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ABSTRACT

This report iﬁvé;tigates two approaches to pattern recognition
which ubilize {nformation asbout patitern organization. AFirst, a
nonparsmetric method is developed for estimating the probability
density functions associated with the pattern classes. The dis-
persion of the patterns in the feature space is used in attempting
" to optimize the estimate. Thé second approach involves the structural
rélationships of pattern components, an approach called "linguistic”
because it employs the concepts and methods of formal linguistics.

The nomparametric density astimat%?n techni;ne is shown to
produce acceptable results with resl data and demonsirates a definite
advantage over-a parsmetric procedure when multimodal date is
invﬁive&.

™wo alternative technigues are investigated for snalyzing
linguistic descriptions of patterns. Stochastic sutomate are con-
gsidered as recognizers of stochagtic pattern langusges, and it is
shown that of the types of recognition criteris which have been de-
fined rfor automata to date, recognition with zero cut-point is
probably the most suitable for recognizing infinite stochastic

pattern languages {languages consisting of an infinite number of
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patterns). A stochastic generalization of the recently proposed
prograrmed grammar ip developed and an algorithm is implemented which
analyzes the languages described by stochastic programmed grammsrs.

A gramsar is evolved which generates a language of "nolsy” two-
dimensional patterns, and the analysis algorithm is applied to these

patterns to demonstrate ite psriformance.




CHAPTER 1
IRTRODUCTION

This repor:t investigetes two approaches to paitern recognition
which uviilize inforpation abaut_pattérn organization. The first
approach has much of the flaver of "classical" statistical pattern
recognition iy that it charscterizes the pattern classes in terms of
their associsted probability density functiocns. To do thig effect-
ively, use is made of some relatively simple relationshipsg among
patterns and groups of patterns in order to improve a nonparametric
egtimation of the densily functions. The second approach represents
& fairly radical departure from classical patiern recognition. It
concerns the representation and manipulation of gtructural relation-
ships within patterns when such relatiofships are essentias) dig.
tinguishing features. The approach is termed linguistic because it
utilizes the pé;losaphy and methods of formal linguistics in develop-

ing gremmars which cheracterize patterns.

l.l HNonparametric Stetistical Pattern Recognition

The characteristics of meny practical pattern recognition pro-
blems suggest the use of statistical techniques for solution of these
problems. Such characteristics include, for exam@le:

1. Incidentsal feature variations which tend to obscure differ-

ences between pattern classes {noisy data}.




2. Uncertminty, however small, regarding the true identity of
the training sswmples. 1

2. Roise introduced by instrumenteation.

h. Actual overlap of petiern clazses in the feature space,

suggesting use of & "meximum likelihood™ or "minimum riek" decision

- Many statistical pattern recogrnition technigques mske use of the
conditional probability demsity functionz associsted with the pattern
classes, and such an approach is aseumsd in Chapters 2 through 6 of
this Tepexr. The densities sre usually unknown g priori and nust be
estizated from a set of ehservations or patterns of known clasgifica-

tion, called training patﬁeng. A ussful density estimation method
must produce & densgity estimate which is sccurate cver the portion
gf the pattern space which may contain patterns tc bs recognized and
readily implemented in terms of a practical phyg}cal pattern recogni-
tion systom. Adeguately meeting both of these réguiremgnts for any
but the simplest density functions is no trivial matter, as is amply
illustrated in, the pattern recognition literature.

The terwms "“parametric” and "ponperamestric” are frequantly used
in the statistical pattern recognition literaturs to describe certain
types of approaches, but the disticction is sometimes not very well
defined. In this report, 2 method is celled parametric 1f it assumes
& priori that the true or underlying probasbility density functions
t0 be estimated are of & particulsr form. A method is called non-
parametric if it does not presuppose the férm of the underlying

densities~-but this does not preclude prior specification of




the form of the estimate. For example, & familiar parametric approach
is to sasume that the underlying densities are Gaussian and to use
the training patterns to estimabte the means and covarlances 13. a
mltidimensional histogram of the training data constitutes a con-
céptuaily simple nonparametric density estimate. Some more sophistis-
cated.nonparamstric methods sre reviewed in Chapter 2.

 Parametric approaches often have the sdvantage of providing
compact cloged form analytical expressions for the denaity é$timates.
Thege expressions can then be evaluated easily to accamyliah the
recoghition of a pattern of unknown classification. "Real world"
probless rarely it into such & simplifisd framework, however; there

is rarely sufficient a priori information to permit accurate pre-

gpecification of the form of the underliying deﬁsitiesa in such
éases, nonparametric methods which make less restrictive assumptions
about the dengitlies seem more appropriate and méy result in more
accuraté estimatas. It will be seen iy subsequent discussions, how-
ever, that care mugt be exercised to ensure that the regsulting den-
sities can be itilized in a practical manner. |

The nonparametric density estimation spproach investigated in
Chepters 3 through 6 aims at general spplicability and realié%ic
fﬁmplameﬁt&tian requirements. The only critical assumption made is
that iha training sampies are avaiiable for prepraceséing on # digital
camputér. The data are snalyzed by a simple mode diacriéiﬁ;tion
technique and the results used in conjunction with & consistent
probability density estimator to synthesizé e recognition algorithm.

A polynomial approximation of the density estimator permits, where



necessary, the trading of estimation mccuracy for implementation

simplicity.

1.2 Idpguistic Pattern Recognition

Az sentence structure iz a principal object of the study of
natural and artifical languages, so pattern structure is the principal
concern of linguistic pattern recognition. This spproach to pattern
recognition is based on the observation that for many pattern re-
cognition problems of current interest, particularly those in which
the date are essentially nonnumerical {eg., pictorial daﬁg), §tructur-
al relationships within the patterns constitute the features of
significance. The methodologies of formal linguistice provide a
convenient Tormeiism for representing and operating on structural
{"syntactic") relationships. Chapter T of this report contains an
overview and appraisal of the state-of-the-art of linguistic
pattern recognition. Chaplters B and O consider ‘some aspects of
existing formal lanpusge theory and seé& generalizations thereof
which appear of particular value for linguistic pattern recognition.
These include the use of automata as relatively simple recognizers
for pattern lsnguages, use of the programsed grammar a8 a simple
but powerful formallism for the generation and linguistic analysis
of patternms, and the introduction of probabilistic mechanisms into
linguistic formalisms in order to better deal with the statistical

aspects of real-life pattern recognition problems.
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CHAPTER 2

THE NONPARAMETRIC APPROACH: BACKGROUND

2.1 Basic Assumptions, Notation and Terminology

The familiar model for pattern recognition gystems is assumed
(.Figure 2.1) [2], [3). It is further assumed that a suitable set of
pattern featurss have been selected by appropriate means 4] - {67,
and are available as input to the decision mechanism. The probability
density functions charscterizing the pattern classes are estimated
based on these features.

’ There are aspumed to be X pattern clasgges: a&, 1 =21, 2, ¢ee, Ku
Kach pattern is represented by a feature vector X = (xl, Xps oo xﬂ)
in N-dimensional Puclidean space. There are availsdble T, {a finite
number of) training patterns associated with pattern class w , the
entire training set represented by {!ij [ =1, 2, oo, K;

J =1, 2, .a.,iTi}.
ﬁhera no confusion will result, the notation may be simplified
by dropping the subscript denoting the class. This will be done,
for example, where the class is arbitrary.
For concreteness, a Bayesian {(minimum expected risk) decision
strategy will be assumed [7], with unit cost for misclassification
and zero cost for correct classification. The classification rule

iz then: Decide X € a& if
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By p(Xoy) 275 p(Xiad, 4, 33,2 oo K (2.1)

where P, is the & priori probability of claes ®, and p{X i wi) is the
conditional probability density at X given that X is a'i)e.i;tern in w .

The problem of estimating a probability demsity p(X) (the con-
ditional notation w:ill”be dropped for the balance of this chapter) may
be stated as follows: Find an estimate p(X) of p(X) given a set of
T observations, random vectors in R-dimensional spacé,

{Yi = (¥yq0 ypr oo Yy 11 =1, 2, ooy r}

(training patterns in pattern recognition parlance) which are inde-

pendent and identically distributed with probability density p(X).

2.2 Idterature Review

Msthods for nonparazetric density estimation which have ‘been
deseribed in thé iiterature may be grouped roughly as 1) smoothing
methods, 2) stochastic approximation and similar’ methods, and

3) others.

2.2.) Smoothing Methods
Smoothing methods estimste the probability density p(AX) by

egtimators of the form

B
B =% ) s(x-y,). (2.2)

i=1

ﬂie functim g(X) is often referred to in the literature as &

weighting function. The term smoothing function also rééems quife

appropriate in view of the following interesting interpretation of




(2.2) suggested in [8). The one-dimensional version of (2.2) can
be written in the form

)~ [ s [F ) sx-v - 0]as, (2.3)
i=1

where 3(x) is the delta function or unit impulse function which con-
cantrates unit mass st x = 0, and Yy» Ypr +e<s Yp &re the one-dimen-
sional observations. Now let

2

pplx) =% ) 8(x - y,),
i=1

which, for want of & better term, will be called the empirical

* egtimate of the density p(x}.ﬁ' The empirical estimate is formed by
concentrating mass 1/T at esach of the points where an observation
occurs (note the similarity to & conventional histogram). Equation

bl
b

{2.3) can then be writien as

3x) = [ a(Omglx - ©) ag, o (2.4)

Pt &

¥
by analogy with the empirical distribution [9], [10]

n
Fx) =% ) ulx - y,)
E T 1
j=1
where u(x) is the unit step function. Note however that although
Fp(x} i3 & pointwise consistent estimator for the distribution fune-

tion F(x), pE(x) is not & pointwise consistent estimator for the
density function p(x).




which is simply the comvolution of g{x) and pE(x). In .Gther words,
the estimate may be inmterpreted as the response of a low-pass "spatial
filter” or smoothing filter with impulse response g(x) when the input
is ps(x). Thus g{x) "smooths™ the ew,piricﬂ estimate. ;A similar
developmsnt can be made for the miltidimensional ease by defining

a multidimensional spatisl filter in the cbvious way.

. The majority of papers dealing with this form of "estimto;f are
li&it&l to consideration of the ore-dimensional case. :Rdsenbi&t f113,
Whittle [127, Parzen [13], and Watson and Ieedbetter [14] have in-
vestigated the problem of selecting g(x) so s to minimize various
error criteria (principally mean integral square error). Unfortunately
the solutlions are highly de;:qn&ent on & priori knowledge of the form
of the density to be estimated, information here assumed unavailable
{m {1814t 1s shown that the optimal g(x)} may be obtained by in-
verting an expression involving the characteristic function of p{x)).
Furtherwore, the smoothing functions obltained are hganerally 0 com~
plicsted that even if sufficient g priori information could de
agsumed, the r}:sﬁlting estimators would be of questionable practical
value.

With thase problems in mind, some authors have undertaken ﬁo
;‘iml suboptimal density estimates using restricted forms of smoothing
ﬁiﬁctimsc For sxsample, Cooper and Tebaczynski [9] have assumed
g{x) to be linear in x. Even in this case, however, the best estimate
cannot be achieved without complete a priori knowledge of the density

to be estimsted.
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Rather mors general and more useful results have been established
by Parzen [13] for the one-dimensional case and generalized by Murthy
[15] to muitidimensional estimators. In particular, Murthy has
proven the following theorem which is important with respect to the
denaity estimator to be developed in this repore.

Theorem 2.1 [15]: Assume that

‘1. %he observations {Y,} have a common multivariate distribution
F{X) representable as
FX) = Fl(X} + ?Q{X}
where Fl(K) is an abscluiely continucus H-variate distribution and

?2(3) 15 a distribution with its whole mass concentrated in a set of
, lsolated discrete mass points;
2. the function g(X) satisfies the following
g(X) >0
glxys %55 vovy Xg) = gl £ Xy, ovey )
g(xl’ 32: sesy xﬁ) f_:g(yl’ .‘!’2’ ccuy YK)
if*xi zyi, 1 =1, 2, sasy 5;
3., fx.} 2 {ri(?)}, i=1, 2, .ess ¥ are N sequences of non-
negative constants depending on T in such a way that
;iﬁri(f) = G i = 1, vaay g (2&5)

i1 X o
il i £ = .
Too o ARG

i=1




For convenience of notation, define

- X p-4
w22 J)
l, “2’ *we s g

Then - X .
A I
p(X) = g:T H ritf)] ) gf(x - Yi)/a(*z}}
i=3 T
i=1
is a conmistent estimete of p(X) et every point of continuity of
p(X) and P(X).

This theorem requires only some fairly rudimentary a priori
knowledge regarding the density to be estimated. However, it deals
only with asymptotic properties of a general class of estimators.
The density estimation method to be investigated herein involves one

estimator in this clasa. A major effort will be directed toward

specifying the smoothing parameters, r,(T), i = 1, 2, ..., N in such

& way a8 1o satisfy Theorem 2.1 in the process of obbaining an
accurate density estimate for finite T. '
One effort to utilize Marthy's result has been carried out by

Specht [8), who employed the smoothing function

g(x) = —E— e (- L5 x%). (2.7)
(Eﬁ)g/grg 2r
Spscht hasz assumed
rl(’i‘) il rz(’f} F oese = rg{T} = T (268)

end used trisl-and-error to optimize the single smoothing parameter.
The estimator proposed in Chapter 3 is essentially a generalization
of Specht's estimator for which the ri(i‘} are not assumed equal and

mugt be systemstically determined.
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2,2.2 8tochestic Approxiwstion and Simllar Methods
This group of methods is intended to encompass a wide range

of methods which utilize estimators of the form

5
B = ) eyt () (2.9)
= |

whare m may be finits or infinite {in practice, of course, m must be
finite). Incliuded in particulsr aré stochastic approximaticn methods
{163 snd potentisl funchion methods [17], [181, whieh, although
differing somswhat in their philoscrhy of spproach, are theoretically
very closely relsted [19], [20]. These and other methods included
in tuls eetezory (231, [22] differ principelly un their specifications
for ths sot of "d¢-functions® snd the details for calculating the
g@efficiaﬁtg cy Infortunstely the one statement perhaps most
eppiicable to all of these methods in general is that, although some
of them have theoretically appealing characteristics, they are guite
gifficult to apply in practice becausé of problems associated with
finding suitable d-functiens, particularly for multidimensional
epylications %ﬁiﬁiﬁﬁﬁ%&ﬁiﬁaf%%%&giﬁggreﬁﬁing'emgirical studies along

these linesj.

2.2.% {bher Kathods

Thore are & number of additiousl nonparametric density estimation
sathods vhich deserve nenbtion bui camnct be grouped as readily as
thone discussed sbove.

An interesting and conceptuslly simple approach which yields

& multivariste density estimate is discussed in [23]. The local
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density at & point X is computed by a process which amounts roughly
to counting the k observations nearest to X and dividing by the
smllest hyperspherical volume centered on X and containing the k
neighbors. If k is & function of the total number of observations
for the density and satisfies some relatively simple restrictions
(much like those for the smoothing parameters in Theorem 2.1}, the
estimate can be shown to be consistent. Again, however, only
asymptotic properties of the estimator have been established and it
‘48 not clear that it can be expected to perform well in gemeral for
a lied ted number of trainingisauples.

Patrick and Bechtsl (247 have proposed a histogram technique
for dengity estimation in which the bin size is adaptively determined
50 a5 to winimize the memory required to store the histogram. The
method is directly applicabie only in the one-dimensional case, but
the authors have described methods for mapping multidimensional space
emto the real line so that their method can be ;pplieci to multi-
dimensional data.

Finally, ‘-'sevaral nonparametric pattern recognition methods,
while not exglicitly estimating the density functions associsted with
‘the pattern classes, depend implicitly (either theoretically or at
least philosophically) on such an estimate. Stochastic approximation
methods which estimate the decision boundaries directly [16] are
good exsmples of this. Another is a method due to Fu and Henrichon
[25] in which the decision boundaries are defined by the surfaces’
at which p(X | 'abi) - p{x ] w'j) changes sign, for any pair of classes

% and- wd which are adjacent in the feature space.



CHAPTIER 3

A VERSATILE NONPARAMETRIC DENSITY ESTIMATOR

Bxisting nonparametric density estimation techniques such as those
reviewed in the preceding chapter are often difficult to apply in
practice because of one or more of the following factors.

1. The estimators cannot be expected 'Eo provide accurate density
estimates based on relatively limited sets of training patterns.

2. Extension of one-dimensional methods to multiple dimensions
results in impractical memory and/cr computational requirements.

3, Accurate density estimation requires specification of certain
parameters which depend on unavailable a priori information about
the dengity. '

4., The method® are in some respect iterative but stopping
eriteria are not well defined.

" The nonparametric method to be proposed here belongs to the
category of smocthing methods described in Chapter 2. It may beb used
to estimate complex miltidimensional density functions (only a reason-
able degree of regularity or smoothness is assumed); all necessary
paremeters may be determined from the training patterns; and the
method is noniterative. For cases in which the memory and computa-
t_ioaal requirements become excessive, a polynomial approximation of
the estimator, described in Chapter 5, may allow the user to find
a suitable trade-off between these requirements and the accuracy of

the estimste.



15

3e1 The Esgtimator

The smoothing function

l -l
glx) = (an)imls il/‘g exp |- 5 X x] __ (3.1)
leads to the estimator
‘ T _
p(x) = 1 2 ) em [F (x5 (xeyy)
(2?')57% g tl/é 7 iﬁi exp o i ]

\ (3.2)
where N is the dimensionality of the festure space; Yi’ i=21, 2, eeuy

‘P a¥e independent, identically distributed cbservations or training
' patterns; and S is an N x N matrix of smoothing parameters. S will be

restricted herein to be a diageonal matrix of the form

- -

rl 4]
2
Ty
s £ aiag [RR'] 8 . ,. O (3)
i 0 r§ ]

where R = R(T) is an N-vector of smoothing parameters as defined in
Thegrem 2.1. It is resdily verified that (3.1) and (3.3) define-a-
- gmoothing function which satisfies the requirements of Theorem 2.1
‘provided R(T) 1s a suitsbly defined vector function of T. Therefore
o (3+2) is a consistent estimator of p(X) at every point of con-
tinuity of p{X) and its distribution function F(X).

The cholee of smoothing function for study was somewhat arbi-
trary tuthe: same sense that the use of: mean sguare “€rror; say, is

niaPbitrary but convenient choice of error criterion; i.e., it




satisfies the requirements of existing theory and leads to tractable
raegults. At the outset of the investigation the choice was logical
begause it offered the possibility of éeneralizing and lmproving
some earlier efforts at practical application which showed promiging
results [8]. Further justification was provided by the fact that the
regularity properties of the estimator (existence and smoothness of
derivatives) are similar to those of the density functions associated
with the date observed in real situations to which this pattern re-
cognition technigque could be applied. There are other smcﬁhing
functions with similar charscteristics, however, which could be con-
sidered in further studies of this approach. A short table of such
functions may be found in [1371. | : |

A cne-dimensional illns‘cratic# will give some insight into how
the estimate is effected by the smoothing parameters. The estimator

for the one~dimensional case is

4

- z X=¥,\2
-1 ] en[-3 (5] G

The smoothing parameter r controls the rate of exponential decay of |
influence of each pattern with increasing distance in the feature
gspace from that pattern. For small values of r the esti;nate may
vary between training patterns more rapidly than for larger velues.
The situation is illustrated in Figure 3.1, in which it is assumed
that the set of observations {denoted by X's along the horizontal
axig) is drawn from a populstion with hypothetical density p(x) as
shown in (a). If r is chosen too small, the density will be under-

smoothed as sketched in {v), which amounts to overconfidence that the
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(a) Hypothetical Demsity p(x)

(v) Undersmoothed Estimate p(x)

%

DU v SN, * JNET 720 VRN T 4 A A4 *

(c¢) Oversmootbed Estimate p(x)

Figure 3.1 Smoothing Purameter Effects
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set of observations adequately represents the density. If r is chosen
too large, detailed information present in the observation set will
be oversmoothed as in (c), which amounts to undue lack of confidence
in the observations. If r is properly chosen somewhere hetween these
extremes, a reasonsble estimate minimizing some measure of the
estimstion error may be achieved.,

Theorem 2.1 guarantees that for any Qelection of smoothing para-
meters satisfying (2.5) and (2.6), the estimate may be expected to
become identical with the true density in the limit as the number of
observations T becomes infinite. But concern here is with the
practical situation in which only a finite (even small) number of
observations is available. Specht [8] studied the case in which a
single smoothing parameter is used in (3.2) for all pattern classes
and all features; i.e., TyE T, E oeee = ay for all classes. In such
a simple case he was able to use %;z-i.a,l--a;.mi.--»o.'.-::-rm'5 to determine the
optimal par@ter velue. The expemmental work presented in Chapter
6 illustrates that allowing different parameters for different
classes and features (indeed even for different subclasses with a
given class) can significantly improve both the estimation accuracy
and pattern recognition perfomnce.* But then trial-and-error
optimization is no longer feasivle and slternstive means must be

found for determining the smoothing parameters. One would hope to

qr.'?o.z-szen [137] showed that for a particular error criterion (point-
‘wise mBan square error) and T = =, the optimal smoothing parameter
is a function of X. But this generally leads to impractical im-
plementation requirements.
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be sble to determine the smoothing parameters from the training

patterns, a possibility considered in the next section.

3.2 Smothinﬁ Parameter Determination

For the estimator defined by (3.2) and (3.3), N smoothing para-
meters must be vspacified_ for each density to be estimated; a total
of K+N parametera for a problem involving K pattern classes.

It sh@ be clear from the one-dimensional illustration that
the optimal smoothing parameters are apparently related to the dis-
jaérsion of the patterns in the feature space. More smoothing (larger
values) is required when the patterns are spread thinly than when they

are tightly clustered. A familiar measure of disi)ersion is variance.

The unbiased sample variance of each feature is given by

T

2 = l Z 7 - - 2

L I (vgq =)
J=1

T T o
i T 2
“‘;‘f‘%“‘i’ Z (yji “% L yki) y i=1,2, ey N (3.5)

J=1 k=1

The square roots of the feature sample variances will be referred t¥

2 s
as the feature seaple standard deviations. For large T, s, is

approximately equal to the average squared distance, measured along
the ith feature axis, of the observations from the sample mean. Look-
ing at it enother way, some manipulation shows that the sample

variance cen algso be written in the form
k-1

T .
‘?“i‘(’:"‘}i')'z Z (ygi“yki)

k=2 J=1

ansppari—

2 1 ,.2




where (df) is the average of the squared distances, :meaaured along the
ith feature axig, between all pairs of. observations. This reiation
provides an intuitive feeling for how ';raria.nce expresses pattern
dispersion.

Howeyer, recalling the consistency requirements it is immediately
apperent that the feature sample v%.riances (or standard deviations)
cannot be the swoothing measures sought. As the number of observations
('aizev of the training smet) increases, the feature sample variances
approach constant values equal to the true variances associated with
the population from which the observations are drawn (assuming a finite
variance population, of course). This violates (2.5) which specifies
that the smoothing parameters must vanish ag T = o.

A smoothing measure which does satisfy the consistency require-
r;ents while utilizing the fesature sample standard deviations will be
proposed. First itr will be convenient to defineﬂ an effective sample
yolume for a get of observations. A function ot: this volume and of
the number of observations will then be introduced which amounts
roughly to a measure of pattern density over the effective sample
volume.

The volume of the feature space over which the probability demsity
in quéstion is nonzero could, at leasst in theory, be infinite._bﬂbw—
ever, it is generally the case that a very large proportion of thei
observations are likely to fall near the mean of the populatioﬁ. In

the one-dimensional case, this property is expressed mathematically

by the Bienaymé-Tchebycheff inequality [26] s

P[lx-%1 2x0] <
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where o is the standard deviation from the mean. Accordingly, a

finite effective sample volume will be defined, based on the ellipsoid

of concentration, which depends only on the feature standard deviations

and the dimensionality of the feature space.

