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ABSTRACT

Baker, James Richard. Ph.D., Purdue University, May 1975.
GEOMETRIC ANALYSIS AND RESTITUTION OF DIGITAL MULTISPECTRAL SCANNER
DATA ARRAYS. Major Professor: Edward M. Mikhail.

This thesis contains the results of an investigation performed
in order to define causes of geometric defects within digital multi-
spectral scanner (MSS) data arrays, to analyze the nature of the
resulting geometric errors, and to investigate restitution methods
to éo;rect or reduce such geometric errors.

The thesis includes a review of digital multispectral scanning
systems, including the recording and digital form for computer
aided analysis. Causes of geometric errors within the data arrays
are pr;sented, and previeus,investigationszof geometric aspects of
remote sensing systems are reviewed.

The introduction of geometric transformation relationships
for scanned data, from which collinearity equations for MSS may be
derived, serves as the basis of parametric methods of enalysis and
restitution of MSS digital data arrays. The linearization of these
collinearity equations is presented, including consideration of
the functional assumptions made in order to model the stochastic

changes in the exterior orientation of the sensor down the flight

line.



xii

Parametric slgorithms for analysis and restitution based upon
the above analytical treatment which were considered are: the
direct use of MSS collinearity equations, and the use of piecewise
polynomials based upon the linearized collinearity equations.
In addition, nonparametric algorithms for restitution are introduced,
as an alternative to the parametric algorithms.

A proposed system for the geometric analysis end restitution
of MSS digital date arrays is introduced. This procedure was used
to test the methods of analysis and restitution, utilizing actual
MSS date arrays from two aircraft flights. The results of these
tests indicate that the collinearity equations can yield acceptable
results when utilized for the analysis and restitution of such
arreys. The investigation indicates that the piecewise polynomial
algorithms are in general inferior to other methods of restitution.
The nonparametric algorithms show great praomise for the restitution
of these arrays since the resulting accuracy of restitution is
comparable to or better than that using collinearity, and they possess
definite advantages in computational efficiency. The arithmetic
mean algorithm appears to perhaps represent a particularly efficient
nonparametric algorithm for restitution of MSS digitel data, at

least for the arrays tested.



INTRODUCTION

This introduction serves 1o define the problem to be investigated.
The objectives of the research are presented, and the scope of the
investigation is defined. An outline of the thesis is included as

an aid to the reader.

Statement of the Problem

Computer aided analysis of digitally recorded multispectral
scanner (MSS) data arrays with the aid of high speed digital computers
has made great progress recently. However, the digital data arrays
which serve as the baéis for these investigations are subject to
geometric distortions, which are presently ignored or subordinated
to the interpretation aspects. Consequently, the research problem
of this thesis is to investigate the geometric distortions present
within digital MSS arrays, and to formulate procedures for reducing

the geometric errors present within the data.

Research Objectives

Based upon the problem statement above, the following research
objectives were formulated.
1.) To systematically review the methods of recording MSS data,

generating digital MSS data arrays, and performing computer



aided analysis, in order to define the context within which
the geometric aspects of these data are considered.

“2.) To define the geometric distortions present within the
data arrays.

3.) To analyze the transformation equations of MSS data recording
and derive from them functional forms for investigating
geometric errors within these data and algorithms for re-
ducing these errors.

4.) To introduce nonparametric methods not based upon these
transformation relationships as an alternate method of
reducing geometric error within the arrays.

5.) To identify the problems associated with these methods
when working with digital rather than continuously recorded
information and to present methods to deal with these problems.

6.) To test the analysis methods of 3. and 4. above on real

MSS digitel data arrsys.

Scope of the Investigation

To satisfy the research objectives above, the investigation
is limited to evaluation of MSS digital data arrays obtained by
airborne multispectral scanners. However many of the concepts and
procedures presented will be applicable to data gathered from space-
craft. The investigation was limited to actual data arrays presently
existing. No simulation of data was attempted. The investigation
includes both theoretical modeling and numerical analysis by computer

as an integral part of the research.



