOINTS error rate. With the
 

exception of this class, 
it can again be said that class
no 


is significantly degraded, while some are 
greatly improved.
 

The recent-mine class is another that 
 bears comment.
 

Notice that processor #5 performs 
only slightly better than
 

CLASSIFYPOINTS. Consequently one cannot expect partitioning
 

to improve the 
 accuracy, since the classifier seems unable
 

to use the information effectively. 
The root of the problem
 

is that about 
 half of the test areas in this class are
 

actually labeled 
 "partially revegetated mine", and some of
 

these appear as revegetated mine to the 
 sample classifier.
 

Apparently these categories 
are spectrally too similar to
 

distinguish reliably even 
on a 	sample basis. Confusion of
 

REPRODUCIBILITY OF THE 
ORIGINAL -PAGE IS POOR 
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thts s.ort is also the source of almost all the recent-mine
 

;iisclassifications that CLASSIFYPOINTS makes, so there is
 

very little other type of error for the sample classifier to
 

correct.
 

The performance of the supervised mode is again plotted
 

for seven values of the annexation- threshold, t (Figures
 

4.3,.4 and 4.3.5). Again the optimum value is t=5. Notice
 

that the overall error approaches both SAMPLECLASSIFY
 

results quite closely. 'For this study the Level-I threshold
 

was held at a constant c= 55. This choice reflects the
 

Vower number of channels and higher incidence of sihgular
 

cells as compared to the aircraft data.
 

The effect of c was briefly investigated when for t= 4,
 

the values c= 55 and c= 80 were compared. The higher value
 

causes slight improvements in the agriculture and forest
 

classes and slight declines in the others. The overall
 

error rate is unchanged however. The effects are notilarge
 

enough to be of any serious concern here.
 

The performance of the unsupervised mode is given in 

Tables 4.3.2 and 4.3.3 for seven different combinations of 

significance levels. Of these, the best combination is S2= 

.001 and sl' .005. The Level-1 threshold was maintained 

between 0.20 and 0.25, and cell-splitting was not in effect. 

For comparison, the data was also processed with ce11 split­

ting in,effect using the "optimum" s, ard s2 above. The pit 

class performance improved to about the same level as the 
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Table 4.3.2 	 Matrix of Average Error Rates (%) for Seven 
Combinations of Significance Levels 
- Run 72064412 

.001 .005 .025 .100
 

.000 13.1 11.8
 

.001 12.0 10.4 10.9 11.8
 

.005 11.1
 

Table 4.3.3 Matrix of Overall Error Rates (%) for Seven
 
Combinations of Significance Levels
 

Run 72064412
 

5 

is2
 .001 .005 .025 .100
 

.000 12.3 9.5
 

.001 9.5 7.1 7.9 8.9
 

.005 	 8.0
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oth'er processors, but this is overshadowed by degraded per­

formance in the other classes. In contrast to this,Ia non
 

celzl-split-ting version of the supervised mode was tried with
 

t= 4 and c= 55, and the class-by-class performance was uni­

formlv worse than with the cell-splitting version. This
 

might imply that the supervised Level-i test is more
 

effective than the unsupervised Level-1 test or simply that
 

a better Level-i threshold exists (for the unsupervised
 

test) than the one-used here. The evidence is inconclusive
 

on this minor point.
 

Figure 4.3.6 shows how the processors compare with
 

regard to both overall error rate and CPU time. As before,
 

the unsupervised mode is fastest, and-the supervised mode is
 

most accurate. Due to the greatly reduced number of pixels
 

per physical object compared to aircraft data the 

difference in speed for the three processors is much less 

significant. 

4.4 	 Run 71052501 - Forest Cover Mapping 

Corn Blight Watch Experiment flightline 218 is a 1.6 x 

16.1 	km strip of land in southwestern Indiana. In contrast
 

to the relatively flat flightline 221, it is on-a "maturely
 

dissected, westward sloping plateau characterized by
 

abundant stream valleys and a well-integrated drainage
 

system." "Most of the land area is Ainslope, with flat,
 

narrow ridge tops and steep valley walls." 1271
 

Consequently row crops (corn and soybeans) are in the
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minority compared to forage crops. About 60% of the land is
 

covered by hardwood forest with a few, small stands of white
 

pine. MSS data was collected over this region on the same
 

date and by the same means as Run 71052800 and labeled
 

71052501. The region was sampled 1605 times lengthwise and
 

222 times across its width. In contrast to 71052800, a sun
 

angle correction transformation was applied to the -data.
 

This data set was previously the subject of a foresticover
 

mapping study 1271, and the analyst's training statistics
 

and test areas are used in the present investigation. Six
 

main classes are considered: deciduous forest, coniferous 

forest, water, forage, corn, and boy. A composite class 

(forest and forage) was deleted by the analyst, who 

recognized the inability of CLASSIFYPOINTS to handle such
 

data adequately. Our previous results on wooded pasture
 

indicate -that this would have been unnecessary if ECHO
 

techniques had been available to him. In contrast to the
 

previously described ahalyses, the training is as simple as
 

possible, involving no clustering or subclasses., The
 

av~ilable reference data (53,516 pixels) was simply divided
 

into non-overlapping test and training areas at a ratio of
 

ab6ut 13:1. Based on the transformed divergences, the best
 

set of 3 channels is (6,10,12), which is used in the present
 

investigation.
 

Figure 4.4.1 shows the average and overall performances
 

of the -various processors. The weights for overall
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penformance are given in Table 4.4.1. The original analyst
 

has' indicated that these are in roughly the same proportion
 

as:the actual occurrence of the classes in the data set.
 

Thus the overall error rates are estimates of the actual­

probabilities of error. The class-conditional errortrates
 

are shown in .Figure 4.4.2. Several observations can be
 

mlade: 

Observation 1
 

Again the average and overall error rates are
 

significantly reduced by the ECHO techniques, with the
 

supervised mode providing the greatest advantage.
 

Observation 2
 

This is the only data set analyzed to which the MV
 

version of the unsupervised mode (processor #3) is
 

applicable for the number of channels deemed necessary; Its
 

performance can be described as erratic. It performed much
 

bctter than CLASSIFYPOINTS for the deciduous class and much
 

better than all processors (except SAMPLECLASSIFY) for the
 

forage class. However it had an especially difficult time
 

distinguishing between soybeans and corn.
 

Observatibn 3
 

With the exception of the coniferous class, the super­

vised mode (processor #5) again equaled or greatly improved
 

upon the, performance of CLASSIFYPOINTS. And, the
 

unsupervised, MUV mode did almost as well. In regard to the
 

"apparently" poor coniferous performance, there are
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Table 4.4.1 Relative Influence of Each Class on Overall
 
Performance - Run 71052501
 

Percentage of Total
 
Class Test Points
 

Deciduous Forest 64.8
 

Forage 23.6
 

Corn 5.4
 

Soy 5.4
 

Water 
 0.7
 

Coniferous Forest 0.2
 

Table 4.4.2 Classes Ordered By Generalized Variance
 

Common Logarithm
 
of Generalized Improvement Over
 

Variance CLASSIFYPOINTS
 

Forage 8.02 +9.7 % 

Deciduous Forest 6.06 +9.9 % 

Water 6.01 0 % 

Soy 5.78 +0.5 % 

Corn 5.01 +0.3 % 

Coniferous Forest 4.33 -4.6 % 
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extenuating circumstances to consider. It has already been
 

mentioned that only a -few small stands of white pine are
 

known of in the entire data set. The original analyst used
 

most of these pixels to ensure good training statistics,
 

leaving only four areas, averaging only 22 pixels (or 5 1/2
 

cells) each, for testing purposes. With such an extremely
 

small sample, a difference of 4.6% is entirely
 

insignificant. It represents the misclassification of only
 

I cell. Thus the coniferous results are included here only
 

for completeness. No conclusion can be drawn from them.
 

O)servation 4 

The classes which benefit the most by the new 

techniques are deciduous forest and forage. Once again 

these are the classes with the largest generalized 

variances, as can be seen from Table 4.4.2. The correlation
 

coefficient for this data is .81, which is coincidentally
 

the same as for Figure 4.2.7.
 

The performance of the supervised mode is plotted for,
 

five values of the annexation threshold, t (Figures 4.4.3
 

and 4.4.4). The optimum performance occurs at the value t=
 

4. At this value, the overall error rate is reduced from
 

12.9 percent to just 4.2 percent. For this study the
 

Level-i threshold was held at c= 60, so again the results
 

are'not necessarily optimized with respect to c.
 

The performances of the unsupervised modes are given in
 

Tables 4.4.3 through 4.4.6 for various combinations of
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Table 4.4.3 	 Matrix of Average Error Rates (%) for Four
 
Combinations of Significance Levels (MV mode)
 
- Run 71052501
 

.025 .050 .100 

.000 11.3 9.2 11.6
 

7.6
 

.001 14.1
 

.Table 4.4.4 Matrix of Overall Error Rates C%) for Four.
 
Combinatlons of Significance Levels (MV mode)
 

Run 71052501
 

.050 .100
s2.025 


.000 5.6 4.7 5.9
 

.001 6.0
 

* result of 	"cell-splitting" 
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Table 4.4.5 Matrix of Average Error Rates (%) for Six
 
Combinations of Significance Levels (MUV mode)
 
Run 71052501
 

si .005 .025 .100 

.000 24.8 9.6 8.4 

78* 

.001 11.4 9.1 

.005 9.3 

Table 4.4.6 Matrix of Overall Error Rates (%) for Six
 
Combinations of Significance Levels
 

Run 71052501
 

S .005 .025 .100
 

.000 7.3 4.5 4.8
 

4.8
 

.001 6.5 4.9
 

.005 5.4
 

* result of "cell-splitting" 
I
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significance levels. The study was done using a constant
 

Level-1 threshold of 0.45. This unusually Farge value is a
 

reflection of the narrow autocorrelation functions of the
 

forest class (Appendix A). Cell splitting was found to
 

reduce the average error rate some, but it has little or no
 

effect on the overall error rate. The best results for the
 

tUV version occur at about s,= 0 and s,= .100, while the MV
 

version is best at s2= 0 and s,= .050.
 

Figure 4.4.5 shows how the processors compare with
 

regard to both overall error rate and CPU time. The small
 

number of classes and channels has reduced the time required
 

to do a single classification to such a low point that a
 

processor's speed depends on considerations other than the
 

number of classifications that it must perform. Thus the
 

speed advantage of the unsupervised modes has disappeared.
 

4.5 RUN 72032803 - Classification of Satellite Data
 

This LANDSAT-1 data set covers a 66.3 km long by 111 km
 

wide region in Illinois on August 9, 1972. The region was
 

sampled 837 times lengthwise and 1920 times along its width.
 

The subregion analyzed is 40.3 km by 46.3 km and contains
 

406,400 pixels. This area was chosen because it contains a
 

large set- of reference data (15,067 pixels), correspond.ing
 

to actual surface observations 1281. The 5 main classes are
 

corn, soy, other-agriculture (including alfalfa, grass,
 

oats, pasture, and wheat), woods, and town. Training data
 

was obtained by sampling the test areas as indicated in
 

JPnODUC]BIhITY OF THE 
AtWrnmrAT. PAM4R TSq Pfl4W 



112 

OVERALL
 
ERROR RATE (M)
 

12
 

11
 

10
 

9
 

8
 

7 

6 

5 	 4 
3
Processor Key 


4 	 #I CLASSIFYPOINTS
 
#2-Supervised Partitioning, t=O
 
#3 Optimum MV Unsupervised
 
#4 Optimum MUV Unsupervised­

3 -#5 Optimum Supervised
 

2 Supplementary Data
 

6 spectral classes
 
1 3 channels
 

344,100 pixels classified
 

-avg. object =278 pixels 16 x 17
 

0 a 	 I a I a A 3I 

0 2 4 6 8 10 12 14
 

CPU Time (minutes)
 

Figure 4.4.5 	 Error Rate and CPU Times for Five Classification Schemes 
- Run 71052501 



4.5 

113
 

data to training
resultant ratio of test
Section 4.1. The 


data is about 5:1. Examination of the training data
 

All four channels
indicated that no subclasses were needed. 


in the analysis, because the separability of the
 
were used 


classes is fairly low.
 

Figure 4.5.1 shows the average and, overall performances
 

The weights

achieved by the various classification schemes. 


given in Table 4.5.1. The
 
for overall error are 


rates appear in Figure 4.5.2.
error
class-conditional 


Several observations are worthy of mention:
 

Observation 1
 

Once again supervised ECHO greatly reduced the average
 

or much better
rates and performed as well
and overall error 


on every class. On three of the five
 
than CLASSIFYPOINTS 


supervised and unsupervised modes
 
classes, both the 


out-performed even SAMPLECLASSIFY (ML).
 

Observation 2
 

terms of overall
The unsupervised mode did very well 	in 


is slightly greater
rate, but its average error rate
error 


due to unusually poor

than that of CLASSIFYPOINTS 


in the "woods" class. The reason for this

oerformance 


it suggests that the unsupervised
behavior is unknown, but 


mode tends to be less stable than the-supervised mode.
 

Observation 3
 

only data set in which a "town" class has

This is the 


been included. We would anticipate a fairly broad
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Figure 4.5.1 	 Classification Performance vs. Processing Scheme
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Table 4.5.1 Relative Influence of Each Class on Overall
 
Performance Run 72032803
 

Percentage of
 

Total Test Pixels
Class 


67.1
Corn 


18.8
Soy 


10.2
Other-Ag. 


2,9
Town 


0.9
Woods. 


Classes Ordered According to Generalized
Table 4.5.2 
Variance - Run 72032803 

Common Logarithm of 
lGeneralized Variance 

Improvement (sup. mode) 
Over CLASSIFYPOINTS 

Other-Ag. 4.38 + 14.0 

Town 3.63 + 21.7 

Soy 3.50 + 1.6 

Corn 2.61 + 21.3 

Woods 2.27. 0.0 



PROCESSOR KEY
 

#1 CLASSIFYPOINTS #4 Optimum Supervised
 

#2 Supervised Partitioning, t=0 #5 SANPLECLASSIFY (ML)
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Figure 4.5.2 Performance By Class (Run 72032803)
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distribution for this class and therefore a potentially
 

large improverment in classification accuracy by the ECHO
 

technique. The results bear this out. Table 4.5.2 shows
 

that the town class ranks second in terms of generalized
 

variance and first in terms of classification improvement.
 

But unlike the aircraft data sets, the overall correlation
 

between these quantities is fairly low.
 

The performance of the supervised mode is plotted'vs. t 

in -Figures 4.5.3 and 4.5.4. The best results occur at t=3 

and t=4. The Level-i threshold was held constant at c=50 

for this study, and cell-splitting was riot used. The effect 

of c was 'briefly investigated for t=3 by trying the values 

c=30 and c=80. Only class "other" was significantly
 

affected. For c=30 its error rate'increased 5.4% and for
 

c=80 it increased just 0.3%. Thus performance again appears
 

to be quite stable with respect to c.
 

Table 4.5.3 shows the average and overall error rates 

of the unsupervised mode for seven combinations of parameter 

values. Cell splitting was not used. The best performance 

occurs for S2=0, sl=.005 and c=.25 or .20. c=.25 produces 

the lowest overall error, and c=.20 produces the lowest
 

average error. The ;value .25 was finally judged as "best"
 

for this data for two reasons. (1) The value ,20 produces
 

an, excessive number of singular cells. The value .25
 

produces a pattern of singular cells more closely resembling
 

boundaries, as desired. (2) The high average error rate for
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.Table 4.5.3 Effect of Parameters on Performance 
(unsupervised mode) 

s2 S Avg. Overall 

_C .-Error Error 

.001 .25 .005 40.3% 38.8% 

0 .25 .001 36.2 35.5 

0 .25 .005 42.8 29.7 

0 .25 .025 41.7 36.1 

0 .20 .001 42.5 32.3 

0 .20 .005 35.2 32.1 

0 .15 .005 38.9 35.2 
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c=.25 is due solely to the behavior of the minority'class
 

"woods". (All the other classes are at their optimum
 

performances for this value.)' This behavior is believed to
 

be an anomalous effect attributable mainly to the small
 

amount of test data available for woods (.9%). This belief
 

is'supported by the unusual observation that for slp.025,
 

.0Q5, and .001, the error rates for this class are 56.9%,
 

89.2,, and 48.5% respectively. A similar effect also
 

occurred in-the supervised mode. For t=2, 3, 4, and 5, the
 

error rates are 14.6%, 28.5%; 31.5%, and 9.2% respectively.
 