The concept of ellipsoid of concentration arises as follows [267:
Consider a one-dimensional random varisble x with mean X and standard
deviation ¢. If z 1s another random variable uniformly distributed
over the interval

I1=(X-0/3,x+0¢/3),
then z has the same mean and standard deviation as x. Therefore, the
interval I provides a geometrical characterization of the concentra-
tion (or dispersion, which is just the inverse relation to concentra-
tion) of the distribution of x about its mean. The length of the
interval, LI = 2¢ /3, is a scalar which numerically characterizes the
the concentration or dispersion.

To generalize to N dimensions, let the random vector X have zero

mean and covariance matrix A = ?kiej‘ If 2 is another random vector
o

uniformly distributed over the volume of the ellipsoid

N N
=R B
Q(Z) &= Ej i il zizi = N + 2 (3.?)
1=1  g=1 Al ’

vhere lAijf is the cofactor of Aij' then Z also has zero mean and

covariance matrix A. This ¢llipsoid, the ellipsoid of concentration

of any distribution with zero mean and covariance A, serves as a
geometrical characterization of the concerntration (or dispersion)

of the multivariate distribution about the mean (zero mean as defined
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above, but the generalization to arbitrary mean is not needed here
since the volume of the ellipsoid is independent of the mean). The
volume of the ellipsoid of concentration, which provides a numerical

characterization of the dispersion of the multivariate distribution,

is given by
N/2 N/2
_(N+2 i i/2
Vo = s — | A
o N + 2)V/2 N2 1/2
- “REE T £ 0] Oy wer O e} | (3.8)

where P = {pij] is the correlation matrix, i.e.,

This volume will be defined to be the effective volume of the distri-

bution and written hereafter as '

Vo = C) [ A] VE (3.9)
where

c(N) = Kn + 2)!‘/2 nN/EJ/ r(x/2 + 1).

If instead of the actual population covariance matrix A, the
sample covariance matrix (the unbiased estimaté of A based on ?he
training semples) is used, the volume will be called the effeéﬁiée
sample volume, denoted V. |

Q
Now, it will be hypothesized that the smoothing parameters may

be given by an expression of the form

—l/k2N »»
I‘i = kl C(N) Si T » i = 1, 2’ co sy N (3-10)
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where

k. and k. are constants,

1 2
c(N) is a constant which depends only on the dimensionality N,
s, is the feature sample standard deviation,
T is the number of observations in the training set.
This expression satisfies the consistency requirements of Theorem

2.1, since for kl >0 and k,, > 1

2
-1/k 4
lim _ iim 2"
T T§ = klc(N) v 54T =0 (3.11)
and

N . (x,.~1)/x
lim L N lim _ 2 72
roi | EENENCRI o PP (3.12)

i=1

3mw

An interesting choice for the dimensionality constant c(N) is

e(n) = [e(m /N
e 2) of/" (3.13)
(r(v/2 + 1) /Y
for then
N Vo
e =x ‘7*T1Qkp (3014)
i=1 - ’

where'ﬁ is the effective sample volume, here assuming uncorrelated
features. According te this choice, the overall effect of the smooth-
ing parameters is proportional to the effective sample volume--a
measure of dispersion--and inversely proportional to a power of the

number of gsamples.
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It would be naive to expect that a universally optimal set of
canstﬁnﬁs kl and k& could be found, begause the variation of the
optimal smoothing parameters is known to depend on the precize form of
the underlying density function [117. But the results of Chapter 6
indicate that {3.10) and (3.13) do indeed provide s smoothing rela-
tion that is uéeful in some intereating and practiecal cases, and that

sultable values for the parameters kl and k, can be obtained experi-
mentally.

Scwe £inal remarks concerning the proposed form of the smoothing
parameters: It has basen geen that the consistency conditions restrict
the nature of the smoothing parameter dependence on the number of
obgervations; the Torm chosén iz one of the simplest forms satisfying
these conditionsg. It is degired to force the use of sample variances
t; measure dispersion because variances sre easily calculated, snd
the calculation does not regquire storage of the ?ntire training set.
S8ince the ellipsocid of concentration concept enconpases both feature
varisnce and dimensionality effects, it seems & natural way to account
for these eff&éﬁs* §ti1l the validity and, zbove &ll, the utility

of this "smoothing hypothesis” resi on the experimental results of
Chapter 6.
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CHAPTER 4
THE PROBLEM OF MULTIPLE MODES

The method described in the preceding chapter for determining
the smoothling constants depends on tﬁe assumpiion that variance is
a'reliable messure of dispersion. But even more is required: Since
the objective is to smooth the density estimate between adjacent
observations, & local measure of dispersion is needed.

As previously ncted, the sample variance is proportional to the
 average squared distance between pairs of observations. When the
t'opsethtions are clustered in a single region of high pattern dessity,
or mode,§ the average squared distance between pairs of patterns is
& good measure of dispersion. In mﬁltimodal gituations, however,
this is no longer the case; the distances between patterns assoclated
vith different modes have an exaggerating influence on the overall
variance. téif the modes can be isclated, ihen s set of smoothing
parameters may be calculated for each mode. The estimate given by

{3.2) is then rewritten as:

T
» % l X - 2 e ¢ - <
P8 = 57z - %gl%sil Y2 exp B (x,) sﬁ(xafi)](h |
o1

ey

This usege of the term "mode™ varies from the conventional statistic-
8l definition (any maximum poinbt of & demsity fumction) but:implies
nearly the same thing. "Cluster”™ is s synonymous term.
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The swmoothing parameter matrix sssocisted with a glven cbservation
(as determined by the subset or mode to which that observation
belongs) is used in determining the contribution of that observation
to the density estimste.

The provlems involived in making this appréach.nseful are fairly

e

obvious. Firat, each training sot must be pertitioned by a suitable

-~ algoritham into subseis corresponding to distinct modes. Second, since

.4t is clearly desirable, from & compubetion and memory requirement

point of view, to minimize the number of subsets within each training
set (and hence minimize the number of smoothing parsmeter matrices
which must be stored), the partitioning algorithm must include & rule
- for determining when » sufficlent degree of partitioning has been

achieved. Thesge are the problems to be dealt with in this chapter.

L.l Methods for ode Discrimination

The term mode dizcrimination will be used hére to refér to any

of a broad class of msthé&s for partitioning deta sets into diétinct
‘subsets under some mpssure of similerity. A wide variéty of such

methods has been studied {Ae };ﬁg;fgﬁ_3x$sgg%¥%ghi§l%9§xa§hgj, but

| most mode discriminstion methods may be deseribed in terms of the
following steps.
’ 1. tition the data sel using an appropriate similarity
eriterion. |

2. Test the partition to detsrmine whether it is significant,
ie.6.; whether the subsets are sufficiently ﬁistingt.j;if 80; iét
the partition stand; if nst;vmsrge any subsets which'are not

sufficiently digtinet.
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3. Repeatedly partition the subsets created, teasting at each
stép as in step 2, until no further permanent subdivisions result,
cr_uatil some cother stopping critérionh is satisfied.

A specific mode discrimination algorithm results from this
genersl procedure when a similarity measure, distinctness test, and
stopping rule are supplied.

The following mode discrimination method, an adsptation of a

mathod described by Mattson and Dammann [28) illustrates some signifi-

" cant points. It is a form of prineipal component analysis [29). Let

analyzed for multimodality. Define the #@a
th

X = {’kz""xa’ vaiy :;',‘g,j k=1, 2, a0, T be a set of data to be

F similarity measurse

8y evaluated for the Xk obgservation, by

) ? )
. WX = Zwﬁu

i=1 :
where W is a vector of weighting factors as yet unspecified. For a

¥
- glven vector W, the value of s, may be plotted along the real line

(s axis). It is desired to determine W such that if the dats set
is bi.mdsl the binodality will be clearly exhibited by the s axis
plet of all mu‘bers of the dats set. In other words, patterns in
distinct modes will yield distinctly different values for 8 ¢ Thresh-

0lding can then be used to sepsrate the observations into their re-

‘spective modes.

The desired condition on W is achieved by maximizing the func-
tion

(4.2)

[E (s - 3 /Z ARLY

i=1




where

- T
I RY

k=1

A [‘13}' [ Z (xy - %) (xkj B ;J)]

kml
(Bote thet the A matrix is proportional to the sample covarience
qltxfkv) e function in (ke2) 15 maximized 1f W is chosen proportion—
sl to the sigenvector corresponding to the largest eigenvalue of A.
Ir it-v_i.s possible to display the dats set as two modes on the g axis,
 tats selection of W will do so. |

H - The ‘éistiactnens test associated with this approach might require,

! for instance, that o prescriﬁed 1a§gth of the = axis bg:bween modes
contain no sample pointa (or fewer than gome sp}eciﬁod: ;mnber of
sasple p_oint;s).‘ The stopping rule might simply be that no ﬁxrbher
partitions are possible which yield significantly dlstinct modes.

- This natlgoé has the advantage ths;;' the data set members may be
processed seriplly, thus avoiding the need to store them in direct
access nsmzy-%i On the other hand, it has some significant dis-
advantages. .;.Ca.lculatim of the largest eigenvalue and its correspond-

ing eigenvector are relatively complex computetions. In addition,
it is not Aifficult to imagine data configurations involving, say,
three modes for_yhigh this scheme would not be able to detect any
éltipiiciﬁy of modes. The method slgo tends to perform poorly
whenever the patterns are rather loosely ciustered within the modes;
‘Ai-‘a, when the intramode dlspersion is significant compared to Hhe

intermode dispersion.



An interesting adsptation of this approech is described in Fu
and Henrichon [257. 1In order to get & comprehensgive modal analysis,
thg data is sequentially mapped onto eaich eigenvector. In each case,
a one-dimensional technique, bazed egsentially on the Loftagaarden
and Quesenberry density estimstor [237], iz applied to estimate the
extrema of the density and hence isolate the modes. Some user-
selected thresholds are required, but if these are chogen properly the
method appears to be quite effective. Of course, the computations re-
quired by this method are at least as complex as those described above.
In addition, several passes through the data are required.

Other disadvantsges common 1o many mode discrimination methods
include: Regtrictions on the probsbility distributions involved;
impractical cosputation time, ; sensi;t:ivity to the order in which the
patterns are observed, sensitivity to noise in the data, and, for
iterative methods, siow convergence to the final result. The method
pmpand in the next section and used to obtain the experimental re-
sults presented in Chapter 6 alleviatas‘ or circuswents entirely all
of these problems, improveménts which may be attributed in large
W_.to the %hmtrixsgant requirements of the task at hand: It is
unnecesssry to detect and isclate every subset of the data which is
in some measure (however slight) éissimilar from all other subsets;
it is sufficient to structure the data just enough so that gross
exaggerations of feature variance are avoided. Whenever such
exaggerations do not result, subseis should be lumped together in

order to minimize the number of smoothing parameter matrices which

st be calculated and stored.
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4,2 A Mode Discrimination Algorithm

The algorithm to be used here for mode discrimination consists
of the following steps (refer to Piguwre h.l):"

1. Initializstion: Select two distinct but otherwise a.rbi‘érary
observations from the data set under consideration. These ,_o}_);erfations

gerve ux initial mode centers.

2. Mode assignment: Calculate the Euclidean digtance _‘ cf each
.observation from each mode center, and assign each obin;fvgti_énﬂtob
the mode with the nearest mode center (note that Buclidean éigtzzmce
is the similarity measure to be used). ‘ |

3. Mode migration: Calculate the mean (center of gravity) of
the patterns assigned to each mode in step 2: (a) If these means
are. 1dentical with the mode éenteré used in step 2, go to step y,
(v) Otherwise, replace the old mode centers by the new means and
_return to step 2.

.be Mergingt A new set of modes ha.s now boen tentatively estab-
. lished. Testi sach pajir of modes usin.g tha diatinctneas tex‘b given
later in this :ac‘biem. Merge any modes which are not aignificmtly

,distinct under ‘this test. If t, snd +, are the nusbers of cbserva~

- A |
. %ions in two modes and M, and M,j are the respective mode centers,

=-then the merged mode center is given by

tixi +t F!l
‘hi +tj:

*

M=

“This algorithm was inapired by a method described in [30].
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Flgurs 4.1 Mode Digerimination Algorithm
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S5+ Mode splitting: (a) If all existing modes have not yet
veen tentatively split and tested, sel§ct & mode which has not been
gso processed and split it by adding and subtracting a small amount
from the component of the mode center having the largest standard
deviation. Iwo new tentative mode centers are thus formed which are
identical with the old one except in one component. Return to step 2.
(b} 1If all presently existing modes have been split and tested, the
- analysis is complete.
= ... The similarity measure and stopping rule have been specified in
steﬁa 2 8nd respectively. There remains to be specified the rule
for determining in step & when two modes are distinct enough to re-
main separste. 3ince the smoothing parameters depend on the ellipsoid
of eoncentration, it is satisfying that the ellipsocid of concentration
éan also provide a useful distinctness test, which will now be de-
veloped.

It will be necessary to know the distance froﬁ the center of an
ellipsoid of concentraﬁion\ﬁo the boundary (surface) of the ellipsoid
in g given dirééticn. Since the distance is origin-independent, it
may be asaumﬁdathat the center of the eliipsoid is at the origin of

the apace., The ellipseid is given by

N Ang |
3‘ Z Xy eNv2. (4.3)
1m0 3= | A}

A line from the center of the ellipscid and passing through the point

A= (al, Byy +ees aﬂ) is defined by the equation
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X X
1 N
vowwis B ;‘-zv B gga T e g (l‘.l‘;)

Iet D{(A) be the distance from the center of the ellipsoid of con-
centration to the surface of the ellipsoid along the iine through its
" center 4nd the point A. By solving (4.3) and (4.4) simultaneously,

it may be verified that e

D) = a (8 + 2)1/° . (4.5)
where B
g,
) o
F = 5 IAl .
AL
i=l Jj=1

Now, given two modes with mode centers M, = (mll, By eves mlN) and
M, = ("‘21:’“‘”22’ cuey mzﬁ) , let M be the (uhdirected) liné cbnnecting
the mode centers. Denote by D, the distance alohg. M from Ml to the
anrfa.cg of the corresponding ellipsocid of concentration; D2 is the
cor;eéponﬁing Qistance for M2 and its ellipscid“ Utilizing the

result given above s it is found that

3 - ﬂk(ﬁ r22, k-1, 2 o - (4.6)
where
| 2 (myy - “’11)2 '
5§ = ] i-'&l L i l\(k)}

Z Z M(k)l (myy = mpy) (o - mpy)

i=1 j=1
The auperacrip‘t (k) on a matrix denotes which mode the matrix is

aggociated with.
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Iet 312 be the distance between mode centers, i.e.,

= |, - aﬁf" (my, - )"‘]l’/g
Dp =¥y - M) = ) (my -my, .
i=]
The following rule is then formulated baséd on the distances kl’ b,

and 312’ where Hl and 32 are computed by substituting the sample
covarience matrix for the population covariance matrix in (4.6),

Rule {distinctnesz): Modes 1 and 2 as given above will be con-

sidered significantly distinct provided

D

1o ‘
Y=555, TR (4e7)

Where Y, 1s a suitably chosen threshold. (See Figure L4.2.)

Pinding a suitable valus for Ye is discussed in Chapter 6.
4 Ir the ellipsolds of concentration are to be defined by feature
sample variances only (for example, to reduce the computational losd),

(4.6} reduces to

N B 2
| (ny, - m )2 2/2
Bow e 22 [ T (my -my )Py ) SR ]

1=l =1 %1

where oii is the variance of the 1" festure for the k> mode.

Any available prior knowledge regarding the probsble number of
significantly distinet modes may be utilized to reduce the amount of
processing required. Suppose there is resson to expect approximately
k significantly distinct modes. Then k distinct observations may be
selected and used as initial mode centers in step 1 of the algorithm.
If k is taken too large, some ﬁf the resulﬁing modes will be merged

in Btep L,
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Figure 4.2 Distinct Modes (yt = 1)




Since this algorithm considers the patterns in a sequential
manner, the patterns need not be stored in the computer memory. The
computations are simple {Buciidean distance rather than, say, eigen-
velues and eigenvectors) and convergence is found to be fast enough
so that long computation times are avoided. Since all patterns are
accounted for on each iterstion before adjustment of the mode centers,
the algorithm is insengitive to %he order in which‘the patterns are
considered. Furthermore, "noisy” patterns (data measurement errors or
recording errors) tend to become isclated by the mode splitting pro-
cedure. This is easily devected (as distinct modes consisting of
very few patterns) and permits the user to take appropriate account
of such errors. Since they generally become well isolated from the
remainder of the data, such gross érrors have no effect on the final
partitioning of the "good"” data. By contrest, many other:techn;ques
are quite gensitive to this sort of error.

The applicability of the proposed mode ﬁisérimination technique

is well.illustrated in Chapter 6.



CHAPTER 5

A POLYNOMIAL APPROXIMATION

A typical pattern classification system utilizing the techniques
developed in the preceding chapters ﬁnuld usually be realized by
sccomplishing the "training” (mode discrimination and smoothing para-
meter computations) off-line as a design phase and building the results
into the system (which might be hardware or simply a computer program).
For problems involving feature spaces of relatively low dimensionality
. and small training sets, the method may be used directly as described.
In such cases, the smoothing parameters and training patterns must be
stored in the classification system for use during the classification
process. But this direct implementation becoméé=impractical as the
product of featufe dimensionality times the nuﬁbéf of training patterns
grows large, since the amount of memory required and the amount of
computation per pattern to bve classified increases iinearly with each
of these factors. This chapter presents a method by which the
estimator of Chapter * (hereafter referred to as "the exgoneﬁtial
estimator”) may be approximated by a polynomial with coefficients
calculated serially (in one pass) from the training patterns, thereby
removing the need to store the training set for use in classification
and'potenti;lly reducing the computations reguired for each classifi-

cation.




38

2.1 Polynomial Expansion of the Exponential Estimator

In this section it is shown how an expression of the form

T
A, - l T _,l 2 1 ’ “‘}.
p(X) = zgrﬁx ET iii !Sil / exp [~ 5 (% - Yi) s (X - Yi)]

may be written as a polynomial series in X having the form

. 5 "—'C ‘ PR
P(X) = o+ Cpxy # Cpxy 4 een ¥ Gy

a2 2
+ C + ese + C X X ¥ oes + C
et L A NY'N

+ eas + Cr r r xr xr cus xr + ese
1'2 voe. n 172 n

- Bections 5.2 and 5.3 deal with the practiéai problems associated
with computing the polynomial coefficients and truncatiﬁg the
' polynomial series after a finite number of terms.
To make the results developed here more useful in Chapter 6, a
constant multiplier & is factored out of each smoothing parémeter 80

that the density estimator may be assumed to have the form

T
-~ v - : K
p(X) = "”“”%“ﬁ?ﬁ” REA Y2 ep [» -5§(X~Yi)’sil(X~yi)]
(em™) " T 3 25

(5.1)
To simplify the notation, let

k= (2r69) VA 5 | 2,

Noting that S;l is symmetric, (5.1) can be written as

et

7
~ 'y ] - - “
p(X) =2 ) x expl- -5 (x's7hx - arfsTx o+ vy |

2
1=1 28




T
- %— E K, exp |- == X575 bxpl £ vis7ly]
i L 962 i - 82 i 7
i=1 =
.e}{p r.., ..._“}.:_2., Y;S»LY j .\
28 +
Now let
8, = - 2 x5t x (quadratic in X)
i 4 i
28
* l PR .
b, =-% Y8 "X (Linear in X)
i 2 i
8
- 1. ¢ -1 .
e - yi5T Y (independent of X).
i 5 2 i1 i v
5
Then

¢, 8, b

» T
p(X) = % 23 ke 1g 1g 1
i=1

The X-dependent exponentials may be written as infinite series.

example:
2 3 n
&, ‘ LI 8,
=1 + —w-&*;—%-..'-i-—“—-'f' .
€ ol TR TR at Tt

~~

1

For

(5.3)

The result of multiplying these series together and collecting terms

ig as follows.

degree

) e
of term term

0

bt

1 b

jucbe

2 a, + b%/éi
1 1
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degree

of term term
3 a,b, + bi’/;:
L a§/2! + aibf/zz + b?/h!
5 adv /21 + a b2 /38 + b7/5!

- »

This way be summarized by noting that each term of even degree

(n = 0,2,4,6,...) may be written as

n/? é@bin-zm

Z m"zn"’gmsx

while each term of odd degree (n = 1,3,5,7,...) may be written as

(n-&)/e a?bin~2m
m:in—?mi!
=0

These expressions may be combined to give, in terms of X,

* .

‘?" 1 n* m m n**
7 - y . ? e
ZL m x MiX) (x z,iX) {x Pi) o . »().h)
m=0
where
£ |n/2  for n even
n o=

((r-1)/2 for n oad

*% 4] for n even
n o=
1 for n odd
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25~ *

B, =% 8,1 ¥,
21

"

M

Thus, in the notation defined above, the desired polynomial expansion

;1 - -1
PPy = F ilyiyisi

iss
*
T & n
B(X) = = y ke E Z (X xx) “"‘(x'vx)
P T L mlln Qmﬂ
i=1 n*O m={
ﬁ**"
2 ¥ f : 5,
(x'r)" | (5.5)

Admittedly, this is a formidible expression. But it is shown in
Section 5.3 that the coefficients of the products and cross-products
in xl, x2, svey Xy mAY be computed very systemaiically.

The form of (5.5) is significant, since it shows that the series
coefficients may be calculated by taking the training patterns
serially: each c5 s M& ? and P depends on a single training pattern.
This obviates the need fo store the entire treining set in fast

access memory during the coefficient computation procedure.

5.2 Truncstion of the Polynomial Expansion

The polynomial expansion of the exponential estimator is, of
course, an approximation once & finite number of terms of the series
are retained for computing the density estimate, the remainder dis-

carded. To achieve the desired storage and computational
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efficiencies sought, the truvcation must retain a relatively small
number of terms. On the other hand, epough terms must be retained

to provide the necesssry degree of approximetion accuracy. The
principel disadvantages associated with use afjthe polynomial approxi-
mation are the difficuliies involved in finding a practical trade-off
hetween the nurber of terms retained and an acceptabie level of
accuracy of the sporoximation.

The kinds of difficultiea referred to are well documented by
Specht [871. Briefly, when the polynomial is truncated, the guality
of the spproximstion degrades as the distance from the origin of the
FTeature spacelincreases, the rate af degradation varying in an
inverse exponential manner with the msgnitude of the smoothing
Qaramaters. As a resultb:

{f The origin of the feature space ghould béAshifted totﬁhe
vregiqn in which the sharpest spproximation accuraéy is reﬁuired.

2. The number of terms of the polynomisl expansion shich must
be retained to achieve s minimum sccuracy over & given.pcrtiag of
the feature space depends on both the extent of that region and the
magnitude of the smoothing parameters.

Thege facts have pome important iwmplications. ?irst, since
there may be more than one critical region in which accurate approxi-
mation is required {this may be the case if there are more than two
pattern classes, for instance), it wsy be necessary to define
mltiple origins, each with s distinct set of associated polynomial

coefficients. A pattern is then classified by using the set of




coefficients corresponding to the nearest origin ("nearest" must
be appropriately defined).

Second, although ome normally uses as many training samples
ag posgible in order to maximize the asccuracy of the densi?y;estimate,
this advantage may have to be compromised somewhat in using the poly-
nomial approximation {(see Section 6.5}« This is because ag the
numbér of samples increases, the magnitude of the smoothing para-
meters decreases {see (%.10)), thereby requiring additionsl poly~
nomisl terms to achieve the same quality of approximstion. Obviously
this can eventually produce the same storage and computational
difficulties which the polynowial approximation wes intended to
slleviate.