Qutline of the Thesis

The thesis is organized in such a manner as to provide a logical
sequence, in general progressing from the more theoretical aspects
of enalysis to the more practical applications utilizing the relation-
ships introduced. Tn Chapter 1 a brief introduction to the field
of remote sensing, the most widely used remote sensing systems, and
basic radiometric concepts common to many of them is given. The
physical configuration of the multispectral scanner and the processing
of the information gathered by the scanner into digital data arrays
are presented. Technigques of computer aided analysis utilizing the
digital arrays thus generated are jntroduced. Also included in this
chapter are derivations of the basic sources and types of geometric
errors which have been included in the arrays. The chapter concludes
with a review of previous investigations of the geometric aspects
of remote sensing systems.

Chapter 2 begins with the introduction of a general remote
sensing transformation, inecluding both radiometric and geometric
information. The gecmetric portion of this transformation is derived
in its most general form for the MSS system. TFrom this basic geo-
metric transformation, the collinearity equations for multispectral
scanners are derived. The proczdure for linearizing these equations
by Teylor's series for performing resection by least squares is
presented. This linearization includes the dynamic effects of time
varying orientation parameters.

In Chapter 3 restitution metheds for MSS deta arrays are discussed.

The purpose of these restitution methods is to process the data to



form arrays which are essentially orthographic projections. First,
simple regampling algorithms are presented which are useful as
pre—procéssing steps. The direct use of MSS collinearity equations
as a restitution method is next presented. The use of polynomial
forms for restitution is given, and a discussion follows of some of
the problems associated with using piecewise polynomials and the
collinearity equations. A completely different approach to restitution
of MSS digital data arrays is then introduced, that of nonparametric
methods. The basic forms for these nonparemetric restitution al-
gorithms are presented along with the major advantages and disad-
vantages of each. The chapter next deals with the unique problems
associated with transforming digital data arrays into the desired
form. The chapter concludes with a discussion of the problems
associated with determining elevations within digital data arrays
which have been obtained from singly scanned areas.

Chapter L deals with the testing of the above methods of analysis
and restitution on actual MSS data arrays. Two fiight lines of data
were obtained and analyzed using each of the above methods. The
results are statistically analyzed and compared.

The thesis concludes in Chapter 5 by summarizing the research
effort, stating the conclusions drawn from the investigations performed,

and enumerating recommendations for further research in this area.



1. THE MULTISPECTRAL SCANNING (MSS) SYSTEM

This chapter is intended to provide the background material
required for an understanding of the investigation. A brief intro-
duction to the discipline of remote sensing, and a brief survey of
remote sensing systems is provided. The basic radiometric concepts
required for an understanding of recording data by multispectral
scanners is described, and the physical qonfiguration of the scanner
is presented. The digital aspects of multispectral scanning (MSS)
systems are presented, including a brief introduction to the field
of machine aided interpretation utilizing digitally recorded data.
The basic geometric distortions inherent in the digital arrays are
presented in order to obtain an appreciation of geometric defects
within the data. The chapter concludes with a review of previous

investigations in geometric analysis of remote sensing systems.

1.1 Introductory Remarks

The term "remote sensing" may be applied to virtually any
activity in which information is gathered without physical contact.
As generally used, however, the term is usually applied to those
systems which yield data about the Earth's surface and its resources
from a considerable distance. References [1] through [4] contain

definitions of remote sensing systems by persons prominent in this



field. The definition from [4] is one of the most descriptive:
"Remote sensing denotes the joint effects of employing modern SEensors,
data processing equipment, information theory eand processing method-
ology, communications theory and devices, space and airborne vehicles,
and large systems theory and practice for the purpose of carrying out

serial or space surveys of the Earth's surface."

It may be seen
from this definition that the existing disciplines of photogrammetry,
radargrammetry, hologrammetry, and many other activities can be
considered as divisions within remote sensing.