Figure 4.5.5 comoares the overall error and CPU times
 

of the various processors. In this case the partitioning
 

schemes require more CPU time than the non-partitioning
 

schemes. This can be attributed to 'the low number of
 

spectral classes combi'ned with a small .number of pixels per
 

physical object.
 

We also note that processor #2 performedk only
 

one-fourth as nany actual classifications as #1 (since the
 

cell size was 4), and yet they required the same CPU time.
 

The same effect occurred on Run 71052501. This indicates a
 

significant margin for improvement of the efficiency (speed)
 

of the supervised mode. The cause of the inefficiency is
 

that the ECHO processors are coded in FORTRAN, whereas the
 

classification subroutine in CLASSIFYPOINTS is- coded in
 

assembler language for optimum effici-ency.
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4.6 General Observations
 

Having studied four significantly different data sets,
 

it is now possible to make some general observations.
 

Strictly speaking, our- observations (and therefore our
 

conclusions) apply only to these data sets. But due to the
 

consistency of the results, it is reasonable to expect other
 

data sets to exhibit similar behavior as long as they are
 

reasonably similar to these. This .assumes, of course, that
 

representati*ve training data is available and that training
 

is done in accordance with the assumptions of the model.
 

Observation I
 

First of all it is apparent that-the new techniques are
 

effective for a wide range of Variables including
 

classification parameters (number of classes, subclasses,
 

channels, etc.) and data 'parameters (spatial, spectral, and
 

measurement -resolution and spatial correlation).
 

Observation 2
 

Equally important is the stability of the perfoirmance
 

with respect to the Processor's input parameters. For the
 

supervised inode the performance is very stable. The main
 

input parameter is the annexation threshold, t. On all four
 

data sets all values tried gave better performance than
 

CLASSIFYPOINTS. Furthermore the value t=4 gave optimal, or
 

near optimal, performance in every. case. There is some
 

evidence to suggest that as the number of channels
 

increases, so does the optimum value of t.
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For the unsupervised MUV mode the main input parameters
 

and in that order. The
 are the significance levels si s2, 


be fairly stable with respect to them, but
results seem to 


be elusive. For the four data
their optimum values tend to 


sets the optimum value of s, varies among .001, .005, and
 

.100. S2 is usually effective at around .001 or 0.
 

no way to predict the optimum

Presently there is 


that in order to use this mode one
combination, which means 


settle for suboptimal results. In

will generally have to 


are still somewhat better
most cases however, the results 


than CLASSIFYPOINTS.
 

is the cell selection threshold
A secondary parameter 


A suitable value can generally be obtained by processing
c. 


data set with different thresholds
 a small subregion of the 


found which produces a pattern of singular
until one is 


cells that resembles object boundaries (as opposed to random
 

noise). In the unsupervised mode c=.25 most frequently
 

spatial correlation was low,

produced this effect, 	but when 


needed. In the supervised mode,
a larger value was 


number of channels, q. As a rule of thumb,
depends on the 


c= 15q appears to be a reasonable empirical guideline (at
 

q < 6). But a larger value (c= 20q) was
 
least for 3'< 


correlation was
required When the spatial low.
 

Observation 3
 

of stability is the sensitivity of the

Another type 


For
the particular characteristics of a class. 
processor to 


c 
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example, CLASSIFYPOINTS is sensitive to the variance of the
 

class pdf. It tends to become "unstable" when a class with
 

a relatively broad distribution is encountered. Since a
 

single pixel contains no information about the varia6ce of
 

its class, CLASSIFYPOINTS is better suited for
 

distinguishing classes that differ in mean rather than in
 

variance.
 

The partitioning schemes, on the other hand, use both
 

the mean and variance of the data in an object in order to
 

classify it. Consequently they tend to be much more stable
 

in this respect. But in return they should be somewhat
 

sensitive to the typical size of the objects of a particular
 

class. One would expect them to become unstable as the size
 

of the objects approaches the cell size. Some evidence of 

this was detected (e.g. pit class), but the problem was 

avoided for -the most part by choosing a relatively small 

cell width (2 pixels). If the object size approaches this
 

value, then Premise A is violated and CLASSIFYPOINTS also
 

becomes unstable, as observed for the Pit class.
 

Observation 4
 

The main advantage of the unsupervised mode appears to
 

be speed when classification time, as opposed- to
 

partitioning time, is the limiting factor. In other words,
 

when the classification is relatively complex, involving
 

many spectral classes and many channels, one can save a
 

significant amount of time by extracting and classifying
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objects rather than classifying on a point-by-point basis.
 

This is particularly true when the number of classes is
 

large, because the time required for unsupervised
 

partitioning is independent of the number of classes. The
 

largest number of spectral classes considered in this
 

investigation is 17, for which the unsupervised mode 

required less than half the time that CLASSIFYPOINTS 

required. it is not uncommon to see analysts using many 

more than this, a trend attributable'to the increasing size
 

of areas classified (encompassing more classes) and to the
 

increasing use.of unsupervised clustering techniques for
 

subclass definition.
 

It seems advisable at this point to inject a word of
 

caution against the use of clustering beyond that which is
 

necessary to achieve reasonably unimodal training classes.
 

"Creating" more subclasses reduces 
 the number of pixels
 

available per subclass for tra'ining. 'Thus the chance that
 

each subclass is representative of an actual spectral class
 

in the data set is reduced. Also the narrow distributions
 

that result cause the classifier performance to be more
 

sensitive to non-stationary class statistics over a large
 

area. Finally, as the number of subclasses increases, the
 

effective size of the objects in the scene decreases, thus
 

reducing the potential advantage of a sample classifier.
 

Observation 5
 

The MV version of the unsupervised mode is not generally
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applicable to all situations because of the relation between
 

cell size and number of channels. In one case in which it
 

was applicable it performed erratically, but its overall
 

performance was as good as the MUV version. Although,cases
 

probably exist for which the MV version provides a 

significant advantage over the MUV version, none have yet 

been encountered. 

Observation 6
 

The supervised mode consistently provided the lowest
 

average and overall efror rates (excluding SAMPLECLASSIFY),
 

and for complex classifications it Is more efficient than
 

CLASSIFYPOINTS. (This is in spite of, the fact that it is
 

programmed considerably less efficiently than
 

CLASSIFYPOINTS.) For the four data sets studied, the
 

average reduction in class-average and overall error rates
 

from the rates provided by CLASSIFYPOINTS is 7.1% and 9.6%
 

respectively. For comparison, the corresponding values for
 

SAMPLECLASSIFY (ML) are 10.8% and 9.9%. For SAMPLECLASSIFY
 

(MD) they are 9.7% and 8.9%. Thus we conclude that the ML
 

strategy is an effective means of sample classification for
 

MSS data, and that supervised partitioning is an effective
 

means of applying it when the true partition is unknown.
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CHAPTER 5
 

CONCLUSION
 

5.1 	 Summary
 

we have investigated is the
The general problem that 


to MSS data.
application of sample classification techniques 


purpose of this is to incorporate "1memory" into the

The 


improving performance and

classification process, thereby 


be individually
reducing the number of items that must 


we modeled the objects in the scene
classified. To begin, 


populations.
as simple samples from multivariate normal 


Then we motivated the investigation by showing that the
 

the minimum error rate

classification scheme which achieves 


known, is a particular type of
when object boundaries are 


the closely
sample classification (MAP). Furthermore, 


in practice has an error
related strategy (GML) that we use 


is upper bounded by a sum of exponentially
rate that 


decreasing functions of the sample size.
 

unknown, the technique that
When object boundaries are 


each resolution element
is commonly used is to classify 


others (no-memory classification).
independently of the 


adjacent
This of course is suboptimal, because spatially 


states of nature are usually strongly dependent. However an
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optimal strategy (Appendix B) would require a complete
 

statistical description of this dependence as well as a
 

large number of classifications and a large amount of
 

computation per classification. As an intermediate approach
 

we chose to exploit the particular nature of the dependence
 

by applying an image partitioning transformation to the data
 

set prior to actual classification. In particular we
 

focused our attention on what we call the conjunctive
 

object-seeking approach. The- basic algorithm that we
 

implemented requires two "levels" of statistical tests that
 

are applied in a logical sequence in order to 'merge"
 

adjacent elements of the scene that are spectrally similar.
 

The likelihood ratio procedure led us to multivariate tests
 

of first and second order statistics using criteria whose
 

distribution functions are known under the null hypothesis.
 

This enables-us to relate the size of the test to the
 

decision threshold. The power of the test depends on the
 

alternative hypothesis. Due to the "dimensionality problem"
 

the "multiple-univariate" versions of these tests are 

actually more useful in practice. 

The likelihood ratio procedure can also be adapted to 

provide a supervised mode of operation. The test statistic
 

is more complex, but it is multivariate and yet free of the
 

dimensionality problem. Experimental results indicate that
 

it adds a significant measure of stability to the
 

processor's performance. Consequently it consistently
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provided the lowest class-average and overall error rates,
 

approaching those attained by direct sample classification
 

of the test areas. Also, visual inspection of the results
 

indicated that the classification map -produced by this
 

method is much closer to the "type-map" form that is usually
 

desired than is the map produced- by no-memory
 

classification.
 

In terms of efficiency, the partitioning schemes varied
 

from better to worse than the no-memory classifier to which
 

they were compared, depending on the complexity of the
 

given programming
classification. But comparable 


efficiency, it appears that this balance would be shifted
 

significantly in favor of the partitioning approach.
 

5.2 	 Recommendations for Further Work
 

Parameter Selection
 

One would expect that the optimum values of input
 

parameters such as sl, S2, and t are statistically dependent
 

in some complex way on factors such as class separability,
 

spatial correlation, number of channels, average object
 

size, and cell size. Therefore it could be beneficial to
 

investigate the possible use of such information to predict
 

the optimum input parameters. As we have -noted, this
 

appears to be needed more in the unsupervised mode than in
 

the supervised mode.
 

Use of Texture
 

In this investigation we have restricted ourselves to
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the assumption that pixels are class-conditionally
 

uncorrelated. However in Appendix A we'have shown not only
 

that they are correlated but that the correlation function
 

is class-dependent. We have also indicated how a sample
 

classifier could be designed to efficiently exploit this
 

dependence for improved discrimination between classes.
 

This effect could be investigated through direct sample
 

classification of test areas, similar to the investigation
 

done by Wacker and Landgrebe. If the degree of improvement
 

proves to be significant, then it is likely that the
 

performance of the partitioning schemes can also be
 

significantly improved by redesi-gning them to exploit
 

spatial correlation.
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APPENDIX A
 

SPATIAL CORRELATION
 

In Chapter 2 we assumed, for simplicity, that pixels
 

within the same object are statistically independent
 

observations from some subclass population. Then the joint
 

pdf of the pixels can be expressed in terms of the marginal
 

pdf of a single pixel. A more general approach is to allow
 

for some correlation to exist between each pixel (X, say)
 

and the other pixels in the object that lie within some
 

"neighborhood" of X. Spatial correlation can be inherent in
 

the object, and it can also be induced by the scanner. For
 

example, a line scanner induces a certain amount of
 

because its bandwidth is
correlation along each scan line 


one commonly
constrained to reduce detector noise. Also, 


adjacent pixels actually overlap. In LANDSAT-1
finds that 


data, for example, the overlap is 29%. Due to the position 

invariance of these effects and to the homogeneity of the 

objects, it is reasonable to assume that the 

class-conditional, joint pdf of the pixels in the 

neighborhood of X is invariant with respect to the position 

of Z within the object (as we previously did for the 

X alone). This of course neglects anymarginal pdf of 
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non-stationary effects of -the scanner such as banding,
 

variable sun-angle, non-uniform sampling, and d.c. drift,
 

much of which can, in principle, be corrected for in the
 

data. Another reasonable assumption for most types of
 

objects is "transpose symmetry"; i.e. the joint pdf of a
 

spatial array of pixels is invariant with respect to the row
 

or column transpose of the array. A possible consequence of
 

this is discussed later.
 

Assuming (as before) that the pixels in an object are
 

jointly MVN, then all that is required to specify their pdf
 

is a mean vector and covariance function matrix (i.e.
 

interchannel covariance matrix as a function of
 

displacement). If 1(mn) represents the data vector for the
 

scene element whose spatial coordinates are m and n (line
 

and column numbers), then we can estimate this matrix for a
 

given object-by computing the following average: 

- C(m,n) = I Z (Z(m+k,n+l) -(mn)) (!(k,l) -M(O,o))' Al
 
N k,l
 

= 2. Z X(m+k,n+l).X'(k,l) - M(m,n)N'(O,O) 
N k,lI
 

where
 

M(m,n) = 1 2 X(m+kn+l) 

N k,l
 

and N is the number of terms in the summation. To measure
 

"local" characteristics (e.g. for a particular spectral
 

class), the summations include only pixels from a single
 

object. To measure. the characteristics of a larger rekion,
 

the summations extend over that region. These measurements
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have been made for several data 'sets, and some typical 

results are presented in Figures Al-A5 (aircraft data) and 

Figures A6-A1O (satellite data). The quantity Rli(m,n) 

which appears in . these figures is the correlation 

coefficient, which is related to the covariance by 

Rij(mn) =Ci(m,n)/ ICi(0,0) Cj(O,0) A2 

where Cij(m,n) is the i,j th element of matrix C(m,n). This 

normalization provides easier comparison of the various
 

functions. Local correlation was measured withi'n the test
 

areas to ensure that only pixels from the same object were
 

used. The. results were averaged over all the test-areas for
 

a given class to obtain the final estimate for- that class.
 

Regional correlation is generally greater than local
 

correlation for a given displacement, because it includes
 

the effect of dependent states as well as the
 

class-conditional (local) correlation effects.
 

The measurements indicate that intraclass spatial
 

correlation is a significant effect. Naturally the
 

strongest correlation occurs between adjacent pixels, and
 

the effect diminishes rapidly to a fairly low level. The
 

"knee" in the curve generally occurs at a displacement of
 

about 2 pixels. An important point is illustrated by
 

Figures A2 and A3, which compare the classes "deciduous
 

forest" and "forage". We observe a definite class
 

dependency for the spatial correlation functions. The
 

relatively narrow correlation functions for forest indicate
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a broader spatial frequency spectrum, thus a faster rate of
 

change, than the forage class. The impl.ication is that this
 

characteristic can be measured and used by a sample
 

classifier to distinguish these two classes. Thus the
 

"texture" of a sample contains potentially useful
 

information about its identity. This comes as no surprise,
 

but it is not always obvious how to exploit such information
 

in'a numerically-oriented pattern recognition system. When
 

spectral information is also available and both are observed
 

in a multivariate measurement space, even the human system
 

may be unable to use all the information contained in the
 

sample. We shall now briefly discuss how the classifiers
 

described in Chapter 2 can be generalized to accomplish such
 

classification.
 

To design a true MAP or ML classifier for a spatially
 

correlated -sample, X = (11X,...,1n), is conceptually a
 

straightforward matter, given the mean vector and covariance
 

function matrix of each class. These can be used to
 

construct the nq-dimensional matrix:
 

Ci = E(C i(X) IXEWi) A3
L 

where
 

QIX.= (CX1 -1i)'t...,CXn-Mi )I) (XjMQ~i',"...Xn- i)')~ 

bearing in mind the spatial arrangement of the pixels. Then 

for the hypothesis X e Wip the log-likelihood function 

evaluated at X is given by 

p(X[XsW i) = -.5( 1nl2rrCII + tr(C- 1 Qi(X)) A4 
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For large samples, this rapidly becomes too cumbersome to be
 

p'ractical. Also, a covariance matrix would have to be
 

constructed for each class for each unique spatial
 

arrangement of pixels'to be classified.
 

For large samples with relatively small correlation
 

distances (small neighborhoods), a more practical approach
 

would be to implement a minimum distance decision rule based
 

on just the marginal joint pdf of a neighborhood, which
 

contains all the information that characterizes a class
 

population. In fact, assuming transpose symmetry holds,
 

this information is contained in the marginal, joint pdf of
 

just one quadrant of the neighborhood. To estimate this pdf
 

from a sample, we estimate the mean vector and covarlance
 

function matrix according to formula Al.' But we construct
 

only the covarlance matrix of an array of pixels
 

corresponding to one quadrant of a neighborhood, thereby
 

avoiding both problems associated with the maximum
 

likelihood approach.
 

We note that when assuming transpose symmetry, the,
 

covariance matrix estimate can be improved for any given
 

displacements', (mn), by averaging C(m,n) and C(-m,n) to
 

obtain-the final estimate.
 

Also, the above strategy can be easily modified (for
 

simplicity) by truncating the tail of the intraclass
 

correlation function as desired, thereby reducing the
 

dimension of the required covariance matrix. Since the knee
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in the correlation function generally occurs at about 2
 

pixels, this might be a reasonable correlation distance to
 

use.
 

