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ABSTRACT

Latty, Richard S. M. S. in Forestry, Purdue University, May, 1981,
Computer-Based Forest Cover Classification Using Multispectral Scanner
Data of Different Spatial Resolutions. Major Professor: Roger M.
Hoffer.

The U3 microradian angular instantaneous-field-of-view (IFOV) of
the Thematic Mapper (TM) will provide a linear spatial resolution of
approximately 30 meters from a nominal orbital altitude of 700
kilometers. The activities reported here have been focused on
developing an understanding of the relationship between the properties
of the imaged scene, the spatial resolution of the system with which
the scene 1is imaged, and the characteristics of the resulting data.
Specifically, the objectives of this investigation were : 1) to
compare the "pure field" classification accuracies obtained with data
of four different spatial resolutions, using a per-point Gaussian
maximum likelihood (GML) classifier, and 2) to compare the "pure field"
classification accuracies obtained with data of 30 meter spatial
resolution using the per-point GML classifier with accuracies achieved
using a per-field classifier (i.e., the LARSYS *SECHO, "Supervised
Extraction and Classification of Homogeneous Objects™, classifier).

The data were obtained on May 2, 1979 wiéh the NASA NS-001
Thematic Mapper Simulator (TMS) over an area in northeastern South
Carolina from a height above ground of 19,500 feet. The 2.5
milliradian angular IFOV of the TMS resulted in a nominal 15 meter

linear spatial resolution at nadir for the original TMS data. Data




xi

sets of three different spatial resolutions (30 x 30 meter, 45 x 45
meter, and 60 x 75 meter) were computed from the original 15 x 15 meter
TMS data. Data of each resolution were classified with a conventioral
per-poiht GML classifier. The 30 meter spatial resolution. data was
then classified with the *SECHO classifier. The classification
accuracies were assessed with both training areas and test areas based
on agreement with cover class identifications determined from aerial
photographs and site visits. The percentage of pixels correctly
classified for data of each resolution and with each classifier were
compared using the Newman-Kuels' Range Test on the arcsin transformed
proportions.

The results were :

1) the use of successively lower (from 15 x 15 meter to 60 x 75
meter) spatial resolution data resulted in higher overall
classification accuracies;

2) in areas where the cover c¢lasses occupy relatively small
contiguous areas, decreases in spatial resolution beyond 45 x 45
meters failed to result in  higher "field-center pixel"
classification accuracies;

3) statistically (a = 0.10) higher classification accuracies were
achieved using 60 x 75 meter, as opposed to higher, spatial
resolution data in cover classes (eg., forest cover classes)
associated with relatively high levels of spectral variability
across adjacent pixels;

4) differences in classification accuracies achieved with data of
different spatial resolution were not significant (a = 0.10) for

" cover classes with relatively low levels of spectral variability
across adjacent pixels (i.e., pasture, crops, bare soil, or water);



xii

5) statistically (a = 0.10) higher classification accuracies were
achieved using the ¥SECHO classifier with 30 meter spatial
resolution data, than were achieved using the per-point GML
classifier;

6) the largest increases in c¢lassification accuracies were
achieved with the *SECHO classifier in cover classes associated with
relatively high 1levels of spectral variability across adjacent
pixels; and

7) the difference in classification accuracy observed for training
pixels as compared to test pixels was much greater than the
differences due to spatial resolution of the data, or the classifier
employed.

Perhaps most importantly, these results indicate that, in order to

make best use of the 30 meter spatial resolution data of the Thematic

Mapper, more efforts will need to be focused on the development and

refinement of classifiers which employ patterns of spectral variability

in the spatial domain.

v




CHAPTER 1

INTRODUCTION

In forest inventories and surveys the need to classify areas to a
detailed 1level of community composition and stand structure often
exists. Landsat data has provided the remote sensing community with a
first look at employing spacecraft imagery for natural resource
inventory and monitoring. Landsat data enables 1land cover
classifications to be obtained at accuracy levels compatible with many
applications. These, however, are generally restricted to fairly low
levels of detail. Landsat data wusually does not provide adequate
classification results for more detailed 1levels of cover
classification. Experience with large scale, high resolution aircraft
photography has left many applications scientists with the impression
that similar improvements in classification detail and accuracy can be
achieved with higher resolution MSS data than is provided with the
current Landsat MSS. While there is 1little doubt that increased
spatial resolution data will facilitate visual interpretation of the
imagery, the impact on computer-based cover classification is not well

known.,




This study investigates forest cover type classification accuracy
achieved using data of different spatial resolutions. The
classification accuracies achieved with the conventional per-point
Gaussian maximum likelihood classifier are compared to the accuracies
achieved with a compound decision classifier (ie., the supervised ECHO
("Extraction and Classification of Homogeneous Objects") classifier).
The characteristics of the data and the class densities (used in
training the classifier) are also examined relative to spatial
resolution. Information regarding these characteristics are expected
to provide a better understanding of the relationship between spatial
resolution and classification accuracy.

Much attention has been given to the task of providing a precise
theoretical and operational definition of spatial resolution for MSS
systems, with considerable ensuing debate and controversy. While the
provision of such a definition is beyond the scope of this study, a
brief review of some of the work and considerations given this topic
will clarify some of the relationships between characteristics of the
scene, the scanner system, the resulting data, and the processing
techniques employed in converting the data to useful information.
Exact values for the spatial resolution of MSS data rely on the
operational definition of resolution and are, strictly speaking, not
available. Therefore, nominal figures will be used throughout. The
tefm nspatial resolution" will be used in reference to the area on the
ground represented by a single picture element (pixel), that is, the
area on the ground represented by a single response level vector.

Increasing or higher resolution will refer to a decrease in the area on



the ground represented by the pixel. Decreasing or lower resolution
will refer to an increase in the area on the ground represented by the

pixel.

Objectives

There are two primary objectives of this study.
(1) The hypothesis that per-point classification using four different
spatial resolutions result in classification performances which are

equal will be tested. The hypotheses can be expressed as :

HO : P(15m) = P(30m) = P(45m) = P(75m)

H1 : not all performances are equal.

The presence of any trends in classification accuracy associated
with resolution will be tested through the use of the an analysis
of variance sensitive to rank orders. This will provide a test for

the significance of any apparent trends in the classification
accuracies. The differences in classification accuracy across
spatial resolution for the various cover classes are examined in
order to better understand the possible affect of the spectral

variability assoclated with the cover classes.

(2) The classification performance of 30 meter resolution data using a
per-point classifier will be compared to performances obtained by
employing a per-field classification approach. The hypotheses can

be expressed as :

HO : P(30m,p) = P(30m,f)




H1 : P(30m,p) < P(30m,f)

Two sub-objectives of the study are :

(1) to explore the differences, if any, in the within cover class
variance and the within spectral class variance associated with
each resolution studied, and

(2) to explore the correlation between response levels of spatially

proximal pixels within each of the different resolutions.




CHAPTER 2

LITERATURE REVIEW

Spatial Resolution

A conceptual definition for spatial resolution was provided
earlier to establish a basis on which subsequent discussion could be
conducted. Operationally and theoretically, however, resolution has
proven to be a nebulous subject which has received much attention from
physicists and engineers in the field of opties. While the problem of
spatial resolution for MSS systems is different from that for
photographic systems, the majority of the work has been concerned with
the latter. A review of some of the work conducted with respect to
resolution in the field of photo-opties will provide much insight into
the nature and complexity of the resolution of MSS systems.

Resolution, in photography and telescopy, has been used in
reference to the "minimum separation between two objects for which the
images appear distinet and separate" (Rosenberg, 1971). This
separation can either be expressed as a distance between the images of
the objects or as the angle subtending the two objects from the point

of observation. Operationally, resolution has been defined for




photographic systems by the number of line pairs per millimeter "that
are just discernable by the human eye 1looking at the image of a
particular standardized bar target of particular standardized contrast
under particular specified conditions of illumination and
magnification" (Rosenberg, 1971). Figure 2.1 is an example of such a
test target. The highly specific nature of the conditions under which
this measure of resolution is obtained makes it misleading in the
context of applications for which such conditions rarely, if ever,
exist. Resolution, so determined, will vary depending on the shape of
the object, object-to-background contrast, location and orientation of
the object in the image, exposure, degree of development, angle and
amount of illumination, ete., (Rosenberg, 1971; Noffsinger, 19704;
Welch, 1971). Work conducted in spacecraft altitude photography by
Atkinson and Jones (1963) established the importance of atmospheric
turbulence, and the height of the turbulent layer, as another factor
determining the resolution of imagery from orbit altitudes. Other
approaches to the problem have been developed in response to the above
limitations. Among these other approaches are Rayleigh's, Sparrow's,
Conrady's, and Dawe's criteria ; all of which have met with similar
objections (Noffsinger, 19704).

The approach which has received much attention, and has
demonstrated advantages over the other driteria, 1is the application of

the modulation transfer function (MTF). The modulation transfer




function is basically a relationship between image contrast and the
spatial frequency of the image (1). Noffsinger (1970B) describes the
MTF, graphically, as a "plot of spatial frequency versus the ratio of
image to object modulations, which are normalized to unity at zero
spatial frequency". The image to object modulation is the ratio of the
relative amplitude of the exitance at the object surface (the "object")
to the relative amplitude of the log-exposure equal to the photographic
emulsion density (the "image"). The advantages and nature of the
modulation transfer function are best made apparent by the method
through which it is obtained, therefore the procedure will be presented
here.

The spatial variation in reflectance associated with the bar
target presented in Figure 2.1, can be thought of as a gate function,
with percent reflectance varying as a function of distance (Figure 2.2
is a plot of percent reflectance versus distance for the bar target of
Figure 2.1). The bar target thus provides a target of distinet edges,
one side of the edge having a very high reflectance (generally about
80%), and the other having a very low reflectance (generally about 5%;
see Weleh, 1971). The theory of MTF analysis is based on the amplitude
modulations for targets which vary in reflectance in a sinusoidal
manner with respect to distance (Welch, 1971). Figure 2.3 1is the

percent reflectance versus distance for a test target, the bars of

(1) Contrast is defined as the change in the density with respect to
the change in the log-exposure (Zwick, 1966). Spatial frequency can be
thought of as the number of patterns per unit distance, and is
generally expressed in cycles per millimeter (Zwick, 1966; Welch,
1971).
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which do not possess distinct boundaries. The test target employed in
MTF analysis provides a closer approximation to "real world"
situations, in that few boundaries are accurately represented by the
gate function characterizing the bar target of Figure 2.2 and rarely,
if ever, does the target-to-background contrast have a ratio of 1:16.
Slater (1975) discussed procedues for determing the resolution of
photographic systems with a range of test target contrasts of 1:1000 to
1:1.6.

A bar target of sinusoidally varying amplitudes of percent
reflectance is imaged with the photographic system to be tested (2).
The photographic negative is then scanned with a spot or line scanning
densitometer. The image is scanned normal to the orientation of the
bars. Since the amplitudes recorded for each spatial frequency (ie.,
for each set of bars having a different spacing) are measured relative
to the density of the negative, these amplitudes are generally
converted to exposure. This 1is achieved through the use of the
relationship shown in the sensitometric curve (Figure 2.4) between
density and log-exposure. This conversion renders the amplitudes
independent of image processing and image contrast (Todd and Zakia,
1969). The resulting maximum and minimum amplitudes of exposure are
then used to compute[the modulation transfer factor for each spatial

frequency component by :

MT(f) = (I(max) - I(min))/(I(max) + I(min))

(2) This is generally done at several levels of focus to determine the
out-of-focus effects for the system, and at various viewing angles to
determine off-axis resolution characteristiecs.
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Figure 2.4 Sensitometric Curve. Exposure (ergs-cm-z) is defined by

E = It, where I = illumination or irradiance
(erg-sec‘l-cm‘z), and t = time(s). Density is defined as
log—~Opacity, where opacity is the capacity of a material
to resist the transmission of light. Opacity is the in-
verse of the transmittance (see Cretcher and Reed, 1968).
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where @
MT(f) = the modulation transfer factor
for frequency (f),
I(max) and I(min) are the maximum and
minimum exposure values (respectively)

obtained from the transformed
densitometer trace.

The modulation transfer factor 1is then plotted against the
corresponding spatial frequency (as shown in Figure 2.5) which is,
graphically, the modulation transfer function. The plot is normalized
by multiplying all transfer factors by the reciprocal of the transfer
factor of the lowest spatial frequency, thus the highest modulation is
generally 1.

The elegance of the MIF arises from it's mathematical idehtity.
It is the modulated amplitude of each frequency component of the scene.
From communication theory, any signal can be represented by a sum of
mutually orthogonal functions (Lathi, 1968). The first period of the
gate function of Figure 2.2, for example, can be approximated by

summing over a set of sine functions of various frequencies and

amplitudes, as shown in Figure 2.6. The sum of sine functions
multiplied by their corresponding amplitudes constitutes a
trigonometric Fourier series. The Fourier series is an infinite

series, the arguements of which are the frequency components, and the

coefficients of the arguements are the amplitudes of their respective

(3) There are many texts covering the theory and mathematics of the
Fourier trznsform. A particularly tractable coverage is provided in
Communication Systems , by B.P. Lathi. Other texts include Principles
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frequency components (3). An electrical signal is a representation of
a variation in current amplitude in the time domain, x(t). The Fourier
transform of the electrical signal is a representation of variation in
current amplitude in the frequency domain. The original electrical
signal can be obtained by the inverse Fourier transform of its
representation in the frequency domain. Similarly, the modulation
transfer function is a representation of the amplitude of
electromagnetic energy reflected by the object, modulated in the
imaging process, represented in terms of the frequency domain. The
inverse Fourier transform is the image modulated amplitude in the
spatial domain, which is the point spread function for two dimensions
and the 1line spread function for one dimension (Slater, 1975;
Noffsinger, 1970B). That is, we can obtain the density function which
represents the spatial "spread" of irradiance from a point source or a
line source of 1light, as represented in the image, from the inverse
Fourier transform of the modulation transfer function of the imaging
system. We can now integrate the line spread function to obtain the
edge trace (4), which will provide information regarding the
"sharpness" of the image (Noffsinger, 19704).

Perhaps the primary advantage of approaching resolution in this
fashion is that the resolution characteristics of an entire imaging
system (ie., the atmosphere, the platform motion, imaging optics, film,

——— — - — . " - " ————

of Communication : Systems, Modulations, and Noise , by R.E. Zeimer and
W.H. Tranter, and Applied Time Series Analysis , by Otnes and Enochson.
(4) An edge trace is the level of exposure at each point along a line
perpendicular to some edge (the boundary between two surfaces of
different reflectances) in an image, generally obtained with a scanning
densitometer.
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and developing techniques) can be obtained by multiplying the MTF of
each individual component, provided certain assumptions are met. Thus
the resolution resulting from the combination of any set of imaging
components can be determined from knowledge about the MTF of each
individual component, instead of having to determine a single value
under a specific set of conditions for each possible combination.

Noffsinger (1970B) provides a very appealing verification of this
"cascading" capability wusing the convolution integral in the spatial
domain. Shelton (1967) used the convolution integral to determine the
combined effect of the point source distribution and the point spread
function of the imaging system used. Interpretation of the MIF through
the use of threshold modulations, which provide a relationship between
" just resolvable" spatial frequencies at different levels of contrast,
is presented by Scott (1964) and Weleh (1971). Zwick (1966) used the
resolving power of the human eye (about 0.1 mm or 5 cycles/mm at a
distance of 25 cm) to evaluate the MIF of imagery for different
anticipated applications. Zimmerman (1966) demonstrated the
relationship between the MITF and other commonly used criteria for
determining resolution. Slater and Schowengerdt (1972) offered a means
of applying the MTF to multispectral scanner systems.

The representation of resolution with the MIF also provides a
means of determining the combined effect of the characteristies of
reflected radiation and the optical system (including the atmosphere)
on the spatial characteristiecs of the resulting image. Most earth
surface features of interest in remote sensing, at illumination angles

under which sensing systems commonly operate, reflect radiation in a
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diffuse manner. While few materials approach truely Lambertian
surfaces in their refléctive properties (ie., the reflected radiation
is constant independent of the angle of view and the angle of
illumination), the reflected radiation is largely diffuse (Higham,
Wilkinson, and Kahn, 1973). This property results 1in a continuous
distribution of radiation from a discrete source as a function of the
distance from the source. That is, the edge trace of a discrete source
would possess a definite slope excluding the effect of any optical
imaging system. Therefore, an edge between two surfaces of different
reflectances would have a 1line spread function of definite width,
resulting from the diffuse reflection of incident radiation. The
maximum resolution acheived for any given imaging system would,
consequently, be less than the convolution of the line spread function,
resulting from diffuse reflection, with the spread function of the
atmosphere (due to scattering caused by turbulence). Atkinson and
Jones (1963) suggested that long focal length systems at spacecraft
altitudes, which wogld otherwise provide very high resolutions, would
be limited to a maximum resolution of about 1.3 meters under "good"
atmospheric conditions. The maximum achievable resolution would also
vary as a function of wavelength, since atmospheric scattering effects
vary with respect to wavelength (see section on Response Level

Adjustment).
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Resolution in Multispectral Scanner Systems

The distinction between the resolution of photographic systems and
multispectral scanner systems is basically twofold. Resolution for MSS
systems is 1in reference to the area on the ground represented by a
single response level vector (5), rather than the minimum distance
between two "just distinguishable™ points. Efforts to provide an
operaticnal definition for resolution of an MSS system are directed at
defining the dimensions of this instantaneocusly viewed area on the
ground, and the two dimensional weighting function representing the
relative modulation of exitance for each point in the area. This
function is analogous to the point spread function of photographic
systems. The resulting spread function is the inverse Fourier
transform of the product of the modulation transfer functions of all of
the components of the system (NASA, 1973). Figure 2.7 is a schematic
representation of the components through which the reflected radiation,
and subsequent electrical signal, are modulated in the process of MSS
imaging. The "post-optics™ set of modulators is the secondary
distinction between MSS and photographic systems, when considering
resolution.

The most commonly cited measure for spatial resolution is the

(5) This area on the ground has been refered to as the "effective
instantaneous field-of-view, EIFOV" (NASA, 1973), "ground-projected
IFOV" (Slater, 1979), "ground resolution" (Higham, Wilkinson, and Kahn,
1973), and "pixel" (Silva, 1978).
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instantaneous field-of-view (or angular width of field stop), which is
based on the geometry of the system optics (see NASA, 1973; Baker and

Scott, 1975; Townshend, 1980). The IFOV is computed by :

IFOV = D/f
where :
IFOV = instantaneous field-of-view (radians)
D = width of the detector
f = foecal length of the collector

The ground projected IFOV is then provided by :
Rg = IFOV *# H

where :

H = height of the imaging system above the earth surface.

