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ABSTRACT

Data transmission loads of high dimensional remote
sensor systems can be greatly reduced by applying
generalized Karhunen-Loeve transform as a feature
design technique. Two spectral feature design
approaches based upon the generalized K-L transform
are developed 1o compress information effectively. Six
sets of field data from Kansas and North Dakota on
three different dates each are used to test the methods.
Spatially, temporally and spatially/temporally
combined data sels are formed in this paper to test the
robusiness property of the schemes.

The probability of correct classification using Landsat
MSS, Thematic Mapper bands and the proposed
bands are found and compared. The comparison
shows that the resulls are improved by the proposed
methods, and they appear 1o be satisfactorily robust.
The overall data compression ratio in this paper is
about 100/16, i.e., about 6 to 1 with no loss in
classification accuracy.

Keywords: Generalized Karhunen-Loeve Transform,
Multispectral Data, Spectral Feature
Design, Data Compression.

l. INTRODUCTION

For multispectral imaging remote sensor systems the
data transmission rate from the sensor platform to the
ground processing station can be extremely high.
Furthermore, future instruments, such as SISEX and
HIRIS, which hold the promise of making possible the
acquisition of much more detailed information from
satellite data due 10 their 100 to 200 spectral bands,
might substantially exacerbate this problem. Thus it is
essential to find new ways 10 process the data which
reduce the data rate problem while at the same time
maintaining the information content of the signals
produced.

One approach might be to taylor the spectral features
to the pariicular analysis problem at hand. Features

1 The work reporied in this péper was funded in part by NASA
Granl NAGW-925

might be made up by grouping (i.e. summing) the
narrow band response functions in paricular spectral
regions on board the spacecraft, based upon the
panricular classes of ground cover parameters that are
to be identitied. The problem then reduces to finding a
means for deciding how to choose these band
groupings effectively for each ditferent analysis
situation such that the data transmission load is greatly
reduced while the classification performance is
preserved.

An analytical feature design procedure has been
previously proposed by Wiersma and Landgrebe [1].
The procedure utilizes a generalized form of the
Karhunen-Loeve Transformation in which the
eigenvectors of the transform are the optimal (though
impractically complex) spectral features. In this paper,
two methods are proposed which in effect leads to
suboptimal but now practical versions of the optimal
features. These suboptimal features could be
implemented by utilizing simple programmable adders
at the sensor output, combining the large number of
bands together into a smaller number of bands that are
still quite effective in achieving good pattern classifier
performance. The first method is based on the
dominancy property of the spectral bands. The band
edges can be found by applying infinite clipping to the
average of the first few eigenvectors associated with
the largest eigenvalues. The second approach utilizes
a transformation from the optimal feature space to a
new space based upon Walsh Functions. These
functions have the attractive feature of being
everywhere equal 1o either +1 or -1, and being ordered
by the number of axis crossings. Thus the
transformation can be implemented by either adding or
subtracting bands, and the various functions will
correspond to spectral ranges of a variety of widths.

To test the performance of these two approaches, six
sets of high spectral resolution field measurement data
were available. Three of them were taken over
Williams County, North Dakota, with 3 information
classes: spring wheat, summer fallow and natural
pasture; The other three were taken over Finney
County, Kansas, with 3 information classes: winter
wheat, summer fallow, and grain sorghum or other
crops. For convenience, these data sets are referred
to with a letter/number designator, as follows:
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Location Date Designation
North Dakota  May 8, 1977 N1
North Dakota  June 29, 1977 N2
North Dakota  August 4, 1977 N3
Kansas September 28, 1976 K1
Kansas May 3, 1977 K2
Kansas June 6, 1977 K3

These data were taken by the Field Spectrometer
System (FSS) mounted in a helicopter. The spectral
resolution was 0.02 um for the interval from 0.4 pm to
2.4 um.  Moreover, six additional data sets were
formed to test the robustness property of the schemes.
They are named as KiN, K2N, K3N, K, N and KN.
Three of them (KIN, K2N and K3N) are spatially
combined with six classes. Two of them ( data sets K
and N ) are temporally combined with nine classes.
The last one, KN, is spatially and temporally combined
data set with eighteen information classes. For
example, K1N is the data set formed from K1 and N1,
K is the data set from Kt, K2 and K3, KN is the largest
data set which consists of all the six uncombined data
sets, etc.