Clearly, then, achieving a suitable trade-off betyeen approxi-
Qation sccuracy and computational and storage requirements‘depends
largely on the characteristics of the gpecific prdblem at.haﬁﬁ,
including the number of features, the number of classes, the com-
plexity of the density functions, the degree of overlap of the
dengities, th§ number of training samples available, etc. These
factors must, in general, be studied experimentally (eg., through
simulation)} to determine whether it is preferaﬁié to use the expo-
nential estimator or the polynomial spproximetion and in the latter
case to arrive at the practicel trade-offs required. In Section
6.5, some examples are given to illustrate the variation of approxi-
mation accuracy’with the degrée of the polynomial used; the wmsgni-

tude of the smoothing parsmeters, and the location of the ordigin in
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the feature space. The kinds of experiments discussed there can be
used in practical situstions for making the design decisions which

have been degcribed.

5.3 Caleulsting the Coefficients and Evaluating the Polynomials

The number of terms of degree n in a polynomial in X of dimen-

sion N is Nn; the total number of terms in & polynomial of degree

Were ii necessary t5 store or even to calculate this many terms, the

polynomiel approximstion would not be very useful in practice except
for problems of small dimengionality requiring only & low degree
polynomial to provide sufficient approximation accuracy. Fortunately,

both the storage and computational requirements can be substantially

reduced. o e

Con#ider again a typical term of the polynomial expension as

given in (5.5)¢

*
X

) 43
#*
1 fre wi L ~I0 y ¢ n
o Z mm (x Mi}() (% z,iX) {x Pi) .
m=0 ' : :

For example, taking n = 5 and suppressing the pattern index i, this

uny be written

x’(_-s% MIXM + 33:{ WRL'E + 2t z:'m:';:}o('y |

.or
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N X
Z“.Z @‘-"m +"']"“"3ﬁ g +".'1"'°5’ g, XX X
T ™% " 30 %5% 0T B0 Skl A S e

j=l »r=i
Note that the matrices M and T are symmetric (see (5.h}). Let M be
an N x ¥ lower triangular matrix with diagonal elements equal to
the diagonal elements of ¥ and with subdisgonal elements equal to
twice the corresponding elements of M; and similarly for T with

regpect to L. Then (5.6) becomes

N i R k
' g 1 % * 1 * * 1 ¥ *
g X Z E L BT BygMe g * ST 3%t 5T °1j"kz>

P XXX X X (5.7}
"Suppose N = 4. The nusber of terms associated with (5.6) is then
X® = 4° = 1024; the number of terms associated with (5.7) is
Rj(K - l}z/k = 1bl, a considerable reduction. Still further economy
can be had with respect to required storage, singé all coefficients
involving subscripts identical up to permutation may be added and

stored as a single coefficient. Thus {(5.7) way be written

] i 3 k £
EDED DR
L .. } L Cigr X5 e (5.8)
i=1 J=1 k=1 f=1 =1
where the coefficlients ciikzr are appropriately defined. The number

of coefficients stored for terms of degree n is then given by

( K+n -1\
n

which, for n = 5, N = k i3 just 56.




The classification procedure which regquires, for each pattern
classified, computation of all cross-p;educta in the components of
X (5.8), can be speaded up considerably if care is taken to compute
succegsively higher degree crogs-products using those of lower degree
slready calculated. If this is ESE done and the products are formed

*
~ "from scratch” as needed, a total of

, (# + 0o l)
n
: n

maltiplications are required for the terms of degree n, or

n
B G (5:9)

n=0
for all terms up to degree n (the formulae include formetion of the
qrcss~products and multiplication by the corresponding coefficients).
Forn =5, N=14, (5.9) yields 504 multiplications. chever,'by
caleulating the cross products in the order suggested by Figu}é 5.1,
only a single multiplication is required to form & new cross product

from & previously computed result. In thie case, only

/R +n -1
\ n )

"
s

n=l
mltiplications are reguired, which for n = 5, N = b amounts to 250
‘multiplications; and the saving becomes more dramatlc with increasing
n: n=8, N=154 ylelds 3168 mitiplications the “"long" way, 988 by
the recommended way.

i

¥*
Multiplication is assumed to be by fer the most time consuming
arithmetic operation used.




n=0 n=1l g o= 2 ns3 n=5

1 (1) x,(2)
‘ x,(3) - %%, (6)

5 (8) TR, ) TN (21
' xx,x, (12) %% x,x, (22)

1o (1) < 2%, (3) %%, (23)
%o (14) i‘“"e‘z"z’l{@ )

xzxaxazz(éﬁ)

Xy (4) x,x, (8) A x,%, %, (15) XXy X)X, (26)
RN L x5 (B0

%% (0T Ry (20)

X3 X %%, (29)

Xy %, (10) X3Z3x1€18) mgxz,xlxl(ia)
Nayx,{19) Xz XXX, (31)
:%x}xzxz{iz’)

x5 %, (20) X%y, (33)
E Ex3x3x3=2(33+)

%5557 0%

w U ,
ﬂzwnmd

o o

Rumbers in parentheses indicate economical ordering of computetions.

Fgure 5.1 Suggested Ordering of Crose-Product Calculations




Obviously there is nothing very mysterious about the suggested
ordering. In FORTRAN programming terms, the proper ordering of sub-
scripts for terms of any given degree can be generated by a set of
nested DO loops with each "inner DO" depending on the value of the
precediﬁg "outer DO" variable. The same idea is expressed by the
iterated summation in {5.8) for terms of degree 5. However, because
1) it is necessary to reference, at each step, a previous result
computed using s different sequence of subscripté {i.e., cross.products
of lower degree), 2} the degree must vary from 1 up to the maximum
degired level, and 3) the maximum level may not be known when the
programming is accomplished, some ingenulty i3 needed to generate
_ program code which iz relatively eﬂfiéiﬁnt both from the poini of
view of the volume of code regquired and time necessary to execute
tﬁe code‘during the training procedure {the most time consuming} or
the recognition procedure {probsbly most critical in practice).

One additional detail deserves attention. In order to use the
- efficient coefficient storage, it is necessary tc map the coefficient
sequence assoclated with (5.7} ) |

{isx ..,'.3 1= 1,2,000;,N; 3 = 1325000548 K = 1585006585 esnl
onto the sequence associated with (558}
{13k oo 1 = 152,.“,3; 3 %1,2,.”,1; K = 132, 00043 weol
80 that every coefficient calculsted by means of (5.7} may be added
to the appropriate coefficient as defined by (5.8). It is easy
encugh to reorder the subscripts largest to smallest, but 1t is

relatively difficuit to then compute the pointer to the appropriate
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coefficient memory cell, since combinstorial formulae skin to those
already introduced must be used. Doing this repetitively for each
coefficient and each training pattern adds enormously to the com-
putational load. Un the other hand, it is no more feasible Lo store
and reference a complete table of subseript sets and pointers.
Fortunately, a convenient compromise is possible which is now
described.

Assume that the featurs spece iz of dimension N and that the
estimator i& to be approximated by 8 polynomial of degree n. Let
a be the index which points to the locafg&n in the coefficient stor-
age (which has been crdered according to {5.8)). Define a Coefficient

Pointer Table (CPT) with elements TABLE(i,}) given by

0, i<l or j<1i

[P —

TABLE(L,3) =
S G o3 -
f;+qltsl<i<ns?&{3<ﬂ+l
L Ry - -

Then any term with subscripts which are a permutation of ilie.ﬁ.i

D> en > ir) ig stored as part of the ot

¥

-

(1, >1 coefficient, where

1 2

@ =1 + TABLE(r-1, ¥+l) + TABLE{r-j+1, ij»l}

B

J
(see Figure 5.2). Storing and referencing the CPT (which has size
nx N+2) provides an economical t%ade»aff between storing the entire
set of coefficient indices and recaleulating the indices each time

they are needed.
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Taken separately, the various suggestions outlined in this
section provide a real {if in some cases modest ) improve{lfgmt in the
computational and storage efficiencies of the polynomial Q;;:proxim-
tion method. Taken together they may provide as much as an order of
magnitude or more improvement in efficiency, depending on the problem
diuegyimuﬁtir and the degree of the spproximating polynomials to
be uéq;i. m; may make the differernce between a possibij_ V_useful

approach and & hopelessly impractical approach.
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CHAPIER 6
EMPIRICAL INVESTIGATION

Chapters 3, %, and 5 have left open & number of questions about
the selection of certain parameters. In addition, it remains to be
demonstrated that combination of the technigues proposed yields
a workasble pattern recognition system. Fhesge are the points address-

ed in this chapter.

6.1 The Advantage of "Data-Specific” Smoothing

It was mentioned in Section 3.1 that estimators have previously
1b'tser: investigated which are similar in form to the one discussed
here but which use a single “universal” sm?gbhiqg perameter (deter-
wined essentially by trial-and-error) for all pattern classes and
features; i.e., in (3.2) the matrix S is taken as a scalar matrix
and used for aJ.l pattern classes [8]. That the more general treat-
ment proposed ffor which each feature of each pattern class has its
specific smoothing parameter) can be expected to produce improved
pattern recognition performance is d,eqonstra.ted by the regults of
the following experiment. | |

Thirty sets of artificial data were generated by a randomized
procedure: A uniform random number generator was used to select the

number of patterns per class and the means and standard deviations



of esch feature for each class; given the resndomly generated means
and standard deviations, a Gaussian ragdom number generg?pr was
used to produce the pattarns. |

Twenty sets of two-class three-dimensional data and ten sets of
four-class three dimenszional date were generated. The number of
patterns per class was restricted to be between 30 and 60; the means
were regtricted to the range -25 to +2%; and the standard deviations
ware regiricted to the range 3 to 33. The aliowed ranges for the
means and standsrd deviations assured that the data would tend to be
largely nonseparsble (i.e., the classes wowld overlep in the usual
sense), the situation in which the proposed methods sre most advanta-
geous .

BEetimates of the underiying densities were formed in two ways
;nd ugsed for pattern recognition. In the first (“unnormslized™)
case, b single smoothing parameter was uae%a'thg value yilelding the
most accurate palitern classification deterﬁine& by trisl-~and-error.
In the gecond {"normalized”) case, different smocthing parameters
were selected for each feature of each class, the values teken
propertional t$ the standard deviations of the respective features
with the universal proportionality constant optimized by trial-and-
error. The clagsification results are summarized in Table 6.l
The latter "deta-specific” smaothing-resulte& in improvedtéerfermance
in 25 of 30 instances, degraded performence in 3, end unchanged
performance in 2. The largest improvement observed (11.7 percent)

was substantially grester than the largest degradation (1.8 percent}.




Table 6.1 Comparison of Unnormalized and Kormalized Smoothing

(a) 20 sets of artificial data, 2 classes, 3 features

Percent Correct » Percent Percent Correct » Percent

Set | Unnormalized Normalized | Improvement Set | Unnormalized Normelized | Iaprovement

l 8301 9‘&‘3 13.97 ll 89«8 9}.1& 200

2 8&-8 8}:\@9 - 1.1 i2 79-6 80&6 1.0
3 99.1 99.1 - 13 8%.6 85.3 1.7

b 80.0 85.3 5.3 1k 88.1 89.1 1.0

5 T6.1 T9.5 3okt 15 100.0 100.0 -

6 85.7 87el lch‘ 16' : 92&0(} ?502 lta

T 83.0 81.2 ~1.8 17 7.5 98.8 1.3

8 85.2 Q09 5.7 18 5.6 82.2 &.6

9 Th.2 81.8 T6 19 5 90.5 6.0
10 89.1 87.5 -1.6 20 67.1 707 3.6

(e} 10 sets of artificial dste, b classes, 3 features

Percent Correct . Pgrcent
Set Unnormalized Normalized Improvemant
1 T5 ol Th0 0.6
2 TL.b T3 2.1
3 657 68.5 2.8
L 83 .4 87.4 k.0
5 665&' 6500 ""l‘h
6 5602 6509 B T¢7 . :"\
7 70.1 70.7 - 0.6 '
8 62.3 6h.2 1.9
9 5h.5 60.1 5.6
10 78.5 83.6 5.1

*
by feature standard deviation
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It may be concluded from this experiment that smoothing on an
individual class/feature basis is generally superior to ;}aing 8
universal smoothing parameter. Although the average imp;-ovement
observed is not large, there are cases in which it is substantial.

In the few instances in which performence degrades, the loss is rela-
tively insignificant.

Although these conclusions are based solely on sets of Gaussian
data, it seems reasonsble to expect comparable or even more favorable
regults for "data-specific" smoothing when the data are less well
behaved. This wes the cbserved tendency for the cases of real data

to which the aingle parameter version wes applied.

. ction of the Smoothing Constents k., and kz

Since the immediate object in gelecting values for kl and kz
is to obtain s "good" estimate p(X) of the true or underlying proba-
’Sility density p(X), a performance index based dn the difference
betweexi §(x) and p(X) could be used to‘evalu&ts candidate values.
UVitimately the object is to achieve accurate pattern recognition,
80 iltemtiw}iy one might choose toc use recognition accuracy as
the performance index. The labter spproach is important when the
underlying density is unknown and must be estimated from the train-
ing samples (usually the case in practice). However, some interest-
ing results concerning the selection of k1 and k2 can be obtained by
considering some artificial data with known underlying densities.

These results are the subjact of this gection.




Integrsal sguare error, defined by
T 1%
ISE = | Lp {x) - (X3 ax . x (6.1)

where the integral is over the feature space, was selected as the
‘eriterion for optimizing the density estimale. Considering for
simplicity the one-dimensiosnal case, the density estimate based on

samples from e populstion with unimodal density p(x) is

oy

T
3y [ -] (6-2)
i=1

e

The one-dimensional smoothing parameter r is, according to (3.10),
| ~1/k,
r = k,C(1)s? . _ (6.3)
Given a set of observations with known underlying density, numerical
techniques can be used on a digital computer to determine the value
of r minimizing the ISE. Let r, denote the valwe of r found to

1
minimize the ISE for & set of T, observations with sample variance

sg, and similarly for Ty Tg and sg {a second set of observations).
Theh
mlfkg
ry =k c{l)s
-1/k
, " 2
r, = kC()s, T, “.

Solving each of theae equations for C{1) yields

r
e(1) = AL




o7

oar

d *
8, I,
4

(‘f; ) e, 5%
T2 2
Taking logerithms of both sides of the latter equation gives then,

Rgl
provided T, # T,

s, r T.
= { l 2 ﬁ‘ ) ( ..:Z: )
k, = log | 3 ~ / log 5 ) (6.4)
271 2
The corresponding value of kl way then be computed from
1/x 1/k
T2 2
} Ty Tl } T, Tg | (6.5)
e e Ty s, ° 2

Tnis developuent suggests an experiment which should 1) indicate
whether the form of (6.3) is indeed ussful for estimating the smooth-
ing perameter, and 2) yield values for ky and kpe If in fact (6.3)
éives & reasonable functional form for the smoothing parameter, then
and k

the resuiting values of k should be indgpendent of the

1 2
selection of observation sets from the population (with the restric-
tion that for any psir of sets selected, the sets must not contain
the seme number of cbservations).

Such an experiment wus performed. To genersate sets of cbgerva-
tions from populations of known density, the following thecrem was
utilized.

Theorem {107, Section 7.1.1): For any random variable x having

a continuous cumulative distribution function F(x), the random
variable z = F(x) has the uniform distribution with density

£(z) =1, O0<z<1
= Q, otherwise.
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Stated a little differently, the thecrem implies that if 2 is & ran-

dom varisble with the uniform probability density over the interval
-1 iy

fo,17], then x = F ~(z) has the distribution F{x}. For example, to

generate the "triangular density” given by

i

px) =2 (- )y Ixi <o (6.6)
= {3, otherwise
one has
.

0, x <=-b
-—3'~§(x+'b)2, -b <x <0
2

z = P{x) = ¢
1o (x-0)% 0<x<h

oy

i, X >b.

W

Inverting F(x), i.e., solving for x, yields,

. /2 _ 47 1
x-b[(Qz) -1} 0<z2< 3
xb[l-{éi 22)2],  L<acn.

Given uniformly distributed values of z, the cerreaponding values of
x, computed from (6.7}, have the desired triangular density.

In this manner, sets of observations from a population with
arbitrary distribution F(x) can be generated by using a unif&rm

random number generator, provided only that the inverse of F(x) can
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be computed. However, note that if the observations are truly
rindomly generated, 2 certain amount of randomness will be present
in the outcome of the experiment, thus requiring that many such
experiments be performed and the results subjected to statistical
anglysig. Done in'this menner, the overall experiment might quickly
consums a large amount of computer time, even on & relatively fast
machine. A possible slternative is the following: Rather than use
z values sctually produced by a uniform random number generator, one

might use the "most likely" values for z; i.e., for T samples, take
1 1
zs;f(iué), 121, 2, eeey T

This approach, which wes used in performing the experimenﬁ, eliminates
the randosmmese from the sample genefaticn proceas and its effects
from the computation of kl and kg which might obscure the kind of
vehavior of k and k, which it is desived to cbserve.

fable 6.2{a) swumarizes the experimental results for the tri-
angular density (taking b = 1 in (5.6)). Over a considerable range
in ﬁﬁe number of observations used, the computed values for k, and

k afa gquite stable; as hoped.

2
A "cosinusoidal” density, for which the distribution function

iz also easily inmverted, was tried. In this case,
p(x) =% cos x, |x|
= Oy cgtherwize.

The distribution function is
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Teble 6.2 Determination of kl and k2

(a) Triangular Density
k., for =T gn
&2 for Tl asnd
T s r . I88 . . T =L 80 160 320
win ik i 2
-
20 | JhOL | L0095 | .27 % 10
ko | .wo7 | 067 1 .95 x 1077 | .30 2.0
80 | .h08 | .o47 | W32 x 107 | .30 2.0 2.0
160 ¢ 408 | L0341 L10 x 107 .29 2.0 2.0 2.0
320- | 408 | .02k | .34 x 1077 | .28 2.0 2.0 2.0 2.0
(v) Cosinusoidal Density
kg for Tl = T and
g & T . ISE | & T =g 80 160 320
min ¥in L z o

2{} . 6‘?' » .15
40 | .682 J10
80 | 683 | 076

60 ¢ 683 | 054

320 | 684 | 039

A2
.15
.52
.18
.62

x 10

x 107 .28 2.0

x107 | .28 | 2.0 2.0

x107 1 .27 | 2.0 2.0 2.0
x10° 1 .25 | 2.0 2.0 2.0 2.1

{c)

Rormal Dengsity

: kg for Tl = T and
7 s | x| T k, | T,7s0 80 160 320
201 .969 | .27 1 .55 x 1077
Lo | .98L L1 1 W21 x 1u”& .21 3.0
8ol o921 71 .87x10° 1 .20 | 3.1 3
160 | .996 bk lowss x 1077 L1o 3.2 3.2 3,
0| 998 | .11) .vx10” ) a9 | 3.2 3.2 3.2 3.3

T = no, samples;

ey >
at I mﬂ;iﬁ%m

gn

= smotthing parameter

error.
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0, X < - nf2
z = F(x) = %{l + sin x),’ - /2 <x < nf2
1, x > nf2
which inverted yields
L1, \ .
x = sin ~ {2z - 1), 0<z <1,

The experimental results for this case are given in Table 6.2(b).

Again the varlations in the computed values of kl and k,. are small.

2
The distribution funciion for the normal or Gaussian density

function cannot be analytically inverted. However, by computing the
value of the distribution function for several values of x and using
an interpoletion process, the inversion can beggumerically approxi-
mated to almost any desired accuracy. In this case, for the density
function

p(x) = i exp {-xg/z), <X <

Jon

the distribution function is

SRR [T exp (-2/2) as

e g
= erf(x).
The error function {erf) is tabulated in many standard tebles and
can be numerically approximeted and inverted on a digital computer.
Table 6.2(c) summarizes the results for this experiment. Once again
¢

the computed values of k, and k, are quite stable.
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- Sweeping conclusions based solely on these three one-&imsgsionél
experiments should be avoided. However the results suggest an
encouraging cbgervation. Ab least for the one-dimensional casge and
the densities investigated, the relative constancy of the computed

values for k, and k, indicates that (6.3) provides a useful function-

1
al form for the smoothing parameter. For a glven density, values of
k, and k, can be specified such that (6.3) gives an appropriate
value of r. (It is conjectured that these values depend on the
"smoothness” of tﬁe density, a conjecture which tends to be sub-
stantiated by the éxperiznental results and by related theoretical
efforts (117, [13].) -

Unfortunately, extension of this experimedt to multiple dimen-
sions is impractical due to the multiple integrals which would have
té be evaluated repeatedly. Therefore, investigation of dimension-
ality effects will necessarily be based on classification accuracy--
discussed in Section 6.4-.rather than integral square error.

Because of the qualitative observation that naturally occurring
dats, often exhibit density functions which tend to be most like the
coginusoidal a;naity discussed above {of finite extent but smoother
1 = 0.3 and,kg = 2.0 have
been used in the pattern recognition experiments of Sections 6.4

than the triangular density), the values k

and 6.5. The results of those sections bear further on the guestion

~of the suitability of the smoothing parameter gelection.
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6.3 4 One-Dimensional Experiment for Evaluating the Mode
Discrimination Threshold

To cvbgerve the effacts of mode sa%eration on smoothing parameter
computation and density estimstion error, artificisl one-dimensional
dats sets from populsbtions with known density functions were generated,
each data get consisting of the union of two subsets identically dis-
tributed except for means symmetrically displaced positively and
negatively from zero {ses Figure 6.1). The proposed exponential
estimator was applied to each data set in two ways. First, the
artificial data set was considered to be unimodal and the smoothing
was computed based on the overall sample standard deviation. Second,
the data set was sectioned at the origin into $wo "modes" and the
smoothing was based on the sample standard deviations of the modes.
The integral square error (ISE) was computed for each estimate of
the density funection.

Let ISEL be the error resulting from cmaidieririg the data tc be
unimodal; let ISE2 be the error resulting from considering the data
to be bimodal. Define the normalized ssparation of the modes to be
the distance-b;tween the mode centers (as defined in Chapter 4)
divided by twice the radius of the ellipsoid of concentration. The
normalized geparation corresponds to the separability measure pro-
posed in Chapter 4. Figure £.2 shows, for two of the artificially
gensrated densities discussed in the preceding section, the behavior
of the ratio ISEL/ISE2 as a function of the normalized separation of

the modes. In each case the ratio rises shar§1y beyond & separation




&k

p{x)

Pigure 6.1 Synthesis of & Multimodal Dmity Function
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Figure 6.2 Relative Bstimation Error as a Function of Rormalized Mode Separation
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of about 0.8 snd exceeds unity beyond a separation slightly greater»
than 1.0. A ratio greater than unity indicstes that the error re-
sulting from the unimodal assumption is greater than the error re-
sulting from the bimodal assumption. Therefore, for the density
functions considered in this experiment, the optimal separability
threshold v, {see (4.7}) is approximately unity. Beyond this
{normalized) separation, the intramodal standard deviation apparently
provides a better measure of locel dispersion than does the overall
standard deviation.

Since the definition of ellipsoid of concentration contains an
ipherent cowmpensation for changing dimensionality, it seems reasonable
to expect that a threshold near unity mesy also be appropriate for
dimensionalities greater than one. One would like to conjecture
tﬁat the unity threshold can also be applied to more general density
forms such as those likely to cccur in real data; Computational
difficulties (principelly the evaluation of multiple integrals as
noted in the preceding section) again discourage the extension of
the gxperimentzio more general situations. However, the experiments
in the follcwiﬁ% section, using real data, tend to support the con-

Jecture that Vﬁ = 1 is & reasonable choice.

6.4 Mode Discrimination and Patiern Recogmition Experiments

An extensive geries of experiments were conduc%ed involving
geversl sets of real data in order to test the effectiveness and

practicsl utility of the methods formlated in Chapters 3 and h.
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Specifically, the goals of these experiments included:

1. Purther investigetion of the ;mde separation threshold A2
for specifying "significantly distinet® modes or clusters of data.

2. Overall evaluation of the proposed mode discrimination
sigorithm, especially itz effectlveness in partitioning data to aid
in proper smﬁéthing parameter determination.

3« FPurther verification that the proposed expression for com-
puting smoothing parameters (3.10) leads to accurate probability
density estimaticn for real dats involving a ranée of dimensionalities
and nﬁmb&s of training samples.

k., Overa..u evaluation of the probability demsity éstimtor as
a8 tool fo:l.."' application to pattern recognition.