This value for the ground projected IFOV alone is not indicative of the
area of the ground surface acting as the source of the recorded
irradiance measured at the satellite altitude. This area is
effectively extended by the point spread function associated with each
of the system components.

In an attempt to provide the remote sensing community with a
standard definition for resolution, NASA (1973) stated that "the

effective IFOV for a raster (sample data) system will be defined as
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the RMS sum of the IFOV of the nonsampled system and the distance
between samples". The effective instantaneous field of view (EIFOV)

would then be provided by :
EIFOV = ((IFOV¥*¥2 4 D¥¥2)/2)%¥0.5

and would result in an EIFOV smaller than the IFOV for distances
between samples which are less than the width of the IFOV. This
implies that oversampling increases the spatial resolution of the
scanner system.

Slater (1979), while recognizing that the purpose of the
oversampling (1.4 samples per IFOV) in Landsat data was to improve the
spatial resolution of the imagery, states that the value obtained from
the swath width divided by the number of samples per swath width
(185590 meters/3183 samples = 58.3 meters per sample) " has been
misinterpreted by some MSS data users to mean the area on the ground
instantaneously sampled by a single detector". He states further, that
"according to the system geometry, at any instant the ground-projected
IFOV is 76 by 76 meters, ... at the nominal 918.6 km altitude.
Neglecting the atmosphere, the output signal from the detector that is
recorded on computer compatible tape is proportional to the radiance of
this area plus the surrounding area included by the spread function of
the optics". A forum (Colvocoresses, Thompson, and Slater, 1980)
stimulated by Slater's article, demonstrated the lack of agreement as
to the relationship between resolution and other system factors,
particularly the frequency at which the analog signal is sampled in the

digitization process (6). Thompson provided a series of electronic
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signals depicting the degradation of an ideal target through the system
to the stage of analog signal output. He states that '"sampling 1.4
times per IFOV does not improve resolution, but it does improve the
information content of the data". That is, the area on the ground
represented by a single recorded responsée level vector is unaffected by
the sampling frequency, but the higher sampling frequency does provide
more information about the amplitude variations of the analog signal.
Townshend (1980) compiled a table demonstrating the range of values
published in reference to the resolution of the current Landsat MSS.
These values range from 66 meters, for the half cycle of the point
spread funection, to 135 meters, for the full cycle of the point spread
function. Slater's (1979) concluding remarks provide an appropriate
summary of the complexities involved in specifying the spatial

resolution for a MSS system. He states :

"to determine the spatial resolution and radiometric response
of the Thematiec Mapper, we have to know the system geometry, the
profile of the point spread function of the system and it's
variation with wavelength and field angle, the variation in
responsivity across the area of each detector, the in-track and
across-track sampling intervals, and the effect of electronic

filtering of the signal from each detector.”

- - - - - > > - e -

(6) Other factors discussed which affect the resolution are : the rise
and fall times (9 microseconds) of the three-pole low-pass Butterworth
filter through which the output signal passes, the effect of the image
being scanned over the detector, and the angular diameter (33
microradians) of the point spread function of the MSS.
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Previous Work

Investigations of the relationship between the spatial resolution
of MSS data and computer-based classification performance indicate that
lower classification accuracies are to bé expected ‘when employing
higher spatial resolution data (Kan and Ball, 1974; Sadowski and Sarno,
1976; Clark and Bryant, 1977; Landgrebe, Biehl, and Simmons, 1977).
This relationship appears to be dependent on the variability of the
spectral classes associated with each particular cover class and the
resultant degree of overlap or statistical similarity among the
spectral classes (i.e., the set of class densities parametrically
representing the spectral classes). The relationship is also very
dependent on the training techniques and the characteristics of the
algorithm employed in the classification.

Kan and Ball (1974) —conducted a theoretical and empirical
evaluation of classification accuracies resulting from data of three
different spatial resolutions. The theoretical work focused on the
covariance matricies of cover classes associated with the data of
different resolutions. They stated that for two data sets A and B,
where each data element of B represented the same area on the ground
represented by a k-by-k number of elements of data set A, the means and
covariance matricies of A and B would have the following relationship:

UA=HB

CA = CB
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where :

My and My are the mean vectors of the j(th) cover class for
the data set A and B, respectively.
CA and CB are the covariance matrices of the j(th) cover

class of data sets A and B, respectively.

They employed this relationship between the covariance matricies to
predict classification accuracies using transformed divergence (7).
The relationship indicated for the covariance matricies is actually an
upper limit and ignores the effect of the spatial correlation of
response levels demonstrated by Kettig and Landgrebe (1975), Mobasseri,
et al., (1978), and Tubbs and Coberly (1978). This contrast in
covariance matricies from data sets of different resolution is further
reduced when the spectral classes are produced by a cluster analysis of
groups of fields, or areas, of the same cover class. Clustering the
data provides a means by which the within cover class variance can be
reduced to a greater extent than that achieved by reducing the spatial
resolution. The lower variance is due to the fact that clustering the
data groups the response level vectors according to their spectral
similarity. A group of pixels representing a contiguous area on the

ground will not necessarily be assigned to the same cluster class.

(7) Transformed divergence is a statistical distance measure which
employs the mean vectors and covariance matricies of the spectral
classes to compute the "separability" among the class densities used to
train the classifier. Provided certain assumptions are nmet,
transformed divergence can be used to estimate probability of correct
classification (see: Swain and King, 1973; Swain, Robertson, and
Wacker, 1971; Wacker and Landgrebe, 1972; Latty and Hoffer, 1980).
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Therefore, pixels of a higher spatial resolution corresponding to the
ground area represented by a single pixel of a lower resolution will
not necessarily be assigned to the same cluster class (Phillips, 1973).

Kan and Ball (1974) also conducted an empirical evaluation for
data representing three different spatial resolutions (8). :\
supervised selection approach which provided one spectral class for
each cover class was implemented to develop training statistics. The
resulting "pairwise" classification accuracies were generally found to
be higher for the coarser resolutions.

Sadowski and Sarno (1976) examined classification accuracies for 2
meter resolution data collected over a forested area in Texas, degraded
to simulate 4, 8, 16, 32, and 64 meter spatial resolutions. Using
training classes provided by a supervised selection approach and a per-
point maximum likelihood classifier, they observed an increase 1in
classification accuracy with decreasing spatial resolutions. Overall
classification accuracies (based on test data) for each resolution
varied according to the bases on which the cover classes were defined.
Table 2.1 provides the accuracies by class criteria. ‘

Sadowski and Sarno (1976) also conducted an accuracy assessment
which involved boundary pixels. They found that probability of correct
classification (PCC) for the coarser resolution data depends to a large
degree on whether the accuracy assessment technique includes or

excludes boundary pixels. Classification estimates are generally lower

(8) Original aircraft scanner (Bendix 24 channel MSS) data of a nominal
resolution of 8 meters were degraded to provide data of approximately
16 meter and 24 meter resolutions.




Table 2.1

Classification Performance for each Resolution Determined

for each Cover Class Criterion using Test Areas Exclusive

of Boundary Pixels (from Sadowski and Sarmo, 1976).

Hierarchy: Condition Class

Conifer Regen. (2.3)
Loblolly~lmm. (2.5)
Loblolly-Mature (2.6)
Shortleaf-lom, (1,3)
Shortleaf-Mature (1.4)

Overall

Hierarchy: Growth Stage

Conifer Regen. (2.3)
Imm, Sawtimber
Mature Savtimber

Overall

Hierarchy: Cover Type

Conifer Regea. (2.3)
Shortleaf Pine
Loblolly Pine

Overall

Hierarchy: Physiognomy

Conifer Regen. (2.3)
Pine Sawtimber

Overall

* The (64 netern)z data set did
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49.9
26.3
19.7
33.3
40,8

38.3

49.9
50.7
40.9

47.5

49.9
64.4
38.0

51.9

"0,
82.7

70.5

not contain a signature for lmmature Loblolly Pine (2.5).
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24.2
54.4

40.0
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45.0
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49.1
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81.5
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Spatial Resolution

39.3
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20.9
23.8
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39.3
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59.3
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57.6

39.)
82.3

13.6

64.6
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64,6
50.2
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64.6
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33.4

61.1

64.6
84.7

76.8
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1.4
56.8
19.4
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1.4
53.5
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1.4
82.8

78,3
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l.8
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373
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when boundary pixels are included in the evaluation as compared to
estimates obtained without boundary pixels. However, differences in
performance estimates between those evaluations including boundary
pixels and those excluding boundary pixels are smaller for higher
resolution data than they are for lower resolution data. The accuracy
estimate provided by the technique including boundary pixels indicated
a higher PCC for the 32 meter data as opposed to the 64 meter data for
classes based on growth stages and physiognomy.

The lower PCC generally associated with the higher spatial
resolution was identified as resulting from the higher variances of the
training classes in the higher resolution data. In subsequent work
Sadowski and Malila, (1977) and Sadowski, et al., (1977), using large
scale color infrared photography (1:4000 scale), identified and
developed statistics for spectrally dissimilar components for each of
the cover classes. From an area composed of five different cover
classes they identified twenty four component spectral classes. To
examine the hierarchy of the class separabilities they employed a
sequential "signature" merging process Dbased on the pairwise
similarities between class densities. The similarity measure used was
the average ranking of three criteria; the Bhattacharyya distance, the
combined determinant, and the resultant combined trace (9). The
sequence in which the class pairs were merged provides insight as to

(9) The Bhattacharyya distance is discussed in Wacker and Landgrebe,
1972; Kailath, 1967; Swain and King, 1973; Swain, Robertson, and
Wacker, 1971; and Swain, 1978. The combined determinant is a component
of the Jeffries - Mattusita distance (Wacker and Landgrebe, 1972) and
the resultant combined trace is a component of the divergence measure
(Swain and King, 1973).
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which spectral classes would be 1involved most frequently in
misclassifications. Confusion, or low separability, between spectral
classes of different cover classes increases the probability of error
in cover type classification. The first four occurrences of merging
involved the shadowed understory classes from the five different cover
classes, indicating that the highest relative frequency of
misclassification would involve these spectral classes. The confusion
between shadowed areas of different cover classes was suggested as
being a major factor associated with the lower classification
performances achieved with the higher resolution data.

Sadowski and Malila (1977) conducted further work in forest canopy
spectral component analysis which 1lead them to develop a two stage
classification approach, using the percent composition by spectral
component of a block of pixels, to classify the pixels. Overall
classification performances (based on test points) exceeded 80 percent
using the two stage technique, as opposed to Uu40.5 percent for the
conventional per-point classification technique. Further work in
multi-element rules for classification followed these efforts
(Sadowski, et al., 1977).

Classification performance in 1land use analysis of an urban
environment was evaluated by Clark and Bryant (1977) using supervised
training techniques ﬁnd a Baysian per-point classifier. They worked
with 15, 30, and 60 meter resolution data sets which were degraded from
original 7.5 meter resolution aircraft MSS data. They observed an
increase in class variance and a general decrease in classification

performance with increasing spatial resolution.
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Landgrebe, Biehl, and Simmons (1977) examined classification
accuracies obtained using 30, 40, 50, and 60 meter degraded resolutions
computed from aircraft MSS data with an original 6 meter resolution.
The data were obtained over agricultural areas in Kansas and North
Dakota. They observed an increase in classification accuracy as
spatial resolution was decreased when performance was evaluated using
the conventional in-place, pure pixel evaluation criterion (10). They
conducted another performance evaluation using RMS (root mean square)

error associated with the area estimates obtained using each spatial

resolution (11). Accuracy based on RMS error was found to decrease
with decreasing spatial resolution. The differences between
resolutions were significant at the 0.05 Alpha 1level. These

evaluations 1indicate that while in-place classification accuracies
increase with decreasing spatial resolution, the accuracy of area
estimation decreases with decreasing resolution.

Landgrebe et al., . (1977) also investigated the in-place, pure

(10) Overall classification accuracies estimated from test fields
ranged from about 88% for 30 meter resolution data to about 92% for the
60 meter resolution data.

(11) RMS (root mean square) error is computed by:

n 2 2
z (Pi - P!
c - =1
RMS n
where :
P.= percent of the area classified as class i by the computer-based
classification.
P! = percent of the area 1in class i estimated from ground reference
data.

N = number of information classes from ground reference data.
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pixel classification peformance obtained using a classifier which uses
the variance of spectral response in conjunction with the mean spectral
response level from a cell of pixels in the assignment of a class label
to the pixels of the cell (12). Classification performance was found
to be very similar to those obtained with the per-point classifier,
however, a noticable difference was observed between the two
classifiers for the higher spatial resolution data.

The results obtained by Landgrebe et al., are of particular value
in the context of the spectral variability associated with forested
areas. Forested areas tend to have more spectral variability (a
component of what photo interpreters refer to as "texture™") than do
agricultural areas, and would therefore be expected to result in
greater differences between classification accuracies achieved with and
without information as to the variability of the spectral response.

A study by Thomson et al., (1976) indicated that the difference in
classification accuracy, based on RMS error, among different spatial
resolutions was dependent on field size. In areas of small field sizes
(i.e., 1-10 hectares), area estimations provided by coarse resolution
data were much less accurate than estimates provided by higher spatial
resolution data. The difference in accuracy of area estimation was
found to decrease with an increase in average field size and tended to
level off with fields of 80-120 hectares in size.

Morgenstern et al., (1977) conducted a study examining

(12) The classifier is referred to as the ECHO ("Extraction and
Classificaticn of Homogeneous Objects") Classifier (see: Kettig and
Landgrebe, 1975; Kast and Davis, 1977).
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classification performance with respect to field size and data
resolution using a mensurational criterion (e.g., the RMS error). This
study confirmed the previous results of Thoﬁson et al., (1976) and
Landgrebe et al., (1977). Morgenstern et al., concluded, "the trend to
improved proportion estimation accuracy at finer spatial resolution ...
is felt to be primarily because relatively fewer boundary pixels would
occur for data at the finer spatial resolutions".

To summarize, the studies conducted to date consistently indicate
several points.

(1) Classification performance based on in-place classification
accuracy of pure pixels decreases with increasing or finer spatial
resolution when a per-point classifier is employed. This relationship
between classification performance and spatial resolution is considered
to be due to the larger within class variance, and consequent higher
statistical similarity between spectral classes of different cover
classes, associated with the finer resolutions.

(2) Classification performance based on RMS error (i.e., a
mensuration criterion) improves with higher spatial resolution when a
per-point classifier is employed. This relationship is considered to
be due to the greater relative frequency of boundary pixels for coarser
resolution data. The relative frequency of boundary pixels for any
given spatial resolution is escalated for areas of smaller field sizes.

(3) The difference between classifiéation accuracies across
different spatial resolutions tends to be greater for forested areas
than for agricultural areas. This is believed to be due to the greater

spectral variability of forested areas as opposed to that of
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agricultural areas. A component of this spectral variability is
analogous to what photo interpreters refer to as "texture".

(4) Improvements in classification performance, based on the in-
place, pure pixel criterion, appear obtainable through the use of
classifiers which employ the spatial variability of spectral response

in the decision logic of class assignments.
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Classifiers

The classifier is basically that part of the entire data
processing sequence which ascribes class labels (and peihaps
probabilities or some other measure) to the pixels being classified.
The characteristics of the algorithm employed in the classifier
determine how the data will be used in the process of label assignment.
The relationship between the data and the components of the scene are
the bases on which classifier algorithms are structured. Any algorithm
which more fully exploits the relationships between the data and the
components of the scene would be expected to more accurately identify
the components of the scene. The two approaches examined here belong
to two broad categories of classifiers. The per-point category employs
information from a single vector in the process of assigning a label to
that vector. The per-field category employs information from a cell of
spatially adjacent spectral response vectors in the process of

assigning the labels to the members of the cell (13).

(13) The per-field category is actually a specific form of "sample"
classifier. Approaches which classify groups of pixels which are not
necessarily spatially adjacent are addressed under the more general
term, "sample" classifiers (Wacker and Landgrebe, 1971; Wacker and
Landgrebe, 1972).
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Per-point Gaussian Maximum Likelihood (GML) Classifier

The per-point GML classifier is a widely used classifier in remote
sensing applications. The per-point approach is based on the
assumption that the pixel is a random observation. The degree to which
the properties of the data deviate from this condition is the degree to
which the per-point classifier ignores other sources of information
about the scene. The GML classifier employs the measured reflectance
characteristics of each cover class, wj, for all classes (j = 1,...,m)
to identify any given spectral response measurement, X, as belonging
to one of the "m" cover classes. The quantification of detected
irradiance returned to the altitude of the scanner platform provides
the spectral response measurement. The detection of irradiance in "n"
different portions of the electro-magnetic spectrum provides a n-
dimensioned vector representing the projected ground area. The
expected error rate in classifying the response vectors is minimized by
selecting the most probable class label in the context of the available
information. By taking a sample of pixels from areas representing each
cover class, the mean vector and covariance matrix for each cover c¢lass
can be estimated. These are then used to estimate the probability
density functions representing the distributions of each cover class in
terms of the spectral response measurements. The Baye's optimal GML
approach allows the use of a priori probabilties of class occurrences
in conjunction with the estimated PDF's. These a priori probabilities

may or may not be available.
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Two further assumptions are made in order to employ the GML
classifier. The n-variate spectral response vector is assumed to be
absolutely continuous, in order to represent the spectral classes with
the estimated probability density functions (PDF's). Since the
electrical signal resulting from the irradiation of the detectors is
quantified to a word length of generally six to eight bits (resulting
in only 68 to 256 response levels, respectively), the response vector
is not a continuous variable. The degree of this deviation from
continuity, however, does not appear to disrupt the performance of the
GML approach (Swain, 1978).

The distribution of the response vectors associated with each
cover class is also assumed to be multivariate normal (MVN). This is
rarely the case, since most cover classes exist in nature in 2 wide
range of conditions and therefore r¢3ult in variable spectral
characteristics (see Hoffer, 1978; Stoner, 1979; Wooley, 1971; Kumar
and Silva, 1974). This problem is usually rectified by "clustering"
the response level vectors into MVN distributed "spectral c¢lasses".
Cluster analysis basically subdivides the sample into sub-samples, the
members of which are determined by their mutual spectral similarity

(see Swain, 1972; Duda and Hart, 1973; Phillips, 1973; Swain,

(14) The cluster analysis of LARSYS #*CLUSTER employs an assignment
criteria based on the minimum Euclidean distance between each pixel and
the "iterated" mean. This assumes equal within class variances in each
channel or waveband employed. The deviation from equality among these
variances results in spectral classes with larger variances in those
channels which would otherwise display relatively small variances.
This problem is demonstrated in the work on quantification 1level by
Bartolucei and de Castro (1979), and work in relative scale of
different data types by Anuta and Chu (1979). An iterative estimation
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1978)(14). The result of cluster analysis 1is that the "m" cover
classes are now represented by a set of "p" spectral classes, where p >
m in almost every case (rarely does p = m). Clustering is conducted to
provide ec¢lasses with "unimodal" distributions which do not deviate
substantially from the normal distribution.