Remote sensing systems may ve classified according to meny
different criteria [5]: geometric properties, stationary or moving
platform, image forming or non image forming, and passive or active
with respect to the source of a carrier field such as electromagnetic
energy, sound, or gravity. Figure 1.1 depicts the various classifi-
cation schemes, ending with examples of sensors which fall into the
various categories.

An active-passive differentiation between sensor types depends
upon whether the sensor generates its own energy source for the
carrier field (active) or relies upon an external source for the
carrier field (passive). Both active and passive systems may have
image forming capabilities. Classification as regards geometry
would include area recording (e.g. frame cemera), line recording
(e.g. panoramic and continuous strip cameras), or point recording
(e.g. optical mechanical scanners). References (61, (7], and [8]
contain other classification schemes or tabular data concerning the

properties of remote sensors.
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The subject of this investigation, the multispectral scanner,
is a.passive system operating from a moving platform (either aircraft
or spacecraft) with potential imege formation and records in a point
by point mode. The term "point" is used here to mean a small but
finite area representing the system's resolution element as will
be explained in detail later in this chapter. Scanning modes for
MSS systems may be linear about a near vertical axis, linear about
an axis tilted with respect to vertical, or conical about an axis
which may be vertical or tilted. This investigation will be limited
to the case of linear scanning sbout a near vertical axis in a
direction normal to that of the motion of the platform.

The carrier field for the MSS system is composed of electro-
magnetic waves. Figure 1.2 presents the spectrum of the electro-
magnetic fields. The human eye is sensitive to the visible portion
of the spectrum, between the wavelengths of 0.4 to 0.7 micrometers.
The entire band between 0.3 and 15 micrometers is referred to as
the optical portion of the electromagnetic spectrum, since electro-
magnetic waves mey be refracted and focused using lenses and prisms
in this region. It is within this range that most passive remote
sensing systems operate. The region of the spectrum between 0.3
and 1.0 micrometers is called the photographic region where photo-
graphic emulsions may be used to record data. Wavelengths below
0.4 micrometers are in the ultraviolet region of the spectrum, and
that portion above 0.7 micrometers is the infrared portion. The

region between 0.7 and 3 micrometers is referred to as the reflective
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infrared region, and the region from 3 to 15 micrometers is called

the emissive region, since energy in these wavelengths is dominated

by emission from a body as a result of thermal activity at temperatures
of approximately 300° K, rather than being reflected.

For the subsequent discussion of basic radiometric relationships,
the term power is used to denote the time rate of energy emanating
from an object, or incident upon some sensor. Radiation power would
then denote the time rate of energy due to reflected and/or emitted
electromagnetic energy. Radiance may be defined as the radiation
power per unit area directed into a unit solid angle from an object.
Irradiance is used to denote the radiant power per unit area incident
upon an object or sensor. Reflectance is a unitless quantity between
zero and one and represents the portion of energy incident upon an
object which is reflected from it.

The source of the energy incident upon the sensor's detectors
is reflected and emitted radiant energy from the scene being sensed.
All energy coming to Earth from the sun is either réflected, scattered
or absorbed and subsequently emitted by objects on Earth. The total
radiance from an object is composed of two components, reflected
radiance and emitted radiance. In general, it may be stated that
the reflected radiance forms a dominant portion of the total radiance
from an object at shorter wavelengths of the electromagnetic spectrum,
while the emissive radiance becomes greater at longer wavelengths [9, 4].
Figure 1.3 depicts in schematic form the interaction between the
radiant energy emanating from the sun and a ground scene. In this

figure, E denotes emitted radiation, and R denotes reflected radiation.
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The spectral radiance, in watts/sq. cm-steradian-micrometer

from a scene in the reflectance region may be given as 9]
L, = 1E, p cosby (1.1)
m

in which EA is the solar irradiance in watts/sq. cm incident on the
object at a wavelength A, es the sun angle and p the reflectance
of the scene, a unitless quantity. Figure 1.4 shows a plot of ra-
diance versus wavelength for typical agricultural scene, in the
reflectance region, having wavelengths between 0.3 and 3.0 micro~-
meters [9]. The figure shows the reflected radiance as it would
be recorded nea; ground level. For this plot, p is assumed equal
to 0.1, a reasonable assumption for vegetation in the visible portion
of the electromagnetic spectrum or for soils in the near infrared
portion of the spectrum.