The results tabulated in this section were obtained as follows:

1. A subset of the data {not necessarily a préper subset) was
.aelacted &8 training dats for preprocessing. , |

2. The mode discrimination algorithm proposed in Chapter 4
was é.ppiiad to the training data and smoothing parameters were com-
puted based on ;tne results. In addition to the proposed criterion
for meaguring }mode distinctness, all pairwise combinastions of data
features were plotted by computer and examined visually. Whenever
the vigual analysis raised any doubt sbout the modal analysis re-~
sults, all reasonsble possibilities were tested in the following
pattern recognition step.

3. The proposed density estimator was used for classifying the

entire set of deta {including the training data). Several



classifications of the dats wers performed, sach classificaticn using
as smocthing persmeters a different scalar multiple {smoothing para-
meter multiplier) of the smoothing matrix determined in step 2.

k. For comperison, the data were classified by the Gaussian
msximum likelihood criterion, using the traiming samples to estimate
the class mean vectors and covariance matrices.

Equel & priori class probebilities were sssumed for all of the
pattern recognition experiments.

Three distinct sets of data were used (identified as data set
“A", data set "B", and data set "360"), from which 22 sets of experi-
ments were composed, 53 experiments in &lla* Each set of axperiments
differed in scme cosmbinstion of the date set, the number of features,
and the number of date semples used for training. Each experiment
;ithin a set differed in the number of modes used er one or more
cleassea in the classificstions. The results ofgthe experiments,
listed in Tables 6.3, 6.4, and 6.5 are. interpreted below in terms of
the experimentsal goale.

*?he original date consisted of reflectance measurements on plant
leaves, made by mesns of a Beckman IK-24 spectroreflectometer over
the spectral range 0.26 u to 2.60 4 in increments of 0.0l u (see
"Remote multispectral sensing in sgricultuve,” vol. 2, Lab. for
Agricultural Bemote Sensing, Purdue University, Lafayette, Ind.,
July 1967.). For the experiments described here, the data were
preproceased by averaging over nine segments of the spectral range
in order to simulate the output of an sirborne multispectral
scanner. Rach of the nine pattern features corresponds to one of
the spectral segments, which were typically (in microms):

50 « 052; '52 “ '55; 055 w ¢§8; -58 - e6‘2; 062‘3 0665 o66»" -72;
ﬂ72 - &80; 080 - 10@; 145 - 1«3.




Table 6.3 Results for "A" Data'

No. Training

No. Modes

Ko. Correct

Total %

Mode Separation

Features | Sanples/Class | ia Class 59}?’6* at Bopt Correct Indices
1 4 1 2 A 2 at &Gp " vl ¥
4.8 a7 108 2 2 1.25 85 97 88.8 LA 1,88
L,8 97 108 1 1 1,00 86 95 88.3 - -
2,4,6,8 a7 108 2 2 0,50 oh 102 Q5.6 1.3% 2.29
&k, 6,0 7 108 1 ] 0,50 91 102 Gig, L - -
h,8 B 26 2 1.25 81 95 85.8 A0 0.7
L,8 sh 26 2 1 1.75 81 96 £6.3 1.10 -
4,8 oy 26 1 1 1.00 84 95 87.3 - -
2,4,6,58 2L 26 2 -2 1.00 91 o4 90.2 1.3k 1,08
2,k4,6,8 2h 26 2 1 0.60 88 95 89.3 1.34 -
2,4,6,8 oh 26 1 1 0.40 86 ok 87.8 - -
4,8 2k B¢ 2 2 - 1.50 8 99 89.3 1.10  1.7b
kL8 o 80 1 2 1.25 g2 98 87.8 - 1,74
4,8 2 8o 1 1 1.50 82 100 88.8 - -
6 ve 26 e 2 1.00 83 95 86.8 1.07  0.71
4,8 72 26 2 1 1.75% 82 96 86.8 1.07 -
4,8 e 26 1 1 1.25 82 93 85.4 - -
2,4,6,8 ey 80 2 2 0.60 86 102 Q1.7 1.3 2,09
2,4,6,8 2L 80 1 1 0.50 82 103 30.2 - -




Teble 6.3 cont.

~

He. Training Ho, Modeg Ho. Correct Total % Mode Separation
< 4 g *
Feabures Semples/Clags in Clsass & at B Correct Indices

oph oph

“ 4 2
1 2 1 2 1 2 al ; ¢
| Bt 1 Y1 Yo

~ o3 o - g ‘ -
2,4,6,8 e 26 2 2 0,90 89 96 90,2 1.25 1.06
oy £ TRy ., - -
2,4,6,8 78 26 2 1 $5.20 g1 93 89.8 1.25 -
Lo T ] By Y & " ¢
ﬂ—%,‘ﬁ'}tﬂ’g {?(ﬁ\. -..Ea.) l -}n }»a(.)@ \g‘:} :’;{) EE’}@?} had -
1 thru @ o7 bl 2 0.50 93 10k 96,1 1.0 2,56
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+ Class 1: 97 samples of soybeans: class 2: 108 samples of corn.
* Bmootl:ing parameter multiplier giving best recognition results (see text).
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Teble 6.4 Results for "8" Datsa

Ho. Traioing

Ho. Modes

HNo. Correct

Total %

Mode Sepsration

Feabwrses Samples/Ciass in Class opt at ggpt Correct Indices
1 “ 12 T2 ab %O§€ Y, \
4.8 100 100 2 e 1.00 88 86 87.0 0.75 0,81
§,8 100 100 1 1 1.0% &7 &7 a7.¢0 - B
2,4,6,8 100 100 2 2 0.75 8¢ 8z 85,5 0.81  0.76
2,u4,6,8 100 100 1 1 1.00 91 80 85.5 - -
4,8 2k 2k 2 2 1.00 88 B85 86.5 G 0073
4,8 a2y 2k 1 1 0.70 g 85 87.0 -
2,4,6,8 2k 2k 2 2 1.00 87 85 86.0 0.65 0,5%
2,4,6,8 2 2k 1-1 0.40 87 Bé 86.5 - -
o b,8 24 Th 2 2 0.75 80 90 85.0 0.74  0.60
4,8 2h  7h 1 1 1,50 81 89 85.0 - =
4,8 Thoo2h 2 2 1.00 g2 83 87.5 0.70  0.73
4,8 7h 2k 1 1 0.75 gz 81 86.5 o -
2,4,6,8 ok Th 2 2 2.00 8s 87 86.0 0.69  0.67
2,4,6,8 2 7k 1 1 0.70 81 90 85.5 - -
2,4,6,8 Th 24 2 2 0.80 gl 76 85.0 0.77 0.53
2,4,6,8 Th 2k 1 1 0.80 95 75 85.0 - -




Table 6.4, oont.

No. Training

No. Modes

¥o. Correct

Total %

Mode Separabtion

Features Samples/Class in Class opt at ﬁsﬂt Correct Indices
gy S =
102 12 102 at 9 Y Y.
Y gpt 1 2
1 thru g 160 100 2 o o 3(:} 82@ % ;»:38«') L0 0.8 O, 70
1 thru 9 100 100 11 .35 90 81 85,5 - -
i 3, 3 ¢ {8el o ~ s -~ g™
1 thru § 2y 2h 2 2 60 86 8By 56,5 0,80 0.59
Lothro @ 2h 2h 1 1 50 S0 8L 87.0 - -

+ Class L: 100 gemples of oats: clags 2:

* Smoothing parameter multiplier giving best recognition results (see text).

100 samples of wheat.
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Table £.5% Results for "360" Data

Number of Training ! No. Medes humber Correct | Total ¢ | Mode Separation
Features| Gamples/Class in Class 8, pth at Bopt Correct Indices’
CSHIF Y]

L2 3 L {12 3 & i 2 3 b jat Spt | Y1 Yo Y3 ¥y

2,8 b5 106 105 10k j2 o2 2 3 .00t ke 96 83 103 G, 0 LG37 W87 1.52 1.23
2,8 b5 106 105 1ok f1 o1 o2 3 1L.O0E B3 g5 82 103 89,7 - - 1,62 1.23

2.8 45 106 105 1obh L1 o1 o1 3 D751 43 99 77 98 88.1 - - - -
2,,6,8 TR J06 105 i0h 12 1 2 3 1.001 U3 106 oh 100 G5, % 96~ 1,35 1,29
2,4,6,8 [ k5 106 105 10k 11 1 2 3 1.00f 4 105 97 9B 95,6 - - 1,35 1.29]

2,6,6,8 T hs 106 105 104 f1 o1 01 01 0,501 k2 105 96 9z 9341 - - - -
2,8 33 069 26 5112 2 2 3| l.esihk2 97 85 95; 88.6 | .88 .84 1.38 1.17
2,8 33 69 26 51 j2 o1 o2 3 .30t N1 97 85 oh 83,1 L8 - 1.38 1.17
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+ Class L U% sanples of soybeans: class 2 106 samples of corn; class %: 105 samples of oabs;
class 4: 104 semples of wheab.

Smeoothing parsmeter nultiplier giving best recognition results (see text),

L where a class has more than 2 modes, the value given ig the minimum intermode index,
t 3
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6.4.1 Mode Seperstion Threshold

Tehles 6.6 and 5.7 summarize the results in terms of the rels-
tionships observed hetween mode sepsration and clagsificsition per-
formance. In thess tables, s combination of the subcomss of two
experiments within a set was counted s "admissivle™ if applying the
mode discrimination technigue with the specified threshold indiceted
pubdivision of data wodes whern and ounly when such subdivisien yielded
improved patiern recognition performance; otherwlse the combination
was counted ag “inadmissible”. {(In e fow cases, combinations involved
more than one difference in mode configuration with obgerved
geparation indices straddling the tareshold valus. BSuch cages were
counted "not applicable”.)

It is clesr from Tables 6.%, &.b, and 6.5 that a threshold
v;&ua somewiere near v, - 1 iz suitsble. Tabls 6.6 gives a more
detsiled breskdown for velues near unity. a1thquh the classifica-
tion resulis wers fairly insensgitive fe¢ the prescise threshold valiue,
Y.

+
experimental resuits support the outcome of the artificial date

= L0 produced the best performance by & snarrow smrgin. Thesse

experiment reporbed sariier. As ghown in Table 6.7, applying

Y, = 1.00 to each set of experiments {rather than to all combinations
of experiments within setz) indicates that modsl analysis produced
admiseible results for 82 percent of the data sets. {(Twelve of the
data szets were analyzed as containing one or more multimodeld classes,
10 ae containing gxciasiVﬁly urdmodal classes based un the mode dig-

erimingtion technique.}



Table 6.6 Mode Distinctness Thresholding Nesr v, =1

t

Threshold Cases Admissible / Inadmissible (Not Applicable) Percent
Yy A" Data "B" Data "360" Dats Ovérm Admigsible
0.80 10/% (0) 5/2 {3) 5/2 (0} 20/8 (3) 7L
0.85 10/% {0) 7 8/2 (0) 4/3 (0) 22/9 (0) 71
0.90 10/L (0} 8/2 (0) iz (1) 22/8 (1) 73
1,00 16/4 (0) 8/2 (o) 5/2 () 23/8 (0} Th
1.10 8/6 (0)  8/2 (0) 5/2 (0) 21/10 (0) 68
1,15 7/6 {1) 8/2 (0) 5/2 (0} 20/10 (1) &7

ko ) )
(No. Admissible/Wo. Applicable) x 1

Table 6.7 Overall Performance for Mode Discrimination (v, =1)

Sets Admissible / Inadmissible Percent
"A" Dats "" pata "360" Data Overall | Admissible
7/2 8/ 3/0 18/4 82

ol



6.4.2 Overall Evaluation of the Mode Discriminstion Technigque

The proposed mode discrimination ?echniquﬁ has proven admirably
suited to the task for whiech i was intended. The experimental re-
sults indicste that it does indeed structure the dats so ss to avoid
gross smoothing errvorg due to variances exsggerated by muliimodal
dats structure. From a wractical viewpoint, the algorithm is quite
fast due to the relatively simple compuistions involved and converges
rapidly to the finsl result.

It might be mentioned here that graphicsl computer output can
be of considerable value in this type of patiérn processing. The
progran uzed in the exgerimental system produces plots of the date
by pairs of features. These plotz help reassure the user that a
desirable dats structuring (modal analysis) is in fact achieved.
éithgagh it may not be practical to print all pairwise feature plots
when the number of features iz large, a samgliag_cf guch plots is
still helpful; and the avallability of & CRT graphics facility would
meke poassible the on-line exsmination of g very larze number of such

dignlays.

6.5.3 Patbern Recognition Accurscy snd Smoothing Paramater Selection
Baged on patiers recognition scouracy as & standard, the pro-
posed deneity estimstion mesthod mey be considered successful. As
shown in Table &.8, the recognition accuracy achieved by the exponen-
tial estimator [with prior modal anelysis) was bebter for 13 of 22
geta of dats thar the sccuracy produced by the pﬁi;meﬁrie assumption

of Gausslianly disiributed deta. The performance for the two
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Table 6.9 Performence Comparigon for the Exponential

Honber of Honparamebric| Parametric [ Nonparametric

Fegbures Training Resulis Results Advantage
Semples/Class | {7 Correct) !{% Correct) (%)

pe N

e

e P b

5.8 97,108 a8.8 88.3 +0.5

2,4,6,8 97,108 95,6 g%, 1 +0.5
4,8 2k 26 87.3 §7.3 -
2,4,6,8 24 25 0.2 53,2 =3.0
L,B 24,80 89.3 87.8 1.5
k.8 72,26 86.8 88.3 =15
2,4,6,8 28,80 9L.7 ol 6 1.9

4,8 100,100 &7.0 85,0 42,0
2,4,6,8 100,500 85,5 8,5 +1.0
8 o4, 2k 87.0 85.0 2.0
2,4,6,8 2k, oh 86.5 6.5 -
4,8 2h,27 85,0 8.5 -0.5
5.8 7h 2k Br.5 86.0 +1.5
2,4,6,8 24,74 86.0 B5.5 o5
2,4,6,8 7is, 2l 5.0 81,5 +3.5
10 100,100 Be.5 91. 640
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approaches was the same for two additional gets and better for the
paramet=ic aszumpiion for the rem&iﬁiﬂg 7 sets. Enteresﬁiagly; five
of the latter seven ceses involved the "4" data, which happened fo
have the most highly correlisted features. The Jaussian assumption
has the a&blility to uee corvelation information, inherent in the
computation of the covariance matrix. The smocthing paramgﬁers
utilizﬁ&’hy the proposed density estimstion technigue do not account
for corrslation of feabures, and the experimenial results suggest
the value of extending the method to sccomplisk this. Such an
extension ig theoretically strsightforward {a generalized form of
smoothing matrix is required), but of courze would entail increasing
the computational and storage requirements of the method.

Apparently the proposed functionel form for the smoothing para-
m;terg does provide a useful estimate of opbimsl smoothing, ss
evidenced by the recognition results and the re@gtively nerrow range
ne&yr unity obgerved for the optimal smoobhing p&raméter multiplier.
The 5% experiments involved ranges of from 2 to § features and 24
to 106 pa%ﬁarn% par class, yet there does not ssem to be any con-
sigtent trend in the optimal smoothing psrameter multipliers that
would suggest an essential insufficiency in the proposed féﬁztiaaal
form. Alse, the wvalues for kl and xz gelected as a regsull of the
artificial data sxperiment described in Section 6.2 appear to have

been sdeguste for all of the real dats gtudied.
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6.5 Performance of the Polynomisl Avproximation

h

Bioure £.3 ghows a typicael plot aw recoguition performance for

& function of the swoothing mulfiplier & {the approwimation is a 7ih

degrees polynomialj). As seen sarlier, the performance of the expo-

nentisl estimator Stops out near & = 1. In the case shown, the poly-

nomial could not accurstely approximste all of the detail contained

in the exponential est + B = 1. But by sllawiag & gomewhat

t:“"
fcfar
B
gt
&
¥
frdy,
&
2

greater degree of smockhing, the performsncs of the spproximation
for this case could be browht up to & level falrly cisse to that
achieved by the exponentiel sstimstor. The sacrifice in accuracy is
compensated by the improvement in classifier gpeed and reduced
storage regulremsnts. The expopantisl estimstor required 100 storage
lﬁcatieun for the training patterns (2 classes, 2 features, 25 train-
ing ssmples) and 9.7 seconds to clagsify 150 patierns. The poly-
nowial approximetion required 72 gtorage locations (36 coefficients
for esch of 2 ciassgs} and only 5.4 seconds to classify the same 150
patterns (comparable figures for 200 treining patbterns, 200 petterns
classified.areﬁ 8O0 storage locations, 41.3 seconds versus 72
storage locations, &.h &encnﬁs}a*
Bobice that for s certein range of smoothing perameters, the
performance of the polynomial ayproximstion sppears to be better than

that of the exposentisl sstimstor. This ancmmly is explained by

*ﬁhese figures ars of course machine and progrsa: dependent. They are
intended only to give some ides of the relative efficiences involved.
The computer used in thiz experiment was an IBM System/360 Model hb
and the classifiers ware programeed in FORTRAN.
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iaagiﬁg’aﬁ & plot of the data {Figure &.4) and checking the magni-
tudes of the density sstimsies as computed by the two methods. It
happens that the "superior”™ performance of the approximation results
from the unrelisble behavior of the spproximation at large distances
from the origin of the feaiure gpsce. Claselification by the two
mebhods wasg &lﬁﬁﬁ% identicsl near the origin, bul the approximation

*sutliers™ in one clasas correct-

coincidentally clasgified s number of
ly {thers were no training smmples frvom either class in the region in
which this occcurrad), thereby accounbting for most of the apparvent

differance in performance. Assuming the variocus parsagiers have been

sultably chosen {polynosmisl degree, smocthing multiplier, feature

spuce origin), this sort of hehavior can be expected to occur only
in reglons assoclated with very low probsbilities and thereby should
h;we relatively insignificent effect on the ovsrall performance of
the classifier. .

The effect of origln placement is further demonstirated by the
regults shown in Table £.9. Specht [8] suggzested that the origin
should be 3hifﬁéﬁ-t@ the average of the means of the clesges. It is
alesr, however, that the relstive Uspersions of the clssses must be
taken intc account 1if the origin iz o be located nesr the decision
boundsry. Experience has shown that further sdvantages are obtained
by explicitly taking account of the multimodal struecture of the dats
if i§ ig svallsble. Therefors, the clasgifier has baen grﬁgﬁammeé Lo
ghift the erigin to a dispesrsion-welghted wgan of modes, compubed az

follows. Let m{i,i,k) and s{i,j,k} be respectively the sample mean
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Table €.9

T,
BfL

=

scty of Origin Location

Arproyimetion

Performance (% Correct) for

Approximation

noothing | Exponendial with Compubed  with Visuvally

Multiplier ! Estimator Origin Shift  Adjusted Origin
.75 86.5 38.0 68.5
1, 87.0 54,5 70,5
1.25% 86.0 56.5 73.0
1.50 85.0 64,5 7h.5
1.75 85.0 72.0 80.5
2.00 85,5 74,0 8h.5
2.25 85.5 78.0 85.0
2.50 86.5 795 85.5
275 86.5 82,0 82.0
3.00 85.0 8z.5 80,0
3.25 85.0 83.0- 79.5
3.50 82.5 82.5 . 78.5
" 1 &

4. 00 78.5 78.5 Th.5

k.25 78.0 78.5 The5

b, 50 79.0 79.0 76.0

hys ] 760 76.0 74,0

5,00 Ti.5 72.5 70.0
# on dats set "B": Peatures 4,8; 100 training samples per
class; 1 mode per cless: training patterans included in

‘best setb.




£
and sample standard deviation of the k“h component of the jth mode

Py
center associated with the iﬁh pattern class. The k“h compeonent of

the shifted origin is given by (assume K classes, n, modes in the

1" class): K
i
< < .. .
A: ZJ S(I;J;k) m(l’35k}
L 1=k J=1
1
D r\“"' ,
2‘ ; 8(3,3,k)
i=1 j=1

Equation (6.8) has produced nearly optimal results in most of
the cases tried, but further improvement is sometimes possible.
Figure 6.5 shows the computed origin and & visually adjusted origin
suparimposed on & plot of the results obtained for the visually
adjusted case. The visually selected origin was gimply chosen to lie
in a region both densely occupied by patterns and very near the appar-
ent decision boundary resulting from the exponentisl estimator. As
a result of the visual adjustment, the quality of the approximation
in this region improved and, with the use of & smaller smoothing
multiplier, the obtainable recognition performsnce improved by a
few percent.

The sort of origin adjustment performed above, based on the
actual classification results, could be done automatically by a
suitable algorithm designed to seek regions of maximum error density.

Finally, Table 6.10 illustrates the behavior of the polynomial
approximation with variations in the degree of the polynomial used.

The table illustrates several interesting peinis in addition to those
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Teble 6.10 Approximation Performance &s a Function of Polynomial Degree

Performance (% Correct) for
Smoothing Exponential Polynomisl Approximation of Degree
Multiplier Estimator 7 & 5 i 3 2
0.5 " 80.6
1.0 84,2 69.0  7LO0 76,8 46.h 37.h 7003
2.0 83.2 778 3.5 TT.% 0 76,8  Th.2 82,6
3.0 81.9 81.3 81.9 78.7 Th.2 80,6 82.6
b0 80.6 83,2 Bo.6 80.0 78.7 81.9  8L.9
5.0 The2 76.8 Th.2 Th.2 76.1 78.1 78.1
6.0 9.7 T2.3 69.7 69.7 TL.6 Te.G 1.6
7.0 60.6 61.3 61.3 60.6 63.2 65.2  65.2
8.0 58.1 _5301 58,1 58.1 61.3 61.3 60.6
9.0 55.5 55.5 553 55.5 57.h 955 58.1
16.0 53.5 235 53.5 53.5 5h.2 52.9 55.5

* on data set "A"; featuves 2,8; 24 training patterns for class 1, 26 for

class 25

1 mode per class:

test set exclusive of training patterus.
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- salready mentioned above. Rotice first that the polynomials of degree
5, 6, and 7 converge at such & rate with increasing smoothing that
the patiern recognition resulte for & > 8.0 are identical with the
resgults produced by the exponentisl estimator. For polynomial degree
smaller than 5, even & smoothing multiplier egual to 10 iz insuffi-
cient to produce identical results. Surprising perhaps is the re-
latively good performance achieved by the lower degree polynomials
for smaller values of & (the upper right portion of the table). This
doea not indicate that good ayproximstions to the sxponential estimat-
or have been achieved bul rather that some lower order decision sur-
faces have been found capsble of giving the indicated lavels of per-
formance. It is not sltogether & coincidence thet the optimum per-
formence for the 2nd degree polynomial is 82.6 percent: This is
;sx&ctly the performance produced for this data by the psrametric

- clagsifier sssuming Gauszianly digtributed dataf which of course
produces & decision surface of degree 2. But the table also shows
that the poorer spproximation cannot be dapended on to achleve
good results, gpm:icms.y for small smoocthing parameters: Notice
the fl&ctmti;g. performance in the extreme upper right portion of the
teble, which results from the unprediciable behsvior of the approxi-

- mation when the approxismstion error is large.

6.6 Summary
| It has been demonstrated that the proposed nonparametric approach
for estimating probability density functienz based on training samples

can be pmfit&bly applied to patiern recognition problems involving




complex decision boundaries. The mode discriminstion algorithm has
proven & successful and efficient method for partitioning multimodal
data 80 as to obtain the proper smoothing para@aﬁers for the ex-
ponential estimator. Investigation of the effects of mode separation
on estlmwation error aud pattern recognition performance hué shown
that y, = 1.0 is & nearly optimal mode dlstinctness threshold for

& majority of cuases.