The assumption of normality now being met by the sample
distributions, and assuming a sufficient quantification 1level (i.e.,
word length) of the response vector to allow representation of the
spectral classes by their estimated PDF's, the decision rule for vector
classification is :

Decide the response vector Xi belongs to the spectral class w'],

if and only if :
(w! | X) (w! | X)
plu} | plu} |

for all i = 1,...,3-1,3+1,...,p.

Where :
plw' | X) = the conditional probability of the occurrence of

J " the j(th) spectral class, given the occurrence of the
response vector X (see Appendix A for a more detailed
mathematical formulation).

Note : This rule is a general formulation of the more commonly
encountered presentation of each cover c¢lass as being
represented by a single spectral class (Swain, 1972; Swain,
1978).

A problem arises when a single spectral class represents two or
more - individual cover classes, or when two spectral classes of
different cover classes are so similar that they cannot be reliably

of relative weights for each channel, with which to conduct the next
"macro" iteration, is needed to explore ways to improve this step of
the analysis.
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discriminated. This condition was one of the reasons provided by
Sadowski and Sarno (1976) for the low classification accuracies
achieved with the per-point classification of high spatial resolution
data over forested areas. Measured levels of irradiance returned from
the shadowed areas between tree crowns were very similar for all
forested cover classes. Therefore, the assignment of the correct cover
class label to any given single pixel, will depend on what area (e.g.,
shadow, ground cover, illuminated crown, etc.) within the cover class
the response level represents. The problem can be thought of as an
interaction effect of resolution and structural similarities between
different cover classes. These structural similarities often result in
spectral similarities, as exemplified by forested cover classes (15).
of similar structure, when the distances across the objects (or simply
areas of differing reflectances) composing the cover classes are large
relative to the ground resolution of the scanner system, the
separability among spectral classes of different cover classes 1is
expected to decrease. This spatial frequency cf spectral variability
is a form of information, but its influence in the context of per-point
classification is that of noise (Landgrebe, 1978). The attempt to make

use of the information in the spatial frequency of the spectral

——— oty e - - —— —— . ————

(15) Structural similarities refer to the similarities in the spatial
distribution of spectrally different areas within the cover class. The
occurrence of gaps between the crowns of trees in forested areas, for
example, constitutes a structural similarity between different forest

cover classes. Structural similarities may result in spectral
similarities, depending on solar elevation. For azimuthal solar angles
of zero, the degree of spectral similarity resulting from the gaps

between the tree crowns would be greatest for zenith solar angles
greater than the arctan of the tree height divided by the gap width.
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variability inherent in the scene is the potential advantage of the

per-field classifiers.

Per-Field Classification

The entire idea of converting spatially discrete response levels
to cover class information is premised on the size of the cover class
as being larger than the size of the pixel. Data from a cell of pixels
(ie., a group of spatially adjacent pixels) can be effectively employed
in ciassifying the pixels where the cover class is much larger than the
pixel. The relationship between adjacent pixels can be formalized as
the conditional prdbability, plwj(x,y)|wi(x=0,y-1)), of observing cover
class wj at the pixel coordinates of (x,y), given the occurrence of wj
at the coordinates (x~0,y-1). The higher this probability is relative
to its compliment, the more appropriate is the per-field approach.
Kettig and Landgrebe (1975) demonstrated this statistical dependence
through the use of the "spatial correlation" of spectral response. The
level of correlation between response vectors from adjacent pixels was
developed from samples within various cover classes. This spatial
correlation coefficient tends to be higher for cover classes which
demonstrate small amounts of "texture" (e.g., corn). The coefficient
drops off very rapidly for cover classes with higher levels of texture
(e.g., forested areas). They also demonstrated that the coefficienté
for adjacent pixels in the across track dimension were consistently
larger than those in the along track dimension. Subsequent work by
Mobasseri, et al., (1978) confirmed these results. Theoretically, the

across track spatial correlation would tend to be greater in
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circumstances where the signal digitization sampling rate 1is greater
than the scan rate, thereby resulting in adjacent pixel overlap. The
across-track pixel overlap in Landsat data is approximately 28 percent,
according to Slater (1979). While the applicability of the per-field
approach is dependent on the cover class being much larger than the
pixel, the advantage of per-field classification is premised on the
spatial frequency of spectral variability within a cover class being
lower than the spatial frequency of pixels. From the previous
discussion on spatial resolution, it should be apparent that the
spatial frequency of pixels is an expression of the spatial resolution.
In fact, employing coarsef resolutions is merely the use of a per-field
classifier where the averaged response level of the cell (i.e., the
spatially adjacent set of pixels) is used in classifying the pixels of
the cell (16). A considerable amount of potentially useful information
is being ignored by such a technique.

The classification of pixels through the per-field approach
involves two tasks. The first task is defining the fields, or blocks,
of data in the scene which contain a single cover class. This step of
the process is often refered to as "image partitioning" (Robertson,
1973; Robertson, et al., 1973; Wacker and Landgrebe, 1972). The second
task is to classify the field of pixels.

(16) Recall, another very important variable affected by the spatial
resolution of the MSS system is the signal-to-noise ratio (S/N). This
was considered to be a major determinant in the classification
accuracies across the different resolutions examined by Landgrebe, et.
al., (1976). This work involved data from a predominantly agricultural
scene, where the within class spatial frequency of spectral variability
is rather low. For a presentation of the system components of S/N see
NASA (1973), Silva (1978), and Slater (1975).
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Image Partitioning. Kettig and Landgrebe (1973) distinguished between

two groups of algorithms employed in the image partitioning phase. The
"boundary -seeking" approach generally 1locates partition boundaries
through the use of gradient analysis, Laplacian operators, digital
filters, or some related technique (Gupta and Wintz, 1973). Most
boundary seeking algorithms do not guarantee closed boundaries, and
therefore fail to provide well defined samples. The second group is
often refered to as "object seeking". These are designed on the
premise that objects, or areas of the same cover class identity,
express a higher level of spectral homogeneity than do areas containing
a boundary. Object seeking algorithms have been treated by Robertson,
et al., (1973) as being one of two types. "Conjunctive™ algorithms are
those which begin with a small object and combine or annex adjacent
areas which display a certain level of statistical similarity.
"Disjunctive™ algorithms begin with a large object and subdivides it
until each partitioned area satisfies some level of spectral
homogeneity.

Object seeking algorithms are often the prefered approach, since
they provide a closed boundary and, therefore, a defined sample or
field. However, the dependence on a homogeneity criterion restricts
the application to those cases where the tonal variability associated
with any given cover class is 1less than the tonal variability
associated with a boundary between any pair, or set, of cover classes.
A considerable effort has been focused on developing classification

techniques using measurements and characteristics of tonal variability
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associated with the various cover classes. An excellent review of some
of this work is provided by Haralick (1979). He categorized the work
into eight subdivisions : autocorrelation functions, optical
transforms, digital transforms, textural edgenéss, structural elements,
spatial gray tone cooccurrence probabilities, gray tone run lengths,
and autoregressive models. In the classification of forested areas,
the utility of computations based on the level and nature of tonal
variability is well demonstrated by the work of Triendl (1972), Herzog
and Rathja (1973), Haralick and Shanmugam (1974), and Iisaka (1979).
Wiersma and Landgrebe (1976) conducted a comparative evaluation of
cover classification accuracies achieved with four different textural
measurements and the ECHO classifier (which employs the conjunctive,
object seeking approach). Their results indicated that ECHO resulted
in somewhat higher c¢lassification accuracies than any of the four
texture measures examined. The study employed Landsat data with a
nominal spatial resolution of 79 meters. The "cost" of wusing
homogeneity thresholds in terms of classification accuracy and detail
when higher spatial resolution data is employed remains in question.
The use of homogeneity thresholds may well limit the use of the level
and spatial frequency of tonal variability in per-field classification.

Other approaches to image partitioning have been developed. One
such approach involves the clustering of spatially weighted response
vectors (Kauth, et al., 1977). By spatially weighting the response
vector with the line-column coordinates of each pixel, the probability
of neighboring pixels to be assigned to the same class is greatly
enhanced. Kast and Davis (1977) recognized the potential application

of this approach to image partitioning for subsequent sample
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classification. Wacker (1969) examined another similar clustering

approach.

Classifying the Fields. Once the image has been partitioned into

fields of a single identity, the fields must be classified. Wacker
(1971) and Wacker and Landgrebe (1972) provide an extensive survey of
the "minimum distance" (MD) classifiers. These are based on some
measure of statistical distance, or measure of dissimilarity, between
probability density functions. The estimated PDF of the field being
classified is compared to the PDF of each spectral class representing
each of the cover classes. The spectral class with which the field is
most similar is the elass to which the field is assigned. A problem
with the MD approach is that in order to estimate the multivariate PDF,
the number of observations provided by the field must be greater than
the dimensionality of the observation. That is, the number of pixels
in the "field" must be greater than the number of wavebands employed in
the analysis. While the computation of the covariance mathematically
requires at least as many observations as wavebands, the number of
observations to provide a reliable estimate of the covariance increases
exponentially with the number of wavebands. This restriction often
prohibits the use of the MD approach to per-field classification; This
is the well known problem of dimensionality (see Duda and Hart, 1973).
An extension of the GML approach is presented by Kettig and

Landgrebe (1975) for use in classification of the partitioned fields.
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The relationship to the GML classifier can be seen from the following

expression :

1 a -1 T
2w |c i=1
3
Where :
Xj = the j(th) pixel of the field,
Uy = the mean of the i(th) spectral class,
C; = the covariance matrix of the i(th) spectral class.

The class to which the field is assigned is that c¢lass for which
p(XIw'J) is greatest. Where "n" equals one, the rule simplifies to the
per-point classifier. This provides a test which can be used even if
the homogeneity test is failed, and the pixels of the cell are to be
classified individually. While the above extension of the GML
classifier does not employ the covariance associated with the cell in
classifying the cell pixels, it is sensitive to the spectral
distribution of the cell. The practical advantage is that there are no
cell size restrictions on the GML computation. The disadvantage is
that it does not provide discrimination between cells of equal means

but different covariances.

The ECHO Classifier : the Supervised Mode

The supervised ECHO classifier is used in this study to examine
relative classification performances achieved with a per-field approach
compared to those achieved with a per-point approach. The particular

means of image partitioning, and subsequent field classification,
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employed in ECHO are provided as a basis for understanding the results.
The image is partitioned by first testing whether a cell of pixels
is homogeneous. In the supervised mode this involves computing a

statistic, Qj(Y), and comparing it to some threshold, where :

m m
QD) = tx G S I AL SR G R
I 4=1 33 41 J 1] J
where :
C: = the covariance matrix of the j(th) spectral class.
Né = the mean vector of the j(th) spectral class.
Yy = the i(th) response vector in the cell being tested.
m = the number of vectors in the cell being tested.

The cell 1is considered homogeneous if Qj(Y) < ¢, where c¢ is the
prespecified threshold. The homogeneity statistie, Qj(Y), is
multivariate in that it reflects the property of the cell in all
channels, but it does not require the computation of the covariance of
the cell. Therefore, the statistic does not suffer cell size
constraints resultirg from the dimensionality problem. This
homogeneity test not only rejects those cells which are not
homogeneous, but also rejects those cells which do not resemble the
spectral classes provided by the training data. This statistic (Kettig
and Landgrebe, 1975B) also has the distribution function P(Qj(Y) >
¢ W'j), which is chi-square distributed with "mn" degrees of  freedom
(16). This provides a basis for selecting a value for the homogeneity

threshold, c.

(16) Recall from equation 3.2, m = the number of vectors in the cell,
and n = the number of wavebands in the measurement vector.
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If the cell is found not to be homogenecus then each pixel of the
cell 1is classified individually. If the cell is found to be
homogeneous it is then compared, in a serial fashion, to the adjacent
cells for possible annexation. That is, the cell is annexed to the
first adjacent cell, or field, to which it bears a certain minimum
level of similarity. The "similarity" is computed by the "likelihood

ratio"” (Kettig and Landgrebe, 1975B), A, where :

max '
1 P&|wD) p(¥]w))

max vy Dax '
i MMWQ ipﬁwy

where :
max p(XIw'i) = the probability of observing the vectors of

cell X, given spectral class w'i, for which the
probability is maximum relative to all w'k, k =

1,0eeyDe

p(Y]w'i) = the probability of observing the vectors of cell Y,
given spectral class w'i.

max p(Ylw'j) = the probability of observing the vectors of
cell Y, given spectral class w']j, for which the
probability is maximum relative to all w'k, k =

Tyeee,sPs

The two cells are annexed in the event A > T, for some specified
threshold, T. It should be apparent, max A = 1, and is obtained where
j = 1. While A 1is a multivariate. statistie, it avoids the
dimensionality problem relative to cell size, since ﬁhe covariance is
provided by the spectral classes. The computation of A requires an
exhaustive search among all spectral classes for the maximum
probabilities for each cell.

This criterion, as does the homogeneity criterion, employs the
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covariance of the spectral classes. The critepion, therefore, assumes
a certain level of resemblance between the potential cells and the
spectral classes. This feature may well disturb the partitioning
process, depending on the degree to which the training data represents
the area to be classified. The cell is annexed to the first cell or
field for which A > T, A superior performance in this phase of the
partitioning would be expected from a criterion where the criterion is
"max A, given A > T" is used in annexing adjacent cells or fields. A
flow chart depicting the image partitioning phase of the algorithm is
presented in Figure 2.8, Once the individual fields have been
established, they are classified.

The minimum distance classifiers employ the covariance of each
field in classifying the field. The extended GML approach, however,
does not use these covariances. The covariance of a cell or field is a
multispectral component of the "texture® associated with the cell or
field. In Haralick's terms (1979) it is but one of many measures of
"tonal primatives" (i.e., some attribute characterizing the variation
in tonal values associated with a set of pixels). The other major
component is the "spatial organization of tonal variation in the set of
pixels" (Haralick,’1979; see also Crowley, 1976). It may therefore be
more appropriate to think of the ECHO/extended GML classifier as being
more robust in the context of spectral variability than the per-point

classifier, as opposed to actually using that spectral variability.
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Figure 2.8 Flow Chart for the Image Partitioning Phase of the ECHO
Classifier (Rettig and Landgrebe, 1975A).
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CHAPTER 3

METHODS AND MATERTALS

Study Site Description

The study site is an approximately 186,000 acre area in central
eastern South Carolina, situated on the escarpment between the Piedmont
plateau and the coastal plain. The geographical location of the study
site and the orientation of the flight lines are shown in Figure 3.1.
The area changes from a heavily disected region of steep topographic
relief in the north to a river bottom area of gently sloping terrain in
the south. The soils of the northern area are deeply disected acid
clays of 1low permeability. These grade into loamy sediments in the
river bottom area to the south. Higher sand fractions characterize the
upland soils of the south. The geomorphological diversity of the area
provides environments resulting in a wide variety of vegetation cover
classes. This same diversity of environmental factors also provides a
wide range of conditions under which the various cover classes occur,
resulting in a considerable variability of spectral characteristics
associated with each cover class. These complexities make the area a

prime choice for testing various remote sensing techniques employed in
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Firzure 3.1 Geographical Location of the Study Site and the Position
of the May 2, 1979 Flight Lines.
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ground cover classification for land-use and plant cover type mapping.
The site was selected by the U.S. Forest Service as a prime candidate
for testing various remote sensing techniques for potential use in
various phases of forest inventories.

The southeastern portion of the study area contains cover classes
which occupy much larger contiguous areas than does the area to the
north. This difference is well illustrated in the two aerial
photographs contained in Figure 3.2. In the southeastern region, the
flat to very gently rolling topography provides a minimum of
environmental variability with the result that single cover classes
occupy large contiguous areas. The exception is water tupelo which
requires a narrow range of water fluctuation 1levels and therefore
occupies rather restricted areas. The major cover classes of the
southern area are bare soil, pasture, crops, pine, pine-hardwood mix,
old age hardwood, second growth hardwood, water tupelo, clearcut areas,
marsh vegetation and water. The bare soil areas are generally
associated with agricultural activities or occupy areas in the more
recent clearcuts. Areas in crops are associated with a wide variety of
ground cover conditions, ranging from primarily bare soil to closed
crop canopies, depending on the amount of time since planting.
Similarly, the clearcut areas vary in ground cover condition depending
on the length of the period since cutting. Areas of saturated soil and
standing water in some of the clearcuts increase the diversity of
spectral characteristics associated with that information class. A
considerable diversity in age classes exist for the pine and pine=-

nardwood mix with a consequent range in canopy closures. Most of the



Figure 3.2

northwestern region southeastern region
(CAM2N) (CAM1S)

Reproduced Aerial Photography of the Two Major Regions in the Study Area. The images
illustrate, the relative sizes of the contiguous areas occupied by individual cover
classes for the two areas. Approximate Scale = 1:;114,000.

189
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area occupied by water in the test site 1is contained in the Wateree
River, which is not much more than a Landsat pixel in width.

The northern area, being heavily disected and of relatively steep
topography, contains cover classes which do not generally occupy large
contiguous areas. The major cover classes are bare soil, crops,
pasture, pine, pine-hardwood mix, hardwood, clearcut, water, and urban.
The pine areas vary in crown closure more in the north than in the
southeastern region. The hardwoods are generally restricted to narrow
gully bottoms. Areas in crop and pasture are generally very small due
to the size of areas suitable for agricultural practices. Most of the
surface area in water is in the Wateree Reservoir, therefore providing
a ratio of the frequencies of boundary-to-nonboundary pixels very

different from that in the south.