In the emissive region of the spectrum, the radiance from an
object may be represented by Planck's Law,

L. = (1.19 x 10")e

\ . (1.2)
Aolexp (14338/AT)-1]

in which T represents the absolute temperature of the object in

degrees Kelvin, and € represents the emissivity, a witless coefficient
which is unity at all wavelengths for objects called black bodies.
Objects are called gray bodies if their emissivity is a constant
between zero and one. Most objects however, are neither black bodies

nor gray bodies, and the emittance may be a complicated function
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of wavelength. Figure 1.5 shows a plot of spectral radiance for
a typical black body, emittance equal 1, at an absolute temperature
of 300° K.

The combination of two curves from the reflectance and emittance
regions, then, would represent the total spectral response of the
object. Figure 1.6 shows a simplified example in which the agri-
cultural scene represented in the reflective region by Figure 1.4,
is assumed to behave as a black body in the emissive region, represented
in Figure 1.5. It is this plot which represents the "spectral
signature" of an object, and it is the difference between such
signatures for different objects which allows the differentiation
between objects using the multispectral approach of remote sensing.

The summation of the preceding plots will yield the magnitude
of rediance emanating from an object. In order to evaluate the
energy, or power (time rate of energy) incident at the sensor, how-
ever, the transmission through the atmosphere must also be considered.
The atmosphere will attenuate and modify energy very significantly
by molecular absorption for many spectral wavelengths. There are,
however, spectral intervals at which the atmoshpere is reasonably
"transparent" to electromagnetic radiation. These transparent spectral
regions are called "windows", and sensing from a remote location
requires that these spectral intervals be utilized. Figure 1.7
presents a graph of the transmission of the atmosphere for the
wavelengths of the optical portion of the spectrum. The plot does
not include the effects of atmospheric scattering. Table 1.1 sum-

marizes some of the more important atmospheric windows which have
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been utilized in MSS remote sensing systems. The most often used

vindows in remote sensing are numbers 1, 2, 3, 4, 5, 6, and 9 [11].

Table 1.1

Atmospheric Windows [11]

Window No. Wavelength Limits
1 40 to .72 um
2 .72 to .9k m
3 .94 to 1.13 um
4 1.13 to 1.38 um
5 1.38 to 1.90 um
6 1.90 to 2.70 um
7 2.70 to 4.30 um
8 4.30 to 6.00 um
9 6.00 to 15.00 um

10 15.00 to 25.00 um

If the astmospheric transmission is known for a spectral wave-
length interval A to (x» + A)\), the resultant power flow into the

sensor may be given by [9]
P = 1, L, AB2(4N) (1.3)

in which P is the power in watts, Te the transmission of the atmos-
phere, and B the resolution angle of the system, defined as the

angle from the sensor within which the electromagnetic energy is
received at any instant, and A is the effective area of the receiving

optics.
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With these preliminary remarks in mind, attention is now directed
to the multispectral sceanner itself. In the following section a
discussion is given of the manner in which these radiometric proper-
ties of matter may be utilized to record analogue data using the
multispectral scanner, and how these analogue records may be processed

to produce digital data arrays for analysis.

1.2 Digital Multispectral Scanning System

In this section, the steps teken to record the electromagnetic
energy using a multispectral scanner will be discussed. The processing
steps which take the data from electromagnetic waves, to analogue
records from the MSS, and from these analogue recofds to digital
data arrays will be discussed. The final form of data, the digital
array is the form which is utilized at the Laboratory for Applications
of Remote Sensing (LARS) to perform automated interpretation, and
it was this data format which was used to investigate the geometric

properties of the digital MSS system.