. The experimental evidence further indicates that the functional
form suggested for the dsta-specific smoothing parameters can be
sxpected to produce a useful estimate of the optimal smocthing for
resl data. The paraseters k, and k, sssociated with the functional
form have been estimated by means of sxperiments with one-dimensional
artificial date and the resulting values have proven setisfactory for
use with real multidimensional dsts. ‘ -

The exponentisl estimator cannot be used ipdiscriminantly,
nowever. Its performance on dete with highly correlated features is
certainly less than optimal, a problem which aight be alla#iateé by
further gener;i.lizing the smoothing procedure. The most serious dis-
advantage of ghe exponential estimstor, however, is the requirement
that the entire set of training samples be saved and used in éompu-
tations for each classification to be performed. The resulling memory
regquirements and computetion times mey be intolerably excessive in
cage of large training zete. This 4ifficulty can be six;gumvented to
an extent by using & polynomial approximmtion of the agtimtort

 $till, considerable effort is required in implementing ihe
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approximation to ensure minimal memory and computation requirements

and maximal pattern recognition accuracy.




CBAPTER 7
THE LINGUISTIC APPROACH TO PATTERN RECOGNITION:
IRTRODUCTION

As noted in Chapter 1, the goal of the linguistic spproach to
pettern recognition is o wake effective use of the methodologlies of
formal langusge theory for the purpose of analywing complex or
essentinlly nonnumeric types of patterns. While not conceptually
novel (pattern recognition techniques with a flavor of the linguistic
spproach predate this rapert by over ten years [311]), this appﬁ'oach
has only recently begun to receive seriocus attention. The surface
has been scratched sufficiently to suggest possible practical value
of the linguistic approach (see, for example, [;2}, 337},

Much of the work in this srea to date has been directed toward
dasg_:ribing p&?zem of interest by means of grammars, the basic con-
structs of li%aistica: Relatively little attention has been given
to the complimentary sspect of the problem, the syntactic {structural)
anslyeis of linguistic representstions of patterns; and the work
vhich has been directed towerd analysis has clearly demonstrated how
indivisible the two aspects of the problem really are: effective
pattem analysis depends critically on effective pattern representa-
tion. Of course; this iz hardly a mrpriﬁng devélopmnt congidering

past experience in pettern recognition research.
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The primary emphasis in Chapters 7, 8, and § of this report ig
on the syntactic analysis of peiterns, although as suggested above,
it is impossible Lo ignore the linguistic description of patiarns.
The new material iz necessarily very basic, an attempt to lay a
foundation for further work in an srea in which much remains o be
done pefore pfacticai operstional systsms can be realized. The
remainder of this chapter consists of an introduction to some of
the basic definitionz of formal linguistlics and an overview of the
state-of-the-art in linguistic pettern recogniiion. Chapter 8 con.
siders some relstionships between grammers and sutomata which suggest
the use of asutomsata as relstively simple recognizers for the languages
generated by gf&ﬁmsrs. A& proebabilistic generslizstion of these re-
lationships is sleo studied, and some resulte concerning the cap-
;hilitias and limitations of sutomaton recognizers are developed.

Chepler G proposes the application of programmed grammars to

linguistic pattern recognition. The programsed grammar ig & relatively
sew linguistic formalism which iz at once powerful (in terme of the
class of l&nggégas genersted) and comvenient to use. Algorithms

are developed for gemerating and anslysing langvazes in terams of

which may be especially suitsble for desling with disterted or noisy

s, and & probabllistic generalization iz developad
&

pattern date.

7ol  Scome Basic Concepbs of Formal Linguistice

This section presents gome of the definitions and terminology

of formal language theory which will be used axtensively throughout
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’
the balance of the réepert. Additional msterial of this nature will
be iatroduced as needed.
ﬁ‘xe central ides of formal langusge theory is the generation and
anslysis of the strings (or sentences} of langusges in terme of

grammars, typically phrase-structure grammars.

Definition 7.i: A phrase-structure grammar iz & k.tuple

GU(VE;V,?,S\)

¥, is & Pindte set of nonterminals {or variables),

.
?? is & Tinite sa*%* of terminals .

Piz a ﬁmta set of productions {or rewriting rulea},

8 € V is tha start ﬁ?ﬁhu&. {or sentencs symbol).

' The yréductim heve the genersl form y = &, where Y and & are strings
over V§ UVTQ The symwbol "=" is read "is rewritten as” or "is re-
placed ﬁy“; %

If‘é’ is any set of symbols, V+ denctes the set of all strings
com;sfing of fynsbala in V; V denctes the set V' + {1}, where A
is the' emply s#rinm
| ﬁ Let Yy and \Z be two strings from V, U'? . ‘Then Vi%‘{*

. d«nﬁtes tﬁat 71 ig derived from Y5 by the application of & aing‘.;e
production, wherass ?irez%» ¥ f danotes that Vg is derived from Y;s by

the application of & sequence of productions (=== is therefore a

#
special cage of === }.



Pefinition 7.2: ILet G be z phrase-siruchbure gramesar. The

language genersted by G, dewoted L{G}, is defined to be the set of all

terminal stringe geserated by G 1.8

L{G) « {x|x €V, and g==p x}.

Any string generated by & gremmar is called s sentential form

(s terminal strizg is & special case). If ¥ is a sentential form,

|v:| denotes the length of ¥, i.e., the number of symbols in y.

Definition 7.3: Iet G be & phrase-siructure grammar, with
productiong of the form v = &:
{a) If no additional restrictiong are placed on the productions,

then G is an unrestricted (type 0) grammar.

(v} If all of the productions satisfy the additional constraint

lvyl<la|, then G is a context-sensitive {(type 1) g
= grammsr

(e} If all of the productions satisfy the gonstraints N
pe *
y €Vgand 8 €V, UV,
{the left-Hand gide is & single nonterminel and the right-hand side

is & nonempty atring), then G is & context-Tree (type 2) grammr.

{d) If all of the productions have the form
# A-aBor A=-s

vhere A, B & ?ﬁ and 8 £ %’?, then ¢ ig & Tinite-state {(regular or

type 3) gremmer.

Yone term "context-sensitive® arises from the fact that typiaé::. pro-

ductions in & conmtext-sensitive grammar may bave the form y Ay, =
¥1YzYos guch & production beling ag;y}ica%lp to A € ?R only when it
appogrg in the context ¥y Ay, (‘vl, ¥ é{vﬁ utfz:;),
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A langusge which can be generated by & Tinite-gtete grammar is
called & finite-state language; conbexit-fres, eantex£ sensitive, and
unrestricted langusges are zimilsrly défineda fha tyﬁés of langusges
form a hierarchy in the sense that: If L is a Tinite-state language,
it is conmtext-free; if L ig contexi-free, it is context-sensitive;
if L is context-senaitive, it is unresiricted. In other words, the
class of type 1 gramuars generates a more general clasgs of languages
than does the class of type J grammsrs for 1 < j {the type i grammars
sre said to be "more powerful" thes the type ; grammars).

Throughott this and the following chapters, the térm "gremmar"
will mean phrase-structure grammsr uniess cotherwise specifically
qualified. "Conventional gremmsr” will refer to grammars such as
those discussed in ﬁhiﬁ section and Chapﬁer 8 as differentiated from
%hs programmed grammars of Chepter O (programmed grammars are also
phrase-giructure grommars, however).

A structursl descripvion of the s;ringsrsf;a langusge in terms

of & grammar is called a syntax of the language; the process of

analyzing a string in terms of & grammar Is called gyntactic snalysis
or parsing.
In formal lengusge theory, the only relstion between the symbols

in & sentential forts iz concabtenstion, the Juxtaposition of adjacent

syebole. It will be seen in the next sechbion that an important point
involved in edapting the technigues of formal langusge Lheory to
pattern afinlysic is the generalization of this simple notion to

inelude other relationships snd mﬁchanizaﬁion of the resulting




considerably more generel formalism in a sysiematic wey as hasz been

done for formel "string” langusges and,grms.

T2 Idterature Review

This section containe a brief look at past developments in the
linguistic approach to pattern recognition and an evaluation of the
gtate-of-the-art. A more extensive trestment may be found in &

review paper by Fu and Swain (3]

'{aé.;.v Iinguistic Pattern Primitives

The firet step in formulating & linguistic model for pattern
;mlysis is the detemiz‘:&ticn of o get of ;rimtivesbi‘;x‘ te;'ms of which

the dsi:p. of interest may be described. This is largely influenced

b\yﬁb_l;a nature of the date, the specific spplication in question, and
the technology available for implementing the analysis. The primitives
st prwide an sdequete description of the dats, i.e., the primitive
descriptions of patterns from different classes must be distinguish-
sble by whatever method is to be spplied to analyze the descriptions.
In gddition tai:_this obvious reguirement, the primitive descriptions
must be readily obtainable from the raw data and must be compact
mugh go as not to overtsx the memory and processing capacities of
the spalysis system. In many instances thase are conflicting re-
guirements, and 1% may be necessary to find sn acceptable trade-off
among them.

Most of the approaches to the primitive selection problem may

be grouped roughly ss follows: general methods emphasizing




boundaries, general methods emphasizing regions, and special methodsg
vhich teke advantage of the peculiarities of specific applications. 4
set of primitives commonly used to describe tﬁo-dimensional boundarigs
is the chain code due to Freeman [35]. Under this scheme, a rectangys-
lar grid 1s overlaid on the two-dimensionél pattern and straight lisg
segments are ugsed to connewt the grid points falling closest to the
pattern (Figure 7.1). Each line segment is assigned an octal digit
according to its slope. The pattern is thus represented by a
(poseivly multiply connected) chain or chains of octal digits. Thig
coding scheme has some useful properties. For example, patterns

coded in this way can be rotated through multiples of 45 degrees
simply by adding an octal digit (modulo 8) to every digit in the cheia
(although only rotations by multiples of 90 degrees can be accomplishes
w&thout some distorﬁion of the pattern). Other simple m&nipulationg
bauch as enlargement, measurement of curvé"lengtﬁ; and determination

of pattern self-intersections are easily carried out. Any desired
degree of‘renolution can be obtained by adjusting the finenéss of the
grid imposed on the patterns. This method is not limited to closed
boundaries; it'can Sé used for coding arbitrary two-dimengional -
figures composed of straight or curved lines and line segments.

A notable application of Freeman's chain code iz the wark by
Knoke and Wiley [36], which is an attempt to apply linguistic pattgzp
analysis to hand-printed letters. After preprocessing of a CET~1Q§§§
pattern to obtain a Freeman-code description of the pattern, they Bee

2 "transformstionsal grammar” to smooth the pattern. The result of
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this step is & description of the psttern in terms of & 1ist of
vertex interconnections and the 3ha§es’of the corresponding connect-
ing arcs, constituting s sentence in the pattern lsnguage (Figure 7.2).
The sentence is then checked egainst e dictionary of prototypes and
"recognized” if & match is found. Perhaps the wost serious dis-
advantage of their approach, at least from a practical point of view,
is the use of a dictionary to sbors analyais prototypes for matching
with unknowne. This sort of approach ("template metching®) normally
exhibvits poor generalization capability (the ability to recognize
patterns which vary slightly from ihe prototypes} and/or requires
impractical amounts of memory o store an adeguate dictionary. Al-
though the system uses o grammar for reducing the raw patiern to a
wore refined syntactic degeription, the syntactics play no axplicit
réle in ths actual classification procﬁénre. It will be seen later
that the pattern syﬁt%ctiés can be very asaf&i‘i§ the lztter respect.
A set of primitives for encoding geometric patterns in terms of
regions has %éen proposed by Peviidiz (377, In this case, the basic
primjitives afefhalfplanas in two-dimensional pattern space {this could
be generalized ﬁo helfapeces of mﬁlﬁi&i&ﬁﬁgiOﬁ#l pattern space). Any
polygon may Se interpreted as the uniok of a finite number of convex
polygons, and each convex polygon coin in twm be interpreted as the
intersection of & finite number of halfplanss. By defining & suitable
ordering on the convex polygons composing the arbitrary polygon, it is
posaible to determine & uwnlgue minimel set of mavimel (in an appropri-

ate sense) polygons, called primarv supseits, the union of which is the




Preprocessed Input

Relative Initial Terminal
Arc-Shape Direction Vertex Vertex

Phrase 1 LIN 8] A B
Parage 2 LIN 2 B ¢
Phrase 3 CURL & C B
Phrase 4 1IN 7 D c
B QG o c
A | D
"Parsed" Input

Figure 7.2 Parse of a Chain-BEncoded Pattern [36]




given polygon. Faviidis® spproach provides a formalism for describing
the syntax of polygonal figures and more general figures which can be
approximaeted reasonsbly well by polygonal figureas. However, his
analysis procedures reguire the &efﬁﬁition of suitsble measures of
similarity between polygons. The similarity measures he hag considered
are guite ﬂangitive to noise in the patterns and some sre very diffi-
cult to implement practically on a digital camputer.

Rosenfeld and Strong [38] heve developed an approsch which is
applicable when the syntactics involve the relstionships of regions
but do not explicitly imvolve thelir ghapes. The patternvgr;mitives
are reglons bounded by simple closad curves. A hierarahy/of syntactic
types 1a based on the contsinment of regions by other regliong. The
- cantginmenﬁnan& adjacency relations of regiong are expressed in Lerms
of & special grsph which can be syntactically analyzsd by & new graph-
grewmatical formalism called s web grammar (discussed lster in this
section}. The generality of this approach is attractive; its practi-
cal appiicability remsing 4o be desonstrated. |

Some iﬁtér@&ting but much less general examples of selections
of pattern primitives may be found in [%27, [39], and {4@?6>

Une agpect which most of the approaches to linguistic pattern
recogniticn share is & concern wilh the reduction of the pattern to
be analyzed to sowwe sort of sitring representation. This lg partly
due to the relative esse with which string re@rasgntations can be
handled, btﬁ: it may also be stiributed to & degire to teke advantage

of the existing resuits in formal language theory, since to use




thege resultz it is necessary sither to develop effective methods

to accomplish the reduction of patiterng to strings of concatenated
primitives or to extend the existing theory to imclude syntactic re-
latlons more gensral than concatenstion. Thae former hes to date been
the mest common approach. OUne effort to formulsie generalized syn-
tactic relations hag recently been underteksn by Anderson 817 for
the syntactic analysis of handwriiten mathemstical axpraasions.

Anderson has proposed an entity called a syntectic unit as the multi-

dimenaional smalog of the one-dimensionsl syntactlic variasble (he
defines both terminal and non-terminal syntactic unita). A syntactic
unit is a subscripbed verisbls, say Ap’ where A ig the name of the
unit and p is an ordered get of coordinates specifying the location
of the subpstiern named A in the pettern space. A pattern desoribed
a# & 1list of gyntactic units differs in a very fundsmentsal way fron
the conventicnal string: Since each syntactic ugit containsg its own
loceation informstion, the position of the unibt in the list no longer
hag an& perticular significance. This gives considerably more flexi-
bility and pnwa% to the corresponding grasmars than one might expect.
Narusimban, ove of the plonsers of the linguistic approach to
pattern recognition, has developed n technigus which seems fundament-
ally different from those mentioned thus far: +%he paralliel processing
of entire digital picture arrays (427 - (457, Under this picture-~
processing formalism, entire pichbure arreye are trested ag operands
of»picture»procea&iﬁg cperations which produce s new piclure array

a8 & resuliant. Pictures can thug serve &g syntasiic primitives and
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higher order syntactic constructs as well. Near the top of the
hierarchy, however, the syntactic slementsg are very much like
Angerson's syntectic units; esch congtruct congisting of & name and
an atbribute list {see especially [437). Interestingly, Pfaltz and
Rosenfeld {ké} have noted that many (perhaps most) useful picture
transforestions which have been defined under parailel processing
formslisms iavolve local cpar&tiana'(i.&~, functions which define &
value for each elesment in the new plciure in terms of the values of
the correaponding element and e small get of its neighbors in the
original picture), snd they have proven thet parallel procesaing of
this sort is compmistionslly eguivalent to seguential processing.
In other words, every local parellel processing function can be
gccauplished by local sequential processing, and vice versa. What
: is perhaps wost suwrprising is that seguential processors can be
significantly more efficient im terms of the tokal number of
operations involved (the number of points times the number of
operations per point) than perallsl procsssors in performing many
useful types a% picture processing. In fact, paralilel processors
are zometimes forced to simulate sequential processing and can
only do so very inefficisntiy. But one can still expect that, in
genersal, parellel processing may yield a eignificant time advantage
over sequentisal processing in gpite of the relative computational
efficiency of the latber.

Kow, sssuming that a satisfarctory set of patitsrn primitives is

available for a given application, there remain the problens
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of specifying the peftiern grammer and devising a procedure for the
anelysis of the primitive paitern description. ({(Of course, this is
ot o imply that the primitive selection and pattern analysis aspects
can be separsted in prectice; but the fact that they camnot will not
prohibit a dichobomous survey of the work that has been attempted.)
Before dealing with this part of the problem it will be well to re-
call a bit more terminoclogy commonly associated with methods of
gyntectic analysis.

A convenient way to axhibit synbactie structure iz by means of

a parsing tree. The root of the tree, conventionslly displayed at

the top, is labelled with the "start symbol;” the terminating branches,
at the bottom, are labelled with terminsl syxbols the union of which
{concutenation in the cese of siring languages) is & sentence of the
langusge. The structure leading from root to terminating branches
ﬁaaéﬁiﬁﬁs how the gsentence is derived from the gtart gywbol by
succesaive applications of the productions in the grammar.

Some parsing techniques develop the parse by proceeding down-
ward fram.the-%cst of the iree, i.3., by abiempiing to synihesize
the patitern throuvgh use of the syabactic productions. These are
called top-down methods. Obther methods work upwasrd from the bottom
of the tree, stitempbing to dscompome the patiern by applying the pro-
guctions in reverse. These ar¢ called pottom-up methods. There has
been congliderable dehate smong formel linguisis asz to the relstive
merits of the two spprosches for subomsbtic parging. but from s
practical 3@13& of view the best approech &lgsﬁ% invariebly depends

on the particular form of the grasmar involved (47




One can describe a “"hierarchy"” of linguistic or syntactic
analysis procedures (Figure 7.3). Any procedure which is at least
incidentally concerned with decomposing & pattern into structural
or syntactic components will be called here a linguistic procedure.
A procedure which has as its specific goal the production and use
of the syntactic description of an entity (sentence, pattern) is

called a syntax-directed procedure. If the procedure explicitly

utilizes a grammar in the process of cbtaining the syntactic descrip-
tion (e.g., the grammsr may in some manner direct the analysis), then

the procedure is said to be syntax-controlled. (This terminology is

intended to be similar to that used with respect to syntax-directed

compilers [487.)

7.2.2 Pattern Grammars

The Picture Description lLangusge {PDL) developed by Shaw {33],
[497 is & reasonably genersl and fiexible formalism for the descrip-
tion and analysis of picture deta (and possibly other forms of multi-
dimensional data with syntactic content). The PDL is a string
grammar:' By means of the PDL formalism, one-, two-, and three-
dimensional patterns can be put into string form Ey requiring that
all syntactic elements--pictures, subpictures, andﬁﬁriﬁiéives as well--
have a Eﬁ&ﬁ and a tail, concatenation occurring only at the head and
tail of the syntactic elements (head-to-tail}. All pictures are
assumed connected, which is made to hold even for pictures with dis-
joint elements by the definition of suitable blank primitives. A

null-point primitive is also defined which consists only of coincident
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Linguistic Methods

Syntox-Directed \
Methods

Syntax-Controlied
Methods v

Figure 7.5 A Blerarchy of Idnguistic Anslysiaz Techniques
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head and tall. Four bivary opersiors together with the null-point
primitive are sufficient to describe 8ll possible conecatenstions of
sﬁntactiﬁ elements {Figure 7.k}. ‘Pwo unary operators are defined, one
of which acts as & "reverser” (head/tail interchange), the other
gpecifying superposition of primitives. The superposition operator
in conjunction with the definition of blank primitives and lsbel
opsrgtors provide the FDL with the ability to describe multiply
consected figures. Thirteen canﬁe%tafrae productions generate all

velid PUL gentences. A FPBL gressmay for a pariticular application re-

sults vhen gets of suliteble primitives and applicable productions are
specified (Figure 7.5). Shew gives ssveral exzamples.

Pogsibly the most eevere iimi%atiau of the PDL is its resiriciion
to context-free languasges. There is a strong feeling in some guarters
that context-free langueges cannol be expected to provide sdequate
medels for & very general clage of complex @&ttérn enalysls problems.
But this iz an open question. The fuii potentiel of the PDL deserves
to be lnvegtigated in this respecit. The EEL has some other relative-
iy éin&r limiﬁs@ions which are discussed by Shaw bub do nol seem
insweoustsbie. It iz zignificant thet the PDL has proved useful
in at lesst one practical srplication (337 for which & picture
analyger based on the PIL has been japlemented. The neture of this
iugl&mﬁnﬁ&ﬁien is iuteresting and will be discussed below under
Pattern Analysis Mechaniswms.

The web grammer (507, [51] offers a natural two-dimensional

genezélix&%ioa of shring greamerz. A web iz a directed graph with
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Primitive Abstracted Primitive

S, + 5,

S, X S,

Binary Concotenafions

Pigure 7.% A Fartisl Defimition of the PDL [49]
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House = {{vm + {n + {~vm}}} * Triangle)
A = (dp + {Triangle + dm})
Triangle = {{dp + dm) # k)

% v i |

Figure 7.5 A PDL Gremmar Generating Houses, A's, and Triangles (49]
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nodes bearing labels from & voeabulary of sysbols. Since a string
iz & speclal case of a graph, & string of sysbols is a special case

3
of & web. A web grammar coasists of & vocabulary with terminal and
non-terminal elsments, and 8 set of rewriting rules (productions)--
much like the familisr phrase-struciure string grasmmar. However, ihe
productions of the web gropmayr are more compliceated: Each rule
specifies the replescement of & subwaeb in the originsl web by another
gubwel to form the rewritten web. The rule musit specify precisely
how the new subweb iz to be “embedded” in the "host™ web. Tais can be
done in any sumber ef'ﬁagg a8 long as the embedding rule does not
depend on the host web, & reguirement which sssures that the rule
can be applied to any occurrence of the variable (subweb} being re-
written {(Figure T.6}. Context-sensitive and context-free web grammars
;re defined.

Shaw's PDL is s special case of a wab grammar, bul the web grammer
formalism seems to provide & more natural way of representing multiply
connected graphs with context-gensitive synteax. Although the praciical
ayy;icability;ﬁf wab grammars remsins to be demonstrated, there would
geem Lo be ﬁayre&smnAﬁhy this formalism should not be at lesst as
ugeful as the PIL. Thus, web grammars represent ancther step toward
the generalizetion of phyass-structure grammatical concepie from

strings to more genersl syntactic entities.

7.2.3 Pattern Analysis Mechanisms
Surprisingly, many of the approaches which have been taken to

gyntactic patiern analysis are barely syntax-directed, much less
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G = {Vgg ?.2,3 8; ?E

whers

Vy = .y nonterminal vocsbulary

Vg = {s,0,¢] tarminal vocatulary

) @
s = [A1 initial web
'%} .

P ¥ .