Data Collection

The data employed in this study were collected by the NASA NS-001
Thematic Mapper Simulator (TMS) on May 2, 1979. The TMS data were
obtained in mid-morning from an average height above ground of 19,500
feet (5,944 meters). Three flight lines were flown in a south to north
direction. Color and color infrared photographs were taken at the same
time the scanner data were obtained. Table 3.1 contains the
specifications of the aerial photography. Table 3.2 provides a
comparison of the characteristics of the NS-001 TMS system with the
characteristics of the proposed Thematic Mapper (TM). The photographs
and documented observations of ground conditions from two visits to the

study area provided the ground reference data for the study. Only two




Table 3.1 Aerial Photography Specifications.
Flight Run Altitude (kft) Line Ground
_Vine_ time ML HGD miles _speed
1 5 min 20 19,5 30 240 knots
2 S min 20 19.% 30 240 knots
k] 3 min 20 19.5 15 240 knots
Film Camera Filter Filter Shutter Focal Forward Side Roll
type type . 1 12 speed Factor ASA length lap lap !
2443(CIR)  Zeiss 12 3I6AV 2 80 6" 65% 15% 14
$0397(cC) leiss 2A 36AV 2 160 6" 65% 15% 15
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Table 3.2

as compared to that of the Proposed Thematic Mapper

Specifications of the NS-001 Multispectral Scanner System

System.
NS-001 Multispectral Scanner(l, Proposed Thematic Mapper‘z,
Bandwidth |Low Level Input Bandwidth |Low Level lnput
Channel (um) (u-cn'z-sn'lj NEap Channel (vm) (H~CH_2.SR-1) KEap

1 0.45-0.52 8.7 x 10°° 0.5 1 0.45-0.52 2.8 x 10°° 0.81%

0.52-0.60 6.8 x 1078 0.5 0.52-0.60 2.4 x 307" 0.5%
3 0.63-0.69 5.0 x 1078 0.5 3 0.61~0.69 1.3 x 107" 0.5%
4« lo.76-0.90 | 4.4 x 1078 0.5 4 Jo.76-0.90 | 1.6 x 207" 0.5%
5 |1.00-1.30 | 6.0 x 1078 1.00
6 [1.55-1.75 | 6.2 x 107° 1.08 5 |1.55-1.75 | 8.0 x 1073 1.00
13 13.08-2.35 | 4.7 x 2073 2.00 6 |2.08-2.35 | 5.0 x 1070 2.40
8 10.4-12.5 NA NE&T=0.25°K 7 |{10.4-12.5 300°x NEAT=0.5°K

—

‘I’Dntc was obtained from the "Operations Manual, NS-001 Multispectral Scanner,® NASA; J5C-12715,

April 1977.
(2)

pata was obtained from Salomonson, 1978.

(3)Channe1 7 (2.08-2.35 uym) was not operational at the time of the mission; all subsequent
references to "channel 7° gefer to the 10.4-12.5 ym waveband.

%S
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sections of the three flight 1lines were actually employed in this
investigation, on behalf of time 1limitations. The third flight line
was flown to provide an alternate data set in the event of cloud

coverage over the preferred study site.

Data Preprocessing

The variation in viewing angle (i.e., +/- 50 degrees from nadir)
inherent in low altitude scanner data, results in geometric distortions
in the original data which hamper determining in-place location and
area estimation. Changes in viewing angle relative to the angle of
radiant energy incident on the scene can be a major source of variance
in the recorded spectral response levels. The presence of both of
these data characteristies due to variable viewing angle indicated the
need for data adjustments prior to attempting to employ the data in
experiments involving computer-based classification techniques.
Internal calibration was not conducted due to the lack of information

as to whether such calibration was previously conducted.

Geometric Adjustment

The objectives of the geometric adjustment activities were :

(1) to produce a data set which corresponded geometrically to the
aerial photography and U.S.G.S. maps of the area, in order to
facilitate the identification of training and test areas, and

(2) to provide a data set which will allow accurate area estimates from
pixel summations.

The criteria used in evaluating the level of residual geometric
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distortions remaining in the adjusted image were :

(1) consistency of scale in each dimension everywhere in the data set,
and

(2) equivalency of scale between the two dimensions (ie., a fixed
distance on the ground, represented by a determinable number of
lines in the data, is to be represented by an equal number of
columns).

The instantaneous field-of-view (IFOV) of the scanner, the average
height above ground of the aircraft, and the change in scan angle
corresponding to the analog signal sampling interval were employed to
model the geometry resulting from the variable viewing angle. This
provided a means of adjusting for the across-track distortiops in the
original image.

The nominal spatial resolution (the on-ground dimension of the
pixel at nadir) for the NS-001 TMS flown at an altitude of 5%44 meters
is approximately 15 meters. The along-track scale of the imagery at
nadir, relative to the nominal spatial resolution, was determined from
control points located on the imagery and a 1:62500 scale U.S.G.S. map.
The ground distance between the control points along the component
parallel to the flight 1line (perpendicular to the scan lines) was
determined from measurements made on the imagery and map. The ground
distance divided by the number of scan 1lines between the two points

yielded an average along-track distance per scan line of approximately

7.6 meters (17). The nominal spatial resolution divided by the average

(17) Fourteen different pairs of control points located along the
flight line as near to the nadir as possible were employed to obtain
the average distance per scan line.
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along-track distance per scan line provides the scan rate. Scan rate
values greater than one are overscan rates. Scan rates 1less than one
are underscan rates. This data set had a scan rate of approximately
two. To adjust for this source of distortion in the imagery, every
other scan line was omitted as a part of the geometric adjustment
algorithm. While overscan in an image provides an opportunity to
improve data quality by averaging pixels of adjacent scan 1lines, an
overscan of two is not sufficient for achieving these improvements.

The geometry of the image resulting from a variation in viewing
angle (0) 1is related to the change in pixel dimension as f(0). The

nominal pixel dimension at nadir is given by :

D(n) = A * IFOV
where :
D(n) = nominal pixel dimension at nadir

A = altitude of the scanner platform above the ground
at nadir

IFOV = instantaneous field-of-view of the scanner
(mrad)

The nominal pixel dimension at the scan angle (0) is then given by :

D(0) = (A * secO) * IFOV

The reduction in scale of the image with increases in the viewing
angle is due to the fact that larger areas on the ground are being
represented by a fewer number of pixels. Figure 3.3 is a dot matrix
image showing the geometric characteristies of the original, or
unadjusted, data set. The geometric adjustment algorithm also reversed
the data line sequence to provide a data set with a 1line-column

orientation corresponding to the compass coordinates. Figure 3.4 was
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Figure 3.3 A Dot Matrix of a Portion of the Original, Unadjusted
NS-001 MSS Data, Channel 5 (1.00~1.30 pm).

*Vertical line signifies the nadir column.
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Figure 3.4 A Dot Matrix of a Pértion of the Geometrically Adjusted
NS-001 MSS Data, Channel 5 (1.00-1.30 ym).

*Vertical line signifies the nadir column.
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generated from the geometrically adjusted data set (18). It should be

apparent, by comparing Figures 3.3 and 3.4, that visually separable

units become increasingly compressed in the across-track dimension with
increasing distance from the nadir column 1in the image of the original
data, as compared to the adjusted data.

The above relationship was implimented in a FORTRAN program which
computes the dimensions for all pixels in a line of data. The nominal
pixel dimension at nadir is then compared to the pixel dimension for
each scan angle (0), which is sequentially incremented in units of the
IFOV. The program constructs an array which supervises the duplication
of response level vectors for the construction of each line of adjusted
data. The geometry of all lines are assumed to be equivalent. The
flow chart in Figure 3.5 demonstrates the functional behavior of the
geometric adjustment algorithm (19). The algorithm was inserted in the
DUPSUP subroutine in the LARSYS ¥DUPLICATERUN module. The general
characteristics of the geometric adjustment routine are :

(1) The routine 1is based on a model which defines the location and
dimension of each pixel, for each line in the data (the lines are
assumed to be equivalent).

(2) The model is purely deterministic. There was no attempt made to
compensate for the stochastic variations in the geometry (ie.,
image characteristies resulting from random roll, pitch, vaw,
change in altitude of the aircraft, fluctuations in the rate of

mirror oscillation, or variations 1in the ground speed of the
aireraft).

- - o - — > - - > ®O

(18) The images for both Figures 3.3 and 3.4 were produced as dot
matrix greyscale printouts of channel 5 (1.00 - 1.30 um) data.

(19) A one-~time computation of the supervisor array and indexing of a
do-loop with the values of the array is the actual design of the
program, but such a flow chart would not display the design of the
algorithm with respect to the geometry of the original data.
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(3) The data set was truncated at the +/- 35 degree viewing angle (see
Radiometric Adjustment for discussion).

(4) No data within the set defined by the bounding viewing angles were
omitted.

The consistency of scale in each dimension, and the equivalency of
scale between dimensions (ie., the along-track and the across-track
dimensions) was evaluated by superimposing control points located on a
1:62500 scale U.S.G.S. map onto the adjusted imagery using a Zoom
Transfer Scope. The coincidence of all control points indicated that
the acceptance criteria were met. The data sets selected for analysis

were then geometrically adjusted with the above technique.

Response Level Adjustment

The potential need for some degree of response level adjustment
was evidenced by an along-track band of high reflectance across
different cover types in the dot matrix imagery. The decision to
adjust the response level was based on :

(1) classification results are dependent on the amount of variance in
the response level associated with cover type differences;

(2) plots of the data and regression analysis employing response levels
averaged over lines, by column, by channel, indicated a strong
trend with respect to column (see Figure 3.6); and

(3) changes in reflectance associated with changes in viewing angle are
corsidered sufficient to obscure reflectances otherwise correlated
with cover type.

The objective in adjusting the response level of the data was to

remove, or reduce to an acceptable level, the variance in response
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Response Level by Column for the Original Data, the Ad-
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level extraneous to cover type. Variance extraneous to cover class,
increases the within class variance. This would tend to decrease
separabilty of the class densities and therefore decrease
classification performance (Swain and King, 1973). Figure 3.7 provides
a summaby of the response level adjustment method employed in this
study.

A linear multiple regression analysis was employed to explore the
viewing angle effect on recorded response levels. Four areas in the
data set which appeared to have no across-track stratification of cover
type were identified. Modifications were then made to TRAXEQ, a
subroutine called by the LARSYS *TRANSFERDATA module, in order to
compute the mean response level by column for each channel, over all
scan lines 1in the designated blocks. The average response level by
column was computed over a total of 2237 lines of data in the original
TMS data. This was considered a sufficient number of lines to "remove"
the variation in response level due to cover type. The graphs in
Figure 3.6, however, indicate that a consi&erable variation due to some
variable other than viewing angle is present in the computed averages.
A regression analysis was then run using first, second, and third
degree polynomials. A separate regression was run on each channel.

The regression equations used were :

Y(ij) = B(0J) + B(13)X + e(i]j)
Y(ij) = B(0j) + B(1j)X + B(2j)X*X + e(ij)
Y(ij) = B(0J) + B(13)X + B(2j)X*X + B(3j)X*X*X + e(i])



Figure 3.7
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Flow Chart for the Response Level Adjustment Algorithm.
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where :

Y(ij) = predicted response level of the i(th)
column, of the j(th) channel

X = column ; 1,...,560

Assuming the areas from which the data were obtained to conduct
the analysis had cover types randomly distributed over the area, such
that each column had a nearly equivalent fraction composed of each
cover type, then the averaging of response level over all lines in each
column would, according to the theory behind the analysis of variance,
remove the variance associated with the cover type factor. Any
variance in response level between columns should be a function of the
column factor, or some covariate (ie., viewing angle). The areas were,
by visual inspection, unstratified in the along-track dimension, and
were considered to provide a sufficient approximation to the above
condition. Therefore, the amount of variance accounted for by the
regression model (ie., the MSR) is the expected variance due to
variation in viewing angle over an assumed constant cover type.

The empirical nature of this model, and the fact that it is
provided by the data for which it will be used to adjust, 1leaves in
question to what degree the various sources of variance will actually
be "backed out"™ of the data. It would be preferred to use some
deterministic model which employs the relationship between the angle of
observation and the angle of incident solar energy, to develop the
adjustment function. Models of this sort have received much attention

and have warranted merit, but they require knowledge of the precise
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location of the sun, atmospheric turbidity for computation of the
diffuse component, and assumptions regarding the distribution and
isotropic properties of the reflective - surfaces over the area of
interest. Due to these constraints the empirical model was deemed more
appropriate.

Prior to actually conducting a response level adjustment of the
data, the potential components of this source of variance were examined
to provide information regarding the expected shape of this prediction
function. The major components of this source of variation are thought
to be :

(1) an interaction between cover type and viewing angle with respect to
angle of illumination (or, for the most part, solar angle), and

(2) atmospheric affects.

The interaction between cover type and viewing angle results in
changes in recorded response level due primarily to changes in the
total area illuminated versus the area in shadow within the pixel
(Anuta and Strahorn, 1973). The area in illumination is at a maximum
when the light reflecting surface is viewed along the path of incoming
radiation (ie., when the viewing angle is coincident with the zenith
solar angle). This orientation has been refered to by some
investigators as the "hot spot" (Suits, 1972; Colwell, 1974). As the
viewing angle is gradually reduced (ie., shifting the viewing
orientation toward nadir), the relative area in illumination versus
shadow decreases and the response level, therefore, decreases. The
rate of this change with respect to changes 1n viewing angle approaches

zero near nadir. However, as the viewing angle is increased (ie.,
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shifting the viewing orientation further from the nadir, away from
coincidence with the solar zenith angle), the relative area in
illumination versus shadow does not change, since areas in shadow will
continue to lie beyond the reflecting object from the point of view of
the scanner. With regards to this consideration, the éctual mean
reflectance by column appears consistent with theory.

The relationship between mean response level by column and the
relative area in illumination versus the area in shadow is actually an
interaction effect with cover types. The change in relative area in
illumination versus shadow is dependent on a vertically nonequivalent
distribution of the actual reflecting surfaces. This component of the
viewing angle effect is 1less for vertically equivalent reflecting
surfaces, such as bare soil, than for vertically nonequivalent
surfaces, as are found in forested or otherwise vegetated.cover types.
While this variability involves cover type differences, it results in a
greater variance in response level within particular cover types when
the azimuthal solar angle is zero, and therefore needs to be removed or
reduced.

It is of interest to note that this change in reflectance with
viewing angle and solar angle is directly proportional to the cosine of
the azimuthal angle (i.e., the angle separating the plane of
propagation from the plane of observation). Figure 3.8 displays this
relationship and schematically defines the terms. This within cover
type source of variance 1is therefore greatest when (¥) equals zero
(i.e., the planes are coincident) and smallest when (¥) equals 90

degrees. Since the vertical heterogeneity of the reflecting surface
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Figure 3.8 Schematic Diagram of the Angular Relationships between the
I1lumination Source, the Reflecting Surface, and the
Location of the Scanner. An arbitrary pixel is centered
at the origin. The zenith solar angle is represented by
$; the viewing angle is represented by a; and the azimuthal
solar angle, the angle between the plane of propagation
(defined by the sun, the origin, and the y-axis) and the
plane along which the surface is scanned (defined by the
scanner, the origin, and nadir), is represented by VY. The
zenith viewing angle is represented by 0O, (6 =a).
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differs for different cover types, this source of variance may actually
assist 1in classification efforts when the plane of propagation is
separated from the plane of observation by an angle of 90 degrees.
While this area is in need of attention it is beyond the scope of this
study.

A second component of the viewing angle source of variance is
primarily an atmospheric affect. The following discussion is greatly
simplified, as 1its inclusion here is primarily for purposes of
understanding the relationships which result in the overall shape of
the response level function across varying view angles.

Radiant energy passing through a segment of the atmosphere has a
probability of colliding with atmospheric constituents dependent on the
density of the gas molecules and 1larger suspended particles in the
segment considered (Kondratyev, 1969; Jurica, 1973). Collision with
atmospheric constituents results in either scattering or absorption.
Absorption is fairly invariant to changes in viewing angle with respect
to solar illumination angle, except for the small increase in the
probability of absorption due to the increased optical thickness of the
atmosphere conseqﬁent to 1larger viewing angles. This factor 1is
considered negligible in the range of illumination angles in which
remote sensor data is obtained.

Scattering, however, 1is highly variant with respect to view
angles. For both Rayleigh and Mie scattering, the principal component
of the scattered light is along the axis of transmission. Rayleigh
scattering, or molecular scattering, of visible 1light, has equal

backward and forward components which are approximately twice that of
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the sideward components (Kondratyev, 1969). Figure 3.9 is an
{llustration of the relative distribution of scattered light for all
potential directions. Mie scattering is very similar except the
forward scattering is predominant over backward scattering, which is
dominant over sideward scattering (Jurica, 1973). These relationships
result in greater amounts of light being .scattered into the
transmission path than away from this path. Hence, when viewing is
along the transmission path the recorded response level is greater
relative to that of other viewing angles with respect to the
illumination angle. This would suggest a dampened cosine function with
the peak amplitude centered on the column corresponding to the viewing
angle coincident with the zenith solar angle.

In the context of the above considerations, the empirical model
was regarded appropriate. Existing LARSYS programs were then modified
to produce the response level adjusted data sets. This basically
involved inserting code which computed a normalizing multiplier for
each column, for each channel. Data values from each 1ine in each
channel were then multiplied by the respective normalizing multiplier
for each particular column. The product was then read onto magnetic

tape (20). The normalizing multiplier is the quotient of the predicted

— ———— T — - - - -

(20) The format in which these tapes were constructed complies with the
MIST format specifications as they appear in the LARSYS documentation.
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Figure 3.9

Schematic Diagram of Rayleigh Scattering Probability
Density Function. The probabilities of scattering a
photon in any of all possible directions, given the
direction of incidence is indicated. The horizontal
axis is the axis of incidence (Kondratyev, K. Ya, 1969).
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response 1level at nadir and the predicted response level for each

column. The normalizing multiplier is computed by :

NM(ij) = Y(in) 7/ Y(i}J)
where @

NM(ij) = the normalization multiplier of the j(th)
column of the i(th) channel.

Y(in) = predicted response level at nadir for the
i(th) channel.

Y(ij) = predicted response level of the j(th) column
of the i(th) channel.

A qualitative evaluation of the response 1level adjustment
procedure is provided by comparing the images contained in Figures 3.10
and 3.11. Figure 3.10 is a dot matrix greyscale image of Channel 5
(1.00-1.30 um) of a portion of the geometrically adjusted data prior to
conducting the response level adjustment. Figure 3.11 is a dot matrix
greyscale image of the same area after the data has been response level
adjusted (Channel 5). Visual inspection of the two images should make
apparent the reduction in across-track (by column) variation in
response level in the adjusted data set as compared to the unadjusted

data set.

Spatial Resolution Degradation

Due to the 2.5 milliradian IFOV of the NS~001 multispectral
scanner and the 5944 meter (19,500 feet) average height above ground,
the original data has a nominal spatial resolution at nadir of

approximately 15 meters. Neighboring pixels were averaged together to
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Figure 3.10 A Dot Matrix of a Portion of the Geometrically Adjusted

Data prior to Adjustment of the Response Level, Channel 5
(1.00-1.30 ym).

*Vertical line signifies the nadir column.
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Figure 3.11 A Dot Matrix of a Portion of the Geometrically Adjusted and

Response Level Adjusted NS-001 MSS Data, Channel 5
(1.00-1.30 m).