1.2.1 The Multispectral Scenner
Figure 1.8 depicts the scanning and data collection system
for a typical multi-spectral scanning system. The system depicted
is an aircraft system, in which a rotating mirror or prism scans
the terrain in narrow strips or lines oriented normal to the direction
of flight. Forward motion of the aircraft provides continuous
coverage by assuring an advance for each line, allowing for some

w

overlap between successive strips. The systenm utilized at LARS
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to generate basic data for digital processing is discussed
further.

The electromagnetic energy jneident upon the mirror or prism
is optically focused upon & separating prism or diffraction grating
which separates the incident energy into different wavelength bands.
Fach band is directed to an appropriate detector, and the signal
generated is recorded on magnetic tape as an analogue signal, each
spectral band representing a data "ohannel". The data is recorded
on 1k track one inch magnetic tape aé a series of continuous signals.
The first track of tape contains a synchronizing signal to-note the
beginhing and end of each scanner revolution. Also on this track
is a signal from a roll stabilization gyro, which indicates the true
roll of the aircraft during each scan line period. The remaining
13 tracks are data channels, which record calibration sources both
internal and external to the aireraft, as well as recording the
radiance from the ground scene of interest. Therefore, up to
13 channels in 13 spectral bands may be recorded simultaneously.
The optical system shown in Figure 1.8 is of the converging optics
type coupled with a rotating mirror-prism. Other optical configura-
tions are available utilizing an obligue mirror or wedge, and
converging optics [10, 11]. If digital analysis of MSS data is desired,
these tapes are subject to digitization in an analogue to digital

sampling procedure.
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1.2.2 Advantages of Multispectral Recording

" The MSS sensing system has several advantages over more con-
ventional sensors such as photography. The data are recorded in
a quantitative manner suitable for processing into numerical data.
The recording and processing can be calibrated, resulting in high
repeatability of decisions based upon statistical procedures.
The possibility of detailed numerical analysis allows the discrimination
of subtle differences within the data resulting in a high probability
of isolating classes of interest through automated interpretation
and classification. A class may be thought of as any physical divi-
sion of interest to the investigator, which is believed to be spectrally
separable from other classes. Examples of classes are wheat, corn,
oats, and other crops which may be appropriate in an agricultural
experiment utilizing airborne sensors. Another example of classes
would be bare soil, green vegetation, and water, which may be appro-
priate for an investigation of a rural environment using spacecraft
gathered data. Urban, suburban, and ru£al may define classes of
interest for studies ofburban areas using spacecraft data.

An illustrative example is cited by Holter [L4], in which a
comparison of the information available on black and white film,
color film, esnd the multispectral system is made. For this example
it is assumed that the electromagnetic spectrum is divided into
12 wavelength bands, and each band is assumed to have 10 levels of
intensity, or demnsity. Black and white photography senses
instantaneously all of the bands in the photographic region of

the electromagnetic spectrum. The maximum density would occur when
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the maximum intensity is present in each band, and there will be

10 x 12, or 120 density values discernible below this value. Each
of these values, however may occur from a different combination

of bands, and the band combination causing this density cannot be
discerned. Color film may be thought of as recording in 3 bands,
representing the 3 emulsions used. If each emulsion is assumed
sensitive to one third of the 12 spectral bands, then each emulsion
could discern 4O densities, and the discernible number of states
rises to approximately 6.4 x lOu. A multispectral sensor, on the
other hand, senses each band separately, and stores the data separately,
so that the total number of states available from the multispectral ’
sensor data which could be recognized is 1012.

Although meaningful interpretation can and has been done by
conventional interpretation methods utilizing multispectral images
in order to make efficient use of all of the data available in this
form, human decision making becomes tod slow by several orders of
magnitude. Further, the human interpreter finds it impossible to
simultaneously discern differences in spectral tones, as displayed
upon images, for more than a few (3) spectral bands. Such data may
be analyzed with automated systems of interpretation, utilizing
digital or analogue computing equipment. If the digital approach
is chosen, the analogue flight record must be converted into data
forms compatible with the digital computer, such as digital data

o

tapes. If such a form is generated, and appropriate digital decision
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algorithms are written, then computer aided analysis may be
performed with speed and accuracy, and quantitative results

obtained.