A = a ~ productions

SN

#®

where the embedding rule for hoth productions is

E = {(p,a) | (p,4) 1= an edge of the host web)

ﬁ&&m ?«5 A Sim@.}.ﬁ Web Grasess



syntex-controlled, and generslly feil to meke extensgive usze for
analysie purposes of {he considerabie informstion sboubl petierss which
is often implicit in pattern greswars. The rost progising approaches
tend to be ayniar-controlled. An sxsmple of the succsss which can be
gchieved with syntax-controllsd patbern recognition ls the FIDAC
system (File Joput o Digital Sufomstic Computer) for the debection
and classificetion of chroussose t}vgé%s from photomierographs (321,
In this case, pstiern primitives have been determized (lins szegments
of verlous shapes! which sre at once adecuate for the cheracterize-
tion of the patiernz and resdily detesteble by & sulteble combination
of hardwsre and computer softwnare. The primitive-encoded patterns
smount to gtrings which can be generated by e falrly sizple context-
free grammar (Figure 7.7}. %he snslysic procedure parges the input
iﬁ terms of the gramsar. A4 successful rarse aubometiecslly scoom-
plishes the classification of & chromesons, becayse eash spuch parse
leads (bottom-up) to s synbactic veriable reprasenting a curomosors
type- |

- Anderson E§13 uzes & gyntax-controlled tup-down analysie pro-
cedure to parse handwritien wmathematicsl exprassions {ses the earlier
dizcussion of hiz formalicm). His gramumrs have been carefully
formuleted to enhance persing efficiency, which is essential aince
top-down procedures may be very inefficient, particulsrly in rejesci-
ing "ingremmeticsl” sentences. He takes advantege of the fact that
mathematical expressions tend to be written in s left-to-right mammer

and also utilizes to & limited extent zome of the techniques of




Vo = {a,b,0,d,0}

Yy = e, T, Bobtom, Side, Avmpalr, Rightpart, Lefipert, Arm}

BP: 5 - Armpsir - Armpalir
T = Bottom © Arapair
Armpeiy ~ Hide » Arvmpalr
Armpair = Argpair - Side
Argmalr = Ara » Dignipart
Aywpaly - Leftpart - Aram
faftpart « Arm » c©
Bightpars = ¢ « &n
Pobleom = b « Botben

Long e Botton ¢+ b

Bide = o » Slda
Side = Side - b
$ide =5 « d
hrm - B o A
Krm = Arm - b

Arm = 8

Figure 7.7 The Grasesr for Finac [32]
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precedence analysis {527 "e ides is %o arrange the gremusy and the

snalysis procedure so that it bacomes cbvious as gulckly as possible

that the apalysis ig proceeding down & fruitless branch of the parsing

tree. Although no precise {iming information iz provided, Anderson
indicates that his snslysis procedure is fast enough for the applica-
tion even though it has not been rigoveusly opbimized.

To implement & pattern aﬁaiygié sygten based on the PIL, Shaw
CBBJ has developed & syntax-controlled, top-down, goal-oriented
pleture parsing algorithm. The algoriihm is describesd as goal-
oriented because at esch sbage of the analysis it tries to attmin a
& specific goal, namely, to determine whether a specific syntactic
congtroct--the right-hand side of the production being spplied--is
qeﬁﬁained in the raw inpueb psitern. A successful gencration of &
PDL description of the input patiern indicates thail the pattern be-
longs to the patbtern class of intersat. The anslysis may also yleld
additional useful informstlion aboul thé pettern depending on any
semantic analysis carried out in conjunction with the syntactic
snatysis. ’

As pointed out by Shaw, & goal-oriented procedure of this
nature haz some important advantsges over other aspproaches. The
logic of the gyntactic analysis is stralghtforward, consisting pri-
warily of stepping through the paitern grammer, with backiracking ss
necegsary in case falze goals zre generated at higher lavels in the
anelysis. Also, it iz helpful to use & goal-oriented procedure in

desling directly with patiern data which hes not been preprocessed




because the syntax specifically prescribes which primitives must be
located in the pelbern snd what relationship these primitives must
have to the reat of the pattern. Thiz ig, in «ffect, one way of
utilizing contexti Lo eid in the recogniitlon process which, &g &
resilt, may not npeed to be ax precige or as exhaustive zs methods
which must search out arbitrery primitives (the job of some pre-
procesgors, for instence, iz to csmyile lists of possible primitives
in the pattern without reference %o the gyntax). Utilizing the syntax
may aleo, in similar Taghion, reduce ithe effecis of noise in the data.
Shaw has spplied & PIL gremmar to the analysis of photographs
of atomic particie activities in spark chambers. This practical
, application has provided one of the most convincing demonstratliocas
ay&il&ble that syntactic pattern recognition is a feasible approach

to problems involving complexly structured data.

7.2.4 ILearning Pattern Grammars by Grammstical %nfErencé

The researcher®s intuition and familiarity with the data are
relied on heavily st present in formulsting grammars for specific
&ppiicatiomg. The grammar synthesis procedure is now largely trial-
and-error, sometimes aided by uger-interactive computer graphics
1267, (537, A method is needed for asutomatically inferring grammars
from representative semples of the languages in guestion, much as the
training procsdures of "conventional” patiern rscognition technology
are used to asynthesize pattern classifiers from training samples of

known classification. This is appsrently & very difficult problem



which has only recently begun to receive attention in the literature

[54] - [593.

7.2.5 The Roles of Probability in Syntactic Pattern Analysis

The syntectic pattern analyzers found in the literaﬁuré are most
often well shielded from the "real world" by extensive preprocessing
of the raw patterns (smoothing, gap-filling, thinning, etc.) intended
to extract pure patierns zad eliminate nolse. For example, see
327, (361, 427, [53]. The preprocesaing techniques commonly used
make little or no use of the pattern syntax even though, as noted
sbove, the gyntax can be of great assistance in distinguishing nolse
and detecting distortions of pure patterns. Unfortunately, however,
1t is precisely distortion and noise which make quite difficult the
description of "real 1ifs” patterns by means of famiii#r deterministic
models. Recealling that probabilistic approaches have often yielded
gome success in desling with distortion and noise, ome is led to
consider the formulation of a probabilisﬁicvmodel for syntactic
analysis. |

:In attempﬁing to build s universal theoretical foundation for
"eramoaticel anslysis of patterns,” Grenander [60) has proposed a

model called & probebilistic deformation grammsr. The model is some-

what veaguely specified in order to maintain generality, but it:
essentially involves a set of deformation transformetions applied

to the syntactic varigbles. A probabllity msasure iz defined over the
set of deformation transformations. This model appearz to be sppli-

cable only to the variety of syntasctic analysis procedures which do




not depend on & parse of the patierns bult only on the description of
the patterns in terms of primitives anﬁ deformations. These pro-
cedures sometimes turn oul to be variations on the familisr minimum
digtance recognition rule.

In another work, Grenander [617 has suggested the possibility of
defining & préb&hility distribution over the productions of & contexti-
free patiern gramssr. This ig tuwrn impresses a probability distri-
bution on the get of parzing tress which may be generated by the
grammar and thence on the langusge genersted by the grammar. The
model turns out to be a multitype branching process which has been
studied in some detail {62]. Grenander has investigated the con-
gtraints which must be setiafied by the production probability dis-
tribution in order to guarantee gz valid probabllity measure over
éhé s?t of terminating parsing trees generated by context-free grammars
{see also [63]). This model comes much closer in spirit to the
concept of syntax-controllied pattern analysis than does the probabil-
igtic deformation grammar, although only empirical studies can be
expacted to demonstrate which model is truly most sppropriate for a
gilven problem. In addition to the work by Grenander and Booth, Kherts
[64] has defined and studied briefly the entropy of stochastic context-
free grammars; and Fu and Li [65] have described the realization of a
stochastic finite-state automaton which recognizes & stochagtic finite-~
state language and have shown how zuch an automston can be synthesized
if & grammar generating the language is kacwn. Probabilistic grammars

will receive furbher gtitention in Chapters & and 9 of this report.
3



To gummarize this overview: Linguistic methods offer a promising
approach to dealing with pattern data which cannot be conveniently
described numerically or are otherwise so complex as to defy analysis
by conventional techniques, provided that a structural description
of such data can be found which contains the informstion essential to
the analysis task. Research in linguistic pattern recognition appears
to have demonstrated the feasibility of this spproach for some non-
trivial spplications. However some formidable hurdles remain to ve
cleared before linguistic pattern recognition can be widely applied.
Some of the problem areas are outlined below.

1. Grammar synthesis based on samples of pattern data. Intui-
tion‘and familiarity with the data have been relied on heavily thus
far for deriving pattern grammars. Procedures must be developed for
éystematically abstracting from training samples "good" sets of
pattern primitives, syntactic variasbles and relgﬁionships, and re-
writing rules. This can only be done effectively if suitable measures
of the “goodness” of patitern grammars can be defined, however, and
such measures have yet to be determined.

2. Development of efficlent analysis mechanisms for pattern
languages. One possible approach iz the recognition of patterns
by automaton-like devices, a convenienit sequential processing pro-
cedure. Of course, to analyze patterns charscterized by generalized
grammatical formalisms such as web grammsrs, corresponding general-

ized forms of automate may need to be developed.



An alternative approach is the continued development of special
pattern languages and grammars which lend themselves to particularly
efficient analysis. The development éf such languages snd grammars
which are in addition powerful enough to characterize a range of
interesting types of patterns is & substantial challienge.

3. Detailed formilation of a probabilisztic symtactic pattarn
analysis model for desling with "real life™ patterns corrupted by
digtortion and randow noise.

The material in the next two chaplters is intended as a contribu-

tion towsrd the second and third of thease problem areas.
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CHAPTER 8

AUTOMATA AS RECOGNIZERS OF PATTERN LANGUAGES

Problem: Given’a phrase~-structure grammar {e.g.s a pattefn
grammar) and & string of symbols from the terminal vocabulary of the
grammar, it is desired to determine whether the string is & meuwber
of the lenguasge generated by the grammar.

As discussed in the preceding chapfer, cne approach to this
problem is o parse the siring in terms of the grammsr, a process
which yields not only an "acceptance” or “rejection” of the string
but, in the former cass, s syntactic analysis of the string in terms
of the grammar. An alterngtive approsch which can be used 1f an
explicit syatactic analysis is unnecessary and thch may in general
be simpler to implement is to design an sutomston which "accepts”
only members of the language generated by the grammar and “rejects"”
all‘others. In theory such automats can always be designed for
context-gensitive phrase-structure grammars [66].

The purpcose of this chapter is to explicitly catalog some known
results concerning the relationships between grammars and automata
and to expand somewhat on these resulisg, partic@l&rly with
regpect to the recently formulated probabilistic (or stochastic)
grammars. Some pertineni observations are made concerning the

practical application of sutomsta to recognizing the languages
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generated by probsbiliastic as well as nonprobabilistic phrase-structure
grammarg, and in particular, ways ia.whiﬁh sutomsias theory could be
applied to pattern recognition undsr the assumption that patierns of
interest may be repregented as the elemenie of languages generated

by pattern grammsrs.

8.1 Finite-State Grammars and Finite Aviomata
The simplest classes of grammars and automata are finite-state.

Finite-gtate greammsrs and languages wers defined in Section 7.1.

Definition 8.1: A finite sutomaton is a S-tuple M = (Q,E,&,QQ,F)

where
G is 2 Dinite set of internal states,
Y is a findte input slphabet,
H: @ x I~ 27 ig the state trangition Tunction,
4, € § 18 the initial stale,

14

F ¢« @§ ig the set of "finasl states.

o

e

Ir 8{g, o) iz single-valued for every q € @ and ¢ € I, then M is

determiniastic; otherwise M iz nondeterministic.

Definition 8.2: A finite automaton M accepts s string x if

8(q , %) €P; i.e., if applying x as input to M in its initial state
causes M to end up in one of its final states. The set of all strings

aceepted by M is dencted by T{(¥}:

.

() = {x|5lq, 2} €F.

<

The relation between grammsrs snd aubomata will now be stated.
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Definition 8.3: The langusge L{G) generated by a grammar G is

said to be recognized by an sutomaton M if L{G) = T(M); i.e., if M

sccepte any x € L{G} but does not accept any x ¢L(G).

s

The following is & well known result [667.

Theorem 8.1: For every finite-state grammar G there exists a
finite automaton M which recognizes L(G}.

In particular; if G = {V%, Vo Py S) then take M = (Q, T, &, ¢ ,F)
guch that

1o Q= Vg U {T, R}; i.e., there is a distinct state of M

corresponding to each nonierminal of G, pius an “"sccept state” T and
& "reject state” H;

2. I = VT; i.&., the input slphabet of M is identical to the
set of terminals of G;

3. qé = 8; 1.e., M starts in the state corresponding to the

start symbol of G;
ke ¥ = {T7; i.e., M accepis all end only strings which cause it
*
to end up in the accept statle;

5. &, the state transition function, is specified as follows:

<

€y

¥

and B, € € V, such that

1}y ¢ € 8(B, a) for all ¢ X

T
B« aC is a producticn of G;
11) T € 8(B, a) for ell a € Vy and B € V. such that B = a

is & production of G;

¥
It is convenient to assume that 2 € L(G), but the development pre-
gsented here can essily be modified to allow i € L{G}.
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o

o
W

R € 8{(B, &) for 811 a € V, snd B € Vo such that neither
i nor ii spply;

ivy 8(R, &) = [RY and 8{(T, a) = {R} for all & €Y
Formulstions elaewhere in the litersture often omii the rejsct

nferred that if s state-input combination

rr!b

state R in which cage it is !

5 not defined, then the avtomaton "hangs up”

bdee

5

ovcurs for which 8
{(halts without accepbing) snd by definiticn the input string is reject-
ed. For practical purpsses; 1t is convenlent toc have the automaton

7

pass to the reject state which ig & "trap state” by iv.

In general the recognizer described by the above formulation is
nondeterministic, which from a practical point of view is undesirable
because of the implementation problems which result if the sutomaton
is actually to be constructed. However, the followlng theorem and

subsequent remark obviate thiz difficulty [66].

Theorem 8.2: If L is a langusge recognized by a nondeterministic
finite automaton, then there exists a deterministic finite automaton

which recognizes L.

Forthermore, there 1g & straightforward procedure for specifying
the determinisilc recognlizer, which may ve expecied to consist of
more states than the nondeterministic version {gee [667, pp. 31-32).

Thus it iz & fairly simple matbter Lo congtruct or simulate &
recognizer for the langusge generabed by any finite-state gramsar.
Such a simulation could teke one of two forms. The actual seguence
of state tranzitions resuliing Trowm any input soquence could be

explicitly simulated; or an aliernsbive approach could be used baged
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on the lterated multiplicetion of the input-conditicned trapsition

%
matrices, which are defined as follows: Let M be an n-state re-
cognizer. The input-conditioned transition matrices for M are given by

{3{(5} = ‘ﬁil {Cf} 4’3‘ €54, 3 =1, 2, «ovy n}

iy

wherse
mij{ﬁ} = 1 if input symbol ¢ can cause & transition from

state 1 to state I;

<

O otherwise

H

Higher order transition msirices are defined in the ususal way; il.e.,
for c € Fand x €T
Mlox) = M{o)M(x}.

The simulation then proceede in the following manner. Let vy be
an n-component row vector with all components O except the component
corresponding to the initisl state of M, which iz 1. Let Ve be an
necomponent column vector with all components O except the component
corresponding to the accept state, which ig 1 {the cniy finsl sbate

4
iz T). Then for any string x € ¥,

v M)y, = 0 Aff x § () = L(G),
» 1 15 x € T{M) = L{G).

In fact, the product equsle the number of distincet transition
gsequences which may be causged by the input string or, squivalently,
the number of ways in which the siring may be genersted by the grammar.

An mdvantege of this simulation approach is that 1t provides s direct

#*
Ag distinguished from the transgition matrices for finite sulomata asz
usually defined; see {éfﬁﬁ



and relatively simple simulation of a nondeterministic recognizer,
without any need to find the corresponding deterministic version.

Exsmple 8.1: The finite-state langusge L, = {00, il}% is

generated by the finite-state grammsr G}:

gﬁ.;
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fl
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where
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An sutomaton which recognizes L, = L(Ql) ig given by

3’% = {Q.’ s &y A, ‘“i"}:
whers
Q= {4 .5 Ay, T, R}
% Lﬁb,lj n“; 33_, 5oy "i,
L= {¢,1}
and § ig defined by
Y . s % s R
5{A1? Q} = iééﬁ Gxﬂi; 0) = k-3
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The input-conditioned btransgition mmbrices are given by

A A, AL T R
Ay 0 1 0 o o |
A, 1 o o
K(0) = iy 0 o o o 1
T o o 0 0 1
R | o o o o 1
6 0 1 o o |
o o o 0o 1
M) = 1 0 0 I 0
o ¢ o c 1
| o o o o 1

In prectice, the ingutuconditioned trangition matrices mey be
replaced by the submatrices which have the "rejeet™ row and column
deleted, since no input can reach the sccept state by any state

sequence which includes the reject state.

8.2 Stochastic Finite-State Grammars and Associated Recognizers

Congiderable effort ig currently beling directed toward the
‘formmlation of probebilistic gremmatical models [60], (617, [63],
{657, {681 - [0

Definition 8.hk: A stochastic Pinite-state grammar (SFSG) Gp is

& S-tuple
GP = (VK’ VT.@ P, D, 8)
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whers ?K’ fg, P, and 5 sre ag given in Definitions 7.1 and 7.2 and D

iz a rvie for assigning & probability measure over the productions.
The detelled specification of D will be of concern in the re-

sainder of this section,

Dafinition B8.5: Iet x = alﬁga*.aﬁ € fo be & stiring generated

by & SFBG Gp uging the seguence of productions Tys Toyress¥ o The

génpra?i@ﬁ Process can hﬁ represented as
r

I“
w}"w &.lé" mw.aw?r a.ga 5,.\,3 _..é'}r:@v oww W g,la ta'&n*

The probability associated witn the generation is defined to be the

product of conditionsl probabilities

P(rl}yirg § l"l} ¢ ?{fﬁ E I&;?..} rz,? eo2z rﬁ*i}.
If the glring x € §(G%} can be generated by k distinet zeguences of
P
productions (the grammer is ambiguous ir k is gresber than 1}, then the

probability assoclisied with string ¥ iz defined as

s X

.g i’” i * 8w
a(x) = ) ol )p(r, ol Tys xgs cees 2 )

3 )
= e

WMP‘:"

whare the sum ig taken over the distinet generations of x%.

Definition 8.6: D ip & consigtent production probsbility assign-

ment {"D is consistent”™) provided

Zw glx) =
x € Liﬁg}

Hecessary and sulficient conditions for D %o be consistent in

the finite-stete case are given in [617, (637 and need not be



detailed here. All stochastic grammars considered herein will be
asgumed Lo have conzglsbent produciion gr@bability assignments.

As the notation sbove indicates, the production probability
assignment may depend on the specific sequence of productions uszed.
In the zimplest case the sssignment is independent of the productions
previcusly ayyiieé; that iz, it depends on the nonterminal 4o be
rewritten but net on how thet nonterminal was cobtained. This situa-
tion will be denoted by
;) = plry)

-
p(}fi [Tys Tor e 1y

which, for the finite-state case, can be written as

3

plry | vys xpe coos 3y 4) = plagay A ,)
(teking & = Ab}*

Definition 8.7 [637: D is an unrestricted production probability

sgsignment provided

; 3
] i by ve s L. o
?éti H l} 2'5 ey a -3

py

. v .
} = P(r.;i
“for all production segquences.

Hotice thét stochastic grammars are no more powerful in terms
of the larguages genersted thay their nonprobabliistice counterparts.
Stochastic finite-state grammsrs, for example, stlll gensrate only
finite~state langusges {regoular sets). The effect of the added
probavilistic machlinery is merely Lo lmpress a probability distribu.-
tion on the gentences of the langusges genersted. Therefore the
considerable body of results which hes been oblained for nonprob-

abilistic gremmars and languages (e.g., decidability results) ig no
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less valid for the stochastic case.

Exe mple 8.2 Gy = (Vs Vs Py Dy, 8) where V, = {5, 4, B, C},

Vp = {0, 1}, and P and D sre as shown below.

L B
'Smcmi p{0A[8) = (0 cax<l)
§ - 1B ;(zﬁgg}»zua

A~ 1A p(1a}a) = €0<ﬁ.<):
& = iC plic|a) =1 -8

B = 0C p{oCc [ B) = 1

cw@év‘ plo] ¢} =1

The langusgs generated isg
B(e ) = {200 L orl1 o}
= {100, 010, 0110, OL110,...],
and the impressed digtribvubtior is given by
{100} = 1 - ¢ |
2(00%0) = ¢ g5 M1 - B8), k=1,2, ....
D is an unrestricted production probability assignment; it is also

congistent zince

&

g -

Y s =(-a) rat-p) y EEE
& it
x\:.(ﬁ?l} k.
L

=1 -+ afl - ﬁ}*m

=1
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Definition £.8: A gtochastic finite avtomaton {8FA} M is e
5-tuple
gy = {.a? Ly & Ei@é* ‘?}
where 4, I, 9, snd F are ss in Definition 8.1 and A is a stochastic

stabe tr&zm*&: on fonction.

igzy funehion A czn be defined by s get of gho-

chastic matrices [4 | o € £7 which spseify the state transitions as

& stochastic function of the input symbols. Further, letiing
X = gy 0eae0 be 8 geguence of length k frem Z‘ : A can be extended o
& function over inpub gequences according 4o

3} =T =8 (ideatity metrix)

F

AMe) = & 4 A
} f-"“!@ &ﬁx“"’ g—«

&spundng § contaling n stales, lst v ’%34& an necomponent row vectsr
with all components O aucopt the compunsnt corregponding to the

initisel steis Uyt whieh iz 1. Then the vecior v given by

£ &€

. ' i . th s .
iz an n-component afochesiic row vector, the 17 component of whieh is

¥

the probability that the input seguonce 3 will csuse fép te pasz from
the initial sitate fo the 177 state. Lat Vo be an n-componsnt column
vector with &l comgonents O ezcept the components corresponding o

the final astates, which are 1. Then olx}, defined by



Pren its uld ol ohiie, to end up in ons of its finsl states (i.e., a

Jm corrieponde s votveen stochastic gremmars and stochestic
sutusats depends e Ludegdly on the definition of sccsptance of a
string or recogaition of a .angusge by sutomata in e stochastic sensc.
Let A be & real-valusd parameter, 0 < % <3i; called & cub-point
{ther: shounid be no confusica betweén the notations for cub-point and

th: radl siringje

Befioatt w 8.0 D7
Ly a BF N oyided
Plo, = o Mxyog o R

The o0 of 80 alxings  occopled by E{Q with eut-point A iz denoted by

@giﬁ%g Bip lemes ﬂh%, o= Eislx) 2%

v L0 & Lengunge (or pet of 83&%‘&#&%@3} L it recagnl

O B BrA ﬁ% provided L = 'i‘{éﬁp, 1Y fee.. vrovided

fimite~siate language. The rsasinder of

kiz cage. Honzero éaéupoints will be

this genkion cunsl Taig oW

£

gevseed in the ngmt saoblon.

The {niloearng dafo tion will be uszeful.

7. I be an arbiirery subset of ¥ , where ©
i3 the iaput elpbatat of scms SFA W, and let g(z) ve an arvitrary
funetion cve~ Topatisiying 0 < g{x) €1. CThen X}"? is sald to compute

the functien ¢l 1f px} = vgﬁ{x}vg = g(x) for all x € L.
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The function g{x) will generally be taken to be the probability
of generation of & string by & grawmar.

Theorem 8.3: For every stochastic finite-state grammar Gp with
an unrestricted and consistent production probability assignment, there
axits & stpckasﬁic finite automaton Mp which

1) recognizes L(GP) with cut-point A = 0, and

5.;;) computes the probability of generation g{x) for any x € L(Gp).

Proof: The proof is by comstruction. Assume Gp = (VysVps P;D,8)
where D is unrestricted snd consistent. Take M, = (Q,%,8,q,F) such

 that
1o Q=¥ U {f, R}, where T is the "accept” state and R is the

2. L = vfi

3¢ g, =8;
k, #= [} t
5. & the stochastic state transition function, is given by the
set of trausition matrices
{8, = [8,,(a)] 2 €7}
where

i J

5:3(&) = p(aaj §Ai) if & ~aA; is a rule of‘P with
associated probability p(a.Aj | A);

TaAssume that Vi comteins n nomterminals and let the n + 2 states of Q
be ordered such that the first n states correspond to the eléments of
Vy» T is staké n + 1 and R is state n + 2.