*Vertical line signifies the nadir column.
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provide data sets of approximately 30 x 30 meters (corresponding to the
proposed Thematic Mapper), 45 x U5 meters, and 60 x 75 meters
(corresponding to the curreht Landsat data (21)). A separate tape file
was constructed for each resolution from each flight line segment.
Figures 3.12, 3.13, 3.14, and 3.15 are photographs of the dot matrix
greyscale imagery (Channel 5) of a portion df the data of each spatial
resolution. No weights. were used 1in the averaging of neighboring
pixels, as would be required to simulate the point spread function
resulting from the optics of the scanner systems from which each of the
data sets would actually be provided. Weights were not used due to the
small number of pixels employed in any particular averaging, and would
therefore fail to satisfy the continuity requirement of the function.
Similarly, there was no attempt made to simulate the signal-to-

noise ratio (S/N), which would generally characterize each resolution.
This investigation is concerned primarily with the characteristics of
the data and the resulting classification performances due primarily to
the area on the earth surface representgd By a single pixel. The
preferred approach would be to select a range of S/N values and
construct a data set corresponding to each pairwise combination of
spatial resolutions and S/N levels. Comparisons between classification
accuracies achieved from each of these data sets would provide
information on the relative effect of decreasing S/N (which is
generally consequent to increasing spatial resolution, see NASA, 1973;

(21) Recall that the Landsat MSS has a nominal spatial resolution at
nadir of 79 by 79 meters (Slater,1979). The 60 by 75 meter data set is
subsequently referred to as "80 meter" data, implying a resolution
approximating that of the Landsat MSS.
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Al

Figure 3.12 A Dot Matrix Greyscale Image of a Portion of the 15 Meter
Spatial Resolution Data, Channel 5 (1.00-1.30 ym).
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Figure 3.13 A Dot Matrix Greyscale Image of a Portion of the 30 Meter
Spatial Resolution Data, Channel 5 (1.00-1.30 um).
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Figure 3.14 A Dot Matrix Greyscale Image of a Portion of the 45 Meter
Spatial Resolution Data, Channel 5 (1.00~1.30 ym).
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Figure 3.15 A Dot Matrix Greyscale Image of a Portion of the 80 Meter
Spatial Resolution Data, Channel 5(1.00-1.30 um).
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and Silva, 1978) and increasing the spatial frequency of spectral
sampling relative to the spatial frequency of areas of differing
reflectances (which is also a direct consequence of increasing spatial
resolution). The limited time and funding, however, did not permit

such an extensive investigation.

Development of Training Statistics

Training statistics were developed independently for the two areas
examined in the study site. An independent analysis approach was
considered most appropriate since the areas differed considerably with
respect to cover class composition, and due to a break in data
continuity (the two areas were recorded and digitized independently).
To facilitate further discussion, the area in the southern portion will
be referred to as CAM1S (i.e., data of the Camden area, flight line 1,
Southern section), and the area in the northern portion of the study
area will be referred to as CAM2N (Camden area, flight line 2, Northern
section).

Training statisties for the southeastern flight line were provided
by a supervised clustering approach. Two 512 x 512 blocks of the 15
meter spatial resolution data were displayed on a COMTAL Vision One/20
using data of channels 3, 4, and 5 (0.63-0.69 um, 0.73-0.90 um, and
1.00-3.30 um, respectively). Areas representing each of the eleven
cover classes referred to in the test site description were identified
using the digital imagery and the 1:40,000 color infrared aerial
photographs. The line-column coordinates were recorded for later

mapping into the MIST (multispectral image storage tape) coordinates.
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FORTRAN programs were written to map the line-column coordinates of the
15 meter spatial resolution COMTAL image into the 15, 30, 45, and 80
meter spatial resolution coordinates of the MIST. Non-integer
quotients resulting from the transformations are rounded up for the
first line and first column and rounded down for the last line and last
column of each training field. This provision avoids the inclusion of
cover class boundaries in the coarser resolution training fields. The
reduction in sample sizes for the coarser resolutions is regarded as a
natural consequence assoéiated with coarser resolution data and,
therefore, no effort was made to compensate this effect by providing a
proportionately greater number of training fields for the coarser
resolutions. The relatively 1low number of pixels employed in
developing training statistics for the coarser spatial resolution data
may well result in such an approach being inferior to other training
techniques previously found well suited for Landsat resolution data

(22). Imposing the, perhaps inferior, supervised clustering technique

(22) Fleming (1977) examined several training techniques and found an
unsupervised clustering approach ("multicluster blocks") particularly
well suited for developing training statistics in using Landsat data.
In this approach the analyst locates several blocks in the data. Each
block contains a multiple of cover classes and cover class conditions.
The blocks are selected with the intention of representing all of the
cover classes, and the variation of their conditions, contained in the
area to be classified. The blocks are then clustered independently, or
in groups, depending on the size of the blocks and the dimension
restrictions associated with the clustering program. The analyst then
identifies the cover class corresponding to each cluster class.
Employing such a "multicluster blocks" technique with high resolution
aircraft data was expected to result in pixels from different cover
classes being clustered into common cluster classes due to spectral
similarities among areas within the different cover classes. A pilot
clustering of blocks of data containing several cover classes confirmed
this expectation.




86

on data of lower spatial resolutions may well result in classification
accuracies which are lower’than would otherwise be achieved, but adding
another variable to the classification accuracy comparisons would have
similarly obfuscated the results.

The fields were grouped by cover class and each group for each
resolution was clustered separately (23). A description of the major
cover classes of CAM1S, and the corresponding number of spectral
classes specified in the cluster analysis of each cover class, is
provided in Table 3.3. All seven channels were used without in-band
calibration. The means and variances, by channel, are provided for
each spectral class in Appendix B. The cluster analysis resulted in a
total of thirty-three spectral classes representing the eleven cover
classes of CAM1S. Table 3.4 provides the number of pixels clustered
into each spectral class, for the data of each spatial resolution.
Pooling and deleting of cluster classes was avoided where possible to
avoid introducing different analyst effects in the spectral classes
associated with the data of each spatial resolution. One spectral
class of water for the 45 meter data was deleted from the training
statistics of CAM1S, due to an insufficient number of pixels to compute
the covariances. The pair-wise separabilities of the spectral classes
were examined across cover class, within each resolution. Based on the
class separabilities, the spectral classes were considered appropriate

for classification purposes.

(23) The convergence parameter was set to 98.5 percent, which means the
percent of pixels which are not reassigned in the last iteration of
pixel assignment to the nearest (Euclidean distance) mean is not less
than 98.5 (Phillips, 1973).




Table 3.3

Cover
Class

Description of each of the Major Cover Classes and
Number of Spectral Classes Representing each Cover
for CAM1S.

Number of
Spectral Classes Descripvtion of Cover Class

Tupe

Mveg

Crop

Past

Soil

Pihd

Hdwd

Ccut

Sghd

Pine

Watr

3 Water tupelo; generally restricted to
narrow ox-tow lakes and other areas
of inundated soils.

1

Misc. shrubs snd small trees; located on
saturatad and inundated soils.

4 Row crops and small grain crops in
varying stages of development and
maturicy.

5 Pasture and old fields; plant cover varies
from healthy, improved pasture grasses
to senescent forbs and invader species.

3 Bare soil areas associated with agri-
cultural activities; varies in sand,
clay, and organic material content as
well as moisture content.

2 Pine-hardwood mix; generally varias from
35 to 65% hardwood intermixad with pine
(decermined by visual inspection).

3 01d age botzom-land hardwood; sweet gum is
the dominant species, crowns are large,
inter-crown gaps are generally deep and
result in dark shadowed areas.

4 Araas subjected to clearcut forescry
practices; ground cover comprised of dry
to inundated soils without vegetationm,
to dense vegetative cover of slash,
grasses, shrubs and residual trees.
Windrowed slash is common on these areas.

3 Second growth hardwood; species cozposition
is highly diverse, crown height and
diameter is variable, inter-crown gaps are
senerally shallow and do not result in
dark shadowed areas.

~

Pine forest areas; the principle species is
pine; 1long-leaf and loblolly are
conmon; age class varies from recently
planted (5-10 years) to mature, closed
canopy.

2 Water; primarily associated with the
Wateree River (approximately 70-90 meters
in width). Othar areas cozmprising the
water class are associated with surface
mining and open marsh.

the
Class
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Table 3.4 The Number of Pixels in each Spectral Class of each Cover
Class by Spatial Resolution for CAMIS.

Spatial Resolution

Cluster

Class 15 Herer 30 Meter 45 Meter 80 Meter
Tupe 1 511 139 72 27
Tupe 2 452 104 36 20
Tupe 3 403 99 45 2
Mveg 1 658 158 68 29
tveg 2 534 136 52 27
Crop 1 598 130 58 28
Crop 2 2887 746 312 152
Crop 3 1003 266 127 65
Crop 4 1227 299 126 54
Past 1 432 112 37 18
Past 2 572 164 70 61
Past 3 1154 296 127 21
Past 4 1233 303 137 68
Past 5 419 104 36 23
Soil 1 765 375 184 83
Soil 2 1919 909 428 187
Soil 3 1366 662 259 114
Pihd 1 246 72 28 16
Pihd 2 1015 242 115 45
Hdwd 1 1159 1319 693 335
Hdwd 2 1846 1701 656 268
Hdwd 3 1043 955 418 189
Ccut 1 771 714 335 157
Ccut 2 1480 1294 582 285
Ccut 3 15414 1445 634 280
Ccut 4 666 732 324 132
Sghd 1 1597 909 428 203
Sghd 2 1979 817 324 139
Sghd 3 757 3936 187 93
Pine 1 1244 356 156 8S
Pine 2 1946 429 205 72
Watr 1 925 215 * 11
Waer 2 164 39 121 53
Totals 68010 17085 7548 3482
Averages 2060.9 517.7 235.9 105.5

*Speczral class was deleted due to an insufficient number of
observations to compute the covariance.
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Training statistics were developed for CAM2N by a technique very
similar to the one used in CAM1S. The fields in CAM2N, however, were
selected in a "directed" manner. A line-column grid was superimposed
on the imagery and fields were selected from allv cells in the grid
where the sizes of the areas occuppied by a single cover class were
large enough to provide a "pure field". This modification was
implimented as it was expected to result in training statistics which
are more representative of the diversity of ground conditions and
spectral charasteristics associated with each of the cover classes.
The fields were then grouped by cover class, and each group of fields
was clustered individually. Table 3.5 provides a brief desecription of
the major cover classes in CAM2N, and the number of spectral classes
specified for each cover class in the cluster analysis. The means and
variances, by channel, are provided for each spectral class of CAM2N in
Appendix B. A spectral class in the urban cover class was deleted from
the training statistics of CAM2N for the 45 meter and 80 meter spatial
resolutions due to an insufficient number of pixels to compute a
T-variate covariance. Table 3.6 provides the number of pixels
clustered into each spectral class using the data of each spatial
resolution. The average pair-wise separabilities of the spectral
classes were computed and examined. The separability values indicated
that the training statistics were appropriate for classifying the area.

The pure fields (required in the supervised clustering approach)
are generally much smaller in CAM2N, and therefore contain fewer pixels
of each spatial resolution, as compared to the training fields of

CAM1S. This 1is due to the smaller contiguous area occuppied by a




Table 3.5

Cover
Class

Description of each of the Major Cover Classes and
Number of Spectral Classes Representing each Cover
for CAM2N.

Number of
Spectral Classes Description of Cover Class

Watr

Soil

Hdwd

Pine

Past

Urbn

Ceut

Pihd

Crop

2 Water; primarily associated with the Wateree
Reservoixr. Other areas of the water
clags are the Wateree River and small
impoundments.

3 Bare soil areas associated with agricultural
activities; varies in sand, clay, and
organic material content as well as vater
content.

4 Mixed hardwood species; varying age classes
and canopy closures, locaced primarily
in gully bottoms and stream beds.

4 Pine forest area; almost exclusively slash
pine; varying age classes and canopy
closures; thinned areas are common.

4 Pasture and old fields; plant cover varies
from healthy, improved pasture grasses 9
senescent forbs and invadar species
(shrubs are common).

3 Urban areas; varies from old residentcial
areas with large lawns and old trees to
commercial areas of primarily concrete
and asphault.

4 Areas subjected to clearcut forestry
practices; ground cover comprised of bare
dry soil to neavily vegetated areas.
Windrowed slash and uncut jully bottoms
are common.

3 Pine-hardwood mix; generally varies from
35 to 657 hardwood intermixed with pine
(determined by visual inspection).

Row crops and small grain crops; generally
in earlier stages of deveiopment than
the crop areas of CaM1S.

[ 5]

the
Class
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Table 3.6 The Number of Pixels in each Spectral Class of each Cover
Class by Spatial Resolution for CAM2N.

Spatial Resoluticn

Cluster
Class 15 Meter 30 Meter 45 Meter 80 Meter

Watr 1 365 82 42 27
Watr 2 2015 509 228 102
Seoil 1 5717 137 49 19
Soil 2 804 206 120 57
Soil 3 900 218 84 39
Hdwd 1 810 444 187 33
Hdwd 2 850 366 158 145
Hdwd 3 1407 733 348 136
Hdwd 4 621 250 92 54
Pine 1 202 58 25 11
Pine 2 1017 247 104 61
Pine 3 1658 393 186 103
Pine 4 1476 414 178 74
Pasz 1 895 218 100 38
Past 2 692 163 71 35
Past 3 95 22 110 46
Pasc 4 890 239 104 51
Urba 1 84 14 6* 4%
Urbn 2 676 148 78 40
Urbn 3 701 203 79 36
Ccut 1 797 196 82 34
Cecutr 2 1768 408 176 Q9
Ccut 3 2449 620 251 115
Ccut 4 1250 383 201 73
Pihd 1 658 140 71 34
Pihd 2 464 138 59 26
Pihd 3 851 233 133 81
Crop 1 475 123 50 25
Crop 2 L43 105 22 26
Totals 30746 7784 3476 1643
Averages 1060.2 268.4 124.1 58.7

*Spectral class was deleted due to an insufficient aumber of observations
to ccmpute the covariance. These were not included in the totals.
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single cover class in CAM2N as compared to CAMI1S. This physiographic
difference was previously illustrated in Figure 3.2. This difference
is also demonstrated by the average number of pixels per training field
in CAM1S as compared to CAM2N. CAM1S has an average of 15.5 pixels per
training field for the 80 meter resolution data, while CAM2N has an
average of only 6.0 pixels per training field for the 80 meter
resolution data. Tables 3.7 and 3.8 contain the number of training
fields obtained for each cover class, and the average number of pixels
per training field by cover class for each spatial resolution, in CAM1S
and CAM2N, respectively. The differences in the average number of
pixels per training field between the two flight 1lines is a good

indication of the relative "field" sizes for each area.

Development of Test Pixels

A set of pixels were selected for each section of the study area
with which to determine "pure field", in-place classification accuracy
independent of the areas used for training the classifier. This was
conducted to provide an estimate of the expected classification
accuracies achieved with data of each spatial resolution examined.
Since the accuracy estimates are obtained in areas selected
independently from the training areas, the classification accuracy
estimates apply to all pixels of the area classified which satisfy the
test pixel selection criteria. A method was developed which provided
the test pixels for all four spatial resolutions simultaneously, and
which provided a test pixel selection technique which avoids excessive

analyst bias.
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Table 3.7 The Average Number of Pixels per Training Field for each
Spatial Resolution, for each Cover Class in CAM1S.

‘ Spatial Resolution
Cover No. of 15 30 45 80

Class Training Fields Meter Meter Meter Meter
Soil 35 223.0 55.6 25 11.0
Past 51 75.7 19.4 8.0 3.8
Crop 34 168.6 42.5 18.4 8.9
Pine 16 204.4 50.3 23.1 9.8
Pihd 4 318.2 78.5 35.7 15.2
Hdwd 17 926.2 235.1 104.8 46.6
Sghd 16 557.7 140.1 60.9 28.8
Tupe 17 82.0 20.6 9.1 4.1
Ccut 22 772.0 194.4 85.9 40.7
Mveg 2 596.0 147.0 65.0 28.0
Watr 10 182.7 42.8 20.3 11.1
Total 224 68010 17085 7554 3482

Average 20.4 303.6 76.3 33.7 15.5

Table 3.8 The Average Number of Pixels per Training Field for each
Spatial Resolution, for each Cover Class in CAM2N.

Spatial Resolution

Cover No. of 15 30 45 80
Class Training Fields Meter Meter Meter Meter
Ccut 20 317.5 81.5 35.5 16.0
Crop 15 - 62.8 ~15.5 6.8 3.7
Hdwd 72 100.6 25.7 11.2 5.4
Past 37 92.6 22.9 10.4 4.6
Pihd 22 95.3 24.8 12.6 5.9
Pine 66 66.7 17.0 7.6 3.8
Soil 30 81.5 20.1 9.0 4.1
Urbn 4 365.25 90.7 40.7 20.0
Watr 5 476.0 118.2 54.0 25.8
Total 271 30746 7784 3482 1647

Average 30.1 113.45 28.72 12.85 6.08
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The method employs a line-column grid which is overlaid on the MSS
data using the COMTAL image display. The use of such a grid
constitutes a systematic sample based on line-column coordinates, with
sampling intervals of approximately 180 meters in the across-track
dimension and approximately 450 meters 1in the along-track dimension.
Since the variables being sampled (i.e., cover class and the assigned
label) are not considered to vary systematically with respect to the
MSS 1line-column coordinate relative to the sampling interval, the
estimates for the mean and variance provided by such a systematic
sample are considered unbiased (see Cochran, 1963; especially pages
206-230). The grid was constructed such that candidate pixels located
by the grid were mapped precisely between the different spatial
resolutions. This provided a means of developing test points for all
spatial resolutions simultaneously and avoided any identifications of
test pixels in one resolution from involving more than one pixel in a
lower resolution. This was achieved with the smallest grid spacing
which is integer divisible by the number of original data pixels
averaged to compute the data values for each resolution. In the
across-track dimension the number of pixels averaged together were 2,
3, and 4. Therefore, the smallest number for which each resolution
provides an integer quotient is 12. In the along-track dimension the
number of pixels averaged together were 2, 3, and 5, resulting in 30
being the smallest value with an integer Quotient. The grid spacing
was therefore 12 columns by 30 lines. A FORTRAN program (GRID.FIN) was
modified to generate the grid for display on the COMTAL . The areas

specified by the grid and associated with each resolution (the




95

"candidate test pixels") were identified using channels 3, 4, and 5 of
the 15 meter spatial resolution data and the 1:40,000 color infrared
aerial photographs. Only those candidate test pixels which contained a
single cover class, and which the analyst could locate and identify
with a high level of confidence, were recorded as suitable test pixels.
The test pixels were then mapped into the MIST coordinates of each
resolution. |

Test pixels for both CAM1S and CAM2N were generated through the
use of this technique. Again, the relatively small contiguous area
occupied by a single cover class in CAM2N resulted in a substantially
smaller number of candidate test pixels. The grid spacing used
provided 1428 possible test pixels for each flight 1line. In the
context of the anticipated frequency at which candidate test pixels
would fail the inclusion eriteria, this candidate test pixel sample
size was considered sufficient to provide sensitive tests for
classification accuracy comparisons. The total number of acceptable
test pixels in CAM1S was 523, but in CAM2N only 376 pixels satisfied
the conditions required of text pikels.