1.2.3 Generating Digital Data Arrays

In order to utilize digital data handling and interpretation
of MSS data, a system for converting‘the analogue record to digital
data format must be implemented. One such system, flown by the
Fnvironmental Research Institute of Michigan (ERIM) relies upon
s roll gyro signal to establish the roll of the aircraft for each
scan line. TFigure 1.9 (adapted from [12]) depicts the manner in
which the roll of the aircraft is monitored in flight and later
utilized in analogue-digital (A-D) conversion to generate roll com-
pensated data. As the scanning prism rotates, a magnet attached
to the shaft passes a coil at the same point for each revolution.
Referring to Figure 1.9a, as the magnet passes the coil, it generates
a synchronizing pulse which is placed on the analogue record (Fig-
ure 1.9b), and simultaneously triggers a constant slope electronic
ramp signal generator. When the signal generated is equal to that
of the éutput signal from the roll gyro (Figure 1.9¢), indicating
the poéition of the aircraft roll with respect to nadir, a roll pulse
is generated with respect to the synchronizing pulse upon the analogue
record. Thus the magnitude of roll is recorded upon the analogue
record for each scan line. These synchronizing and roll pulses are
recorded upon the first track of the analogue recording tape within

the aircraft.
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As the scan continues past the aircraft aperture, the spectral
radiance is recorded across the ground scene on the remaining tracks
of tke tape for up to 13 data channels. As the rotation is continued,
the sensor receives reference signals (from a light source, heat
plates for the emissive regions of the infrared spectrum, and the
sun). These reference values are used subsequently as calibration
data. Figure 1.9b depicts the first track and two typical data
channels.

Digital sampling is then done in the laboratory using analogue
to digital (A-D) conversion equipment. The size of a data sample,
and hence the angular interval of a digitized element in the along-
scan direction is determined from the angular scan rate of the rotating
prism, by selecting an appropriate sampling rate in the A-D converter.
As an example, consider a data set in which the scene was scanned
st a rate of 3000 revolutions per minute. The resulting period

of rotation for the scanning prism, t_, is then 1/50 sec., and

r
is represented on the analogue record by the distance between sucessive
synchronizing pulses, as shown in Figure(;.9b. If a nominal desired
angular sampling interval y, is desired, the number of samples between
synchronizing pulses may be computed and a time interval of sampling
computed, which may be dialed into the A-D converter.

For a nominal angular sample interval, or instantaneous field
of view, of y = 6 milliradians, the number of samples between syn-

chronizing pulses (representing one revolution, or 2 7 radians)

may be computed as

n = 27 = 1048 samples,
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or, in terms of time interval of sampling in the A-D converter,

At = .006 (.02) = 1.9 x 1075 sec.
2 7
In practice, the time interval of sampling is limited to stepped
values, and hence the actual sampling resolution will be slightly
different from the nominal value.

After the time interval for sampling is known, the actual
sampling is done with respect to the roll pulse. Beginning at the
roll pulse position, the analogue record for each chennel is instan-
taneously sampled at the time intervals calculated, as shown in
Figure 1.9b. Since-the sampling begins at the roll pulse position
for each scan line, any sample, say sample number 100, on each scan
line is recorded on the digital tape such that it represents the
same angle with respect to the nadir, resulting in roll stabilized
data. The analogue data for each channel at every sample point
is quantified on a scaie ranging from 0 to 255, in order that it
may be represented on the digital data tape (or in the digital computer)
by a single byte (8 bits). A detailed explanation of the method
in which the resulting data are stored on computer compatible tapes
is given in reference [12].

For easch resolution element, there is a position in a matrix
representing the scan line number in one dimension, and the element
number within that line in the other dimension. Associated with
that position are several spectral values equal in number tq/the

spectral bands, or channels, of the system. The data, then, may
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be considered as a three dimensional metrix of spectral values of
size.i x J x n, where i is the number of scan lines in the flight,

J is the number of elements within each scan line, and n is the number
of date channels recorded. Subsequent automated classification

and interpretation schemes then consider an n~dimensional vector

for each element in the i x j positional array, as the data form.