*?ﬁ is egain gssumed for convenience that X ¢ L(G F)'
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. %i?{a}ﬂp(&f&i} if A, - e is a rule of P with

sssociated provability, p(a |4,);

B4+l
: o .
® %R{%&} =1 - L 8 5 {a);
_ e}
L7 a («%} = %(&} = %) J = 1323 i’#&’ all a E?T

<

%}w&, all a € Vg

¥

!atiee that a.&%g; fw the probebilities assim to the allowable
state tmgﬁammy the comstruction is exactly the same as for the non-

probebilistic cess {given in the grwimzs gaction). Thus ¥

immadiately from the Pact thet the set of inmut seguences % for which
« p{x) >0 ia, as in the nonprobabilistic case, the lenguege gemerated

by the grasmer. To prove il, it mist be shown thet for all

x €70t 0) = K(c,),

v@é{x}%‘ = g{z}.
In this cuse v, bee exsctly one nomgero component, namely the one
émf&&’g@ﬁi&g %@ the stete reprecenting the stert symbol S; and Vg
has ey ctly one nongers compencnd, namely the one corresponding to
the accept stabe T. Thsrefore, ?é&{x}v? is juat ths element im row
8 m@m 2 of #{x)}. The desired result then follows from 5 of
the constructica und the definition of matrix muitiplication.

. WS O 31 given in Example 8.2, tke SFA
whieh mms_m &(@ }) end computes the probability of any x e L(G )

ig:



where

i

A

= {0, 1}

and & is given by the transition matrices

-

By direct calculstion,

NEY: 5,
p{100) = veal(ab) vp Tl -0

p(02%0) = v

(compare with Example 8.2).

[e]

O

0

ofoty

k¥

<

<

)k

i

Ml = (Q; Z, Ly S, {T})

{8, &, B, ¢, T, R}

B

o

0

o'

C

o p

T

0

0

[

k-l o)

<

b=

o

[
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43 za epplication of these results, suppose that the patterns
from two pattern classes ml and wa, nop necessarily disjoint, can be
generated by two stochastic finite-state grammers Gmi and 6&2.
Assume that the grammars are cuch that the probability of generation
of any pattern is equal to the class-conditional probability of
observing that pattern; i.e.,

Y ] ’ Y e .

€y (%) = plcls)  and 6u, (%) = plx | o)

Int M &nd Mm be the stochastic finite sutometa which recognize
2
L =L{(G )erd L = L(C ), respectively, with cut-poin® A = O &nd
o 9 “2 “
which cosputa the provebilities of gensration 8. (x) and g%(x}.
o

Then since g% (x) = vﬁiﬁi(x)vm = ?(x ! e::i) , 1 =1, 2, the usual
" mindmna risk eclacsification rule (sece Seetion 2.1) cen be written:
Decide

o

-
.

Ty AF Py b ), > BV n b (x)ve,

x & N obhuririge.

where P, and F, <xe the g priori probabilities of th2 clasaes.
bl 2 LA R

8.3  Pescruitiia Hith Honsero Cub-Poinks

As mentioned in ths previous section, any language recegnized
by & SFA with cab-point % = 0 1g & fiaite-state laiguage. However,
the cless of Leuguwgcs recegnized with cut~points 0 < X < 1 properly
includes the finibe-gtate langungss {71 ] Since it is desireble to
have aveilable recognition devices for the mest gensrsl class of
langusges poseible, the case of nenzero cut-pointe is potentially of
interest.
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A special kind of nonzerc cut-point is defined.

Definition 8.12 [71): A cut-point A is called an isolated
.- cut-polnt with respect to the SFA Mp if there exists an e > 0 such
. that o
f p(x) .n'l [>e for a1 x € 2.¥
(Notice that A = O camnot be an isolated cut-point.)

"It is well known [71] that the class of languages recognized by
SFA's with igolsted cut~-points is exactly the class of ﬁnité-sto.te
languages. It is also known that some finite-gtate languages which are
recognized by SFA's with isclated cut-points can be recognized by SFA's
with fewer states than the minimal nonprobebilistic finite automaton
which recognizes the language. Unfortunately, no general proceédure is
known for finding the minimal SFA for a given finite-gtate language.
Alpo, some langusges which are context-free but not finite-#ta.te are
accepted by SFA's with nonisolated cut-points [6b], but no procedure
+ is known for comnsiructing such automta: for given context-free
languages, nor hes the class of cortext-free languages accepted by
SIA'; been comﬁl@tg]y cheracterized.

Consgider the question as to whether an SFA with nonzero cut-point
can be applied to recognizing s langusge generated by a stochastic
finite-state grammar. IS the automaton is merely required to recognize
the language without computing the probability of generation g(x),

‘then the guestion of existence of such an sutomaton is trivial since a
deterministic automaton (a SFA with only unity or zero transition

probabilities) can be found as shown previously which recognizes the
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language, and any cut-point 0 < A < 1 is then an isolated cut-point
with respect to such an automaton (bec?,use p(x) = 1 for x €L and
‘p(x) =0 for x ¢ L). However, finding the minimal SFA is a much more
'difﬁculf--and as yaot unsolved-- problem.

The remainder of this section precisely characterizes the class
of languages with associated probability measures g(x) which can be

. recognized by SFA's which compute g{x).

Theorem 8.4: ILet L be an infinite language (a language containing
an infinite number of strings) with an associated probability measure
defined over:all x € L. There does not exist a SFA with a nonzero cut-
point which recognizes L and computes g(x) .*

Proof: Assume that a SFA ‘Mp recognizes L with cut-point A and
computes g(x). Let X s X5 +s+ be an ordering of the strings in L
such that‘ g(xi) > g(xj) for i < j. Since MP computes g(i), it must
be true that p(xi) > p(xj) for i < j. Also, sipce g(x) is a proba-

bility measure, g(x) and hence p{x) must satisfy

Zg(“@i Zp\x)=l

i ﬂl TS

which requires that

Hn p(x,) =0
hie .

Thus, for every e > 0, there must be an integer N = N(e) such that

p(xi) <e for &11 i > N.

* .
Tt is assumed that g{x) » 0 if and only if x € L.
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But since xi € L, by definition it must be that p(xi) > A for all i.
Thus

k<p(xi) <e, i >N,

or A <e. This can hold for every positive e only if A = O.

Corrolary 8.4.l: No SPA with isolated cut-point can both recognize

an infinite language L and compubte an associated probability measure

over L.

Since all finite languages are regular sets, the following--a

slightly different point of view--also holds.

Corrolary 8.h4.2: Let L be a set with associated probability

meagure g(x). If there exists a SFA M, which recognizes L with cut-

point A > O and computes g(x), then L is & finite regular set.

Treorei: 8.5: Given a stochastic finite-state grammar Gp with a
consistent unrestricted production probability adsignment, if L(Gp) is
a ﬁnite langunge then o SFA l% with is‘bla'bed cut-point A can be con-
structed based on G such that T(Mp, A) = L(Gp) and MP computes g(x).

b
et % ¢ L(c,) e the string for which

p(®) = min  plx) = min g(x)
* € T(Mp,o) x € L(Gp)

(X need not be unique). Then any fixed A satisfying 0 < A < p(x) is
an isolated cut-point with respect to M, (recall the assumption that

g(x) = 0 for x éL(GP))a

The results which heve been given in this section are quite

restrictive from a theoretical point of view. Whether they are too

I~
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restrictive to a.llcw formulation of useful automaton recognizer models

(e.g., for pattern recognition) remains to be seen.

8.4 “Maximum-Likelihood" Recognition

The results of the previous section suggest that SFA's with non-
zero cub-points may have rather limited utility as recognizers for
languages generated by stochastic grammars (more will be said about
this later). It has heen suggested elsewhere [65] that a slightly
different mechanism, which will be referred to as maximum-likelihood
recognition, might be of use for such purposes. This possibility is

explored here.

Let up = (Q, I, 4 Q, F) be a SFA as defined earlier. Recall

that the itb component of the row vector
v = vca(x) = [p(q, l;ﬁ),p(qe [x), 000 ]

*
is the probability that the input sequence x € T will cause Mp ’

]

beginning in i%s initial state, to end up in state qi € Q.

Definition 8.15 [657: The function p(q | x) defined by

n(g | ) = mwcgp(qi [ x)

qi’:'

is called the maximum-likelihood membership function (MLMF) of x with

) respec‘; to Mp.

Definition 8.1k: A string x is accepted in the maximuwm-likeld-

hood sense (ML accepted) by & SFA MP provided p(q | x) is such that
q €F. The set of all étr}.ngs accepted by M in the ML sense is

denoted by Tm(np)‘
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Definition 8.15: A language L is recognized in the maximum-

likelihood sense (ML recognized) by a SFA Hp provided L= Tm(hlp);
i.e¢., provided

L= {x|ztor p(qg |x), § € F}
Any such langusge iz called a maximum-likelihood lngt_lggg_r(m"lsnguage)-

Some simpie properties of ML langusges have been studied by Fu
and Ii [65). For example, every finite-state language is trivially
a ML language; in fact, the class of ML languages properly includes
the class of finite-state languasges. Thus, as in the .case of "ecut-
point recognition” discussed above, the ML criterion can be used to
make simple accept/reject decisions on the strings generated by a
gtochastic finite-state grammar. The obvious question to ask is

whether it can do mere.

x
Definition 8.16: Let L be an arbitrary subset of I , where L is

the input alphabet of some SFA M.p, and let g(x) be an arbitrary func-
tiontover L satiefying O < g(x) < 1. Then M, 1s said to ML compute
glx) if |
“p(a | x) =+g(x) for all x € L.
Unfortunately, the results for this type of recognition are found
to be no more helpful than those of the previous section. In the
following, g{x) may be thoughtof as the probability of generation of

a string x by a stochastic graumar.

Theorem 8.6: Let L be an infinite language with an associated

probability messure defined over all x € L. There does not exist a
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SFA which both ML recognizes L and ML computes g(x). :

Proof: Assume that a SPFA Bﬁp ML recognizes L and ML computes g(x).
Let Xy s ESYIRRY be an ordering of the seguences in L such that
g(xi) > g(xj} for i < j. Since Mp ML computes g(x), it must be true
that p(g ;xq) > ol | xé) for 1 < j. Also, since g(x) is a probability

measure, g(x) and hence p{g | x) mist satisfy

] fid

LS i -~
Y ex) = )p@Elx) =1
i=l i

%
o

which requires that

lim -
e D@ x,) =0

. Thus, for every e > O, there must be an integer N = N(e) such that

p(Eixi) <e for all i > N.

But for an n-state automaton,

-

bS

pla |x,) = p ple, 12,) 2

Coubining the last iwo expressions gives
< p(q,f x,) <e

which cannot be true for {inite n and every positive e. Thus the

aspumption that Mp ML computes g{x) leads to & contradiction.

Corrolary 8.6.1: Let L be a set with associated probability

measure g(x). If there exists a SFA Mp which ML recognizes L and ML

computes g(x), then
i) L is a finite regular set;
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i1) up has at least n states, where n is the smallest integer

greater than or equal to [ nién g(x) Tl.
X €L .

8.5  Soms . on A cation

vGim the task of recognizing a Janguage generated by a deter-
minigtic finite-state grammar, one might very well synthesize a
| deterministic ﬁ:ﬁte automaton to perform the recognition (in terms of,
m’, a sulteble sequential circuit [72] - [7h]). The "accidemtar”
probabilistic behavior of such a device, due to component unreliability,
is not of concern here. But presumably one might consider deliberate-
ly synthesizing a stochastic automaton either to realize, in the .
finite-state langusge case, the potential ssving of states, or
| :  ‘possibly even to recognize a nonfinite-state language by means of a
-finite automaton (nq Section 8.3). This raises some important
practical guestions.

In general (by definition) the response of ‘a stochastic finite
sutomaton to any input sequence occursnwith a certain measure of
uncertainty. Therefore, if a sequence causes the automaton to end up
in & state within the final state set, it can only be said that there
is some nonzero probability that the sequence is a member of the
language to be recognized. Siu:u.grly if the automaton ends ub in a
state outside the final stete set, the sequence still may have a
nonzero probability of belonging to the language to be recognized.
“And in either casge, the response alone gives no informetion as to
what the associated probability might be. - Thus, given such & device
to perform recognition, something like the following probabilistic
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experiment described in [71] would have to be performed for any
sequence to be tested (aszuming the recognition eritérion is accepted
with cut-point, according to Definition 8. 9) o

Let Mp be the automaton, ) the cuh-point. vI’he xequeme x to
be tested is applied to 1% (started in its initial state) some large
nusber ¥ of times. If N is the number of times that M, ends up in &
‘final state, then N /E is an unbiased estimate of the final state
‘probability p(x). If X /H turns out %o be grea:ter than A, the input
is assumed to be a member of the lame otherwise it is rejocted.
Of course, this is still a prohabiliatic decisim, made with & level
of confidence which depends on the sctual value of ]-.;g{x) - | (among
other things). Since p(x) is unknown, the c§nfiden&§ level cannot,
‘in general, be dntermimd, althongh if the cut—point is isola.tad the
' confidence level may be bounded from below. |
In view of the above observations, it seemss that, quite agide

' from the difficulties inherent in realizing 'prohabmstic systens,

- recognition by stochastic automate per se is a hapelessly impractical

uftair. On tb@ other hnna, this does not necesaarﬂy dimlniah the
utility of the foml mdel, which provides a fairly elemnta.ry

»" computational algorithm for performing mcogn:ltiexx of strings of a

- lmnguage by means of, say, a digital computer. So at least rrom
this point of view, the continued inwstigation of this a.pprouch is

U eertalinly atill mrited, with the awareness that the resulta are more

likely to be applied thmugh siml&tian oh e cemputer tha.n tlu-cmgh
‘the wtml construction of stochastic axxhomta..
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The foregoing discussion bhas introduced a viewpoint that the
author feels is important. If the "simulation assumption" discussed
in the previous paragraph is accepted as reasonable, the entire
emphagis in research on this subject may be affected. For example,
one result is to remove the stigma which has sometimes seemed to be
associated with nonizolatcd cut-points, including A = 0 (viz., the
smaller the actual velue of |p(x) - A |, the larger must be the
number of applications of & sequence to the automaton to achieve a
given 1e§§l of confidence in the accept/reject decision; which in
turn implies, for a fixed confidence level, that as | p(x) - 1|
becomes infinitesimal the number of epplications must becbme infinite).
In this sense, stochastic autcmaton models, such as the one introduced
in the proof of Theorem 8.3 wiaich can recognize a string and compute
the probability of gencration of the string by an associated grammar
may prové quite useful.

The study of edditional "acceptance"” criteria may also lead
to automaton models of greater practical value (the maximum likelihood
criterion was one attempt in this direction).

The material in this chapter has been limited to the study of
finite-state languages and finite automata. Some theoretical ground-
work for a more gencral class of languages end automata has also

begun to receive attention [683, [70].
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CHAPTER §
STOCHASTIC PROGRAMMED GRAMMARS

The m-md grammar (757, {?6} 1s a pmrml md convonient
- tornﬂ,iuu for mmting &, ralativeiy broad class of lo.ngmgu (see
Theorem 9.1). This chapter extends the mmlisn into the praha.‘bil—
iztir: realm and discusses an u.igorithn far the analysis of atr:inga

in terms of progxwd grammars .

Definition 9.1: A programmed grammar is & 5-tuple
Gpg = (_?ﬂ’ VT’ P2, J, 3}

vhere

Vg is a finite set of varisbles (nonterminals),
: %
Vg 18 & finite set of terminals (v, w1 Vg = g),

P is a finite set of programmed productiana »
J is a finite set of production labels,
8 € Vy is the start symbol.

Enc}i‘prodﬁctim consists of a label r € J, & core pibdnctioxi of the

* phrase-structure type; and a success branch field and a failure

branch field each consisting of slements from J. A derivation or

generation in Gyg proceeds as follows: the first production is -

applied to the start symbol S; in general;, if production r is
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applied to the current sententiml form y to rewrite a substring

« and if ¥ contains &t least one occux:rsm:a of &, then the leftmoat
& .is rewritten by the core of production r and the next production
label ig selected from the successz branch field of r; 1f the current
sentential form does not contain @, then the core of production r
cannot be used and the next production lsbel is selected from the
failure branch fTield of r; if the applicable branch field is empty,
the derivation halts. |

Definition 9.2 [75): A context-free programeed gramear (CFFG)
is a Ww grammar in which the cores have a single symbol
(Mem) on the left side and a nomnull string on the right. The
. met 9?"&11 strings generated by a CFEG !."rp8 is called the CFPG language

: J&: The context-free programmed grammar GSQ given
. ulw Wa the langusge Ly, = {a"%"d| n 51} which could bde
interpreted as the language of aqme;ot gide length n = 1, 2, «veo
Ggg a?(vs, Vs Py J, 8)
mmm voc;!%ulary congiste of
| Vg = {8, A, B, C, D}
Vp = {8, b, ¢, ],
the label set is |
J=1{1,2, 3 % 5 6, T},
and the Mtion set P consists of 7 rules:
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Success Fgilure

Label Core Branch Branch
1 s ~.aAB 2,5 ¢
2 A = 8AC 2,3 ¢
3 A=D | I ]
I C=d 5 6
5 DQbm b )]
6 B~d 7 p
7 D ~be ¢ ¢

‘The geéneration of a string in LSQ proceéeds as follows. After
production 1 is used, the length n of the side of the square is deter-
‘mined by the number ‘of times production 2 is applied before production
3 ig applied. B is an end marker and the C's serve as counters to
keep track of the length. Once the first side has been completed, the
. elements of the other sides are generated until the C's and B have

‘been converted to terminals.

The following context-sensitive phrase-structure grammar also

gengrates qu.f

Example G.1b: Géq = (Vg Vo By 8)
where

v {s, A, B, C, D, E, F, G}

N

#

v {ay b, ¢, ‘1}

]

T
and the production set consists of 19 rules:

L. S = aAB 3. A-D

2. A - aaC L. Dc = cD
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5, Dd = db 13. bG = bbeD
6. DC = EC 1k, dFB = dPd
7. EC = Ed 15. dFd - Fdd
8. DB - FB 16. oF = Fe
9. Ba - Ga 17. bBF = bbe
10. ¢G = Ge 18. aF = ab
11. 46 -~ Gd 19. BB = be

12. &G - abch
{The productions are numbered for reference only.) After production 1
is used, the length of the zide of the square is ineressed‘by produc~
tion 2 until production 3 is used to rewrite A. Again B is an end
ﬁmker and the C's serve to keep <%rack of the side length. Produc-
| tions 4.8 effect a left-right scan of the string to see if any C's
remain. If so, a 4 {production 7} and eventually b and ¢ are generated
in appropriate positioms (production 12 or 13), and the gcan is re-
pested. If no C's remain, the B is encountered during & left-right
sean mr which the final b, c, and d are generated (productions 13-

o et 5

17 or 18-19), wd the generation halts having produced a string in I’SQ‘
The grammers Gy, and Gy, generate the strings of Lgq bY mich the
sama procedure, yet the prograsmed grammar seems intuitively much
simpler. ff.'bé main reason for this, of course, is that the scanning
mechanism which must be explicitly simulsted by the conventional
groamer iz an inherent part of the programmed grammar. Other con-

trivuting factors are: For the programmed grammar the sequence of

productions can be explicitly specified; and it is always the leftmost



jastance of a nonterminal which is rewritten by the application of &
production. Importent comsequences of these differences include:

1. CFPG's have greater generative power than conventional
context-free grammsrs (see Theorem 9.1}.

2. CPP3's are generally much easier to write for ganerating a
given ewtm-;sensitive language than is a cooventional context-
genagitive gremmer.

3. QGenerative and anslytical mechanisms based on CFFG's are
spparently much easier to synthesize than those based on convemtiocnal
context-sensitive grammars.

" The first of these points is illustrated by the previous example,
since there iz no cwto;_tt-fme grammar of the conventional type which
| éfumtw Lmq Rosenkrantz has proven several theorems concerning

tﬁe gnmrative power of various forms of programmed grammars. The
following theorem is of interest hers. . |

Theorem 9.1 [75]: The set of langusges generated by centext-
free progremmed gram.rs'pmperly contains the aset of contéit-frce
languages and is properly contained within the set of confext-
sengitive languages.

Experience indicates that the class of CFFG langusges Ainci:ndas
interesting context-sensitive languages (as in the example above).

Writing » CFPG 1s very much like writing & computer prograﬁ and
iz 8 very straightforward logical process by comparison with the task
of writing a context.sensitive grammar. The context-free form of the

eore productions is an immense simplification: In writing s
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context-sensitive rule for a conventional grammar, it is necessary to
check that the context of the rule is gmh that the rule will be
unazbiguously selected to be applied in the desired situation and
only in that situation. The facility of the programmed grasmar for
specifying the sequence of productions by means of the branch fields
further guards agamﬁ undegirsble ambiguity.

Computer programs for genergting strings from programmed grammars
and ft;vr analywing strings in terms of programmed grammars are dis-
cussed liter in this chapter. The mechanisms embodied in these pro-
grams are not overly complicated in spite of the fact that they have
been designed to cperate on arbitrary CFFG's (supplied as imput to
the programs). Again the comtext=free form of the cores is largely
‘ mmﬂbla for the simplicity of the sgituation, gince this eliminates
tha need to check conbext in determining the applicability of a pro-
duction. Perheps even more lmportant, the actio? taken by & programmed
grammar at each stage of a generation is much mwore precisely deter-
mined (:.m "ambiguous”) than it is for a conventional grmr To
Wgeis'be thiié, obgserve that to make the action of a programmed
gramear as awhigum as that of a conventional grammar, it would be
necessary to 1) allow the productions of & programmed gram,t to be
umﬂm to any cccurrence of a veriable in the curreat string rather
than just the leftmost occurrence, and 2) place every production label
in both branch fieids of every production of the programmed grammar.
This aspect is especially important with regard to the top-down analysis
slgorithm to be proposed, because it tends to make such an algorithm

comsidersbly wmore afficient.




150

S.1 Stochagtic Programmed Grammars

As noted above, one reason for using programmed grammars is to
gain the capability of generating and analyzing context-sensitive
langusges by ssans of a relatively simple and convenient formslism.
An extension of programmed gramsars will now be developed which adds
the features c&' probabilistic grammars discussed in Chapter 8 while
retaining the bagic simplicity of the programmed grammar.

The most obvious feature of the programmed gremmar which can be
mede probabilistic is the selection of the next production label
from the ’prescribed branch field in case the field contains more than
ene choice {in the ncnyroﬁabiliati:: case, this selection is non-
‘deterministic). By assigning branoh probabilities one effectively

impresses a distribution over the production set.

Definition 9.3: A stochastic programmed grammar is a G-tuple
Cog (Vgs Vs Bs D, J, 8) |
where ’VH, Vps Py J, and S are as given in Definition 9.1 and D is a

rule for agsigning a probability messure over the productions.

Definition 9.h: Iet x € L(Gﬁpg) be a string generated by a
stochagtic programmed grammar Gspg using the sequence of productions
rys Tpy ssey Tpe "f“ne generation proceas. can be represented ss

rl r2 rﬁ
8= Yl W?a e Y w?ml = Xe

The probability associated with tbe generation is defined to be the

product of conditiomal probabilities

pleydolry [ 2)) woe pley [rys 70 ooy 7 4)e



If the string x can be generated by k distinct sequences of productions,

then the probabllity sssocisted with x is defined as

k

glx) = Zp{r}_)p(rg iry) oo iz, | Tys Tyy eoes T o)

i
where the sum is over the distinct generations of x.

As in the case of atochestic phrase-structure grammars, & pro-

duction probability assignment iz defined to be consistent provided

z glx) = 1.
x €x(e, )

B8P

The problem of providing a set of necesgary and sufficient conditions
for a production probability assigmment {0 be counsistent is greatly
complicated by the branching mechanism and the general form of the
~gore productions. A general solubion o this problem will not be
attempled here, although some special cases will be considered later.