For each of the twelve data sets, the collection of
spectral sample functions forms the ensemble of a
random process. The mean vector and the covariance
matrix of this ensemble are first estimated. The
estimate of the covariance matrix is used to solve the
generalized Karhunen-Loeve equation which results
in the eigenvalues and the eigenvectors of the
transform. Figure 1 shows the first three eigenvectors
associated with the largest eigenvalues for the data set
K2 [2]. In these plots, the wavelength axis is
represented by band numbers instead of micrometer.
Band number 1 corresponds to 0.4 um, and band
number 100 is associated with 2.4 um. The spectral
interval is 0.02 pm as stated previously. Therefore the
dimensionality used in this research is 100.

lIl. ADAPTABLE NON-OVERLAPPING BAND
SELECTION ALGORITHM

After performing the generalized K-L transformation
to the data [2], where a weight function is incorporated
into the transform to avoid portions of the spectrum
where the atmosphere is known to be opaque, the
eigenvectors can be found. These eigenvectors serve
as optimal features that linearly transform the original
measurement space to the new space in a minimum
mean square error sense [3]. More realistic features
can be found by carefully studying the shapes of the
first few eigenvectors. The importance of a wavelength
region for purposes of accurately representing the
ensemble of functions is indicated by the magnitude of
the eigenfunctions in that region. It is hypothesized that
the importance of a region in an ensemble-
representational sense is positively correlated with
(though not identical to) its importance with respect to
classification accuracy. Referring to figure 1, it is
observed that each eigenvector thus points to the more
important regions.

For instance, the first eigenvector indicates that there
are 3 important regions over the entire spectrum: band
intervals 1-45, 54-70, and 79-100, corresponding to
spectral intervals 0.4-1.3 pm, 1.48-1.8 um and 1.98-2.4
um. The second eigenvector indicates that important
regions are approximately 1-14 (0.4-0.66 um), 14-45
(0.66-1.3 um), 54-70 (1.48-1.8 um), and 79-100 (1.98-
2.4 um). Itis desired to choose the regions with larger
magnitude in the eigenvectors, especially from those
with largest eigenvalues, as sensor bands since these
regions contribute most to reduction of representation
error as well as increasing of classification
performance.

However, such a subjective process is difficult to
carry out objectively due to the spectral detail in the
eigenfunctions and the number of eigenfunctions to be
examined. A machine implemented band selection
algorithm based on this dominancy concept in the
eigenvectors is thus sought. The input to this algorithm
will be the average of the first few eigenvectors. The
output is to be the band edges showing how the bands
should be chosen.

This algorithm applies infinite clipping to the average
of the first few eigenvectors. Figure 2 shows the
average of the first 12 eigenvectors. Atter thresholding,

the data of Figure 2 become as in Figure 3 where +1
represents the positive portions of figure 2, -1
represents the negative portions of the spectral, and 0
represents the water absorption bands centered at 1.4
and 1.9 um respectively. It should be noted that there
is no response over the above water absorption bands
due to the use of the weight function in the K-L
transform, which has been set 1.0 over the entire
spectral and a very small value in the water bands.

The band edges are found as follows: whenever a
transition in sign or magnitude occurs in Figure 3, the
band number of the associated wavelength is
recorded. At the two ends of the spectrum, band
number 1 and band number 100 are also chosen as
band edges. Table 1 shows the results after transition
operation. The band numbers in Table 1 can be used
to set up the (now suboptimal) basis functions for data
compression (Refer to the 2nd column in table 4).

Table 1. Band Edges Obtained by Infinite Clipping of
the Average of the First 12 Eigenfunctions.

Band Edges: 1, 14, 25, 27, 31, 33, 37, 43, 45, 54, 70,
79, 100.

lll. WALSH FUNCTION APPROACH

By carefully viewing the structure of the eigenvectors
[refer to Figure 1], one may also observe that the
eigenvectors corresponding to the larger eigenvalues
tend to have coarser structure than those with smaller
eigenvalues. A similarity to this effect exists in the
Walsh functions indexed by the number of zero-
crossings. The higher the index of the Walsh function,
the finer the structure of the function. [4]
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Figure 1. First Three Eigenfunctions for Data Set K2.
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Figure 2. Average of First 12 Eigenfunctions
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Figure 3. Thresholded Version of Figure 2.
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The inner product of two functions may be thought of
as a mathematical measure of similarity of the two
functions. The absolute values of the inner products
between the first 16 eigenvectors and the first 64 Wash
functions were calculated. Table 2 shows par of the
results. Table 3 shows the similarity relation between
these two sets of functions. For example, the number
"1" in the (1,1) matrix position indicates that the first
eigenvector is more similar to the first Walsh function
since the value 0.84 in table 2 is the largest in the first
column. By observing the first two rows of the table, it
can be concluded that the first 8 eigenvectors and the
first 8 Walsh functions have approximately the same
shape. ltis feasible to use the first few Walsh functions
as features for data compression for high dimensional
multispectral data.

Table 2. Absolute Values of Inner Product between
Two Sets of Functions.
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Table 3. Similarity Relation Between Two Sets of
Functions.

Eig.# 1 2 3 4 5 6 7 8

Wa.#

1 1 2 3 4 3 7 8 8

2 57 5 2 12 5 36 6 9

3 g 6 59 60 9 16 7 6

4 2 3 10 10 6 40 28 22
5 14 1 11 15 10 35 12 18
6 11 58 1 14 2 19 10 24
7 10 13 58 2 7 23 25 64
8 33 11 8 52 16 15 11 3

IV. EXPERIMENTAL SYSTEM

An experimental software system has been set up to
implement these two approaches. This system has
been implemented on IBM 3083 computer. A
collection of field data consisting of spectral sample
functions on three dates from Williams County, ND,
and three dates from Finney County, KS, was
available from the field measurement library at
Purdue/LARS. The spectral functions were sampled at
0.02 um over the range 0.4 to 2.4 um, therefore, the
dimensionality is 100.