No attempt was made to determine what component of the cover class
was actually contained in the higher spatial resolution pixel. Such
efforts were considered spurious, since the interest is concerned
primarily with the classification performance achieved with the data of
various spatial resolutions relative to cover type mapping. While it
is recognized that the cover classes defined for any particular
classification effort greatly affect the classification performance

achieved, the cover classes were selected on the basis of their
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informational value relative to commonly encountéred applications. In
the context of this evaluation, any erroneous classification among
cover classes arising due to ground cover similarities over a small
area on the ground are considered valid errors. For example, clearcut
areas which have areas in grass may be confused with pasture. While
this misclassification 1is reasonable, the outcome is regarded as an

error.
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CHAPTER U

RESULTS AND DISCUSSION

Introduction

This investigation was conducted in two separate phases using data
from two different areas. The following discussion 1is therefore
divided into two major sections based on area or flight line. The
comparison of classification accuracies achieved with the per-point
Gaussian maximum likelihood (GML) classifier using data of the four
different spatial resolutions 1is followed by the comparison of
classification accuracies achieved with the per-point GML classifier
and the per-field *SECHO (supervised ECHO) classifier using the 30
meter spatial resolution data. Subsections contain discussion of
classification accuracy estimates based on training field pixels

followed by estimates based on test pixels.
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Flight Line CAMiS

Per-Point GML Classification Using Data of
Different Spatial Resolutions

Evaluation Using Training Field Pixels. Classification accuracy

estimates based on training field pixels provides a "first look" at
expected classification performance. High classification accuracies of
the training field pixels informs the analyst that the spectral classes

are generally :

1) statistically separable,

2) represent no more that one cover class, and

3) correspond to "natural" regions of concentration, in the

measurement space, associated with the spectral characteristies of

each of the cover classes in the training fields.

The overall classification accuracies achieved with the per-point
GML classifier using data of each of the four spatial resolutions are

illustrated in Figure 4.1 (1). The differences between the overall

classification accuracies achieved with the data of each spatial

(1) Overall percent correct classification is computed by:

n
PCC = I (P;-P)

i=1 1

n
where:

P, = number of pixels classified as the i(th) cover class which
have been identified by the analyst as the i(th) cover class.

P! = the total number of pixels employed in the evaluation,
identified by the analyst as the i(th) cover class.
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resolution were found to be significant at the a = 0.10 level of
confidence (2). These results indicate that overall percent correct
classification (PCC) tends to increase with decreasing spatial
resolution. That 1is, as the size of the area on the ground
cqrresponding to a single pixel increases, overall classification
accuracy is expected to increase.

The training field pixel classification accuracies achieved for
each cover class with the per-point GML classifier using data of each
spatial resolution are illustrated by the response surface in Figure
4.2 (3). The slope of the 1lines connecting the PCC 1levels across
different spatial resolutions represents the rate of change of PCC with
respect to spatial resolution for each cover class. The 1lines

connecting the PCC levels across the various cover classes have no

(2) This test for significant differences between levels of percent
correct classification used the Newman-Keuls' range test employing the
arcsin transformation of the percent of correctly classified pixels
(see Appendix C for a presentation of the test for significant
differences).

(3) Conventionally, results have been evaluated only on the basis of
the relative rate of omission. Instances of omission are the non-
diagonal row elements of the error matrix. Omission is of primary
interest to those concerned with the likelihood of an area "known" to
be of the i(th) cover class being classified as some other cover class.
The commission error is equally a part of the error frequency
associated with a classification. Commission error is represented by
the non~diagonal column elements of the error matrix. This index of
error is of interest to those concerned with the likelihood of an area
being classified as the i(th) cover class when acutally the area is in
some other cover class. Both of these forms of misclassification
constitute a legitimate error. The problem of providing a meaningful
index for evaluating a classification arises when the evaluation is
conducted by cover class, since the use of either measure will result
in the same computed "overall" classification performance. The problem
is most crucial when the two error components are poorly correlated,
which 1is often the case. Attention is needed for determining a
meaningful combination of the two error components.
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implied importance, but are included to illustrate the relative levels
among the various cover classes. The statistical evaluation of the
differences in PCC achieved within each cover class, across spatial
resolution, is presented in Table 4.1. The PCC levels achieved with
data of each spatial resolution were not statistically (a = 0.10)
different for water tupelo, marsh vegetation, crop, pasture, bare soil,
or pine-hardwood mix. The PCC levels achieved with data of each
resolution were statistically different for pine, o0ld age hardwood,
second growth hardwood, and clearcut areas.

The irregular classification accuracies associated with the water
cover class are believed to be due to the inclusion of the inundated
surface mining areas as water. These areas are borrow pits which
contain windrowed spoil. The older spoil surfaces are covered with
vegetation. The pixels corresponding to these areas are consequently
composite measurements of the spatially weighted irradiances associated
with each of the ground cover materials actually present. Varying
levels of "contamination", of the spectral characteristies of water,
with those of another cover class 1is believed to be the factor
responsible for the 1low classification accuracies achieved for water.
The fact that nearly all of the misclassified water pixels were
classified as a spectral class representing clearcut areas of inundated
soil with standing vegetation tends to confirm the above scenario. It
is of interest, however, that classifications conducted with 80 meter
spatial resolution data appear to be more robust in the context of
these levels of contamination.

The greatest changes in PCC with respect to spatial resolution
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Table 4.1 Statistical Evaluation of Classification Performances by
Cover Class for each Spatial Resolution (Training Field
Pizels, Per-Point GML Classifier, CAM1S).-+

Spatial Resolution

Cover 15 30 45 80 Harmonic
Class Meter Meter Meter Meter Mean
Tupe 96.3% 98.92 100.0° 100.0? 182.49
Mveg 94.72 97.6% 99.22 100.0% 150. 64
Crop 94.8% 97.1% 98.1% 97.3% 771.28
Past 93.22 95.6% 96.6% 97.42 503.43
Soil 94.92 95.7% 96.72 96.6° 1019.80
Pihd 83.7% 89.8° 91.6 95.1° 146.22
Hdwd 82.5% 88.5° 91.2¢ 93.3¢ 2092.56
Ceut 79.32 87.0° 89.7° 92.494 2297.24
Sghd 72.92 85.1° 91.3¢ 96. 34 1183.66
Pine 72.18 81.1° 82.9> 95. 5¢ 420.12
Watr 79.13P 74.82 79.32P 82.9° 232.17

+Dissimilar superscripts within each particular cover class denotes
a significant difference at the a = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission
in classification.
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occur with the forest cover classes. The differences in PCC among all
spatial resolutions were found to be significant at the a = 0.10
confidence level for the old age hardwood, c¢learcut, second growth
hardwood, and pine cover classes. Classification accuracy for these
forest cover classes increases with decreasing spatial resolution.
While the pine-hardwood mix cover class ranged from 83.7 to 95.9
percent correct classification with 15 meter and 80 meter spatial
resolution data, respectively, these differences were not found to be
significant at the a = 0.10 level of confidence. The low change in PCC
with respect to resolution for water tupelo as compared to that
associated with other forest cover classes 1is probably due to the very
distinet spectral characteristics of water tupeio. Areas between the
crowns of tupelo, which may be nearly identical in spectral
characteristics to the areas between the crowns in other forest cover
classes, probably do not affect the average pair-wise statistical
separability of tupelo to the extent that the separabilities of other
forest cover classes are affected. Pure pixels of between crown gaps
(even at the 15 meter spatial resolution) are expected to be very rare
for the crown closures commonly found in forest cover classes of this
area. Pixels containing the inter-crown gaps (as for pixels in
general) represent the spatially weighted averages of the irradiances
associated with the regions contained in the pixel. Inter-crown gaps,
which have spectral characteristies which are very similar across
different forest cover classes, are expected to affect the
classification accuracies of those classes which have similar spectral

characteristics associated with the crowns, to a greater degree than
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those for which the spectral characteristics of the crowns are very
different.

The differences betweén PCC 1levels achieved with data of the
different spatial resolutions, observed for forest cover classes, 1is
believed to be due to the 1level of spectral variability across
neighboring pixels associated with forest cover classes. The
irradiance of the tree crowns is different from that of the inter-crown
gaps. This results in a variation in spectral response level between
adjacent, or neighboring, pixels (4). This source of variation is a
component of the within cover class variances associated with each of
the cover classes. Cluster analysis reduces this source of variance to
some degree but does not remove it entirely. Figure 4.3 illustrates
the degree to which the standard deviation of the spectral response
associated with each cover class is reduced by clustering the vectors
obtained within each of the cover classes. For example, the standard
deviation of the spectral response level over all of the training
fields of the old age hardwood (channel Y4, 80 meter resolution data) is
approximately 15 (Figure 4.3A). The standard deviation (channel &, 80
meter resolution data) averaged over the three cluster classes of old
age hardwood is approximately 7 (Figure 4.3B). The within class
variance as shown in Figure 4.3 is also reduced by averaging the
measured irradiance of adjacent pixels, which is analogous to reducing

(4) This variation in spectral response level between adjacent pixels,
or areas, is analogous to concept of "texture" in aerial photography.
Texture is a major feature in aerial photographic images associated
with forest classes. The identification of cover classes through the
use of aerial photography relies, to a considerable degree, on the
texture associated with the various cover classes.



Figure 4.3
|
|
|

Standard Deviation of Spectral Response Level in each

Channel, by Spatial Resolution (15, 30, 45, and 80 meter),

for each Cover Class.

A = population defined by cover class identity.

B population defined by cluster analysis. Standard
deviation is the average over the cluster classes
representing each cover class.
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the spatial resolution of the scanner system with which those
measurements are actually obtained. Recall (Chapter 3, Spatial
Resolution Degpadation), that the averaging of measured irradiances of
adjacent pixels is exactly how the different spatial resolutions were
simulated. A comparison of the relative standard deviation in spectral
response level across data of different spatial resolutions with the
relative standard deviation in spectral response levels between "cover
class" (Figure Y4.3A) and "spectral class" (Figure 4.3B) indicates that
clustering reduces cover class variance to a greater degree than
reducing the spatial resolution of the scanner system employed. The
high variance in crop and pasture is probably due mostly to shot noise
in the scanner detectors (5).

The comparison of training field pixel classification results
achieved with the per-point GML classifier using data of the four
different spatial resolutions indicates that no real differences in PCC
are expected between the different spatial resolutions 1in classifying
areas of water tupelo, marsh vegetation, crops, pasture, pine-hardwood
mix, and bare soil. However, when classifying old-age hardwood, second
growth hardwood, pine and clearcut, higher classification accuracies
are expected to be achieved with data of progressively lower spatial
resolution (over the range examined here). This inference is based on
the relative frequency of omission error using "field-center pixels.
The spectral characteristics associated with these forested areas

(5) Shot noise 1is basically current resulting from the thermal
instability of the detectors. This source of current variation is
largely responsible for the correlation between mean response level and
variance (see NASA, 1973; and Silva, 1978).
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indicate, further, that higher classification accuracies are expected
using the lower resolution data when classifying areas containing cover
classes with "large" levels of spectral variability across neighboring
pixels. How large this level of spectral variability must be before
significant differences in classification accuracies result is not
known.

There is some question regarding the sensitivity of the
statistical tests provided by the percent correct classifications based
on training field pixels. The sensitivity of these statistical tests
is dependent on the sample size from which the PCC was obtained.
Regarding each pixel in the training field as a sample generally
results in a very large sample size. The fact that the harmonic mean
of the number of samples divided into a constant (i.e., 821) provides
the variance estimate for evaluating the differences between the arcsin
transformed proportions makes the 1issue of 'what constitutes a true
sample' most crucial to a proper evaluation of the apparent
differences. How this QUestion should be resolved is currently unknown
and is in need of much attention.

The results discussed thus far are based on training field pixels
and, therefore, are not indicative of the probability of erroneous
class assignments for any pixel in the area to be classified. While
test pixels, on the average, provide lower classification accuracies
than training field pixels, the relative PCC levels of training field
pixels achieved with data of different spatial resolutions are not
expected to be different from the relative PCC values obtained from

test pixels selected independent from the training areas.
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Evaluation Using Test Pixels. The evaluation of classification

accuracy based on a set of pixels selected independent of the training
fields provides an estimate of the probability of erroneously
classifying a pixel selected from the entire area classified. The
intended inference space of this estimate is the percent correct
classification expected for all of the pixels in the area classified.
The extent to which the intended inference space is provided by this
estimate is determined by the limitations imposed by the test pixel
selection criteria.

The overall percent correct classification achieved with the per-
point GML classifier using data of each of the four spatial resolutions
is illustrated in Figure 4.4. These differences were not found to be
significant at the a = 0.10 confidence level (6). The percent correct
classification achieved for each cover class using data of the four
resolutions is illustrated in the bar chart of Figure 4.5. Table 4.2
summarizes the outcome of the statistical evaluation of these
differences. Only the PCC achieved for the old age hardwood and the
clearcut cover classes differed significantly (a = 0.10) across spatial
resolution (7).

These results indicate that classification accuracies achieved

(6) The harmonic mean for this evaluation 1is 539.26 resulting in a
small enough estimated variance ((821/539.26) = 1.5225) to provide what
is considered a sufficiently sensitive test for "real" differences.

(7) While the differences across spatial resolution associated with the
water cover class are statistically significant, the results for the
water class are difficult to interpret due to the reasons cited in the
"Training Field Pixel Evaluation" section.
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Table 4.2 Statistical Evaluation of Classification Pcrformances by
Cover Class for each Spatial Resolution (Test Pixels,
Per-Point GML Classifier, CAMI1S).+

Spatial Resolution

Cover 15 30 45 80 Harmonic
Class  Meter  Meter Meter  Meter Mean
Tupe 66.7°  55.6° 55.6° 66.7° 9.0
Mveg 21.1% 26.3% 31.6° 31.6° 19.0
Crop 69.7% 78.82 84 .82 82.1% 31.86
Past 86.7° 92.9% 92.3% 100.0% 13.52
Soil 87.5% 85.9% 81.7% 86.92 62.97
Pihd 29.0% 35.5% 25.82 22.6° 31.00
Hdwd 72.42 77.63%  81.4P 81.4° 156.00
Ccut 77.52 76.1% 81.72>  g8.4P 70.59
Sghd 66.7° 72.4% 69.4% 65.5% 121.49
Pine 36.42 27.3% 18.2% 36.42 11.00
Watr 85.7¢ 42.9° 16.72 18.22 12.86

tDissimilar superscripts within each particular cover class denotes
a significant difference at the o = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission
in classification.
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with the per-point GML classifier are not expected to vary
significantly with respect to the spatial resolution of the data
employed. However, the sensitivity of the test for significant
differences is proportional to the square root of the harmonic mean of
the number of test pixels available for each resolution. Table 4.2
also contains the harmonic mean of the sample sizes with which the
estimated variance of the transformed proportions are computed. The
harmonic means of the number of test pixels for some of the cover
classes indicate that an insufficient number of test pixels were
available to conduct a meaningful test on the differences between the
PCC values achieved using the data of different spatial resolution. It
appears that classification evaluations are caught in the quandary of
providing a pixel selection technique such that; 1) every pixel
included in determining the percent correct classification can be
regarded as an observation, or sample, and 2) a sufficient number of
observations are provided to conduct a test which 1is adequately
sensitive to test for meaningful differences. In this investigation
the problem was further compounded by the restriction of coordinates
which could be mapped between data sets of the various spatial
resolutions without location errors arising due to arithmetic rounding.

The degree to which the training statistics represent the spectral
characteristics and variability associated with each of the cover
classes throughout the area classified is a major determinant of the
classification accuracies achieved. If the effects of this factor were
invariant with respect to spatial resolution then comparisons involving

different spatial resolutions theoretically would not be affected. The
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differences between the classification accuracies achieved for training
field pixels and those achieved for test field pixels indicate that the
training statistics for CAM1S are not actually representative of the
range of spectral characteristics associated with each cover class
throughout the area classified. To what degree this factor interacts
with resolution 1is unknown. Comparing the accuracies tabulated in
Table 4.1 with those in Table 4.2 indicates that the degree to which
the training statistics represent the range of spectral characteristics
associated with their respective cover c¢lasses is a more important
factor than 1is the spatial resolution of the data used in conducting
the classification. Thus, the trends, or lack thereof, in the PCC
across spatial resolution indicated by the test pixel classification
results are probably more indicative of the relative importance of
representative training statisties as compared to the spatial
resolution of the data. However, the differences between the percent
of test pixels correctly classified using 15 meter vs. 80 meter spatial
resolution data were significant for the o¢ld age hardwood and clearcut
cover classes. This tends to confirm the inferences based on training
field classification comparisons; for cover classes characterized by
high levels of spectral variability across adjacent pixels (eg., forest
cover classes), higher classification accuracies can generally be

realized using low spatial resolution data.
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Classification Results Using *SECHO Compared to
Results Using the Per-Point GML Classifier

Introduction. The 30 meter spatial resclution data was classified

using the #*SECHO classifier (see section "The ECHO Classifier : The
Supervised Mode") to determine whether improvements in classification
accuracies could be achieved through the use of a classifier which was
written to accomodate some degree of spectral variability among
neighboring pixels. The unfamiliarity of the analyst with the effect
of the threshold settings required by the classifier warranted some
exploration of how the algorithm behaved over a range of thresholds.
Previous work with *SECHO (see Kettig and Landgrebe, 1975A; Kettig and
Landgrebe, 1975B; and Kast and Davis, 1977) indicated that a
homogeniety threshold of 15q (where q = the' number of channels
employed) was appropriate for a small number of channels. Recall that
higher homogeneity thresholds increase the 1likelihood that the
classifier will regard the pixels of the cell as belonging to a single
spectral class. Based on this consideration and the previous work,
classifications using the homogeneity thresholds 105, 140, 175, and 210
were conducted. Four values of the annexation threshold were also
examined. As previously indicated in Chapter 3, the likelihood that
two cells are regarded as belonging to the same spectral class
increases with decreasing annexation thresholds. Since the threshold
is compared to the logarithm of the computed 1likelihood ratio,
classifications were conducted with a narrow range of annexation
thresholds (i.e., 3.0, 4.0, 5.0, and 6.0). Sixteen classifications

were conducted using each possible combination of the four homogeneity
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and annexation thresholds. The 30 meter spatial resolution data were
used in each of these classifications.