Finally, the choice of distance measure is arbitrary.
 

However, an interesting possibility is the use of -LI(MC)
 

(from Section 2.3.4), appropriately modified for the higher
 

dimensional space. We have seen that it is essentially the
 

same as using a Kullback-Leibler number, but computationally
 

it is much more efficient. Due to its relationship to the
 

likelihood function and its lack of distance measure
 

properties, a strategy that uses this criterion can perhaps
 

best be described as a modified maximum likelihood strategy
 

(modified to avoid an nq-d'imensional matrix).
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APPENDIX B"
 

THE COMPOUND DECISION APPROACH
 

Let xn=(xi,..,A) denote a set of pixels (q-dimensional 

random variables) with dependent states (classes). As in 

Section 2.1 we assume class-conditional independence. The 

goal is to classify each pixel into the set of classes W = 

(Wi,...,Wm) (i.e.. classify Xn into Wn ) such that the 

expected number of misclassified pixels is minimized. As 

shown in Section 2.3.2, this is accomplished by decision 

functions Wi(xn) such that 

P(Xi 5 Wi(xn) IXn=xn) = max P(1i 6 Wdxn=xn), i=1,...,n BI 

A simpler, though suboptimal procedure is to classify the
 

pixels "sequentially" without "looking ahead"; i.e. let the
 

ith decision function be based only on 
i
the observations x = 

This is equivalent to setting n=i in equation
 

BI. Making this change and applying Bayes rule provides:
 

p(Xi=xi 6W-(xi)) P(W(xi)) = max p(Xi=xiIeWj)P(W1 ) B2
 

Before proceeding we shall shorten the notation by 

expressing the right hand side of B2 as: 

max p(x' 
Ai E W 

l A 
i )P ( A1 ) B3 

where Ai denotes both a class and the event that Xi is a 
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random variable from that class. Similarly Ai will denote a
 

vector of i classes and the event that these are the true
 

classes of the set X! . Defining j=i - and applying the law
 

of total probability to B3 provides:
 

J )A
,aax p(x IAi P(Ai 1 AJ) P(A1 ) 	 B4o
A1
 
A] 	 e Wj ' 

= 	 max P(x" IAi) P(Ai AJ) pi JAJ P(AJ) 

Ai Ai 

Defining the quantity Qi(A,,...,Ai ) =-p(x' IAI ) p(AI), it is 

apparent that 34 can be computed recursively as: 

max S Qi(A1,...,Al 	 B5 
^ A 

where 

Q CA,.= pP i IA,) P(A i A ) QjA 1 ,... 

but the number of terms in the summation grows as mi, 

If the states -form 'afi'rst order Markov chain, B4 

reduces to simply: 

max Ri (A i 	 B7
A i
 

where
 

Ri(A i ) P(.x IAl) 0 (x IA ) PCA') 

A!
 

but it can be computed recursively as:
 

Ri(Ai),= p(xrIAi) P(A;IAIJ) Rj(A 1 ) B8
 
"A
3
 

For a ktlh order.Markov chain ('k>1). we defi-ne j=1-'k,,and
 

B4 reduces to:
 

max p(Xi..IA i )S P(XiarlAir)S ....2Ri(Ai,...,Aj+1 ) B9
 
Al Ai-1 	 Ai-2 Aj+j 
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810 

where
 

Ri(Ai,...,Aj+1 ) = px. IAj+ p 

AJ 
P( j +1 IA )+1 P( A IAi-I ,...,A. ) Ri_(A i,...,A ) 

Jj+1 A. Iiiiiii-
J 

The number of summation terms in B9 and BlO is only mk.
 

To obtain this relatively efficient classifier we have
 

assumed a sequential approach, Markov chain dependence
 

between states, and class-conditionally independent data
 

vectors. In spite of these simplifications it is clear that
 

the computational and memory requirements of the compound
 

decision approach are considerably greater than the
 

no-memory approach.
 



2 

155
 

APPENDIX C
 

COMPOSITE CLASSES
 

Let p(xIW1 ) and p(xiW 2 ) be two-univariate normal class
 

densities. Let W3 be a third class that is a composite
 

by
(spatially) of the two ground cover-types represented 


these densities. The problem is to determi-ne the density of
 

this class. We shall assume that the conditional density of
 

a pixel containing 100*a4 of class 1 and 100(1-a)% of class 

is also normal with mean M(a) = a*M1 + (1-a)M2 and 

+ (1-a)V2, where MI and V.I represent the
variance V(a)= a*V1 


mean and variance of the ith class. Thus
 

P"11 3)=J N(M(a),V(a);x) p(a) da Cl
 

for some distribution p(a) which depends on the overall
 

proportion of each class and the "texture" of the composite.
 

Assume for example that the overall proportion of each
 

class is 0.5, and consider three different cases of texture: 

Case I - Maximum Variance 

If the texture of the composite is very coarse compared 

to the size of a pixel, then a pixel will usually contain
 

p(a) is
either one class or the other, not both. 


approximated by .5(6(a)+6(a-1)), where 6(-) represents the
 



156
 

Dirac delta function. Thus p(xjW 3 ) is approximately
 

is bimodal in general.
.5(p(xLWa)+p(xlW2 )), which of course 


We, refer- to. this as a "mi'xture" class, because the
 

their individual characteristics. -The
constituents retain 


normal way to handle such a class is'to cluster the data and
 

treat-each mode as a subclass. Thus a mixture of W- and W2
 

canpot be treated as a distinct' third class by a GaUssian
 

cl4-ssifi-er. (Of course, post-processing could be applied to
 

search for a mixture,'
the classifier output to such if
 

descired.)
 

Case 2 Minimum Variance
 

If the texture of the compos-ite is very fine, then p(a)
 

is approximated by 6Ca-.5),-andPp(x'IW 3 ) is approximately
 

and variance (VI+V2)/2. This can
 

-

normal with mean (M1 +M2 )/2 


We refer
(and should) be treated as a distinct third class. 


to lit as, a "compound" class, because the constituents lose
 

their individuality.
 

Case 3 - Intermediate Variance 

When the texture of the composite is on the-same-order 

Figures C1 and C2), a randomlyas the pixel size (eag. 


can contain any proportions of the two
selected pixel 


classes. As a first-order approximation to p(a) we consider
 

the 'strictly periodic pattern in Figure C1 and let the
 

(X,Y) of the pixel be uniformly distributed
coordinates 


covered by the pbttern.
random variables over the area 


Assume for simplicity that the orlentation of the pixel
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square is the same as the square elements in the pattern.
 

Symmetry considerations require that p(a) be unchanged if 

the point (X,Y) is uniformly distributed over the regi-on 0 

x < 1, 0 \<y < min(x,l-x). In this region a(x,y) = x-2xy+y. 

By transformation of random Variables it follows that: 

p(.a) = - In 12a-l1 0 < a 4 1 C2 

which is shown in Figure Cl. The variance of this 

distribution is intermediate between Cases I and 2. 

Figure C3 shows two hypothetical class densities, 

p(xjW1 ) and p(xIW 2 ), and the density of their composite, 

p(xIW3 ) (obtained by numerical evaluation of formula C1 

using formula C2). As 1fi Case 2, p(xLW3 ) forms a distinct, 

unimodal class, but its variance is larger due to the spread 

of p(a). 

Another interesting case is the pattern shown in Figure 

C2. Here the texture is primarily one-dimensional. (This
 

tendency can be observed for instance in a few of the
 

objects i1 Figure 4.2.4.) When the detector size matches
 

the line width, p(a) is uniform on the interval 0 4 a < 1.
 

Its variance is greater than that of formula C2, which
 

results in the composite class p(x[W4 ) shown in Figure C3.
 

Important points to notice are that it is unimodal,
 

relatively broad, and it forms a distinct compound class.
 

As rM2 -M1 increases relative to the variance of W1 and W2 ,
 

pxj14 ) tends toward uniform on the interval (M1,12). Thus,
 

if other classes lie in this interval, observations from the
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compound class will tend to be misclassified at a high rate
 

by a no-memory classifier. Of course, much less confusion
 

should result if classification is done on a sample basis.
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APPENDIX D
 

FIELD LISTINGS
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TEST AREAS FOR RUN 71052800
TABLF 1 


COVER
RUN AREA FIRST LAST LINE FIRST LAST COL 

COL INT TYPE
NUMBFR DESICNATION LINE LINE INT COL 


124 1 20 45 1 CORN
71052800 H-IS 113 

131 1 34 43 1 CORN71052800 H-15 .127 


1 22 29 1 CORN
71052800 H-14 136 139 

1 21 43 1 CORN
71052800 H-14.0 142 152 

1 I3 140 1 CORN71052800 G-1O 227 239 

1 111 117 1 CORN71Q52800 G-11 233 239 


ill 1 CORN
242 262 1 124
71052800 G-If 

139 1 CORN
242 248 1 145
71052800 G-in 


1 127 136 1 CORN
71052800 G-11 254 262 

1 Ii 145 1 CORN
71052800 G-11 265 288 


196 207 1 CORN
71052800 Y-1 291 317 1 

1 23 93 1 CORN
71052800 H-I 292 319 


193 1 CORN
71052800 Y-1 292 298 1 181 

193 1 CORN
71052800 Y-1 301 308 1 190 

184 1 CORN
71052800 Y-3 311 319 1 181 


1 CORN
71052800 H-i 322 352 1 23 54 

1 CORN
71052800 G-15. 324 352 1 83 85 

1 CORN
71052800 G-3 364 383 1 99 116 


384 157 .1 CORN
71052800 T-4 365 1 160 

408 104 1 CORN
71052800 0-3 386 1 136 


71052800 0-8 388 417 1 47 94 1 CORN
 
71052800 0-8 389 396 1 40 44 1 CORN
 

425 429 1 190 199 1 CORN
71052800 F-2 

432 439 1 180 204 1 CORN
71052800 F-2 

442 446 1 166 210 1 CORN
71052800 F-2 

452 463 1 157 178 1 CORN
71052800 P-i 

453 475 1 30 33 1 CORN
71052800 P-3 

453 455 1 139 142 1 CORN
71052800 P-6 

458 463 1 148 154 1 CORN
71052800 P-7 

466 482 1 38 42 1 CORN
71052800 P-3 


P-7 466 480 1 140 179 1 CORN
71052800 

486 492 1 140 145 1 CORN
71052800 E-1 

486 503 1 120 134 1 CORN
71052800 N-JO 

495 502 1 145 149 1 CORN
71052800 E-r 

505 510 1 151 153 1 CORN
71b52800 E-1 

515 520 1 193 196 1 CORN
74052800 0-i 
517 541 1 154 178 1 CORN
71Q52800 0-8 

519 524 1 190 192 1 CORN
71052800 D-1 

522 526 1 196 198 1 CORN
71052800 0-2 

524 532 1 183 186 1 CORN
71052800 D-1 


532 .1 190 193 1 CORN
71052800 D-2 529 

539 1 184 186 1 CORN
71b5800 D-2 536 

1 145 146 1 CORN
71052800 N-I 538 574 

66 1 CORN
539 603 1 69
71052800 CC-3 


1 20 22 - 1 CORN71052800 N-2 579 601 

1 68 79 1 CORN71052800 CC-5 609 628 


170 1 CORN
71052800 W-3 613 659 1 147 

60 97 1 CORN71052800 X-4 634 739 1 

162 1 CORN71052800 0-23 662 729 1 149 

165 180 1 CORN
71052800 0-24 663 729 1 


192 1 CORN
71052800 0-2 663 697 1 183 

114 1 CORN71052800 X-4 707 739 1 100 
172 1 CORN
71052800 0-9 732 740 1 149 


1 CORN
71,052800 X-10 745 801 1 45 61 

1 CORN
71052800 'X-q 745 761 1 68 81 

1 CORN
71.052800 F-12 746 800 1 29 40 

1 CORN
71,052800 'X-9 753 761 1 84 92 

1 CORN
71052800 0-20 755 765 1 96 115 


807 121 1 CORN
71.052800 0-6 755 1 126 

145 1 CORN
71052800 0-3 756 792 1 141 


1 CORN
71052800 0-20 764 784 1 86 92 

772 95. 1 CORN
71052800 0-20 768 1 104 


7L052800 0-6 768 772 1 112 118 1 CORN
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TABLE D, CO4TINLED 

71052800 
71052800 
71052800 
71052800 
.71052800 
71052800 
71052800 
71052800 
71,052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71-052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 

0-6 
0-21 
0-6 
0-6 
0-10 
0-21 
0-21 
0-19 
0-10 
0-19 
0-14 
0-10 
0-14 
0-10 
Q-14
0-14 
0-18 
0-18 
0-17 
0-22 
0-22 
0-17 
0-17 
R-4 
R-8 
R-3 
R-2 
R-8 
AA-2 " 
AA-1 
V-6 
V-i 
Z-1 
S-15 
5-13 
S-13 
S-6 
S-2 
S-6 
S-6 
S-4 
S-6 
S-Ic 
BB-1 
BB-4 
BB-I 
BB-I 

77I5 784 
786 801 
787 800 
789 799 
803 846 
803 823 
804 811 
804 817 
817 846 
819 823 
839 842 
840 846 
848 850 
849 859 
854 858 
861 865 
881 891 
894 944 
903 913 
905 943 
916 943 
925 943 
937 941 
941 944 
949 961 
950 1005 
950 1005 
964 973 
965 969 
976 985 
989 997 

1008 1023 
1014 1037 
1041 1049 
1052 1065 
1053 1066 
1074 1101 
1083 1098 
1105 1121 
1105 1160 
1120 1134 
1126 1165 
1156 1198 
1204 1217 
1219 1231 
1220 1230 
1226 1240 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

97 
79 
88 

129 
27 
68 
52 

142 
40 

133 
142 
74 
150 
28 
159 
1.65 
104 
88 
136 
75 
70 

134. 
173 
28 
44 
31 
40 
44 
156 
178 
140 
173 
121 
37 
37 
63 
130 
155 
139 
145 
166 
152 
106 
95 
184 
163 
73 

118 
83 

118 
133 
37 
98 
65 
147 
54 

140 
147 
85 

154 
94 

162 
168 
118 
129 
148 
83 
72 
172 
182 
58 
.54 
37 
41 
49 
164 
.187 
144 
184 
134 
55 
57 
94 

143 
184 
142 
146 
185 
157 
127 
178 
187 
172 
88 

1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
I-CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 
1 CORN 

71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 

1-2 
J-1 
H-S 
H-2 
G-9 
D-6 
G-9 
G-8 
K-i 
E-6 
E-3 
N-9 
CC-4 
N-4 
X-2 
X-5 
X-7 
X-2 
X-2 

112 
113 
207 
229 
262 
263 
277 
278 
323 
482 
482 
511 
532 
581 
633 
635 
712 
717 
717 

128 
127 
224 
288 
274 
275 
284 
288 
355 
510 
488 
514 
602 
631 
714 
708 
740 
722 
739 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

153 
96 
80 
19 

160 
181 
171 
149 
141 
199 
172 
102 
73 
12 
117 
28 
13 

136 
118 

181 
130 
89 
34 

175 
208 
176 
157-
163 
209 
178 
109 
76-
16 

142 
55 
55 

140 
126 

1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
1 SOY 
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1 SOY­130 132
755 784


71052800 0-25 	 1 
1 171 181 1 SOY
787 795
M-4 	 1 SOY
71052800 	 1 150 168
787 802
71052800 Mr4 	

805 . 1 153 163 1 SOY 
71052800 M-4 	 807 

1 133 145 1 SOY
864 874
71052800 0-12 	 1 81 91 1 SOY'

867 884
R-5 	 1 SOY
71052800 	 78
867 gq6 1 67 


71052800 R-5 	 868 934 1 28 64 1 SOY
 
71052800 R-5 	 1 SOY
1 75- 112
950 1004 	 1 SOY.
710-52800 AA-7 	 9,50 977 1 129 133 

710,52800 AA-4 1012 1033 1 70 96 1 SOY
 
71052800 Z-4 
 1 SOY
1 127 137
1041 1056
S-11 	 1 SOY
71052800 	 122 127
1061 1067 1 	 1 SOY
71052.800 S-11 1073 1080 1 49 58 

710.52800 S-9 	 1 61 79 1 SOY


1073 1091 
 1 SOY,
71052800 S-9 	 1 110 115
1077 1084
S-7 	 1 SOY
710,52800 	 1 118 122
1093 1104
71052800 S-7 	 1 99 103 1 SOY.:

1136 1153
S-9 	 1 SOY
710'52800 	 1 137 139
1138 1157
S-7 	 1 SOY

1139
71052;800 

71052800 
S-5 	 1196 1 175 

140 
187 

1 SOY.
1 127
1237 1245
BB-3 	 I SOY.
71052800 	 1 112 14L5
1251 1263
710,52800 BB-3 

1 WHEAT
1 139 148
112 128
710,52800 I-I 
 1 WHEAT
H-I9 113 172 1 75 89
71052800 	 69 73 1 WHEAT
114 117 1
710,52800 H-19 	 1- 64 73 1 WHEAT
120 130
71052800 H-19 	 1 .57 72 1 WHEAT
133 172
71052800 H-19 	 1 50 54 1 WHEAT
,151 172
H-19 	 1 WHEAT
71052800 	 1 132 185
153 203
71052800 H-25 	 1 125 129 1 WHEAT
163 171
71052800 H-25 	

174 1 116 129 1 WHEAT
 

190
71052800 
71052800 

H-25 
H-IC 	 203' 

203 

1 
1 

181 
34 

208 
41 

1 
1 

WHEAT
WHEAT
 

228 246
71052800 0-5 	 1 149 176 L WHEAT
228 247
71052800 G-7 	 78 85 1 WHEAT
 
- 231 288 1 

71052800 H-28 	 1 90 105 1 WHEAT
245 288
71052800 H-5 	 1 180 208 1 WHEAT
249 259
71g52800 D-5-	 1 155 176 i WHEAT
250 258
71052800 G-7 	 1 140 175 1 WHFAT
292 319
71052800 G-5 	 1 168 192 1 WHEAT
323 353
71052800 K-2 	 1 150 161 1 WHEAT
358 363
71052800 T-2 	 1 181 198 1 WHEAT
359 371
71052800 T-6 	 201 205 1 WHEAT
373 383
71052800 U-1 	 1 
1 50 55 1 WHEAT
421 42Q


71052800 D-8 	 1 139 152 1 WHEAT
437 447
71052800 F-3 
437 	 155 160 1 WHEAT
439 1


71052800 F-3 	 1 191 197 1 WHEAT
483 510
71052800 E-5 	 1 47 52 1 WHEAT
488 519
71052800 C-2 	 1 15 29 1 WHEAT
489 504
71052800 A-I 	 1 8 12 1 WHEAT
490 504
71052800 A-I 	 1 159 173 1 WHEAT
547 566
71052800 0-6 	 1 37 44 1 WHEAT
558 630
CC-i
71052800 	 -181 1 WHEAT
589 6.08 1 167 

71052800 0-3 	 1 20 22 1 WHEAT
610 631
71052800 N-3 	 1. 174 181 1 WHEAT
613 628
71052800 W-2 	 174 181 1 WHEAT
639 659
71052800 W-2 	 1 

1 96 124 1 WHEAT
745 751
71052800 0-8 	 1 168 171 1 WHEAT

745 784


71052800 ,M-I 
765 783 1 78 82 1 WHEAT 

71052800 0-9 1 174 180 1 WHEAT
768 784


71052800 M-i 	 1 151 161 1 WHEAT822 84671052800 M-6 	 1 139 148 1 WHEAT827 83571252800 M-6 	 1 164 169 1 WHEAT829 84371 52800 M-6 	 1 -138 146 1 WHEAT846 853
71052'800 0-13 
8"55 862 1 147 154 1 WH*EAT 

71052800 0-13 	 1 157 161 1 WHEAT 
864 869
0-13
71052-800 
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1 WHEAT
71052800 AAr3 948 961 1 146 178 

1 181 186 1 WHEAT
71052800 AA-3 949 960 


1018 1030 1- 160 166 1 WHEAT
71052800 V-2 

1 WHEAT
71052800 S-3 1103 1115 1 154 184 


71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
'71052800 
71052800 
71052800 
71052800 

0-7 
K-5 
0-3 
CC-2 
X-1i 
0-5-
0-5 
0-11 
0-15 
0-15 
0-15 
AA-6 
AA-8 
AA-8 
R-7 
S-8 
S-8 
S-8 
S-8 
S-8 

279 285 
322 352 
514 520 
551 629 
765 801 
816 823 
826 836 
853 870 
878 881 
884 888 
898 900 
950 1003 
962 1006 
972 979 
983 1006 

1073 1088 
1073 1105 
1106 1107 
1124 1147 
1126 1138 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1. 
1 
1 
1 
1 
1 

181 
202 
182 
49 
65 
102 
87 
115 
127 
135 
151 
117 
66 
60 
56 
87 
93 
97 

114 
108 

207 
208 
185 
62 
74 

121 
118 
126 
132 
140 
154 
125 
69 
63 
63 
90 

101 
100 
120 
111 

1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 

-1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 
1 IDLE 

71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71052800 

G-16 
G-18 
F-5 
N-6 
N-P 
X-3 
X-3 

324 
340 
406 
497 
565 
634 
726 

352 
343 
411 
501 
603 
703 
740 

1 
1 
1 
1 
1 
1 
1 

77 
57 
192 
78 
81 

101 
142 

80 
73 

199 
85 
82 
112 
145 

1 HAY 
1 HAY 
1 HAY 
1 HAY 
1 HAY 
1 HAY 
1 HAY 

71052800 
71052800 
71052800 
71052800 
71052800 
71052800 
71'052800 
71052800 

H-20 
H-20 
H-26 
H-3 
M-2 
M-8-
M-8 
M-7 

147 152 
155 159 
207 223 
229 288 
746" 784 
822 827 
830 83,2 
852 855 

1 
1 
1 
1 
1 
1 
1 
1 

94 
94 
118 
38 
150 
173 
179 
166 

107 
100 
186 
46 

164 
180 
184 
171 

1 LESPEDEZA 
1 LESPEDEZA 
1 LESPEDEZA 
1 LESPEDFZA 
1 LESPEDEZA 
1 LESPEDEZA 
1 LESPEDEZA 
1 LESPEDEZA 

71052800 
71052800 
71052800 
7105280'0 
71052800 
71052800 
71052800 
71052800 

H-22 
H-12 
H-22 
H-6 
H-27 
D-9 
C-3 
C-3 

183 
188 
205 
228 
228 
368 
488 
510 

202 
206 
223 
240 
288 
384 
507 
512 

1 
1 
1 
1 
1 
1 
1 
1 

93 
5 

93 
97 
67 
23 
56 
56 

96 
10 

100 
106 

73 
26 
73 
64 

1 PASTURE 
1 PASTURE 
1 PASTURE 
1 PASTURE 
1 PASTURE 
1 PASTURE 
1 PASTURE 
1 PASTURE 

71052800 
71052800 
71052800 
71052800 

E-2 
E-2 
0-4 
V-5 

484 
504 
518 
985 

491 
511 
526 
995 

1 149 
1 157 
1 206 
1. 148 

169 
169 
210 
156 

1 RYE 
1 RYE 
1 RYE 
1 RYE 

71052800 H-23 
71052800 -H-23 
71052800 H-23 
71052800 H-23 

133 
155 
174 
205 

150 
162 
202 
222 

1 
1 
1 
1 

123 
112 
101 
104 

127 
118 
111 
113 

1 WOODPAST 
1 WOODPAST 
I WOODPAST 
1 WOOOPAST 

71052800 
71052800 
71052800 
71052800 
71052800 

X-1 
R-6 
V-7 
V-7 
V-4 

719 
862 
975 
978 
1O1 

740 
866 
977 
980 

1022 

1 
1 
1 
1 
1 

130 
9 

148 
139 
151 

'133 
107 
155 
145 
154 

1 FOREST 
1 FOREST 
1 FOREST 
1 FOREST 
1 FOREST 
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71052800
71052800 

S-14
Z-2 

1021
1030 

1032
1039 

11 58
104 

61
115 

1 FOREST­
1 FOREST 

71052800 H-I 156 158 1 21 37 1 NON-FARM 
71052800 
71052800 

H-17 
H-21 

161 
166 

172 
173 

1 
1 

43 
93 

46 
95 

1 NON-FARM 
I NON-FARM 

71052800 H-i 176 181 1 31 35 1 NON-FARM 
71052800 H-il 184 189 1 28 29 1 NON-FARM 
71052800 H-i 
71052800- H-7 

192 
227 

201 
235 

1 
1 

18 
89 

22 
91 

1 NON-FARM 
1 NON-FARM 

71052800 
71052800 

G-12 
G-13 

252 
347 

258 
353 

1 
1 

146 
71 

151 
-73 

1 NON-FARM 
1 NON-FARM 

71052800 
71052800 

G-i 
G-1 

349 
355 

354 
359 

1 
J 

97 
100 

100 
115 

1 NON-FARM 
1 NON-FARM 

71052800 P-2 422 428 1 22 44 1 NON-FARM 
71052800 P-2 431 449 1 37 46 1 NON-FARM 
71052800 P-2 454 473 1 48 56 1 NON-FARM 
71052800 
71052800 

P-4 
B-1 

478 
508 

483 
561 

1 
1 

31 
9 

34 
29 

1 NON-FARM 
1 NON-FARM 

71052800 8-1 516 525 .1 67 73 1 NON-FARM 
71052800 B-1 523 535 1 55 64 1 NON-FARM 
71052800 B-1 532 539 1 45 52 1 NON-FARM 
71052800 
71052800 B-1 

540 
540 

541 
545 

1 
1 

47 
33 

52 
46 

1 NON-FARM 
1 NON-FARM 

71052800 
71052800 

0-7 
0-5 

546 
548 

566 
574 

1 
1 

178 
151 

180 
153 

1 NON-FARM 
1 NON-FARM 

71052800 
71052800 

B-i 
B-1 

563 
564 

631 
568 

1 
1 

27 
9 

32 
22 

1 NON-FARM 
1 NON-FARM 

71052800 
71052800 
71052800 

0-1 
0-2 
W-I 

569 
579 
631 

576 
586 
636 

1 
1 
] 

178 
178 
179 

182 
182 
181 

1 NON-FARM 
1 NON-FARM 
1 NON-FARM 

71052800 
71052800 

0-1 
0-10 

702 
733 

709 
739 

1 
1 

-184 
176 

190 
183 

1 NON-FARM 
1 NON-FARM 

71052800 0-7 744 751 1 128 133 1 NON-FARM 
71052800 
71052800 
71052800 
71052800 
71052800 

X-8 
0-4 
DD-1 
DO-1 
S-1 

744 
837 
990 
998 

1072 

749 
845 
995 

1004 
1077 

1 
1 
1 
1 
1 

85 
121 
193 
194 
151 

92 
126 
194 
202 
166 

1 NON-FARM 
1 NON-FARM 
1 NON-FARM 
1 NON-FARM 
1 NON-FARM 



168 

TABLE D2 TEST AREAS FOR RUN 72064412
 

RUN AREA 
 FIRST LAST LINE FIRST LAST COL COVER
 
COL INT TYPE
NUMBER DESIGNATION LINE LINE INT COL 


------..------------ ---- ---- --------------­

59 62 1 30l7 317 1 AGRICULTURE
72064412 AG 

68 77 1 426 432. 1 AGRICULTURE
72064412 AG 


AG 74 78 1 369 375 1 AGRICULTURE
72064412 

AG 79 87 1 262 265 1 AGRICULTURE72064412 


84 90 1 273 285 1 AGRICULTURE
72064412 AG 

100 110 1 274 283 1 AGRICULTURE
720611412 -AG 

106 124 1 234 244 1 AGRICULTURE
72064412 AG 

111 114 1 245 257 1 AGRICULTURE
72064412 AG 

113 119 1 276 288 1 AGRICULTURE
72064412 AG 

126 130 1 252 267 1 AGRICULTURE
72064412 AG 

164 174 1 586 591 1 AGRICULTURE
72064412 AG 

180 187 1 369 373 1 AGRICULTURE
72064412 AG 

194 199 1 264 267 1 AGRICULTURE
72064412 AG 

197 205 1 233 238 1 AGRICULTURE
72064412 AG 


209 1 247 253 1 AGRICULTURE
72064412 AG 202 

1 296 302 1 AGRICULTURE
72064412 AG 212 217 

1 275 280 1 AGRICULTURE
72064412 AG 217 221 

1 '443 454 1 AGRICULTURE
72064412 AG 219 222 

1 395 403 1 AGRICULTURE
72064412 AG 229 232 


268 274 1 AGRICULTURE
72064412 AG 247 251 1 

1 488 497 1 AGRICULTURE
72064412 AG 250 253 


236 240 1 AGRICULTURE
72064412 AG 257 264 1 

291 298 1 AGRICULTURE
72064412 AG 257 263 1 


506 1 AGRICULTURE
72064412 AG 283 289 1 501 

521 1 AGRICULTURE
72064412 AG 300 302 1 514 


72064412 AG 308 315 1 314 319 1 AGRICULTURE 
72064412 AG 319 326 1 302 306 1 AGRICULTURE 

320 1 369 AGRICULTURE72064412 AG 324 366 1 
350 1 238 AGRICULTURE72064412 AG 354 233 1 

- 380 400 1 AGRICULTURE72064412 AG 376 1 404 

AG 384 388 1 524 530 1 AGRICULTURE
72064412 

AG 400 404 1 538 542 1 AGRICULTURE
72064412 

AG 406 411 1 353 356 1 AGRICULTURE
72064412 

AG 416 418 1 372 375 1 AGRICULTURE
72064412 


422 424 1 524 536 1 AGRICULTURE
72064412 AG 

AG 430 433 1 385 394 1 AGRICULTURE
72064412 


460 464 1 265 274 1 AGRICULTURE
72064412 AG 

AG 460 467 1 495 500 1 AGRICULTURE
720'64412 


461 464 1 293 298 1 AGRICULTURE
72064412 AG 

464 470 1 320 327 1 AGRICULTURE
72064412 AG 

479 482 1 452 455 1 AGRICULTURE
72064412 AG 

488 491 1 397 402 1 AGRICULTURE72064412 AG 


503 1 487 492 1 AGRICULTURE72064412 AG 499 

510 1 328 333 1 AGRICULTURE
72064412 AG 508 


483 490 1 AGRICULTURE
72064412 AG 541 545 1 

1 431 440 1 AGRICULTURE
72064412 AG 563 567 

1 352 358 1 AGRICULTURE
72064412 AG 573 577 


326 331 1 AGRICULTURE72064412 AG 578 585 1 

348 352 1 AGRICULTURE
72064412 AG 580 586- 1 

438 443 1 AGRICULTURE72064412 AG 582 588 1 
510 515' 1 AGRICULTURE
72064412 AG 586 591 1 


247 1 FOREST
72064412 F-S 66 68 1 236 

403 1 FOREST
72064412 F-T 85 96 1 367 

326 1 FOREST
72064412 F-T 86 91 1 322 

321 FOREST
72064412 F-T 89 98 '1 313 1 


89 1 434 FOREST
72064412 .F-T 101 424 "1 

90 1 357 FOREST
72064412 F-T 103 330 1 

92 1 270 FOREST
72064412 F-T 101 266 1 

94 1 236 FOREST
72064412 F-T 104 232 1 

94 1 283 FOREST
72064412 F-T 98 275 1 

97 1 375 FOREST
72064412 F-T 107 361 1 


1
72064412. F-T 106 112 1 489 499 FOREST
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720&64412 
72064412 
72064412 
72064412 
720)64412
72064412 
72064412 
720*64412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
7206441? 