The optimal features are found numerically by
estimating the covariance matrix from the sample
functions. Maximum likelihood estimates of the mean

and covariance matrix are given [5] by

- e 1 N
><=E(><)..x=N—s§xi (1)
and
Ng
K= Ty 004K @)

where N; is the number of the sample functions and X;

is the ith sample vector. The covariance matrix is then
used to solve the generalized Karhunen-Loeve
Equation [2] :

KWo = oI 3)

where the matrix @, I', and W are the eigenvectors,
eigenvalues and the weight matrix respectively. The
solutions of the equation are the optimal features. In
order to find appropriate bands used in data
compression, the band selection algorithm is applied
to the average of the first few eigenvectors. Three
cases were studied, tests using the first 6, 12 or 24
eigenvectors in the algorithm. For the illustrative
example shown in section Il, the second case is
considered. The bands found by the algorithm or the
Walsh functions developed from the structure similarity
property are then used as spectral features to perform
the linear transformation on the data sets.

Y, = ®TX (4)

In order to test the bands thus determined, the
probability of correct classification is estimated using
them. To do so, the class-conditional statistics are first
computed using the transformed data. An algorithm
based on the stratified posterior estimator [2] is then
applied, where the class conditional statistics are
assumed to be multivariate Gaussian.

V. RESULTS

After applying the band selection algorithm to the
average of the first 6, 12, or 24 eigenvectors of the
twelve available data sets, the band edges are found.
Table 4 shows the results for the data set K2 for three
different situations. These three sensors are referred
to as Proposed sensor C1, C2 and C3 respectively.
For brevity, they are denoted PC1, PC2 and PC3.
Furthermore, the probabilities of correct classification
using Landsat MSS (MSS), Thematic Mapper (TM)
and the two sensors proposed in [2] (PA and PB) are
also presented here. Figure 4 is a comparison of
performance between the optimal features and the
Walsh features for data set K2. it can be seen that
representing the optimal features using the first 16
Walsh functions produces the more practical features
used for classification which provide a classification
accuracy quite near that of optimal features. The
classification performance estimated for the above
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PERFORMANCE COMPARISON
Optimal vs Walsh-Derived Features
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Figure 4. A Performance Comparison using Optimal vs Walsh-Derived Features

Table 4. Bands Found by the Algorithm for Data

Set K2.

BAND PC1 PC2 PC3
1 1-14 1-14 1-13
2 15-23 15-25 14-21
3 24-26 26-27 22-25
4 27-28 28-31 26-27
5 29-30 - 32-33 28-30
6 31-33 34-37 31-33
7 34-36 38-43 34-39
8 37-45 44-45 40-43
9 54-68 54-70 44-45

10 69-70 79-100 54-58
11 79-100 59-62
12 63-68
13 69-70
14 79-90
15 91-93
16 94-100

Table 5. Probability of Correct Classification for 6 Data

Sets
SENSOR K1 K2 K3 N1 N2 N3
MSS 09 0.78 0.85 0.77 0.83 0.96
™ 0.92 0.79 0.93 0.89 0.95 0.99
PA 0.94 0.86 0.95 0.92 0.96 0.99
PB 0.94 0.85 0.94 0.89 0.96 0.96
PC1 0.94 0.87 0.96 0.92 0.97 0.99
PC2 0.96 0.88 097 0.94 097 0.99
PC3 0.96 0.94 0.98 096 0.98 0.99
OPT16 0.98 0.97 0.98 0.97 0.99 0.99
W16 0.98 0.95 0.98 0.95 0.98 0.99

Table 6. Probability of Correct Classification for 6
Combined Data Sets

SENSOR K1N K2N K3N K N KN
MSS 0.78 0.65 0.74 0.70 0.62 0.52
™ 0.89 0.74 089 0.79 0.79 0.7
PC1 0.91 0.86 0.92 0.77 0.86 0.66
PC2 0.96 0.93 0.97 0.86 091 0.78
PC3 0.98 095 0.97 094 095 0.86
OPT16 0.97 0.97 0.98 0.97 0.96 0.96
W16 0.97 095 0.98 096 0.95 0.94

sensors are shown in Table 5 and 6. From these two
tables, it is seen that the two approaches developed in
this research, one based on the "shape" of the optimal
features and the other from their "structure” similarity
with the Walsh functions, are very effective ways for
data compression. Furthermore the schemes are
robust since the classification performance is not
greatly reduced due to spatial, temporal or both
variations.

V. CONCLUSION

The results presented here shows that an analytic
and systematic approach can be developed to
determine band edges automatically. This band
selection algorithm is robust with respect to spatial
(i.e., geographic) variations, temporal variations, and
data with both combined. Moreover, the Walsh
Function approach is shown to have excellent
performance in classification. The overall data
compression ratio in the tests is about 100/16, i.e.
about 6 to 1 with no measurable loss in classification
accuracy.
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