Figure 4.6 illustrates the results of these preliminary tests with
the *SECHO classifier. The overall percentage of test pixels correctly

classified (PCC) is plotted against homogeneity threshold and

annexation threshold. The overall PCC by threshold combination
displayed by this response surface, appears to vary quite regularly
across homogeneity thresholds for each annexation threshold. The

general trend of the overall PCC by homogeneity threshold is very
similar for each annexation threshold. This provides the analyst some
indication that the accuracies achieved with any particular annexation
threshold, in the 4range of values examined here, will increase with
lower homogeneity thresholds (at 1least down to 105). At higher
homogeneity thresholds the highest overall PCC appears to be provided
by an annexation threshold of 5.0. At the lowest homogeneity threshold
examined (i.e., 105) overall PCC was higher for an annexation threshold
of 6.0 than that of 5.0. The scale of the percent correct
classification (based on test pixels) ranges from 72.5 percent tc 75.0
percent, which implies that within the range of thresholds examined,
the supervised ECHO classifier 1is quite robust; that is, the
performance of the classifier is stable over the range of thresholds
examined. The point of convexity of the response surface appears to
lie somewhere between the homogeneity threshold of zero and 105 and an
annexation threshold of greater than 6.0. However, resources did not
permit the allocation of further efforts to locating this point of

convexity.
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Resolution Data (CAM1S).
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Evaluation Using Training Field Pixels. The overall percent correct

classification of training field pixels with the per-point GML
classifier (89.3 percent) was found to be significantly lower (a =
0.10) than the overall PCC achieved with the *SECHO classifier (94.1
percent) using the 30 meter spatial resolution data. Figure U4.7
illustrates the PCC achieved with each classifier for each cover class.
Table 4.3 provides a summary of the statistical evaluation of the
differences between PCC levels achieved with each of the classifiers
for each of the cover classes. The PCC achieved with *SECHO was found
to be statistically greater (a = 0.10) than that achieved with the per-
point GML approach for marsh vegetation, soil, old-age hardwood,
clearcut, and second growth hardwood. The PCC achieved with the per-
point GML approach was fohnd to be statistically greater than that
achieved with *SECHO only for water. This difference is considered to
be due to the previously detailed contaminations present 1in the water
Training fields. These results indicate that improvements in overall
classification accuracies can be achieved with ¥SECHO (a per-field
classifier) compared to the accuracies achieved with the per-point GML
classifier using 30 meter spatial resolution data. Improvements in
classification performance are variable when differences are examined
on the basis of individual cover classes. Both old age hardwood and
clearcut are associated with a considerable 1level of spectral
variability among adjacent pixels. While old age hardwood appears to
have a higher degree of spectral variability among adjacent pixels than

does second growth hardwood, greater apparent improvements in PCC were
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Table 4.3 Statistical Evaluation of Classification Performances by
Cover Class Achieved with the *SECHO Classifier and the

122

Per-Point GML Clausifier usiny;, 30 Meter Spatial Resolution

Data (Training Ficld Pixels, CAM1S).+

Classifier

Cover Per-Point

Class GML *SECHO
Tupe 98.9% 97.42
Mveg 97.63 100.0°
Crop 97.1% 96.6°
Past 95.6° 94.1%
Soil 95.72 99.3P
Pihd 89.8% 93.6%
Hdwd 88.5% 95.5°
Ceut 87.02 90.4°
Sghd 85.1% 99. 8"
Pine 81.12 82.2%
Watr 74.8° 66.5

+Dissimilar superscripts within each particular cover class denotes
a significant difference at the a = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission

in classification.

Harmonic
Mean

350
294
1445
987
1946
314
3997
4277
2242
805
428



achieved for the second growth hardwood class than were achieved for
old-age hardwood. The properties of the cover classes which are
responsible for these improvements with the use of #*SECHO are not
¢learly indicated by the results achieved for each cover class. A
comparison of the classification performances for each cover class
using some index which combines the omission and commission components
of classification "error" may provide more insight regarding the
relationship between classification performance, cover class, and

classifier.

Evaluation Using Test Pixels. The overall percentage of test pixels

correctly classified by the ¥*SECHO classifier (75.0 percent) was
statistically greater (a = 0.10) than that achieved with the per-point
GML classifier (71.2 percent). These proportions were determined from
classifications of 545 text pixels. Figure 4.8 illustrates the test
pixel PCC achieved with the *SECHO and the per-point GML classifiers
for each cover class. Table 4.4 provides a summary of the statistical
evaluation of the differences between the PCC achieved with the two
classifiers for each cover class. Only the accuracies achieved for the
¢learcut class were statistically different between the twe
classifiers.

The harmonic means of the number of the test pixels available for
the evaluation of each classification indicate that an insufficient
number of observations were available to adequately assess the apparent
differences in PCC levels achieved for several of the cover classes.

Comparing the relative PCC levels of second growth hardwood in Table
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Table 4.4 Statistical Evaluation of Classification Performances by
Cover Class Achicved with the *SECHO Classifier and thc
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Per-Point GML Clausifier using 30 Meter Spatial Resolution

Datz (Test Pixel:, CAM1S).™

Classifier

Cover Per-Point

Class GML *SECHO
Tupe 55.6% 55.6°
Mveg 26.3% 47.4°
Crop ~ 78.8° 81.8%
Past 92.9% 92.9%
Soil 85.9° 89.1%
Pihd 35.5% 29.0%
Hdwd 77.6% 83.3%
Ceut 76.12 95.8"
Sghd 72.42 66.7°
Pine 27.3% 27.3%
Watr 42.92 42.9%

tDissimilar superscripts within each particular cover class denotes

a significant difference at the a = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. Tre proportions are the relative rates of omission

in classification.

Harmonic

Mean

9
19
33
14
64
31

156
71
123
11
14
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4,3 to those in Table 4.4 indicates a tremendous shift in relative
classification performance for second growth hardwood. This large
apparent shift in classification accuracy determined for the second
growth hardwood raises questions concerning the value of comparisons
based solely on the omission component of error. There is an apparent
need for a more stable index for conducting comparisons on a cover
class basis.

On the basis of overall classification performance, the results
obtained with test pixels confirm the results obtained with training
field pixels. The use of the *SECHO per-field approach is expected to
provide higher overall classification accuracies using 30 meter spatial
resolution data than are achieved with the per-point GML approach.
Similar improvements in PCC are expected for some individual cover
classes but the results are not entirely consistent between estimates
provided by training and test pixels. The larger difference between
training field pixel PCC and test pixel PCC (water tupelo, marsh
vegetation, pine-hardwood mix, and pine) as compared to the differences
in PCC achieved with the different classifiers, indicate that the
degree to which the training statistics represent the respective cover

classes can be a more important factor than the classifier employed.
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Flight Line CAM2N

Per-Point GML Classification Using Data of

Different Spatial Resolutions

Evaluation Using Training Field Pixels. Overall classification

accuracies, based on training field pixels, increased with decreasing
spatial resolution only over the range of 15 to U5 meter spatial
resolutions (as illustrated in Figure 4.9). Further decreases in
spatial resolution beyond 45 meters resulted in an apparent decrease in
overall classification accuracy. The differences in PCC level achieved
with the 45 and 80 meter spatial resolution data are not statistically
significant at the a = 0.10 level of confidence. All other differences
among overall classification performances are significant (a = 0.10).
The differences in the relationship between classification accuracy and
spatial resolution observed in CAM2N as opposed to CAM1S are perhaps
due primarily to differences in characteristics of the scene. Recall,
from the section describing the study site, that CAM2N is located on
the deeply disected Piedmont escarpment. The physiography of CAM2N
results in relatively small contiguous areas occupied by the individual
cover classes. This was well illustrated in the aerial photography
contained in Figure 3.2. A quantitative index for comparing this scene

related characteristic of CAM2N to CAM1S was presented in Tables 3.7
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and 3.8. The average "field" (i.e., a contiguous area occupied by an
individual cover class) size, based on the values in Tables 3.7 and
3.8, in CAM2N is about 38 percent of the average field size in CAM1S.
The average number of pixels per spectral class for the cover classes
of CAM2N is about 50 percent of that for CAM1S. Since the overall PCC
values presented in Figure 4.9 are based on training field pixels, the
relative differences in overall PCC levels observed for CAM2N may
differ from those observed for CAM1S due to a critical reduction in the
number of pixels wused 1in computing the training statisties. A
reduction in the number of pixels available for training the classifier
was previously recognized as a natural consequence of low spatial
resolution data in the context of the supervised clustering technique
employed in the training phase of the analysis. While the number of
training pixels obtained for CAM1S relative to the number obtained for
CAM2N would provide a lower estimated variance associated with the PCC
and, consequently, a more sensitive test for significant differences
between PCC levels, the outcome of the tests is not thought to be
determined by this factor. The arithmetic difference between the
overall PCC observed for the 45 meter and 80 meter spatial resolution
data in CAM2N (91.2 and 90.5 percent, respectively) is much lower than
that observed in the analysis of CAM1S (91.9 and 94.5 percent,
respectively). The 80 meter spatial resolution data failed to provide
an improvement in the overall percent correct classification either due
to :

1) cover class conditions which were invariant with respect to spatial
resolution after the 45 meter resolution level,
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2) due to a critical reduction in the number of pixels in some of the
spectral classes such that convergence on the parameters failed to
occur (see Duda and Hart, 1973 on the T"unexpected problem of
dimensionality"), or

3) some other factor.

The PCC by cover class achieved with the per-point GML classifier
with data of each spatial resolution is illustrated by the response
surface in Figure 4.10. A summary of the statistical evaluation of the
differences between PCC 1levels achieved with data of each spatial
resolution is provided for each cover class in Table 4.5. The results
appear to vary considerably between cover classes. In every case,
except pine, where the differences are significant (a = 0.10) the
highest accuracies are achieved with the 45 meter spatial resolution
data. In cover classes associated with high levels of spectral
variability across adjacent pixels, such as clearcut and urban, the
relationship between PCC and spatial resolution is not consistent with
that observed in CAM1S. C(lassification accuracy increases in the urban
class from 15 meter to 30 meter spatial resolution but differences
between PCC achieved with the 30 meter, U5 meter, and 80 meter spatial
resolution data were not significant (a = 0.10). In the clearcut
areas, the PCC levels achieved with data of each spatial resolution
were statistically different, but the highest PCC was obtained with the
45 meter spatial resolution data. The pine cover class in CAM2N has a
wide range of canopy closures resulting in a considerable level of
spectral variability across adjacent pixels. The PCC levels achieved
in the pine cover class were statistically different at the a = 0.10

level of confidence, but the highest PCC was achieved with the 30 meter
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Figure 4.10 Response Surface in Percent Correct Classification by
Cover Class, for each Spatial Resolution (Training Field
Pixels, Per-Point GML Classifier, CAM2N).
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Table 4.5 Statistical Evaluation of Classification Performancces by
Cover Class for each Spatial Resolution (Training Field
Pixels, Per-Point GML Classifier, CAM2N).*+

Spatial Resolution

Cover 15 30 45 80 Harmonic
Class Meter Meter Meter Mcter Mean
Watr 99.72 99.52 99.62 100.0% 294.81
Soil 93.42 94,52 96.72 96.72 288.03
Hdwd 91.92 95.5P 94.7° 95.3° 887.87
Pine 87.0° 91.53 90. 2¢ 83.72 564.14
Past 80.8%  85.6° 89.4° 91.8% 401.97
Urbn 79.22 39.5° 87.7° 92.5° 181.21
Ceut 70.42 81.5° 89.24 86.3° 755.53
Pihd 69.92 77.8° 83.4° 88.59 293.81
Crop 60.32 67.2° 80.4°¢ 74.5¢ 119.91

+Dissimilar superscripts within each particular cover class denotes
a significant difference at the a = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission
in classification.
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resolution data and the 1lowest was achieved with the 80 meter
resolution data. These evaluations are based solely on the omission
error and perhaps a more meaningful index for comparing classification
performance would be provided by some measure which combines the

commission and omission error.

Evaluation Using Test Pixels. The overall PCC achieved for test pixels

using data of each spatial resolution is provided in Figure 4.11. The
overall PCC observed for the 80 meter spatial resolution data (63.3
percent) was statistically (a = 0.10) 1lower than the PCC observed for
all other spatial resolutions. The differences observed among the PCC
levels achieved with data of 15, 30, and 45 meters (75.3, T72.3, and
70.5 percent, respectively) were not significant at the a = 0.10 level
of confidence. These results indicate that no real differences between
PCC levels are expected when using data of any of the higher spatial
resolutions. The lower PCC achieved with the 80 meter spatial
resolution is believed to result, in part, from the factors discussed
in the section on "training field pixel evaluation" and, in part,
because of "field" size.

There 1is always some frequency of error associated with the
location and identification of areas in a scene. As the field size
decreases the requirement for higher precision of location increases in
order tc avoid field boundaries. The frequency of error associated
with avoiding boundaries is therefore expected to increase as the field
size decreases. While 'this is an error on behalf of the analyst to

provide "pure" pixels for testing, it is also an indication of the
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information provided by the classification. Only 376 T"pure" pixels
were identified by the analyst out of the 1428 provided by the sampling
grid. This reduction resulted from a rigorous adherence to the test
pixel inclusion criteria (i.e., that the "pixel" of the lowest spatial
resolution occur in only one cover class and that the cover e¢lass be
identifiable at a high level of confidence on the part of the analyst).
In spite of this degree of selectiveness, the 80 meter data PCC results
were significantly lower than the PCC achieved with the data of the
other resolutions.

Figure 4.12 illustrates the relative PCC by cover class achieved
with data of each spatial resolution. Table 4.6 provides a summary of
the statistical evaluation of the differences between the PCC levels,
by cover class. In general, the results afe extfemely variable and
fail to identify the superiority of any particular resolution. The PCC
of wurban appears to increase with decreasing resolution, but the
differences are significant (a = 0.10) only between the 15 meter and 80
meter resolutions. This is probably due to the high level of spectral
variability across adjacent pixels associated with wurban areas.
However, other cover classes associated with high 1levels of spectral
variability across adjacent pixels, such as clearcut and pine, do not
demonstrate higher PCC with lower resolution. Hardwood forests in this
area do not display the level of "texture" that was characteristic of
CAM1S. In other cover classes (eg., soil, pine and hardwood) the
higher  spatial resolution data provided higher classification
accuracies, but differences were generally not significant among PCC

achieved with data of the higher resolutions.
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Table 4.6 Statistical Evaluation of Classification Performances by
Cover Class, for each Spatial Resolution (Test Pixels,
Per-Point GML Classifier, CAM2N).+

Spatial Resolution

Cover 15 30 45 80 Harmonic

Class Meter Meter Meter Meter Mean
Watr 100.0° 100.0° 96. 7" 76.7° 30
Soil 96.2° 88.5sP 84.6° 57.72 26
Hdwd 92.5° 90.3° 87.1° 80.62 93
Pine 78.9° 67.62 66.2° 59. 22 71
Past 64.0%P 72.0%P 60.0% 80.0P 25
Urbn 42,9 57.13P 64.32P 71.4P 14
Ccut 77.12 71.42 80.0% 71.42 35
Pihd 45.3° 45.3° 40.0P 32.0% 75
Crop 42.92 28.6° 57.12 57.12 7

+Dissimilar superscripts within each particular cover class denotes
a significant difference at the a = 0.10 level of confidence based
on the Newman—-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission

in classification.
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The differences between the training field pixel PCC 1levels and
the test pixel PCC levels observed for CAM2N confirm the finding in
CAM1S that the degree to which the training areas represent the
remainder of the area to be classified 1is a more important factor than
the spatial resolution employed in the classification. While the
water, bare soil, hardwood and clearcut areas were fairly well
represented by the training statisties, the urban, pine-hardwood mix,
and crop were not generally well represented.

The small field size of CAM2N also appeared to be a determining
factor. While the strict adherence to a "pure" pixel was intended
throughout the test pixel selection procedure, the 1likelihood of
boundary pixels being included in the test pixel set for CAMZ2N is
believed to be much higher due to the small field size. In an area
where the "pure" pixel restriction on test pixel selection resulted in
three-fourths of the test pixels being rejected, the effect of the
relative number of boundary pixels on classification results is
expected to be large.

The lower classification accuracies achieved with the 80 meter
spatial resolution data is believed to be due, in part, to: 1) the
relatively low number of pixels per spectral class for the 80 meter
resolution data, resulting in lack of convergence on the "population”
parameters, 2) the small field sizes characteristic of the area, and 3)
the relative lack of cover classes with 1large levels of spectral

variability across adjacent pixels.
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Classification Results Using *SECHO Compared to

Results Using the Per-Point GML Classifier

Evaluation Using Training Field Pixels. The 30 meter spatial

resolution data of CAM2N were also classified using the ¥*SECHO
classifier. While the overall PCC achieved with *SECHO (90.2 percent)
was statistically greater than that achieved with the per-point GML
approach (88.8 percent), the arithmetic difference was very low (1.4
percent). The  percentages of training field pixels correctly
classified for each cover class using ¥*SECHO are compared with the PCC
achieved with the per-point GML classifier in Figure U4.13. The
statistical evaluation of the differences illustrated in Figure 4.13
are summarized in Table 4.7. The results achieved with *SECHO are
statistically greater (a = 0.10) than those achieved with the per-point
for urban, clearcut, pine-hardwood mix, and crop areas. The results
observed in the urban and clearcut cover classes are in accordance with
the design intentions of the #*SECHO classifer in that it tends to
accomodatz higher levels of spectral variability across adjacent pixels
than does the per-point approach.

The PCC achieved with the per-point classifier were statistically
greater than those achieved with *SECHO for hardwood and pine forest
areas. While the arithmetic differences were not very large for the
hardwood class (2.0 percentage points), the difference associated with
the pine forest cover class was quite large (16.1 percentage points).
A possible explanation for this result is that areas of low crown

closures which have illuminated ground cover visible from the reference
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Per-Point GML -- *SECHO -D

watr soil hdwd pine past urbn ccut pihd crop

Percent Correct Classification by Cover (Class Achieved with
the *G51CHO Classificr as Compared to the Per-Point GML
Classifier using 30 Meter Spatial Resolution Data (Training
Field Pixels, CAM2N).
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Table 4.7 Statistical Fvaluation of Classification Pcrformances by
Cover Class Achicved with the *SECHO Classifier and the
Per-Point GML Classifier using 30 Meter Spatial Resolution
Data (Training Ficld Pixels, CAM2N).+

Classifier
Cover Per-Point Harmonic
Class GML *SECHO Mean
Watr 99.52 99.5% 591
Soil 94.5% 94.8°% 561
Hdwd 95.5° 9.5t 1793
Pine 91.5° 75.42 1106
Past 85.6% 87.2% 846
Urbn 89.5° 96.1° 363
Ceut 81.52 93.3° 1607
Pihd 77.82 92.8° 511
Crop 67.2% 75.4° 228

+Dissimilar superscripts within each particular cover class denotes
a significant difference at the a = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission
in classification. '
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point of the scanner may be more similar spectrally to the pine-
hardwood mix class when the measured irradiance of a 2-by-2 cell of 30
meter pixels is examined. Computations involving the commission error
indicated that 97 percent of the commission error in pine-hardwood mix
were actually pixels of the pine forested cover class. This same
component of the commission in pine-hardwood constituted 78 percent of
the omission error in the PCC of pine. Apparently, sampling the
irradiances associated with pine areas with a cell of pixels results in
an average spectral response very similar to pine-hardwood amix for many

of the areas in pine.