F-S 
F-T 
F-S 
F-T 
F-T 
F 
F 
F-T 
F 
F-T 
F 
F 
F-S 
F-T 
F-T 
F-T 
F-S 
F-T 
F-S 
F-T 

132 
132 
139 
157 
170 
202 
213 
254 
32J 
339 
379 
412 
436 
456 
456 
460 
514 
547 
56 
81 

136 
156 
147 
164 
181 
205 
221 
257 
335 
348 
388 
429 
443 
469 
469 
467 
522 
551 
565 
588 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

340 
557 
486 
557 
542 
379 
380 
270 
579 
320 
572 
572 
305 
236 
584 
509 
384 
433 
268 
'477 

360 
577 
493 
570 
553 
386 
385 
275 
598 
325 
578 
591 
310 
240 
590 
514 
391 
447 
285 
480 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

FOREST 
FORFEST 
FOREST 
FOREST 
FOREST 
FOR6ST 
FOREST 
FOREST 
FOREST 
FOREST 
FOREST 
FOR EST 
FOREST 
FOREST 
FOREST 
FOREST 
FOREST 
FOREST 
FOREST 
FOR-EST 

72064412 
72064412 
72Q64412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 

RM 
RM 
PRVGM 
RM 
RM 
PRVGM 
PRVGM 
RM 
PRVGM 
PRVGM 
RM 
PRVGM 
RM 
PRVGM 
PRVGM 
PRVCM 
PRVGM 
PRVfM 
PRVGM 
PRVGM 
PRVGM 
PRVGM 
RM 
RM 
RM 
RM 
RM 
RM 
RM 
RM 
PRVGM 
PRVGM 
PRVGM 

57 
68 
81 
153 
166 
170 
172 
175 
181 
185 
189 
192 
236 
331 
339 
362 
366 
378 
385 
404 
404 
407 
412 
414 
423 
440 
445 
445 
466 
480 
492 
497 
506 

72 
72 
87 
157 
174 
176 
174 
179 
189 
188 
191 
194 
242 
335 
346 
369 
373 
383 
389 
413 
408 
415 
415 
416 
428 
445 
465 
447 
469 
485 
4Q4 
500 
521 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

484 
436 
496 
354 
382 
518 
317 
388 
498 
224 
327 
.230 
325 
453 
460 
302 
315 
343 
333 
267 
302 
254 
289 
279 
316 
323 
388 
515 
385 
294 
297 
299 
306 

499 
439 
501 
359 
391 
525 
324 
394 
505 
229 
334 
236 
329 
459 
469 
309 
321 
349 
337 
270 
315 
259 
293 
285 
320 
330 
393 
521 
392 
313 
315 
310 
311 

1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RFCENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 
1 RECENT-MINE 

72064412 
72064412 
72064412 
72064412 
72)64412
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 
72064412 

TIP 
W-S 
W-S 
TIP 
W-S 
W-S 
W-S 
W-C 
W-C 
W-C 
TIP 
TIP 

58 
62 
64 
76 
80 
80 
81 
151 
153 
186 
236 
240 

62 
63 
65 
79 
80 
80 
81 
154 
156 
190 
239 
243 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

465 
519 
534 
329 
407 
534 
409 
298 
516 
315 
416 
410 

467 
520 
535 
332 
408 
536 
410 
299 
518 
320 
418 
413 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

PIT' 
PIT 
PIT 
PIT. 
PIT. 
PIT 
PIT-
PIT. 
PIT 
PIT 
PIT 
PIT' 
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TABLE D2, CONTIN[IED
 

416 417 1 PIT
72064412 TIP 245 249 1 

TIP 248 249 1 315 320 1 PIT
72064412 


251 252 1 324 326 1 PIT
72064412 TIP 

256 1 447 448 1 PIT
72064412 W-C 251' 


288 291 1 PIT
72064412 TIP 390 396 1 

W-C 391 393 1 320 322 1 PIT
72064412 


392 397 1 292 302 1 PIT
72064412 TIP 

396 1 303 308 1 PIT
72064412 TIP 394 


419 420 1 PIT
72064412 W-C 469 471 1 

568 408 411 1 PIT
72064412 W-C 565 1 


78 1 391 398 1 REVEG. MINE
72064412 RVGM 74, 

79 383 388 1 REVEG. MINE
72064412 RVGM 76 1 


115 127 1 354 355 1 REVEG. MINE
72064412 RVGM 

152 1 488 496 1 REVEG. MINE
72064412 RVGM 149 


1 467 470 1 REVEG. MINE
72064412 RVGM 150 159 

526 1 REVEG. MINE
72064412 RVGM 161 166 1 521 


164 170 1 471 477 1 REVEG. MINE
72064412 RVGM 

176 181 1 444 453 1 REVEG. MINE
72064412 RVGM 


196 1 438 445 1 REVEG. MINE
72064412 RVGM 192 

528 531 1 REVEG. MINE
72064412 RVGM 209, 215 1 


217 220 1 480 487 1 REVEG. MINE
72064412 RVGM-

221 225 1 342 349 1 REVEG. MINE
72064412 RVGM 


1 323 333 1 REVEG. MINE
72064412 RVGM 224 228 

349 352 1 REVEG. MINE
72064412 RVGM 240 244 1 


263 266 1 405 417 1 REVEG. MINE
72064412 RVGM 

453 455 1 465 470 1 REVEG. MINE
72064412 RVGM 


1 338 343 1 REVEG. MINE
72064412 RVGM 459 461 

467 345 348 1 REVEG. MINE
72064412 RVGM 464 1 


464 467 1 458 462 1 REVEG. MINE
72064412 RVGM 

467 471 1 464 467 1 REVEG. MINE
72064412 RVGM 


1 345 351 1 REVEG. MINE
72064412 RVGM 532 538 

536 548 1 357 362 1 REVEG. MINE
72064412 RVGM 

543 550 1 302 303 1 REVEG. MINE
72064412 RVGM 


1 331 336 1 REVEG. MINE
72064412 RVGM 549 553 

559 321 328 1 REVEG. MINE
72064412 RVGM 556 1 


565 567 1 312 318 1 REVEG. MINE
72064412 RVGM 

570 573 1 264 282 1 REVEG. MINE
72064412 RVGM 


308 321 1 REVEG. MINE
72064412 RVGM 575 579 1 
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ORGINAL:PAGEis POOR 

TARLF D3 REFFRFNCF AREAS FOR RUN 71052501 

RUN 
NUMRFR 

AREA 
DESIGNATION 

FIRST 
LINE 

LASI 
LINF 

LINE 
INT 

FIRST 
COL 

LAST 
COL 

COL 
INT 

AREA 
TYRE 

71052501 
71052501 

TRAINING 
TRAINING 

173 
519 

188 
525 

1 
1 

186 
026 

192 
032 

1 
1 

DEC IDOIUS 
DECIDUOUS 

71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 

TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 

046 
048 
052 
055 
068 
333 
396 

049 
048 
053 
055 
072 
339 
399 

1 
1 
1 
1 
1 
1 
1 

067 
076 
066 
073 
052 
083 
109 

070 
078 
067 
077 
052 
088 
126 

1 CONIFEROUS 
1 CONIFEROUS 
1 CONIFEROUS 
1 CON IFEROUS 
1 CONIFEROUS 
1 CONIFEROUS 
1 CONIFEROUS 

71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71952501 
71952501 
71052501 
71052.501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 

TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 

146 148 
151 155 
155 159 
155 156 
227 228 
337 338 
831 834 
843. 846 
847 849 
877 879 

1174 1174 
1175 1175 
1184 1185 
1216 1217 
1217 1219 
1239 1245 
1273 1282 
1290 1294 
1291 1293 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1. 
1 
1 
1 
1 
1 
1 
1 
1 

108 
113 
120 
023 
052 
108 
OIl 
004 
002 
041 
197 
01 
030 
068 
075 
077 
074 
082 
140 

112 
119 
129 
024 
053 
Il1 
014 
008 
005 
045 
202 
020 
032 
073 
080 
080 
076 
085 
143 

1 WATER,POND 
1 WATER,POND 
1 WATER,POND 
1 WATER,POND 
1 WATER,POND
1 WATER,POND 
1 WATER,POND 
1 WATERPOND 
1 WATER,POND 
1 WATERPOND 
1 WATER,RIVER. 
1 WATER,RIVER 
1 WATER,RIVER 
1 WATER,RIVER 
1 WATER,RIVER 
1 WATER,RIVER 
1 WA-TER,RIVFR 
1 WATER,RIVER 
1 WATERRIVER 

71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
7105250] 
71052501 
71052501 
71052501 
71052501 
71052501 
71P52501 

TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 
TRAINING 

32 35 
56 67 
105 11 
115 127 
196 204 
335 339 
405 419 
506 510 
564 574 
650 654 
678 681 
817 825 
853 859 

1143 1152 
1189 1193' 
1202 1209 
1275 1284 
1449 1452 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
! 

50 
188 
189 
187 
1O 
197 
211 
073 
205 
048 
173 
100 
144 
047 
184 
184 
109 
127 

57 
195 
197 
193 
192 
204 
215 
086 
217 
056 
185 
118 
171 
058 
208 
208 
125 

.142 

1 FORAGE,PAST 
1 FORAGEPAST 
1 FORAGE,STUB 
1 FORAGESTUB 
1 FORAGE,PAST 
1 FORAGE,PAST 
1 FORAGE,PAST 
1 FORAGE,PAST 
1 FORAGEPAST 
1 FORAGE,PAST 
1 FORAGESTUB 
1 FORAGEHAY 
1 FORAGE,HAY 

41 FORAGE,HAY 
1 FORAGE,STUB 
1 FORAGE,STUB 
1 FORAGESTUB 
1 FORAGEHAY 

71052501 
71052501 

TRAINING 
TRAINING 

661 670 
681 685 

1 
1 

174 
137 

181 
143 

1 CORN 
1 CORN 

71052501 
71052501 

TRAINING 
TRAINING 

683 685 
698 703 

1 
1 

153 
141 

167 
143 

1 CORN 
1 CORN 

71b52501 
71852501 
71052501 
71P52501 
71052501 
71052501 

TRAINING 
TRAINING 
TRAINING 

. TRAINING 
TRAINING 
TRAINING 

1250 1257 
1275 1282 
1403 1412 
1481 1485 
1487 1512 
1492 1506 

1 
1 
1 
1 
1 
1 

93 
93 
194 
033 
049 
033 

100 
100 
213 
042 
051 
042 

1 CORN 
1 CORN 
1 CORN 
i CORN 
1 CORN 
1 CORN 

71052501 
71052501 

TRAINING 
TRAINING 

498 500 
1027 1031 

1 
1 

099 
005 

117 
025. 

1 SOY 
1 SnY 
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TARLF D3, CONTINUED
 

71052501 
71052501 
71052501 
71052501 

TRAINING 
TRAINING 
TRAINING 
TRAINING 

1045 1048 
1191 1193 
1253 1274 
1473 1479 

1 
1 
1 
1 

124 
043 
129 
078 

128 
046 
135 
V90 

1 SOY 
1 SOY 
1 SOY 
1 SOY 

71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 

TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TFST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TFST 
TEST 
TEST 
TFST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 

1 
43 
48 
72 
77 
88 
91 
-98 
116 
123 
149 
150 
191 
220 
245 
246 
256 
297 
312 
317 
339 
342 
371 
386 
386 
391 
408 
431 
437 
464 
466 
508 
519 
575 
575 
631 
635 
657 
785 
814 
858 
935 

1007 
1079 
1197 
1354 

025 
051 
088 
83 
107-
-110 
122 
134 
161 
144 
158 
190 
209 
261 
286 
262 
295 
316 
325 
361 
352 
366 
390 
403 
404 
402 
429 
455 
446 
491 
475 
526 
540 
578 
602 
647 
649 
677 
826 
854 
870 
974 
1066 
1098 
1218 
1369 

1 
1 
1 

.1 
1 
1 
1 
1 
.1 
1 
1 
1 
1 
1 
1 
1 
1 

.1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

061 
122 
161 
113 
001 
107 
160 
073 
006 
115 
059 
212 
123 
200 
140 
177 
043 
025 
120 
019 
166 
093 
115 
42 
060 
145 
160 
141 
149 
199 
001 
099 
033 
177 
161 
190 
058 
107 
136 
031 
180 
046 
183 
099 
094 
iR9 

157 
156 
179 
137 
022 
138 
178 
093 
019 
128 
103 
222 
160 
222 
155 
199 
054 
064 
184 
040 
192 
133 
188 
58 
068 
172 
183 
148 
153 
210 
027 
126 
040 
181 
176 
222 
073 
126 
203 
051 
222 
11 
211 
130 
115 
222 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1. 
1 
1 

DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS-
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 
DECIDUOUS 

71052501 
71052501 
71,052501 
71052501 

TEST 
TEST 
TEST 
TEST 

344 
409 
413 
512 

348 
411 
420 
514 

1 
1 
1 
1 

0A 
145 
141 
144 

077 
150 
144 
149 

1 
1 
1 
1 

-CONIFEROUS 
CONIFEROUS 
CONIFEROUS 
CONIFEROUS 

71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 
71052501 

TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 
TEST 

294 295 
.834 837 
1191 1192 
1195 1200 
1206 1215 
1213' 1214 
1214 1227 
1216 1223 
1219 1230 
1224 1238 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

158 
004 
164 
161 
163 
058 
007 
162 
083 
161 

159 
010 
167 
162 
166 
063 
007 
165 
086 
164 

1 WATER,POND 
1 WATERPOND 
1 WATERRIVER 
"i WATER,RIVER 
1 WATER,RIVER 
L WATER,RIVER 
1 WATERRIVER 
1 WATER,RIVER 
1 WATER,RIVER 
1 WATERRIVER 
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TABLE 03, CnNTINUED 

1 080 082 1 IJATER,RIVFR1259
TFST 1252
71052501 	 157 1 WATERRIVER
-1267 1 159

7105250) TEST 1261 


1279 1282 1 153 155 1 WATERRIVER
 
7105250] TEST 150 1 WATERRIVER
TEST 1285 1287 1 149
71052501 	 1 121 126 1 WATERRIVER
1299
TEST 1297 


1 FrRAG%,PAST
 
71052501 


TEST 10 15 1 023 030 

71052501 	 185 192 1 FORAGE,STIR
T.FST 94 .99 1
7105250171052501 TFST 121 	 142 1 215 222 1 FORAGE,PAST
 
71052501 TFST 135 	 140 1 163 174 1 FORAGE,PAST
 

144 153 1 FORAGE,PAST
TFST 1"41 1 164

71052501 	 17q 184 1 FnRAGE,PAST
169 1
TFST 164
71052501 	 170 176 1 FORAGE,STiB
173 1
TFST 164
71052501 

182 187 1 115 135 1 FORAGEPAST 
71Q52501 TFST 007 1 FORAGG(IPAST211 1 002
TEST 205
71052501 	 128 134 1 FORAGEPAST
TEST 216 219 1
71052501 	 1 FORAGPAST
TEST 230 237 1 122 133

71052501 

235 	 241 1 157 164 1 FORAGEPAST
TEST
71052501 	 222 1 FORAGE,PAST
TFST 272 280 1 21]
71052501 	 1 124 132 1 FORAGE,PAST
297
TFST 288
71052501 	 1 140 149 1 FORAGE,PAST
TEST 291 296
71052501 	 302 213 1 FORAGtSTI1B
TEST 293 1 215

71052501 	 153 157 1 FORAGE,PAST
308' 1
TEST 300
71052501 	 337 1 047 051 1 FORAGE,PAST
TEST 330
71052501 350 	 357 1 165 160 1 FnRAGE,PAST
TFST
71052501 	 208 1 FORAGE-,PAST
TFST 382 399 1 1c771052501 	 1 051 058 1 FORAGEPASTTEST 40s 417
71052501 	 208 1 FORAGEPAST
TFST 420 431 1 215

71052501 

426 	 429 1 027 035 1 FORAGEPAST

71052501 TEST 	 12? 131 1 FORAGE,STLIB
71052501 TEST 440 451 1 

71052501 TEST 447 462 1 167 172 1 FORAGE ,STUR
113 1 FnRAGE,PAST
467 1 119
71052501 TEST 458 	 1 FORAGE,PAST
TFST 463 469 1 175 182


71052501 173 184 1 FORAGE,PAST

7105250) TFST 471 483 

1 
1. 