1f the production probability asesignment ig specified by assign-
ing branchking probabilities, then one can write |

7 ! e e } = | s e
Plry 17ys Tps eeer ¥y ) P(bril Tys Tgr rees Ty )

ﬁare»_th;e‘,rigk;ﬁnhm_tam_ denotes the probability that after the
{i—:‘.)g@* rule is applied, a branch to rule r, is selected. As in the
éase of atochastic phrase-structure greammars, this pfobability could
&epené explicitly on the preceding seguence of rules used to reach
the current state of the generstion. 4 gimple but interesting case
is that in which branch probebilities depend only on the current

production and whether application of the éurrent production was a
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success or failure. When thisz is true, the following notation can

be defined:

p{l"i }rls rz, oy rﬁ."l) = P(hri‘ ri"l’ gi"'l) é Pg(J !ri"'l)
where € is either S (success) or F (failure) and the rightmost term
denctes the probability of selecting the jt’h guccess or failure branch
(depending on €) after applying rule iy

Definition 9.5: D is an §/F-dependent branch probability
assigoment for a programmed grammar provided

l?(l‘i irl’ rg? “sey ri"l) = pg(j lri“l)

for all possible production sequences.

It 1s tempting to think of this relatively simple situation as
analogous to the unyrestricted production probability assignment de-
ﬁ;md earlier for conventional stochastic gremmars. Bﬁt ﬁm analogy
is valid only in case the success and failure bra?ch fields and branch
probebilities are identical end each field contains the entire get of

branch Mels.

amrle .2: The following gramsar is the same as that given in
Example 9.1a except that branch probabilities have been added.

G}f

&“(VH:V:P: D, J, 3)

T
where
VN had {8, A} B, Cr,y D}
2 = {a, b, ¢, d}
J = {3-: 2, 3, b, 5, &y T}
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and P and D are given by:

label  Core beacnes  hemmre pga D" ps 0’
2 5 = 2AB 253 35 &, L-Cx 1
2 A = anc 2,3 ¢ 1-8,8 1
3 A=D i ¢ 3 1
b €~d 5 6 1 1
S D = bhe i p 1 1
6  B-ma 7 ¢ 1 1
7 D~ be - ¢ ¢ 1 1

P is an 8/F-dependent branch probability assignment.

For this exsmple

it is easy to show that D is consistent, since direct computation

yields:
| plabed) = 1 -
pla®™"c"a”) = a Bl - BY*2, a-2, 3 ...
Z 8x) = (1 -a)+ 2 o B(1 - B)*2
x € LSQ ‘ n=2

“l-a+a(l-B) 55 =1

This example provides an illustretion that satisfying the follow-

ing three conditions is evidently sufficient for an S/F-dependent

branch probability assignment to be consistent:

*A probability value of 1 is arbitrarily assigned in those instances

in which the probability veiue is gupsrfluous because the branch

field is null.
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l. For each production r in the programmed grammar
2rg(10) =Y p(le) =1
J J

where the sums are over all branches in the specified (succeass,
failure) field of the productions.

2. Every terminating generstion produces a terminal string
(a string having no nonterminals).

3. Every generation terminates with probability 1.

In practice, the first condition is easy to meet and the second
and third conditions will normally be satisfled if there are no
logical flaws in the formulation ("programming™) of the grammar. The
third condition ig the hardest tc guarantee: There mist be no
"trapping” loops in the grammer. The following fragment of a
stochastic programmed grammar shows an example gf e simple situation
which can lead to violation of this conditiom.

Success
Label | Core Rranches cee ps(d fr) .oe
. . . .
i A hind M i’j .« s a,l"'a LK 3
3 A had 8. i)j [ X a,l"’a oo

LA B 4
*e®
&

Assume there is s nonzero probability that the grammar will produce

at least one A to bve. rewritten by produetion i or j with probability

@ or 1-&, respectively. Then it follows from an elementary result
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in the theory of branching processes ([62], pp. 4-9) that & must be
less than 1/2 in order to guarantee that the generation will
terminate.

Unfortunately the production loops which violate the third
eonﬁ_itica are umal}y kmch harder to detect than the ome in this
 simple example; and the conditions as stated do not suggest a general
prooedure fox; testing an arbitrary atochastic programmed graw for
_ cunsiatmy. of course, if the langusge generated contains .a. finite
mumber of strings, the test can consist of direct computation; and
as the previows example illustraﬁes‘, this may also be true even if
the language is infinite. o

As the final remsrk of this section, it seems hardly necessary to
 point out that stochastic programmed grammars are computationally
or gemeratively no more powsrful than their nonmprobsbilistic counter-
parts. Both types generate the same class of languages. However,
it is hoped that the stochastic gemeralization will lead to grammars
wiiieh can model the probabilistic aspects of noisy "real world"
situations (see the example in Section 9.3). |

9:2 Lemgusges with Tails

Definition 9.6 [75]: Let I’a be a language over the set of
t.crnmals Vor end lst L Dbe a language over Vin U {s,t} where s5,t ¢ Vips
such that

L = fxst™ | x € L, and m depends on x}.
Then L is said to be of the form L, with tails. The x portion will

be referred to as the body of the string, s as the tall delimiter,

mﬂ.t‘umm},._
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The relationship of CFFG's and languages with tails is

interesting.

" Theorem 9.2 [76]: If L is & recursively enumerable language,

there exigts a CFIG langusge of the form L with tails.

This is & useful result because it further broadens the class
of languages which can be dealt with under the convenient formalism of
W-fm grogrammed grammers. And in ggnar-a.l, the tail is found
to ‘bs & comvenient place to perform any bookkeeping functions necessary
for the generstion of the language. This will be illustrated in the

exsmple pregented in the next section.

9.3 A Generator for Stochastic CFFG Langusages
fk it is a relatively simple matter to write a computer program
tc: simuiate the language generation process defined by any particu-
lar CFPG. Yor experimental or developmental purposes, however, it is -
convenient to have at hand & progrsm which uses gg[ given CFEG to
gensrate strings: The generator program described in this section
generates strings in a stochastic manner using any specified stochastic
CFFG (read in a.s “aaés”} and displays & pictorial interpretation of the
generation process on a digital display screen. The generation and
display capabilities permit the user to observe the programmed grammsr
at work, to interactively improve the gremmar, and to qualitatively
assess its stochastic properties. |

The program, written for the Digital Equipment Corporation

PDP-9 with Model 339 Graphical Display, is dia.grammed in Figare 9.1.
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g (SPG = STOCHASTIC
. PROGRAMMED (BRAMMAR)

SEIECT FATIURE

BRANCH
(moEx)

DISPIAY

SYRING

Figure .1 GOenerator Program for CFPG Languages
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The main routine serves as the control program and applies the core
productions to the current sentential form. A grammar input sub-
routine reads the stochastic CFPG from the selected input medium,
interprets it (a convenient input format is used which must be con-
verted to the form operated on by the program), and sets up the
necessary lisﬁ structures (Figure 9.2) which have been formulated

for convenient manipulation of arbitrary CFPG's. The branch selection
subroutine makes & probabilistic choice of the next production label
from the labels in the appropriate branch field. A random number
generator is utilized for this purpose. Finally the display sub-
routine interprets the current sentential form and maintains a display
file for generating the graphical display. This routine is the least
well defined part of the program since its exact nature depends
entirely on the user-defined semantic interpretation of the strings

generated by the grammer.

Example 9.3: It was proposed to develop a grammar for "noisy
squares" to model a physical process, namely the drawing of squafes
on, ‘say, a CRI"; input device or a RAND tablet. The following assump-
tions were made to keep the model simple but interesting.

l. The squares were o have their side length geometrically
distributed with mean length 1/a (o < 1).

2. The squares were to be drawn horizontal/vertical and the
opefa.tor was sssumed skillful enough so that the "noise” could be
conéideréd principally the quantization error resulting from input

through a digital or finite-state device.
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Pointer to Length of Length of Length of
8tart of Right Side of | Success Field | Failure Field }
Prod’n*}. Prod'n 1 ., of Prodj&l of Prod‘n*%
T (p) CIe™ | (s ) CIxy))
Pointer to
Start of
Prod'n 2 ete.

(p)*

* _
' Pointer to Memory

=%
Length Value

Production Pointer Stack

lLeft S8lde of Prod'n 1

Right Side of Prod'n 1

#
Success Field for Prod'n 1

*
Failure Field for Prod'n 1

Success Branch Probebilities

for Prod'n 1%

Failure Branch Probabilities

for Prod'n 1*

Laft Side of Prod'n 2

Flgure 9.2

Production Stack

**Occupies as Many
Memory Locationg
as Required by the
Production

Program Storage Configuration For Stochastic CFPG's
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3. The "target aiming” effect, which would come into play as
a square were about to be closed and would assist in ensuring closure,
was ignored.

~ The simplifying assumptions could be relaxed and the model made
arbitrarily complex. However, the example as defined serves to
illustrate that:

l. & relatively complex context-sensitive language can be
generated by a CFPG;

2. a "noisy" physical situation can be modeled by a stochastic
programmed grammar;

3. & general program for simulating the operation of programmed
grammars can sid in the interactive development of grammars intended
to model physical situations.

A language with tails was used sco that the tails could contain
necessary counters.* The first stochastic CFPG formulated to generate
._thé'noisy squares exhibited an obvious tendency to "ring" after noise
appeared; i.e., the noise was self-sustaining rather than having a
tendency to die out (Figure 9.3). This characteristic was found to be
inherent in the grammar: The restoring mechanism ﬁhich was intended
to bring deviations back to the straight line continued to operate in
the same direction after the line was reached, thereby resulting in

overshoot.

*
As formulated, the grammar does not bother to convert nonterminals in
the tail to terminal symbols, & step of no practical significance.
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The first revision of the original grammar appeared t¢ have over-
compensated for the ringing (Figure 9.4%). This was easily adjusted,
however, by modifying the branch probabilities of a few productions.
The final veréion gene;ates the sort of noisy squares desired
(Figure 9.5); the grammar appears in Table 9.1. "Reascnable" values
were selected for the branch probabilities in the model. If a hand-
drawn "training set"” were available for analysis in terms of the gram-
matical model, thege probabilities could be more closely tuned to the

true physical situation.

9.4  Analysis of Strings Generated by Programmed Grammsrs

This secticn presents a method for anslyzing strings to determine
‘ whether they belong to the language generated by a given CFPG. If the
grammar is stochastic, the probability of generstion is computed for
each string found to belong to the language.

The analyzer is a top-down parsing algorithm ccnsisting roughly
of the generation algorithm of the previous section plus a back-
tracking algorithm which together can systematically trace out the
genefation tree assoclated with the given CFPG. In the process, every
valid generstion of a string to be analyzed is found and reported. |
The concept is similar to the idea suggested by Chartes and Florentin
for the analysis of context-free languages (77), although the result-
ing analyzer for CFPG languages is necessarily quite unlike their
algorithm.

The only restriction on the CFPG is that it contain no cycles of

nonterminals which do not increase the length of the string being
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Scale: 1/8" per unit length
Grammsr Name: NSQRL
Parameters: Q = 0.05,:B = 0.05

AN AN

Figure 9.3 A "Ringing" Foisy Square




Scale: 1/k" per wnit length
Gramuar Nesme: NSQRS
Parameterg: @ = 0.05, B = 0.05

Figure 9.0 A Hoisy Squsre with Ringing Removed




Scale: 1/8" per unit length
Grazmayr Hame: HBQHS
Paraneters: = e.og, g = 0.05

Figure 9.5 A Noisy Square from "Improved" Stochestic CFFG
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Table 9.1 NSQR3: An "Improved" Grammar For Noisy Squares

Cysqrs = (vx, Vps Py D, J, s) '

where
VN = {S, F, X, Q, A, M, P, D, E, R, T, B, V}
VT = {-, 0, +, %, 3}

J = {1, 2, coey 37}
and P and D are given by:

R A R X DA XTIk
1 8- FXW 2,4,7 ¢ 1-20,, Q2,0 1
2 F=OFA 3 # 1 1
3 X ~XXX 10 ¢ 1 1
L  F - +FA 5 9 1 1
‘5 M-XX 10 6 1 1
6 X =-PXX 10 $ 1 1
7 F = -FA 8 ¢ i 1
8 PeXXxX 10 9 1 1
9 X -MX 10 g 1 1
10 P=P 2,h,7,12 1 vl,vz,vs,ﬂ 1
11: M=~M 2,4,7,12 2,h,7,12 vl,vyvz,a Vi VgV N:]
12 F =% 13 ¢ 1 1
13 Q=R 16 1% 1 1
14 R=-38 16 15 1 1
15 8=T 16 36 1 1
16 B=A 16 17 1 1
17 A=-B 18 20 1 1
18 E-=D 17 19 1 1
19 V-V 17 # 1 1

Ty = ad®)(1-8); v, = F(1-8); vy =a(1B)i v, = (1-20(1-$)
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Table 9-15 cont.

Success Failure

Label Core Branches  Branches ps(J Ir) pF(j [r)
20 P=X 21 22 1 1
21 D~E 20 ¢ 1 1
22 M~X .25 25,26,29 1 1-201,Q, 0
23 E=D 28 ol 1 1
2k V =~ DV 22 # 1 1
25 F = OF 32 ¢ 1 1
26 F = +F 27 & 1 1
27 M- 32 28 1 1
28 X=~P %2 ] 1 1
29 F oo o 30 ) 1 1
30 P~X 32 3L 1 1
31 X =M 32 & 1 1
32 D=E 33 ¢ 1 1
33 D =D 3h 12 1 1
34 P~P  25,06,29 35 1oP-a,d 0 1
35 M-M  25,26,29 25,26,29  1-0P-t,q,0F 1-20,0,0
36 T 37 g 1 1
37 FaF [ ] 1 1

Sementic interpretation of terminals:

G
+3
-l

LH

b H

unit segment in direction of current side

wnit. gegmint with. slope + 1 relative to currént side
unit segment with slope - 1 relative to current side
corner (changs direction by + 9003

tail delimiter {(finel string only

Exemple: The noisy square shown in Figure 9.5 is the pictorial

representation of the string:

~000000000~00+=~000000+00000000000+0000%
00000~-0000000000C000000000000000000000%
00+000000000000000-00+000000000~0000000%
0000000000000000000000+000000000000000%$ (tail omitted)
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To

r1 bl
generated (ag., A —=—> B, B » G, C —2—> A, followed by

ancther spplication of r. ). Practically spesking this is a very

1
minor restriction, but it guaraniees that the analysis procedure will
always terminate. It ensures that every path down the generation
tree produces a progressively longer sentential form (by definitiom,
no production of & CFPG may generste the mull string). Since any
candidete analysis is terminated if the length of the current sen-
fenti&l form exceeds the length of the siring being analyzed, and
gince there sre =zt most a finite muber of such candidate analyses,
the procedurs must svenitually helt.

To implement the backiracking algorithm, the grammer is modified
(automatically by the enalyzer) in a manner which, in effect, embeds
the CFFG language in & brecket languaze [787. In the case of context-
free phrase-structure grammars, a bracket languege has the feature
that every string contalns within itself the cm;gplete gpecificetion
of the way in which it wes genersted. In the CFPG cage, each string
conteins a history of the successful productions used to generate it.
When the analyzer is backtracking over a step which invelves the
successiul spplicetion of & production, the bracket configuration
indicates which portion of the sentential form was produced by that

step and must therefore be reduced o & single nonterminal.

Example 9.h: L(G) = {aple" |n > 1} ic generated by the follow-

ing CFEG.

G = (VT’ » Py Jy A)

“’rfa’

where
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VK = {A, B, C}
Vp = {a, b, c}

Jg = {l: 2, 3, l"r 5}

and P consists of 5 productions:

lbel  Core  Jwcess bl
1 A.- aBC 2,4 é
2 B - aBB 3 ¢
3 C = CC 2,4 ¢
k B-b L 5
5 C-ec 5 g

Flgure 9.6 is a schematic of the analysis of the string 'abe'! in
teras of this CFFG. The notation used is as follows.

1. For any nonterminal X € Vy, xi(y)xi indicates that the string
" ¥ was generated from the nonterminal X which was rewritten as v on

the 1*® step.

2. A downward arrow indicates & generative step; an upward
arrow indicates backtracking.

3. The branch labels have the form gi(,j) = r, ., where £is S
(success) or F (failure), subscript i indicates application of the 10
production, § indicates selection of the JU° branch in the £ branch
field, which is the branch to the production labelled Ty By defini-
tion: the first (top-most) label is Sc(l) = 1; §i(j) = § indicates
termination of & path down the tree, which_constitutes a successful

analysis if the current sentential form is identical with the string



A
30(1) = 1 i
| (a2,
50) =2 ? 8,(3) Hot Defined
A X 1
| A (an (azp)2,C)A, A, (aB,(0)B,C)A, | !ﬁrmig;t? ‘:\:?]ypjr

R} = 5l F,(2) Not Defined
A, (aB,(b)B,C)A)

85(1) = 5 t 8(2) Not Defined

Al(dz(b)xach(c)ch)ﬁl

r5Q1) = 8 11

Successful Analysis,
Report end Backtrack

Figure 9.6 Anzlysis of ‘abc' in Terms of the Grammar of Example §.k4
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being analyzed; the analysis of the string is complete when gi'(;s)
is undefined (or null) for i = 1 and some j.

Notice that the analyzer must continue even after a successful
analysis is produced since, in general, it is not known a priori
whether the grammar is unsmbiguous and it is desired to produce all

pogsible analyses.
The analyzer program, written in FORTRAN for the IBM System/360

‘Model Mk, ig diagrammed in Figure 9.7. The program uses the same

input subroutine written for tﬁe generation program for reading and
interpreting the CFPG and setting up the grammar-associated list
structures. One additional list, containing a history of all pro-
ductions used (whether or not successful), is maintained by the pro-
gram. The formats used for this list and for the list which contains
the current sentential form are shown in Figure 9.8.

When the grammar used for the analysis is asstochastic CFPG
with an S/F-dependent branch probability assignment, the report of
each successful analysis includes the associated probability of
generation.

The analyzer has demonstrated its capability with a range of
context-free programmed grammars including the "nolsy squares” grammar

discussed in the previous section.

Example 9.5: Figure 9.9 shows an example of the computer output

produced by the snalyzer program given the "nuisy squares" grammar
(NSQR3) ‘@8 input. The string supplied for analysis in this case is a

valid: noisy squar$ and the associated probability is printed by the
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WEAD AXD (2FG = BTOCHASTIC
TNTERPEET PROGRAMED GRAMMAR)
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READ STRING AALYSIS
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Figure 9.7 Analyzer Program for CFPG's




Step

¢« » o PO

Symbol

Position

1

s+« 0 IO

172

Label of Index of |
“Production g:i;i;: or} Branch
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Production ete.
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Generation Record Stack
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3 = Tail Delimiter (when applicable)
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Current Sentential Form

Figure 9.8 BSpecial Stacks Used by the CFPG Analyzer
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analyzer. The output following “SUCCESSFUL ANALYSIS" is a listing of
the "Curremt Sententisl Form" stack generated in the course of reach-
ing the successful analysis. It may be interpreted as follows. The
listing ia read left-to-right, top-to-bottom in the usual manner.

The first symbol of each triple is either a variable or a terminal.
The second syﬁhol indicates the step in the generation at which the
symbol was rewritten (zero for terminals and for final tail symbols
not comverted to terminals). The third symbol indicates whether the
triple represents & left bracket ("{"), a right bracket (%)"), the tail
delimiter ("$"), or & terminal or final tail variable (blank). For
example, the first triple represents the left bracket produced by
rewriting the start symbol § on the fist step.

( The lisgting of the final sentential form provides a complete
f@card of the syntactic variasvles from which the terminal string is
derived and alsc a complete history of the "ancestry" of each variable
extending back inevitably to the start symbol. HNote, however, that
this list in not a complete Listory of the generation process: the
"fadlure” steps are not indicated. A complete description of the
generation process is aveilable from the "Generation Record Stack™

(Figure 9.8), if desired.

9.5 Summary

The principel goel of Chapters § and 9 has been to establish some
framework for a probabiliztic model for linguistic pattern recogni-
tion. OQue of the most sericus obstecles to the development of

practical linguistic recognition models is the lack of syntactic




%wv!é
-
AN 4

anslysis procedures efficlient enough to process in a practical manner
the highly compler pabttern structures toward which such proceduras
will be directed. Two epproaches %o the development of eflicient
syntactic analyzers have been considered here.

In Chapter § some basic efforts have been made to determine to
what extent the relaiionships bebtweesn subtomaba and formal languages
mey ba exploited in this respect, since automata are conceptuslily
gimple recognition devices. Abtenition has been given to The proba-
bilistic generelizetion of these ralationships, particularly with
regard to finite auvomate and finite-ztate langusges. The computation
of probablility-valued Punctions by stochastic automate has been de-
fined, end it has besn ghown thet stochagtlic finite automatz can
xgm@ﬁm end cogpute the probasbility of generation of any string
generated by a stochastic finite-gtate grammer which has an unrestrict-
ad aad congistent production probability assignment. It has been
found that the corcept of recognition with isclated cub-pointe (and
nonzerc sut-points in genersl) may be of litile value for recognizing
stochestic pattern lengusges contairning an infinite nuwmber of patierns,
becsuss such recognition is incompsatible with computation of the prob-
ability of generction of the patberns. A similar conclusion has been
resched with respect to recognition by automata wnder a maximum likeldi-
hood criterion,; as recenily proposed in ihe ﬁter&iureg Some con-
sideration has been given to the question of whether stochastic
automaton recognizers should actually be constructed or whether it

would be preferable tc simply use the sutomata theory to derlve a
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computationai rodsl for syntactic patbtern recognition.

In Chapter 9 atteantion has veen f;cusea on developing s special
stochasiic gremmer which ray be betiter suited to practically de-
geribing and snalyziag patierns than {the more familisr forms of
phrase-structure grewars. The roceantly formulated context-free
progravmmed gramey--5 relgtively simple formalism for generating
comiext-sensitive langunges {(end even typs O langvages "with tails”)~-
has b@aﬂ adopted zs a fourdation gad generalized by adding a proba-
bilistic machanism. An stiempt hes been made to demonstrate the

feasibility of this approach to probavilistic pattern pgensration and

anslysis by realizing vhese rrocesses in terms of compuler programs and

spplying the programs Lo a class of noisy patterns. It is hoped that

the results will ancourage uriher work in this dlrection.
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CHAPTER 10

RECOMMENDATIORS AND CONCLUDING REMARKS

Some variations of the proposed method for nonparametric pattern
recognition should be investigated. Generalization of the smoothing
technique to utilize a smoothing mstrix not limited to be diagonal
in form has already been suggested. Other functional forms, possibly
better suited to specific types of data distributions, should be
tried as the "kernel” of the estimator (the reasons for using the
exponential kernel were cited in @pter 3). This could lead in
particuler to improved behavior of the truncated polynomial approxi-
mation when use of the approximstion were deemed necessary.

Linguistic pattern recognition is still in its infancy and
seaeking profiteble directions in which to grow. TIwc possible
directions have been suggested here but each will require consider-
ablév development before practiceal pattern recognition systems can .
be realized hLased on these ideas. Most of the results of Chapter 8
eoncern epproaches which should probably not be tried where infinite
pattern languages are involved, but the value of automaton-like
recognizers for dealing with finite languages and finite approxima-
tione of infinite langusges remains to be explored. The programmed
grammar is just one interesting variation on the conventional

phrase-structure grammar. Other speciaiized grammars may be
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formulated, pozsibly detter asuited to a probsbilistic genersliiza-
tien. %o be usefnl however, they must be amenable to effactive and
efficien syntecoic analysis procedures. In thisz respect, it would
be imteresting to consider the development of a special purpose
hardwsre implementetion of the programmed gramsar analyzer proposed
in Chapter 9.

In eonclusion, throughout the éa&rse of the research reported
herein, the awtbor bes triad.tc senieve a upeful balence of theory
and engineering ingenulty so as o arrive at some new umethods for
desling with the incressingly complex neture of contemporary pattern
recognition probloms. %o the extent that such a reasonable balance
hae been struck, the readers who sre theorsticiens will be ablz to
secept as plausible the idens presented {with supporting empirical
evidence) and perhaps pursue them further, while the readers with
&n engiaeerirg orientetion will be tempted to uhilice the proposed

methods in the solution of thelr patiern recognition problems.
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