Evaluation Using Test Pixels. The overall PCC of test pixels achieved

with ¥SECHO (72.5 percent) was not statistically different from that
achieved with the per-point approach (72.5 percent). Figure 4.14
i{llustrates the PCC levels achieved for each cover class through the
use of #*SECHO as compared to the per-point classifier. Table 4.8
provides a summary of the statistical evaluation of the differences in
PCC level. Relatively high classification accuracies were achieved for
water, bare soil and hardwood indicating that the training statistics
were representative of of their respective cover classes. High
classification accuracy was maintained by *SECHO for the urban, with
statistically (a = 0.10) lower PCC levels provided by the per-point.
This result indicates that the *SECHO classifier tends to perform
better than the per-point classifier in the context of some degree of
spectral variability. The *SECHO achieved an arithmetically higher PCC

for clearcut than did the per-point (i.e., 80.0 percent versus T1.4
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Figure 4.14

Percent Correct Classification by Cover Class Achieved with
the *SECHO Classifier as Compared to the Per-Point GML
Classifier using 30 Meter Spatial Resolution Data (Test

Pixels, CAM2N).
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Table 4.8 Statistiral Evaluation of Classification Pcrformances by
Cover Class Achieved with the *SECHO Classifier and the
Per-PoiulL GML Classifier using 30 Meter Spatial Resolution
Data (Test Pixels, CAM2N).t

Classifier
Cover Per-Point . Harmonic
Class GML *SECHO Mean
Watr 100.0% 100.0% 30
Soil 88.5° 88.5% 26
Hdwd 90.3° 89.2% 93
Pine 67.6° 52.12 71
Past 72.0% 60.0° 25
Urbn 57.12 85.7° 14
Ceut 71.42 80.0% 35
Pihd 45.3% 46.7% 75
Crop 28.6% 28.6° 7

+Dissimilar superscripts within each particular cover class denotes
a significant difference at the a = 0.10 level of confidence based
on the Newman-Keuls' range test conducted on the arcsin transformed
proportions. The proportions are the relative rates of omission
in classification.
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percent, respectively), but this difference was not found to be
significant at the a = O.1OAconfidence level. The PCC for test pixels
achieved for pine with the per-point classifier was statistically (a =
0.10) greater than that achieved with *SECHO. Only 53 percent of the
total omission error of pine is involved in the commission error of
pine-hardwood mix for the test pixels.

The differences in PCC achieved between training and text pixels
for the pine, pine-hardwood mix, and crop cover classes indicates that
training methods and training field selection are more important than

the classifier employed.
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SUMMARY AND CONCLUSIONS

This investigation provided some very important insights regarding
classification accuracies achieved with multispectral scanner data of
different spatial resolution used with the conventionally employed per-
point GML classifier. Classification accuracies achieved with the per-
point GML classifier wusing 30 meter spatial resolution data were also
compared to classification accuracies, using the same data, obtained
with the #*SECHO (a per-field)  classifier. These findings are
summarized as:

1) The degree to which the probability density functions,
employed by the classifier actually represent the spectral
variability of each of the cover classes of interest is a more
important determinant of classification performance than either
the spatial resolution of the data or the classifier employed
(over the range of resolutions and classifiers examined).

2) Provided the probability density functions represent the
spectral variability associated with each cover class, higher
overall classification accuracies were obtained with the use of
lower spatial resolution data.

3) Higher classification accuracies using lower spatial
resolution data were obtained for cover classes characterized by a
relatively large degree of spectral variability across adjacent
pixels (eg., old age hardwood, second growth hardwood, clearcut,

and urban) as opposed to those cover classes associated with
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relatively 1low levels of spectral variability across adjacent
pixels (eg., soil, crops, pasture, and water).

4) Cover classes with very distinct spectral characteristics,
in spite of relatively high 1levels of spectral variability across
adjacent pixels (eg., water tupelo), were classified with a high
degree of accuracy regardless of the spatial resolution of the
data employed (over the range of resolutions examined here).

5) Higher spatial resolution data provided higher classification
accuracies 1n areas where the cover classes occupy relatively
small contiguous areas (i.e., where "field" sizes are small).

6) Provided the probability density functions represent the
spectral varibility associated with each respective cover class,
higher accuracies were obtained with the use of the ¥*SECHO than
with the per-point GML classifier.

7) Greater improvements in overall classification accuracies
were achieved with the *SECHO versus the per-point GML classifier
for areas where the "field" sizes are large as opposed to areas
where the "field" sizes are relatively small.

8 Higher classification accuracies were obtained for cover
classes associated with relatively high degrees of spectral
variability (eg., old age hardwood, second growth hardwood,
clearcut, and urban) with the *SECHO classifier as compared to the
per-point GML classifier when using 30 meter spatial resolution

data.




148

9) Training procedures which are appropriate for data of high
spatial resolution are not necessarily well suited for developing
training statistiecs for low spatial resolution data. While a
supervised clustering approach, such as the one employed ir this
study, is well suited for high spatial resolution data, some other
technique, such as the "multi-~cluster blocks" approach (Flemming,
1977), may be better suited for use with data of 1low spatial

resolution.
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RECOMMENDATIONS

Investigating any particular problem always seems to be a process
which rarely provides as many answers as it does questions. The
avenues for further examination of the problem of spatial resolution,
as well as many of the activities associated with computer-based
classification of spectral data, are many. The primary recommended
research activities identified while conducting this investigation are
summarized below.

1) Experiments should be designed which examine various
resolutions in combination with various signal-to-noise ratios. A
data set with perhaps four levels of each, with a design which
would allow a test for each factor effect and their interaction,
would provide insight into the impact of the spatial frequency of

‘the spectral variability associated with different cover classes
as compared to the effect of the signal-to-noise ratio in the data
itself. Both of these data characteristics vary with spatial
resclution.

2) Each step of the analysis process was held constant for the
classifications conducted with data of each spatial resolution to
avoid introducing additional variables which may confound the
variable of interest (i.e., spatial resolution of the data) and,
therefore, obfuscate the interppretation of the results. However,
to determine relative classification éccuraeies which would be

expected in a more operational setting (i.e., where each analysis
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procedure is conducted independently), a comparison is needed of
classification accuracies achieved with each spatial resolution
where every phase of the analysis is conducted in a way most
suited for each particular resolution. High resolution MSS data
lends itself well to a supervised clustering approach to training
the classifier. Lower resolution MSS data is better suited for an
unsupervised or "multi-clustered blocks" approach. Comparisons
should be made between resolutions based on analysis steps most
suited for each particular resolution.

In conjunction with this independent analysis approach,
classification should be conducted with data of different spatial
resolution over areas for which a "wall-to-wall" ground reference
data base exists. This would provide results which indicate the
degree to which the higher relative frequency of boundary pixels
over-rides the effect of the 1lower speétral variability, both of
which are associated with lower spatial resolution data.

3) The task of providing a method for determining
"classification accuracy" has plagued the remote sensing community
in practical applications as well as more developmental
investigations. Error estimations based on observations which
must satisfy some set of criteria, restrictive to one degree or
another, tend to test as many factors associated with the analyst
and the study area, as they do the classification performance. In
the context of applications, boundary pixels classified as either
of the cover classes located at the boundary is an acceptable

decision, whereas the classification of that pixel into another
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unassociated class 1is not an acceptable decision. Methods for
evaluating classification results need to be examined which remove
analyst bias from the selection of test pixels (eg., random
stratified sampling) and which can accomodate more than one
analyst defined label. This would provide a results evaluation
technique which would accomodate boundary pixels and remove
analyst bias involved in test pixel selection. Also, the sample
size would not be restricted by some pre-defined grid size.

The "cost" associated with various instances of omission and
commission are not equal across the error matrix. The
classification of pine-hardwood mix -as pine, or hardwood, could
hardly be thought to have the same "cost" as classifying the same
area as crops or pasture. A technique needs to be examined which
allows the analyst to assign weights to the addresses of the error
matrix. The relative value of the weight is chosen to reflect the
relative "cost" associated with each particular instance of
omission and/or commission. Overall classification accuracies
would therefore be more meaningful for purposes of comparing
classificaticon performances.

Investigations are needed which evaluate classification
results by cover class employing some combination of the error
associated with omission and commission. The use of the
arithmetic mean of the two components of error would apply where
the interest is strictly in the probability of an erroneous
labeling. Some combination such as the root mean square of the

error (1-PCC) would provide a measure affected by the magnitude of
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the difference between omission and commission which would provide
a way to counter high accuracy estimates based on omission which
are achieved at the expense of high levels of commission. The
entire process of classification evaluation is 1in need of much
attention, from sampling design to calculating a meaningful index.

4) A measure of spectral variability across neighboring pixels
should be investigated to provide a numerical representation of a
factor which 1is considered to be very important with regards to
classification accuracy achieved with data of different spatial
resolutions. Possible measures of the spectral variability across
neighboring pixels might include : 1) the amplitude and frequency
components of the Fourier series representing the variation in
spectral response by line and/or column, 2) measures provided by
spatial filters, 3) any one of the "texture" related measures
found in the 1literature such as the angular second moment,
contrast, and entropy of Haralick et al., (1973, 1974, 1979), or
the texture I, texture II, or spatial sequency distribution
presented by Herzog and Rathja (1973). The representation of
spectral variability across adjacent pixels with some numerical
measure would provide much additional insight into the variation
in classification accuracies, with respect to cover class,
observed in this study.

5) The refinement of existing algorithms and the development of
new algorithms for preprocessing, training, classifying,
evaluating, and post-classification processing are needed for the

advancement of machine processing of remotely sensed data.
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Software used for modeling and reducing the variation in response
level due to variation in viewing angle should be generalized and
thoroughly documented to facilitate further work with simulated TM
data. Modifications on the clustering algorithm should be
explored, such as the post convergence computation of cluster
elass variance of each channel with which to compute weights for
successive iterations. This would reduce the frequency of
erroneous class assignments due to the "over-importance" of
channels with higher variances characteristic of unweighted,
multivariate Euclidean distance measures. The *SECHO classifier
should be modified to annex cells for which the likelihood ratio
is highest rather than the first cell for which the likelihood
ratio is greater than sonme threshold and/or multiple cell
annexations. The processor used in evaluating the classification
results (*PRINTRESULTS in the LARSYS software system) should
either output a disk file of the omission and commission
proportions or contain calls to statistical analysis software to
facilitate results evaluation. Post classification smoothing, or
reassignment, based on spatial variables, class probabilities, and
overlaid ancillary data should be explored more fully. Continual
refinement of the techniques and software will provide an
effective means of improving current capabilities. Only through a
tireless re-examination of the problems at hand, and the
perspectives with which they are addressed, can we hope to push

the technology forward.
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APPENDIX A

p(«'j|X) is computed from the probability function of X assuming

w'j has occurred, p(Wlw'j), which is computed from the normal distri-

bution density function:

3

1 exp [-%(X~ﬂj) C

1 ~\T
pXlw'i) = (X-u.)"]

where:

X = the d-component response level vector

;. = the estimated mean of the j(th) spectral class computed from
the clustered training data.
C. = the d-by-d covariance matrix of the j(th) spectral class
computed from the clustered training data.

|Cj| = the determinant of the covariance matrix.

The probability, p(w'j]X), of the occurrence of the j(th) cover

class, given the occurrence of some measurement X, is then computed by:

' _ p&lw'i) plu'i)
p(w'i|X) ves

where:

. pw'y) p(X|w'))

p(X) =
b

H 0
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Since p(x) is a constant in the decision rule, it cancels out and

the remainin; rule is:

p(X|w'j) pw'i) > p(X|w'l) plu'i)

where the a priori probabilities are assumed equal for all

spectral classes, the rule simplifies to:

p(X]u'3) > p(X|w'i)

which are computed directly from the normal distribution density
functions. These functions contain other constants and available
simplifications to facilitate their computation for purposes of dis-

criminant analysis (see Duda and Hart, 1973).
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Means and Variances by Spectral
Class for 15 Meter Resolution Data (CAM1S)
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Means and Variances by Spectral
Class for 30 Meter Resolution Data (CAM1S)

Table B-3
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Means and Variances by Spectral
Class for 45 Meter Resolution Data (CAMLS)

Table B-5
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Continued
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Means and Variances by Spectral
Class for 80 Meter Resolution Data (CAM1S)

Table B-7
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Continued

Table B-7
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Means and Variances by Spectral
Class for 15 Meter Resolution Data (CAM2N)

Table B-9
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Continued

Table B-9
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Means and Variances by Spectral
Class for 30 Meter Resolution Data (CAM2N)

Table B-1ll
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Continued

Table B-11
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Means and Variances by Spectral
Class for 45 Meter Resolution Data (CAM2N)

Table B~13
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Table B-13
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Means and Variances by Spectral
Class for 80 Meter Resolution Data (CAM2N)

Table B-15
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Continued

Table B-15

Channels

Cover

Class

URBN2

Average Standard Deviation over all Spectral

Table B-16

Classes in each Cover Class (CAM2N)

Channels

Cover
Class

MDD~ OONND
0 DO NND DN

® 000000880
PNITDL O I
MIOM Ot P3O
Nt~ o~ & N\

MNP OPF
D> DON OO

* 00000000
Ne=peOr 3 TOOM
N 2 O T O
Ll B NS

QOP-FNNO=M
VN OHMI~NO T
® * 00 00 S0
POMNc OO0
0\ 3O MN~N
e Ny

NORIMNOO
NOmO O N~O0
o 0600 08 00
P’ FONPS N
& OO OMUNNS

- f) e ' (N\me

OO N S N
MO0 O

DRI
VDD ODVDNMMN
OMY  ~OWNN
] ot

NODRINMONN
NI ~MNOMO
teves e
NUN~NNOVST O
OBINN  ~MOO

oot

QNNNO PO
N@DQONIN D~
R ERREEEE]



APPENDIX C




APPENDIX C

NEWMAN-KEULS' RANGE TEST ON THE ARCSIN TRANSFORMED PROPORTIONS

The arcsin transformation is conducted to transform the binomially
distributed proportions (percent correct classification) into a normal
distribution. This is conducted in order to employ statistical tests
which are designed in relation to populations having normal distribu-
tions. The test employed throughout this analysis is the Newman-Keuls'
range test. This test was chosen since it provides inference con-
cerning statistically significanﬁ differences over a range, or set of
values. The sequence of steps involved in the test is provided here
for benefit of: 1) repeating the procedure in follow-on experimenta-
tion, 2) elucidating the implications of certain variables, such as
sample size, 3) providing a basis with which the inferences can be more
fully appreciated.

The proportion of correct classification (PCC) by cover class are

computed by:

k n
PCC._ =(ZI P,./ T P') (Cc-1)
e Rt

where:
Pij = a pixel labeled as the i(th) cover class by the
classifier and labeled as the i(th) cover class in the
r(th) spatial resolution data by the analyst (k such pixels
occur).
Pij = a pixel labeled by the analyst as the i(th) cover

class, in the r(th) spatial resolution. (n such pixels

occur) {Pij € Pij ; k< n}
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The arcsin transformation is conducted for all PCCir for all of the

cover classes and achieved with data of thce four spatial resolutioms.

- 1
£PCC. = sin T (PCC e (c-2)

ir i

The variance (02) of the transformed PCCir is now provided by:
2
o, = (821/M) (c-3)

where:
821 = a derived.constant relating sample size to the
afcsin transformed distribution (see Steel and Torrie,
1960).

N = the number of samples with which the PCC were calcu-

lated. Since a variance common to all spatial resolutions
(or any variable for which tests across factor levels will
be conducted) is desired, the harmonic mean of the number of
samples taken for each resolution is empolyed (i.e., N =

harmonic mean).

The harmonic mean is a weighted average, where the weight is propor-
tional to the inverse of the relative magnitude of each element in-

cluded in the average. The harmonic mean is, therefore, a mean value
of lower magnitude than the arithmetic mean in every case where the

elements are not equal (the harmonic mean equals the arithmetic mean
where the elements are equal). The harmonic mean is regarded as more
appropriate than the arithmetic mean for estimating a common variance

among factor levels (eg., each resolution) sampled at different
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intensities, since the lowest sampling intensity has the greatest

weight in determining the mean. The harmonic mean is computed by:

7

W=/ I = (C-4)

n
r=1 r
where:
HM = harmonic mean
m = the number of elements included in the mean.
n = the number of pixels sampled in computing the

proportion correctly classified uéing the r(th) spatial

resolution.

The normalized standard deviation ci computed for each cover class is
then multiplied by the appropriate tabulated percentile (q) of the
Studentized Range Distribution (see Neter and Wasserman, 1974;

Appendix Table A-9, or Steel and Torrie, 1960; Appendix Table A-9.A).
The arcsin transormation provides a test conducted with infinite
degrees of freedom associated with the mean square error and therefore
provides a sensitive test provided the number of samples are sufficient.
The transformed proportions are arranged in descending or ascending
order. Differences between the ordered transformed proportions which
are greater than the o(q), computed for the corresponding range, are
considered "real" or significant at the a-level for which the q value
was obtained. The range test is generally conducted sequentially
starting with a comparison of the highest and lowest values and pro-
ceeding down to neighboring pairs of values. If the highest and lowest
are not found to differ significantly, then all values are considered

equal.
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The following example is provided by the pine-hardwood class of the

training data from CAM1S:

(i=pihd)
PCCir *PCCir nr
r =15 83.7 66.19 1273
r = 30 89.8 71.37 314
r = 45 91.6 73.15 143
r = 80 95.1 77.21 61

The harmonic mean is computed:

HM

4/(1/1273 + 1/314 +°1/143 + 1/61)
146.22

The standard deviation is computed:

)5
o = (821/146.22)

= 5.615
The percentiles of the Studentized Range Distribution are obtained:
2 3 4
a = 0.10 2.33 2.90 3.24

The smallest significant differences are computed:

a = 0.10 (2.33) (2.90) (3.24)
qo = 13.083 16.283 18.192

These are compared to the differences associated with the rank ordered
*PCC

66.19 71.37 73.15 77.21
Since 77.21 - 66.19 = 11.02 < 18.192 all differences are insignificant

at a = 0.10. This result is then denoted by:

66.192  71.37%  73.15% 77.21%