056 067 1 FORAGEPAST
495
TEST 475
71052501 
TEST 486 	 496 1 151 159 1 FORAGEPAST
 

710F2501 

71052501 TEST 491 	 501 1 76 94 1 FORAGE,PAST
 

023 028 1 FORAGE,PAST
499 508 1
71052501 -TFST 	
1 012 052 1 FnRAGE,PAST
499 509
71052501 TEST 

529 	 532 1 108 120 1 FORAGE,STUB

71052501 TEST 	

550 088 1 FORAGE,PAST

71052501 TEST 532 1 102 


127 140 1 FORAGEPAST
TEST 543 551 1
71052501 	 1 24 35 1 FORAUE,PAST
559 565
71052501 TEST 
564 	 570 1 127 165 1 FORAGEPAST
 

71052501 TEST 

580 O&A 1 FORAGEPAST


71052501 TEST 572 1 055 

206 222 1 FORAGEPAST
582 591 1
71052501 TEST 

619 	 628 1 084 099 1 FORAGEtPAST

71n52501 TEST 	

647 137 1 .FORAGE,PAST

71052501 TEST 634 1 147 


133 169 1 FORAGEPAST
649 663 1
71052501 TEST 	
655 1 195 210 1 FORAGE,PAST
649
71052501 TEST 

689 	 704 1 110 113 1 FORAGE,STUB71052501 TFST 	 125 1 FORAGE,PAST
71052501 TEST 693 	 704 1 115 

1 08 093 1 FORA-E,STUB696 703
71052501 TEST 
700 	 703 1 178 203 1 FORAGE,PAST

71052501 TEST 
 FORAQE,STJB
71052501 TFST 725 	 733 1 022 032 1 

132 1 FORAGE,PAST
881 888 1 106
71052501 TEST 	
1 02q 039 1 FORAGE,PAST
908 916
71052501 TEST 

Q54 	 968 1 16q 181 1 FORAGE,PAST

71052501 TEST 


976 153 1 FORAGE,PAST
TFST 969 1 172

71052501 	 106 130 1 FORAGE,PAST
985 990 1
71052501 TEST 

71052501 TEST 1016 	 1021 1 060 079 1 FRAGESTUB
 

FORAGE,PAST71052501 TEST 1021 	 1039 1 032 041 1 
172 1 FORAGE,STUTEST 1062 1068 1 15671052501 
 1&6 163 1 FORAGE,PAST
1075 1084 1
71052501 TEST 	

1098 1 05) 083 1 FORAGE,PASTTEST 1089
71052501 
 1 FORAGE,PAST
TEST 1123 1129 1 117 133

71052501 
 147 1 FRAGE,PAST
1140 1 123
TEST 1131
71052501 
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TABLF 03, CONTINUED 

71052501 
71052501 

TEST 
TEST 

1131 
1162 

1142 
117.5 

1 
1 

047 
166 

058 
181 

1 FORAGE,HAY 
1 FORAGEPAST 

71052501 . TFST 1179 1186 1 085 102 1 FORAGE,PAST 
71052501 TES-T 1196 1206 1 134 146 1 FORAGEPAST 
71052501 
71052501 

TEST 
TEST 

1199 
1221 

1209 
1252 

1 
1 

173 
061 

183 
069 

1 FORAGE,STUB 
1 FORAGESTUB 

71052501 TEST 1252 1274 1 109 125 1 FORAGESTUB 
71052501' 
71052501 

TEST 
TFST 

1313' 
1343 

1317 
1356 

]
1 

164 
050 

180 
059 

1 FORAGEPAST 
1 FORAGE,PAST 

71052501 
71052501-

TEST 
TEST 

1360 
1390 

1384 
1400 

1 
1 

166 
184 

180 
222 

1 FORAGE,PAST 
1 FORAGEPAST 

71052501 TEST 1402 1415 1 176 189 1 FORAGESTUB 
71052501 TEST 1403 1416. 1 130 150 1 FORAGEHAY 
71052501 
71052501 

TFS.T 
TEST 

1455 
1474 

1464 
1483 

1 
1 

118 
001 

131 
0-0 

1 FORAGESTUB 
1 FORAGEHAY 

71052501 
71052501 

TEST 
TEST 

1482 
1496 

1489 
1501 

1 
1 

149 
107 

210 
126 

1 FORAGEPAST 
1 FORAGEHAY 

71052501 
71052501 

TEST 
TEST 

1499 
1510 

1517 
1516 

1 
1 

161 
133 

174 
148 

1 FORAGETHAY 
1 FORAGEHAY 

71052501 
71052501 

TEST 
TEST 

650 
698 

660 
700 

1 
1 

174 
154 

181 
169 

1 
1 

CORN 
CORN 

71052501 TEST 707 714 1 134 146 1 CORN 
71052501 
71052501 
71052501 
71052501 
71052501 

TEST 
TEST 
TEST 
TEST 
TEST 

924 
1212 
1417 
1482 
1482 

934 
1248 
1438 
1512 
1492 

1 
1 
1 
1 
1 

159 
172 
157 
052 
085 

169 
193 
167 
"082 
103 

1 
1 
1 
1 
1 

CORN 
CORN 
CORN 
CORN 
CORN 

71052501 TEST 1503 1512 1 152 157. 1 CORN 
71052501 TEST 1510 1513 1 196 203 1 CORN 

71052501 TEST 294 318 1 218 222 1 SOY 
71052501 TEST 706 711 1 190 194 1 SOY 
71052501 
71052501 

TEST 
TFST 

921 
1057 

926 
1059 

1 
1 

109 
139 

124 
157 

1 
1 

SOY 
SOY 

71052501 
71052501 
71052501 
71052501 
71052501 

TEST 
TEST 
TEST 
TEST 
TEST 

1101 
1131 
1137 
1140 
1144 

1112 
1136 
1155 
1165 
1161 

1 
1 
1 
1 
1 

158 
032 
017 
010 
001 

171 
043 
042 
012 
003 

1 
1 
1 
1 
1 

SOY 
SOY 
SOY 
SOY 
SOY 

71052501 
71052501 

TFST 
TEST 

1156 
1175 

1165 
1179 

1 
1 

017 
030 

023 
033 

1 
1 

SOY 
SOY 

71052501 
71052501 

TEST 
TEST 

1186 
1192 

1189 
1196 

1 
1 

039 
013 

042 
026 

1 
1 

SOY 
SOY 

71052501 TEST 1198 1208 1 15 28 1 SOY 
71052501 TFST 1215 1218 1 046 051 1 SOY 
71052501 TEST 1220 1222 1 011 030 1 SOY 
71052501 TEST 1258 1264 1 017 029 1 SOY 
71052501 TEST 1420 1442 1 129 140 1 SOY 
71052501 TEST 1420 1429 1 143 152 1 SOY 
71052501 TEST 1431 1443 1 143 150 1 SOY 
71052501 TEST 1466 1478 1 033 045 1 SOY 
71052501 TEST 1477 1479 1 049 076 1 SOY 
71052501 TEST 1508 1514 1 107 122 1 SOY 
71052501 TFST 1537 1544 1 162 180 1 SOY 
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TABLF D4 TEST AREAS FOR RUN 72032803
 

AREA FIRST LAST LI'NE FIRST LAST COL COVER
ROlN 

NUMBER DESIGNATION LINE LINE INT COL COL INT TYPE
 

268 1 1434
72032803 135 271 1439 1 CORN
 
CORN
72032803 138 268 273 1 1470 1486 1 


272 1 1381' 1389 1 CORN
72032803 132 279. 

1 1427 1433 1 CORN
72032803 134- 275 279 


284 1 1383 1391 1 CORN
72032803 133 282 

292 1 1460 1465 1 CORN
72032803 139 287 


297 302 1 1480 1487 1 COrN
72032803 141 

14-3 316 319 1 1452 1456 1 CORN
72032803 

144 320 323 1 1453 1457 1 CORN
72032803 


72032803 148 322 325 1 1483 1489 1 CON
 
72832803 ,156 329 336 1 1381 1387 1 CORN
 

CORN
72 32803 146 333 33-8 1 1460 1484 1 
CORN
334 1 1452 1
72032803 145 336 1455 


338 1':431 1432 1 CORN
72032803 154 344 

339 1 1460 1444 1 CORN
72032803 152 343 


1 1454 1458 1 CORN
72832803 151 3,40 344 

350 352 1 1418 1427 1 CORN
72032803 160 

355 359 1 1443 1447 1 CORN
72032803 162A 


72032803 0-194 356 359 1 1248 1256 1 CORN
 
72032803 0-1-57 358 360 1 1265 1267 1 CORN
 
72032803 159A 359 364 1 1402 1407 1 

1 
CORN
 

72032803 158A 360 364 1 1392 1398 CORN
 
'CORN
72032803 162R 360 362 1 1444 1448 1 


1 CORN
72032803 0-155 360 363 1 1249 1258 

361 1 1229 1235 1 CORN
72032803 0-153 367 


369 1 1209 1216 1 CORN
72032803 0-151 363 

1 1404 1411 1 CORN
72032803 1598 365 369 


365 369 1 1394 1399 1 CORN
72'032803 1588 

365 368 1 1259 1263 1 CORN
72032803 0-1.60 


1
72032803 166A 366 375 1-1447 1453 CORN
 
1
72032803 n-158 368 371 1 1246 1251 CORN
 

CORN
72032803 0-119A 369 372 1 1170 1173 1 

369 1 1276 1 CORN
72032803 0-1708 371 1278 


1 CORN
72032803 167- 371 376 1 1415 1431 

371 1 1261 1 CORN
72032803 0-163 373 1264 


1 CORN
72032803 0-119B 373 377 1 1171 1174 

1 1394 1402 1 Cf'RN
72032803 172 374 381 


378 1 1474 1481 1 CORN
72032803 164 375 

375 377 1 1263 1266 1 CCtRN
72032803 0-166 


72032803 166B 376- 381 1 1450 1458 1 CORN
 
CO RN
72032803 0-118A 376 379 1 1156 1161 1 


0-1188 376 378 1 1162'1169 1 CORN
72032803 

168 377 386 1 1422 1433 1 CCVRN
72032803 


1
72032803 0-140 377 379 1 i190 1191 CORN
 
1
72032803 0-123 379 381 1 1179 1180 C,
 

RN
72032803 0-167 379 382 1 1264 1274 1 

1 CORN
72032803 0-76 380 383 1 1135 1137 

1 CORN
72032803 0-122A 381 384 1 1164 1177 


72032803 nl-171 382 38'9 1 1281 1288 1 CORN
 
387 1 1482 1488 1 CHRN
72032803 169 383 


72032803 0-170A 383 388 1 1275 1276 1 C RN
 
384 387 1 1147 1148 1 CORN
72032803 0-80 A 


1
72032803 0-22 .385 390 1 1091 1094 CORN
 
CORN
72:032803 0-1228 385 386 1 1173 1183 1 


72032803 n-28 , 385 386 1 1116 1119 1 CORN
 
1 CORN
7-21032803 0-79 386 392 1 1133 1141 


386 1 1253 1262 1 CORN
72032803 0-169 387 

388 1 1102 1105 1 CORN
72032803 0-25 387 

389 1 1205 1213 1 CORN
72.032803 0-145 387 


388 389 1 1411 1419 1 -CORN
72032803 170 

388 393 1 1149 1150 1 CORN
72032803 0-80 B 


7Z032803 0-168 388 392 1 1246 1249 1 CORN
 
390 1 1119
72032803 0-29 393 1122 1 CORN
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391 392 1 1049 1050 1 CORN

72032803 0-11 .A 
 CORN
391 392 1 1057 1057 1
72032803 0-13 A 


391 394 1 1154 1157 1 CORN

72032803 0-83 A 
 CORN
391 392 1 1206 1211 1
72032803 0-147 


394 	 1259
72032803 0-173 391 1 1259 	 1 CORN
 
1 CORN
398 1 1415 1423
72032803 169 392 


392 401 1 1106 1114 1 CORN

72032803 0-26 


1 1179 1185 1 CORN
392 395
72032803 0-124 

B 	 394 1 1050 1050 1 CORN


72032803 0-11 393 

393 394 1 1058 1058 1 CORN


72032803 0-13 B 
396 1 1095 1096 	 1 CORN
393.
72032803 0-23 


1 1219 1222 1 CORN
393 394
72032803 0-150 

1 1023 1024 1 CORN
395 396
72032803 0-7 A 
 CORN


72032803 0-i1 C 395 396 1 1051 1051 1 
CORN


72032803 0-13 C 395 396 1 1059 1059 1 

1 CORN


72032803 0-83 B 395 401 1 1157 1158 

1 1207 L211 1 CORN
395 396
72032803 0-148 

1 1024 1025 1 CORN-
B 	 398
72032803 0-7 397 

1 1193 1201 1 CORN
397 403
72032803 0-149A 


398 1 1257 1267 1 CORN
397
72032803 0-174 

72032803 0-4 398 401 1 1014 1020 	 1 CORN
 

398 401 1 1270 127,8 1 CORN
72032805 0-176 

72032803 0-7 C 399 400 1 1026 1026 	 1 CORN
 

CORN
399 401 . 1 1184 1189 '172032803 0-125-

0-16 A 400 403 1 1055 1-061 1 CORN
72032803 
 1 CORN.
72032803 0-178 401 405 1 1253 1254 


1 CORN
72032803 0-215 401 405 1 1287 1298 

1 1165 1167 1 CORN
402 406
72032803 0-126 


403 407 1 1041 1044 1 CORN
72032803 0-15 

C 	 405 1 10,34 1037 1 CORN72032803 0-9 404 

407 1 1157 1162 	 1 CORN
404
72032803 0-85 

407 1 1195 1200 1 CORN
404
72032803 0-149B 


405 408 1 1028 1031 1 CORN
72032803 0-9 B 

1 1057 1066 1 CORN
405 406
72032803 0-16 B 


0-9 A 406 409 1 1020 1026 1 CORN
72032803 

0-5 407 412 1 1015-1017 1 CORN
72032803 
 1 CORN
409 411 1 1000 1001
72032803 0-3 
 1 1247 1252 1 CORN
409 412
72032803 0-180 


410 412 1 1028 1031 1 CORN
72032803 0-9--D 

412 1 1051 1061 1 CORN
410
72032803 0-17 A 


410 411 1 1118 1121 1 CORN
72032803 0-34 
 CORN
412 414 1 1291 1295 1
72:032803 0-210 

417 	 1055
72032803 0-17 B 413 1 1052 1 CORN
 

1 CORN
72032803 0-32 413 415 1 1104 1107 

0-33 413 418 1-1112 1115 1 CORN


72032803 
 1 1226 1234 1 CORN
72032803 0-181 413 414 

1 1283 1288 1 CORN
413 417
72032803 O-211A 
 1 1030 1033 1 CORN
E 	 416
72032803 0-9 414 

416 1 1066 1069 1 CORN
414
72032803 0-20 

419 1 1292 1301 1 CORI
415
72032803 0-209 


.417 419 1 106 1049 1 CORN
0-18
7203280372032803 0-21 418 421 1 1076 1078 	 1 CORN

72032803 0-2118 418 420 1 1285 1290 	 1 CORN
 

1 CORN
72032803 0-208A 421 422 1 1300 1305 

422 425 1 1230 1232 1 CORN


72032803- 0-184 

0-208B 422 423 1 1293.1298 1 CORN
72032803 
 1 CORN


72032803 0-87 424 432 1 1160 1163 

1 1283 1292 1 CORN
425 432
72032803 0-202A 


425 429 1 1296 1308 1 CORN
72032803 0-207 

427 432 1.1210 1215 1 CORN
72032803 0-186 
427 430 1 1233 1237 	 1 CORN
72032803 0-189 

429 432. 1 1175 1179 1 CORN
72032803 0-138A 


432 1 1221 1227 1 CORN
431
72032803 0-188 

72032803 0-206 432 435 1 1298 1300 	 1 CORN
 
72032803 0-66 433 438 1 1106 1115 	 1 CORN
 

1 CORN

72032803 0-93 433 439 1 1171 1173 


1 1177 1180 1 CORN
433 439
72032803 0-138B 
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436 1 1291 1295 1 CORN
 
72Q32803 0-202B 	 433 


434 435 1 1133 1134 1 CORN
 
72032803 0-8'6 


431 437 1 1162 1167 1 CORN

720328o3 0-92 B 


434 437 1 1288 1289 1 CORN
 
72032803 0-2048 	 1 CORN
Y 1226 1230
72032803 0-193 	 435 436 


1 1153 1161 1 CORN
436 438
72032803 o-92.A 

436 438 1 1185 1189 1 CORN
 

72032803 0-127 	 1 CORN
437 437 1 1128 1130

72032803- 0-72 B 	 1 CORN
1-1220 1223
437 438
72032803 0-192 	 1 CORN
437 441 1 1293 1296
72032803 0-202C 	 CORN
437 440 1 1300 1301 1 

72032803 0-205 


1 1123 1125 1 CORN
 
72032803 0-72 A 	 438 438 

CORN
438 439 1 1201T1203 1 

72032803 Q-132 	 1 128q 1290 1 CORN
438 441
72Q32803 0-204A 	 1 CORN
1 1136 1143
439 441
72032803 0-89 


439 443 1 1164 1169 1 CORN
 
72032803 0-99 


440 1-1195 1199 1 CORN
 
72032803 O-131A 	 439' CORN
72032803 0-199 	 439 443 1 1265 1272 1 

72032803 0-98 	 440 447 1 1157 1161 1 C.ORN
 

440 447 1 1258 12'61 1 CORN
72032803 0-198 

442 1 1127 1132 1 CORN
 

72032'803 0-71 	 441, 
1 1195 1203 1 CORN
441 442
72032803 0-1311B 


444 1 1119 1120 1 CORN
 
72032803 0-69 1442 	 1 CORN
443 1,1123 1124
72032803 0-70 	 442 


448 1 1181 119,1 1 CORN
 
,442,
7203a803 0-130 


1 1073 1080 1 CORN
443 445
72032803' 0-48 
 443 446 1 1-138 1145 1 CORN

72032803 0-94 


446 1 1109 11.11 1 CORN

72032803 0-67 B 	 444 


444 445 - 1172 1176 1 CORN
 
72032803 0-101 	 1 CORN
1 1166 1170
72032803 n-100 	 445 446 


447 450 1 1111 1112 1 CORN
 
72032803 0-67 A 


448 450 1 1176 1178 1 CORN
 
72032803 0-106A 


448 449 1 1245 1249 1 CORN
 
72032803 0-195 	 1 1043 1054 1 CORN
450 450
72032803 0-37 


459 1 1165 1174 1 CORN

72032803 0-105 	 450 


' 451 458 1 1062 10740 1 CORN'
72032803 0-74 
 11 CORN
455 1-1178 1179
72032803 0-k06B 	 451 


452 455 1 1238 1242 1 CORN

72032803 0-1948 


1 1233 1237 1 CORN

72032803 O-194A 	 453 457 


1 1046 1049 1 CORN
454 455
72032803 '0-38 

460 1 1054 1058 1 CON


72032803 0-39 	 455 

1 1138 1143 1 CORN
455 462
72032803 O-104A 


456 457 1 1034 1041 1 CORN

72032803 0-36 


1 1103 1109 1 CORN
458 460
72032803 0-59 

460 461 1 1186 1190 1 CORN


72032803 0-134 

465 1 1050 1053 1 CORN


72032803 0-41 	 461 

463 469 1 1139 1147 1 CORN


72032803 0-1048 	 1 CORN
1 1188 1191
72032803 0-135 	 463 468 

473 479 1 1057 1072 1 CORN


72032803 0-45 
 1 1084 1090 1 CCORN
72032803 0'--51 	 474 476 

475 478 1 1192 1200 1 CORN
72032803 0-137 
 1 1048 1051 1 CORN
476 480
72032803 0-44 


1144 1154 1 CO'RN
486
72032803 0-109 	 478 

479 481 

.1 

1 1091 1093 1 CORN
 
72032803 0-54 A 


487 . 1 1130 1139 1 CORN
72032803 0-108 	 481 


1 1093 1094 1 CORN
482 485
72032803 0-54 B 

484 490 1 1182 1191 1 CORN


72032803 0-117 

489 1 1160 1170 1 CORN


72032803 0-114 	 487 

488 491 1 1155 1158 1 COVRN


7-2b32803 0-113B 	 1 CORN
491 1 1150 1154
72032803 O-113A 	 489 

1 1141 11.48 1 CORN
490 491
72032803 0-112 	 1 CORN
492 1 1132 1137


72p32803 0-11IB 492. 
1 1127 1133 1 CORN
 

72032803 0-111A 493 494 
CORN
1 1119 1124 1
495 497
72032803 0-58 


524 526 1 1450 1453 1' CQRN

7-2032803 4A 	 1 CORN
1 1451 1454
527 529
72032803 4B 	 1 1434 1437 1 CORN
529 530
72032803 2A 
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72032803 2B
72032803 3A 
72032803 38 
72032803 75A 
72032803 2C 
72032803 3C 
72032803 758 
72032803 115 
72032803 72 
72032803 30 
72032803 66 
72032803 77A 
72032803 6 
72032803 5 
72032803 700 
72032803 61 
72032803 65 
72032803 77R 
72032803 7B 
72032803 8A 
72032803 708 
72032803 7A 
72032803 70A 
72032803 8B 
72032803 98 
72032803 
72032803 47 
72032803 117 
72032803 9A 
72032803 48 
72032803 62 
72032803 74A 
72032803 11 
72032803. 74B 
72032803 63A 
72032803 638 
72032803 10 
72032803 13A 
72032803 120 
72032803 13 
72032803 44 
72032803 121 
72032803 79 
72032803 13 
72032803 17B 
72032803 438 
72032803 114A 
72032803 13 
72032803 17A 
72032803 1148 
72032803 498 
72032803 21 
72032803 49A. 
72032803 43A 
72032803 188 
72032803 124 
72032803 ISA 
72032803 82 
72032803 83 
72032803 22B 
72032803 22A 
72032803 125 
72032803 24A 
72032803 248 
72032803 24C 
72032803 26 
72032803 127 

531 
531 
534 
534 
535 
537 
537 
537 
539 
540 
542 
542 
544 
545 
546 
546 
546 
547 
548 
548 
'548 
549 
550 
551 
551 
552 
552 
552 
553 
553 
554 
555 
558 
558 
559 
559 
560 
567 
567 
573 
573 
575 
577 
578 
581 
581 
581 
582 
582 
582 
583 
584 
584 
585 
587 
587 
588 
590 
592 
595 
596 
599 
601 
602 
603 
607 
608 

534 
533 
536 
536 
538 
539 
539 
539 
543 
543 
550 
546 
545 
546 
550 
552 
552 
551 
550 
550 
555 
551 
555 
553 
554 
552 
557 
555 
555 
559 
556 
557 
561 
560 
561 
560 
564 
572 
569 
577 
577 
576 
580 
581 
582 
584 
583 
585 
583 
585 
586 
589 
587 
590 
587 
594 
588 
594 
599 
597 
598 
602 
605 
606 
607 
614 
611 

1 1436 1439 1
1 1429 1433 1 
1 1430 1434 1 
1 1716 1717 1 
1 1437 1441 1 
1 1431 1435 1 
1 1717 1718 1 
1 1744 1751 1 
1 1691 1698 1 
1 1432 1436 1 
1-1648 1657 1 
1 1736 1741 1 
1 1441 1445 1 
1 1433 1438 1 
1 1690 1694 1 
1 1610 1619 1 
1 1635 1643 1 
1 1738 1743 1 
1 1434 1438 1 
1 1442 1452 1 
1 1678 1689 1 
1 1429 1433 1 
1 1668 1677 1 
1 1443 1448 1 
1 1438 -1440 1 
1 1527 1528 1 
1 1524 1526 1 
1 1749 1751 1 
1 1431 1437 1 
1 1527 1530 1 
1 1613 1623 1 
1 1711 1717 1 
1 1446 1457" 1 
1 1712 1719 1 
1 1614 1617 1 
1 1618 1622 1 
1 1435 1443 1 
1 1436 1446 1 
1 1755 1763 1 
1 1438 1448 1 
1 1489 1494 1 
1 1750 1753 1 
1 1725 1731 1 
1 1440 1450 1 
1 1461 1466 1 
1 1489 1495 1 
1 1742 1746 1 
1 1441 1451 1 
1 1455 1460 1 
1 1736 1741 1 
1 1556 1560 1 
1 1465 1468 1 
1 1551 1555 1 -
1 1487 1497 1 
1 1446 1453 1 
1 1763 1770 1 
1 1442 1448 1 
1 1685 1695 1 
1 1670 1675 1 
1 1451 1456 1 
1 1446 1450 1 
1 1758 1762 1 
1 1456 1458 1 
1 1452 1455 1 
1 1449 1451 1 
1 1453 1461 1 
1 1769 1772 1 

CORN 
CORN 
CORN 
-CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN-
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
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72032803 42 
72032803 1OA 
72032803 100 
72032803 128 
720328'03 101B 
72032803 28 
72032803- 27 
72032803 88 
72032803 99A 
72932803 998 
72032803 103A 
72032803 93A 
72032803 1038 
72932803 92 -
72032803 933 
72032803 103C 
7-2032803 89 
72032803 60 
72032803 32 
72032803 58 
72032803 31, 
72Q32803 97 
72032803 53 
72032803 52A 
72032803 33 
72032803- 107 
72032803 52B 
72032803 112A 
72032803 51 
72032803 110B 
72032803 11OA 
72032803 109A 
72032803 112B 
72032803 1098 
'72032803 34 
72032803 L-86 
'72032803 L-82 

r 

616 
616 
618 
618 
620 
627 
628 
631 
631 
633 
633 
635 
635 
636 
637 
63f 
639 
641 
645 
645 
648 
649 
650 
652 
652 
653 
655 
656 
657 
659 
660 
661 
661 
662 
.665 
684 
686 

622 
618 
625 
619 
622 
628 
630 
634 
632 
634 
634 
636 
636 
640 
640 
638 
643 
642 
650 
648 
661 
651 
656 
654 
661 
655 
657 
660 
662 
660 
661 
662 
664 
663 
670 
686 
689 

1 1478 1481 
1 1717 1720 
1 1705 1712 
1 1773 1777 
1 1718 1721 
1 1471 1476 
1 1458 1468 
1 1655 1658 
1 1694 1696 
1 1695 1696 
1 1722 1723 
1 1670 1675 
1 1723 1724 
1 1665 1666 
1 1671 1673 
1 1724 1725 
1 1645 1648 

.1 1631 1636 
1 1479 1-482 
1 1610 1612 
1 1470 1475 
1 1676 1680 
1 1581 1586 
1 1570 1574 
1 1483 1492 
1 1714 1719 
1 1571 1575 
1 1732 1738 
1 1544 1548 
1 1715 1717 
1 1711' 1714 
1 1703 1708 
1 1734 1740 
1-1698 1702 
1 1487 1498 
1 1340 1342 
1 1320 1323 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CO'RN 
COPN 
CORN 
CORN 
.CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 

72932803 L-81 
72.032803 L-119 
72032803 L-80 
72032803' L-77 
72032803 L-79 
72032803 L-118 
72032803 L-122 
72032803 L--123 
72032803 L-91 
72032803 L-74 
72032803 L-90 

687 
688 
688 
688 
690 
691 
693 
695 
696 
696 
697 

690 
691 
690 
689 
692 
693 
698 
699 
700 
698 
698 

1 1313 1317 
1 1342 1347 
1 1308 1310 
1 1285 1293 
1 1300 1305 
1 1350 1353 
1 132'1 1326 
1 1317 1319 
1 1301 1306 
1 1272 1273 
1 1293 1298 

1 
1 
1 
'1 
1 
1 
1 
1 
.1 
1 
1 

CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CO'RN 
CO RN 
CO!RN 
CORN 

72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 

L-112 
L-87 
L-92 
L-11C 
L-1IB 
L-68 
L-129 
L-111A 
L-67 B 
L-51 
L-128 
L-67 A 
L-127 
L-114 
L-60 
L-32 
L-93 
L-108C 
Lr94 

698 
700 
701 
702 
703 
703 
705 
705 
705 
705 
706 
706 
707 
707 
707 
*707 
707 
708 
708 

700 
701 
704 
705 
-705 
704 
707 
707 
706 
707 
709 
707 
711 
708 
709 
712 
709 
711 
710 

1 1349 1356 
1 1273 127-6 
1 1296 1299 
1 1352 1355 
1 1347 1350 
1 1257 1262 
1 '1329 1330 
1 1342 1344 
1-1252 1254 
1 1201 1215 
1 1319 1323 
1 1247 1250 
1 131-2 1315 
1 1365 1369 
1 1'231 1234 
1 1184 1193 
1 1296 1301 
1 1352 1355 
1 1291 1294 

1 
1 
1 
1 
1 
1 
"1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

COIRN 
CORN 
CORN 
CORN 
CORN 
CORN 
COQRN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CORN 
CO!RN 
CO'RN 
CORN 
CORN 
CORN 
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ORG .tPAaEIS POOB. 
TABLE D4, CONTINUED 

72032803 L-108B 709 712 1 1345 1349 1 CORN 
72032803 
72032803 

L-54 
L-108A 

709 
711 

710 
713 

1 1200 1220 
1 1335 1347 

1 
1 

CORN 
'CORN 

72032803 
72032803 
72032803 

L-52 
L-109C 
L-49 

711 
712 
712 

713 
715 
714 

1 1207 1217 
1 1352 1355 
1 1200 1204 

1 
1 
1 

CORN 
CORN 
CORN 

72032803 
72032803 
72032803 

L-109B 
L-5 
L-96 A 

713 
713 
714 

717 
718 
716 

1 1347 1349 
1 1102 1110 
1 1285 1289 

1 
1 
1 

CORN 
CORN 
CORN 

72032803 
72032803 
72032803 
72032803 

L-22 
L-96 B 
L-109A 
L-73 

714 
715. 
715 
716 

71-6 
717 
717 
717 

1 1158 1165 
1 1281 1283 
1 1342 1346 
1 1259 1273 

1 
1 
1 
1 

CORN 
CORN 
CORN 
CORN 

72032803 L-33 717 718 1 1174 1182 1 CORN 
72032803 L-107 718 721 1 1330 1334 1 CORN 
72032803 L-103A '718 720 1 1292 1293 1 CORN 
72032803 L-37 719 720- 1 1187 1199 1 CORN 
72032803 L-2 719 721 1 1091 1097 1 CORN 
72032803 
72032803 

L-100 
L-1038 

720 
721 

723 
722 

1 1283 1285 
1 1294 1295 

1 
1 

CORN 
CORN 

72032803 
72032803 

L-102 
L-1 

722 
722 

725 
728 

1 1288 1293 
1 1078 1086 

1 
1 

CORN 
CORN 

72032803 
72032803 
72032803 

L-103C 
L-19 
L-38 

723 
,723 
724 

724 
726 
728 

1 129,6 1297 
1 1134 1143 
1 1183 1186 

1 
1 
1 

CORN 
CORN 
CORN 

72032803 L-26 724 728 1 L162 1172 1- CORN 
72032803 
72032803 

L-40 
L-17 

7,25 
725 

727 
728 

1 1190 1192 
1 1120 1129 

1 
1 

CORN 
CORN 

72032803 L-41 B 726 728 1 1199 1208 1 CORN 
72032803 L-41 A 727 729 1 1195 1198 1 CORN 
72032803 L-7 7.30 743 1 1103 1106 1 CORN 
72032803 L-44 732 741 1 1195 1198 1 CORN 
72032803 L-4 732 734 1 1078 1083 1 CORN 
72032803 L-29 736 738 1 1166 1173 1 CORN 
72032803 L-25 740 751 1 1144 1162 1 CORN 
72032803 L-30 741 744 1 1169 1178 1 CORN 
72032803 L-46 743 .746 1 1187 1193 1 CORN 
72032803 L-13 C 744 744 1 1133 1135' 1 CORN 
72032803 L-13 A 745 745 1 1126 1128 1 CORN 
72032803 L-13W8 745 745 1 1130 1131 1 CORN 
72032803 L-48 748 750 1 1199 1211 1 CORN 
72032803 L-8 751 757 1 1094 1104 1 CORN 
72032803 
72032803 

[-11
L-31 

751 
752 

761 
757 

1 1131 1138 
1 1153 1166 

1 
1 

CORN 
CORN 

72032803 L-10 755 764 1 1117 1124 1 CORN 

72032803 136 262 266 1 1453 1463 1 SOY 
72032803 137A 269 272 1 1462 1466 1 SOY 
72032803 1378 273 276 1 1463 1468 1 SOY 
72032803 142 307 313 1 1450 1457 1 SOY 
72032803 
72032803 

150 
147 

332 
338 

335 
341 

1 1487 1490 
1 1489 1491 

1 
1 

SOY 
SOY 

72032803 157 346. 351 1 1383 1392 1 SOY 
72032803 161 347 352 1 1437 1446 1 SOY 
72032803 0-156 361 366 1 1243 1246 1 SOY 
72032803 0-152 362 368 1 1221 1225 1 SOY 
72032803 163 363 368 1 1462 1467 1 SOY 
72032803 0-159 366 368 1 1254 1256 1 SOY 
72032803 173 372 376 r 1407 1411 1 SOY 
72032803 0-165 373 375 1 1270 1272 1 SOY 
72032803 0-139 374 376 1 1184 1188 1 SOY 
72032803 0-141 377 381 1 1194 1196 1 SOY 
72032803 0-142. 381 383 1 1188 1193 1 SOY 
72032803. 0-75 381 385 1 1122 1124 1 SOY 
72032803 0-143 382 383 1 1185 1186 1 SOY 
72032803 0-27 386 388 1 1108 1111 1 SOY 
72032803 0-81 A 387 390 1 1144 1145 1 SOY 



TABEF D41 CONTINUED 

72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
720'32803 
72032803 
720-32803 
72032803 
72032803 
72032803 
720,328037203280372032803 

0-24 
0-172B 
0-172A 
0-172C 
0-81 B 
0-146 
0-175 
0-12 A 
08 
0-12' B 
0-31 
0-182 
0-190-1830-187 

388 
389 
389 
390 
391 
39]
392 
392 
394 
394 
407 
413 
415
417
428 

389 
391 
392 
393 
396 
393 
394 
393 
401 
395 
409 
414 
417
419
432 

1 1098 1098 
1 1266 1268 
1 1269 1272 
1 1262 1265 
1 1146 1147 
1 1201 1202 
1 1254 1256 
1 1054 1055 
1 1030 1034 
1,1055 1056 
1 1110 1114 
1 1222 1223 
1 1058 1062 
1 1222 1224 
i 1204 1206 

1 
1 
1 
1-
1 
1 
1 
1 
1 
1 
11 
1 
1 
1 

soy 
SOY 
SOY 
SOY 
SOY 
SOY 
SOY 
SOY 
SOY 
SOY 
SOYSOY 
SnY 
SOY 
SOY 

72032803 
7203280372032803 
720328037203280372032803 

0-203A 
n-1900-90 
0-20380-680-95 

435 
436
437 
439
.443448 

439 
436 
440 
442
444
450 

1 1284 1285 
1 1212 121-
1 1146 1148 
1 1286 1287 
1 1115-1-116 
1 ]-139 1142 

1 
1 
1 
1 
1 
1 

SOY 
SOY 
SOY 
SOY 
SOY 
SOY 

72Q32803 
72032803 
72q3?80
7203280372032803 
72032803 
72032803 
72032803 
72032803 
72032803 
7203280372032803 

0-35 
0-197 
0-102A 
0-62
0-1028 
0-60 B 
0-40 
0-60 A 
0-115 
0-43 B 
0-43 A0-136 

450 
450 
453 
458
458 
461 
461 
462 
463 
467 
468470 

452 
452 
457 
464 
460 
461 
467 
462 
470 
468 
470472 

1,034 1040 
1 1261 1265 
1 1152 1154 
1 1122 1125 
1 1150 1155 
1 1110 1112 
1 1042 1045 
1 1106 1108 
1 1181 1184 
1 1060 1065 
1 1055 1059 
1 1190 1-195 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

SOY 
SOY 
SOY 
SOY 
SOY-
SOY 
SOY 
SOY 
SOY 
SOY 
SOY 
SOY 

72032803 
72032803 
72032803 
72d32803
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72Q3280 3 

72032803 
72032803 
7203280372032803 

0-50 
0-53 
0-46 
0-110B
O-1IOA 
0-56 
0-97 
764 
678 
116A 
67A 
768 
734 
116B 
738 
73C 
124 
730-128 

476 
480 
481 
488 
489 
491 
496 
540 
542 
542 
543 
543 
546 
546 
549 
552 
554 
555
555 

478 
483 
482 
488 
489 
492 
498 
542 
547 
545 
548 
548 
548 
549 
551 
554 
554 
557
555_ 

1 1078 1082 
1 1084 1089 
1 1057 1057 
1 1137 1141 
1 1132 1136 
1 1110 1114 
1 1113 1116 
1 1729 1733 
1 1665 1671 
1 1746 1748 
1 1660 1664 
1 1731 1733 
1 1697 1699 
1 1747 1749 
1 1699 1701 
1 1701 1703 
1 1450 1454 
1 1703 1704 
1 1446 1448 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

SOY 
soy
SOY 
SOY 
soy 
soy
SOY 
SO' 
SOY 
S0o(
SOY 
SOY 
SOY 
SOY 
$0l 
SOY 
SOY 
spy
SM1 

72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72p32803
72032803 
72032803 

68 -
118 
14A 
148 
1224 
80 
122B" 
20A 
131 
20 
198 
1234 
19A 
1238 
254 

-555 
558 
565 
568 
578 
579 
582 
585 
585 
588 
589 
589 
590 
590 
592 

561 
561 
567 
569 
581 
581 
585 
590 
586 
590 
593 
590 
594 
591 
594 

1 1645 1652 
1 1751 1754 
1 1448 1453 
1 1449 1453 
1 1758 1761 
1 1715 1720 
1 1760 1762 
1 1455 1459 
1 1753 1754 
1 1456 1460 
1 1451 1454 
1 1755 1758 
1 1444 1450 
1 1752 1754 
1 1458 1465 

1
1 
1 
1 
1 
1
1 
1 
1 
1 
1 
1 
1 
1 
1 

-SO 

SOY
SOY 

SO' 
SOY 
SOY 

SoY 

SOY 
SOY 
SOY 
SOY 

SOY 
SOY 
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TABLE 04, CONTINUED
 

72032803 258 595 598 1 1459 1466 1 SOY
 
SOY
72032803 126A 598 601 1 1766 1769 1 


72032803 25C 599 603 1 1461 1467 1 SOY
 
SOY
72032803 84 602 609 1 1669 1671 1 


72032803 1268 602 605 1 1767 1769 1 SOY
 
SOY
72032803 85 611 612 1 1661 1667 1 


72032803 41 619 621 1 1486 1495 1 SOY
 
1 SOY
72032803 40 622 629 1 1493 1497 


1 1479 1483 1 SOY
72032803 29 625 629 

72032803 38 625 633 1 1503 1507 1 SOY
 
72032803 102 628 629 1 1720 1723 1 SOY
 
720,32'803 30 631 637 1 1474 1485 1 SOY
 

SOY
72032803 39 633 637 1 1513 1516 1 

SOY
72032803 91 637 639 1 1657 1661 'l 


1
72032803 104 638 641 1 1719 1720 SOY
 
SOY
72032803 54 640 643 1 1585 1587 1 

SOY
72032803 96 645 647 1 1674 1678 1 


1 1668 1670 1 SOY
72032803 95C 648 650 

72032803 106 648 650 1 1720 1723 1 SOY
 

651 652 1 1669 1671 1 SOY
72032803 95D 

72032803 108 653 654 1 1723 1725 1 SOY
 

SOY
.72032803 35 655 657 V 1496 1497 1 

72032803 50 658 663 1-1530 1533 1 SOY
 

SOY
72032803 1lIA 658 659 1 1724 1726 1 

1
72032803 36 659 665 1 1520 1524 SOY
 

SOY
72032803 1118 660 661 1 1725 1727 1 

SOY
72032803 IIC 662 663 1 1726 1727 1 


1 SOY
72032803 113 670 673 1 1729 1733 

72032803 L-85 684 687 1 1333 1337 1 SOY
 
72032803 L-84 685 687 1 1329 1331 1 SOY
 

690 692 1 1335 1339 1 SOY
72032803 L-120 

692 695 1 1358 1361 1 SOY
72032803 L-115 


72032803 L-75 695 696 1 1276 1277 1 SOY
 
SOY
72032803 L-124 697 699 1 1313 1314 1 

SOY
72032803 L-89 B 697 700 1 1286 1290 1 

SOY
72032803 L-89 A 698 700 1 1280 1285 1 


1
72032803 L-65 698 700 1 1250 1251 SOY
 
72032803 L-113 699 702 1 1361 1364 1 SOY
 

SOY
72032803" L-69 699 699 1 1264 1268 1 ­
1 SOY
72032803 L-63 699 702 1 1242 1244 


72032803 L-59 701 703 1 1231 1240 1 SOY
 
703 705 1 1218 1221 1 SOY
72032803 L-53 

703 706 1 1225 1225 1 SOY
72032803 L-57 


72032803 L-50 704 708 1 1197 1197 1 SOY
 
SOY
72032803 L-71 706 707 1 1259 1269 1 


72032803 L-61 706 708 1 1237 1238 1 SOY
 
SOY
72032803 L-126 708 712 1 1305 1308 1 

SOY
72032803 L-106B 712 717 1 1325 1328 1 


1 SOY
72032803 L-106C 712 716 1 1330 1333 

SOY
72032803 L-95 B 712 713 1 1299 1302 1 


72032803 L-97 713 714 1 1277 1279 1 SOY
 
72032803 L-95 A 713 715 1 1292 1298 1 SOY
 

716 1 1191 1197 1 SOY
72032803 L-36 714 

714 719 1 1316 1322 1 SOY
72032803 L-106A 


72032803 L-105 715 721 1 1308 1312 1 SOY
 
1
72032803 L-104A 717 719 1 1303 1304 SOY
 

SOY
72032803 L-101 719 720 1 1287 1291 1 

72032803 -L-104B 720 722 1 1304 1506 1 SOY
 

1
72032803 L-99 A 721 723 1 1280 1281 SOY
 
72032803 L-99 B .724 725 1 1281 1282 1 SOY
 

1
72032803 L-3 724 726 1 1f092 1102 SOY
 
SOY
72032803 L-42 730 730 1 1184 1188 '1 


1 SOY
72032803 L727 B 730 730 1 1171 1175 

1 1165 1170 1 SOY
72032803 -L-27 A 731 731 


72032803 L-16 -731. 732 1 1121 1130 1 SOY
 
72032803 L-6 731 740 1 1092 1097 1 SOY
 
72032803 L-43 733 739 1 1186 1189 1 SOY
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-TARLF D4, CONTINUED 

72n32803 L-28 733 733 1 1165 1172 1 SOY
 

738 742 1 1126 1133 1 SOY
72032803 L-14 

R 745 1 1197 1206 1 SOY.
72032803 L-47 743 


72032803 L-12 747 748 1 1127 1135 1 SOY
 
752 1 1109 1121 1 SOY.
72032803 L-9 748 


376 1 1258 1259 1 OTHERALFAL
72032803 0-164 374 

1 1178 1180 /1 OTHERALFAL
72032803 0-120 376 376 

1 1126 1130 -1 OTHERALFAL
72032803 0-78 388 390 

1 1116 1117 1 OTHERtALFAL
72032803 0-30 390. 390 


1 OTHERALFAL
72032803 0-10 A 391 395 1 1037 1046 

1 OTHERALFAL
72032803 0-14 396 396 1 1062 1062 


A 398- 1022 OTHERALFAL
72032803 0-6 397 1 1022 1 
400 1 OTHER,ALFAL
72032803 0-10 B 398 1 1039 1048 


B 399 400 1 1023 1023 1 OTHERALFAL72032803 0-6 

404 405 1.1279 1284 1 OTHER,ALFAL
72032803 0-214 

406 406 1 1001 1002 1 OTHER,ALFAL
72032803 0-1 


408 1 1275 1285 1 OTHER,ALFAL
72032803 0-213 407 

1 1278 1286 1 OTHERIALFAL
72032803 0-212 410 412 


1 OTHER,ALFAL72032803 0-185 423 426 1 1224 1226 
448 1286 1 OTHER?ALFAL
72032803 -0-201 445 1 1282 


446 1 1278 1 OTHERALFAL
72032803 0-201A 449 1281 

468 1 OTHERALFAL
72032803 0-55 467 1 1096 1102 

543 1 OTHER,,ALFAL
72032803 71A 541 1 1676 1680 

546 1 OTHERALFAL
72032803 718 544 1 1677 1681 


584 585 1 1716 1720 1 OTHERALFAL72032803 81A 

586 587 1 1717 1721 1 OTHER,ALFAL72032803. 818 

638 639 1 1651 1654 1 OTHER,ALFAL
72032803 90A 

640 641 1 1652 1655 1 OTHERALFAL
72032803 908 


1 1623 1627 1 OTHERALFAL
72032803 598 642 643 

1 1619 1622 1 OTHER,ALFAL
72032803 59A 643 644 


1 OTHERALFAL
72032803 105 644 644 1 1719 1722 

72032803 98 660 662 1 1674 1674 1 OTHER,ALFAL
 
72032803 64A 546 549 1 1628 1630 1 OTHER,GRASS
 

648 550 554 1 1630 1631 1 OTHERGRASS72032803 

566 1 OTHER,GRASS
72032803 119 563 1 1753 1753 


571 572 1 1450 1451 1 OTHERGRASS
72032803 15A 

573 574 1 1451 1452 1 OT-HERGRASS
72032803 15B 


1 1452 1453 1 OTHERGRASS
72032803 16A 576 578 

1 1453 1454 1 OTHERiGRASS
72032803 168 579 580 


1 OTHERGRASS
72032803 558 642 644 1 1594 1597 

643 1 1590 1593 1 OTHERGRASS
72032803 55A 645 


72032803 56B 647 649 1 1594 1599 1 OTHER,GRASS
 
72032803 56A 648 651 1 1590 1593 1 OTHER7GRASS
 

57 650 654 1 1604 1608 1 OTHERGRASS
72032803 

364 366 1 1267 1269 1 OTHERAGRIC72032803 0-161 

369 372 1 1267 1270 1 OTHERAGRIC72032803 0-162 

381 381 1 1140 1144 1 OTHERAGRIC72032803 0-77 


1 1158 1162 1 OTHERAGRIC
72032803' 0-121 382 385 

1 1193 1197 1 OTHERAGRIC72032803 0-144 388 393 


1 OTHER,AGRIC
72032803 0-177 395 397 1 1246 1250 

1 OTHER,AGRIC
72032803 0-2 401 405 1 1004 1007 


402 1 1127 1 OTHERiAGRIC
72032803 0-84 B -406 1131 

1 OTHERAGRIC
72032803 0-84 A 403 407 1 1123 1126 


72032803 0-179A 408 410 1 1254 1256 1 OTHER,AGRIC
 
1 OTHERAGRIC
72032803 0-1798 411 412 1 1255 1257 


0-128 427 433 1 1191 1199 1 OTHERtAGRIC
72032803 

0-88 B 428 430 1 1169 1171- 1 OTHER,AGRIC
72032803 


429 431 1 1'166 1168 1 OTHERIAGRIC
72032803 0-88 A 

433 435 1 1122 1128 1 OTHERAGRIC
72032803 0-73 

435 437 1 1191 1193 1 OTHERtAGRIC
72032803 0-129 


444 1 1087 1089 1 OTHERAGRIC
72032803 0-63 444 

1 1183 1184' 1 OTHER,AGRIC
72032803 0-1338 453 456 


1 OTHERAGRIC
72032803 0-61 459 '460 1 1114 1118 

473 1 1185 1 OTHER,AGRIC
72032803 0-1.6 478 1187 


1 OTHER,AGRIC
72032803 0-52 482 484 1-1072 1074 

485 1 1053 1 OTHERAGRIC
72032803 0-47 487 1055 
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72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72Q32803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 
72032803 

46 
788 
78A 
23B 
23A 
129A 
1298 
130 
L-116 
L-83 
L-117 
L-78 
L-76 
L-125 
L-88 
L-64 
L-70 
L-58 
L-66 B 
L-66 A 
L-62 
.L-20 
L-56 
L-110 
L-55 
L-98 
L-72 
L-35 
L-23 
L-18 
L-21 
L-34 
L-39 
L-:24 
L-45 
0-82 A 
0-82 B 
0-82 C 
0-196 
69A 
698 
69C 
86A 
140 
155 
149 
171 
0-200 
87A 
878 
95A 
958 

534 
552 
553 
599 
600 
620 
621 
632 
686 
686 
689 
692 
693 
697 
699 
699 
701 
702 
703 
704 
705 
70.6 
707 
707 
708 
708 
709 
715 
719 
719 

-721 
721 
722 
726 
741 
383 
386 
389 
452 
551 
555 
558 
611 
295 
319 
327 
386 
448 
-629 
631 
642 
645 

536 
554 
555 
600 
601 
621 
621 
634 
689 
688 
690 
694 
695 
699 
701 
701 
703 
704 
703 
704 
707 
717 
709 
708 
710 
711 
711 
717 
721 
719 
724 
721 
723 
729 
741 
385 
388 
389 
455 
554 
557 
560 
613 
297 
325 
330 
389 
451 
630 
633 
644 
647 

1 1517 1522 
1 1744 1745 
1 1740 1743 
1 1453 1457 
1 1446 1452 
1 1768 1769 
1 1765 1767 
1 1778 1781 
1 1356 1359 
1 1326 1326 
1 1350 1352 
1 1289 1294 
1 1280 1284 
1 1310 1310 
1 1278 1278 
1 1246 1248 
1 1265 1269 
1 1228 1228 
1 1253 1255 
1 1247 1251 
1 1242 1242 
1 1143 1150 
1 1226 1226 
1 1334 1339 
1 1223 1223 
1 1276 1278 
1 1271 1273 
1 1185 1188 
1 1160 1169 
1 1138 1141 
1 1148 1155 
1 1176 1180 
1 1189 1200 
1 1154 1158 
1 1188 1191 
1 1150 1154 
1 1151 1155 
1 1152 1156 
1 1245 1251 
1 1663 1665 
1 1664 1666 
1 1666 1668 
1 1677 1681 
'1 1462 1468 
1 138.7 1393 
1 1485 1489 
1 1398 1406 
1 1267 1273 
1 1662 1665 
1 1663 1665 
1 1666 1668 
1 1667 1669 

1 OTHERAGRIC 
1 OTHER,AGRIC 
1 OTHER,AGRIC 
1 OTHER;AGRIC 
1 OTHERAGRIC 
1 OTHER AGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHER AGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHER;AGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHER,AGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHER.AGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHER9 AGRIC 
1 OTHERIAGRIC 
1 OTHERAGRIC 
1 OTHERAGRIC 
1 OTHERPAST 
1 OTHERPAST 
1 OTHERPAST 
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