In the following section, the use of the data arrays thus gen—
erated to form images is discussed. The use of computer aided analysis
algorithms operating on the data within these arrays is also presented.
The development and application of these computer aided analysis
end classification procedures constitutes the major portion of the

current research and development tasks performed at LARS.

1.3 Computer Aided Analysis Using Digital MSS Arrays

In the preceding section, the generation of digital MSS data
arrays was discussed. In this section, the use of these arrsays
to extract meaningful information concerning resources at or near

the Earth's surface will be presented.

1.3.1 Displays of MSS Date Arrays
Whether the arrays generated are to be utilized for interpretive
purposes or to investigate geometry, it is convenient to be able
to display the information visuglly. The task of machine aided
interpretation utilizes the arrays directly, after preliminary
decisions are made from displays of the data. An alternate method

of considering the data format, which is of more interest from the
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photogrammetric aspect, is to consider the date as an image. Under
ideal conditions, the image formed by a display of the digitized
spectral values may be seen to consist of two types of projections

as will be discussed in a later section of this chapter. In the
direction of fiight, the data is recorded in a line-by-line fashion,
resulting in an essentially orthographic projection. In the direction
perpendicular to the direction of flight, the image is a perspective
projection about the effective perspective center of the scanner.

If a display of this image is desired, the information stored
on magnetié tape, must be processed to fo}m a gray scale matrix.

In the LARS system, the data analyst determines the number of gray
scale levels desired {usually 10 to 12), and histograms are calculated
for all spectral values within the area of interest.

These histograms are then divided into a number of bins equal
to the number of gray scales desired. The abscissa is divided such
that the same number of data array elements fall into each bin.

Each interval along the x axis is then assigned a symbol or gray
scale level. When the array is subsequently displayed, the result
is that every symbol will occur with the same frequency within the
display. The result is equally active gray scale levels over the
image. Display of the image may be accomplished in two ways.

The data tapes may be used to drive the scanning raster upon a
television monitor, with the gray scale levels determining

the voltage of the raster signal. This form of display utilizes the
LARS Digital Video Display Unit, shown in Figure 1.10 [13], and

henceforth referred to as the digital display unit. An alternate



Figure 1.10. Digital Display Monitor [13]
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display form is a gray scale printout utilizing the line printer

of the computer. Different gray scale values are represented by
alphanumeric characters available on the line printer. Figure 1.11 [13]
illustrates these two methods of display. The digital display unit

is well suited to the display of grey tone imagery and allows great
flexibility, through the use of an attached light pen, for purposes

of interpretation. The line printer image form is useful for geometric
studies, since it readily allows for the isolation of single element

positions.

1.3.2 Computer Aided Analysis

As mentioned previbusly, the sbundance of data generated by
MBS‘systems require that interpretation be automated as fully as
possible, to make maximum use of the unique properties of the multi-
spectral approach. Computer aided analysis in this context,
will denote the assignment of each element in the data array into
one of & finite number of pre-assigned "olasses" of interest, according
tobsome decision rule. Different algorithms for this purpose abound
in literature [14 through 19]. A brief introduction to the method
used at LARS will be presented in this section. The method is based
upon statistical pattern recognition techniques.

Figure 1.12 [1L] depicts in a block diagram a general pattern
recognition system. The receptor or sensor in this case would be
the multispectral scanning apparatus. Data from this sensor may be
represented as an n-dimensional vector for each element in the posi-~

tional array, where n would be the number of spectral channels used.



Figure 1.11. Examples of Gray Scale Displays [13]
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The purpose of the feature extractor is to generate a feature space
vecﬁpr containing maximal information for discrimination purposes.

As an example which has been used in the LARS system, the data analyst
selects the desired dimension of the feature space vectors to be

used. The analyst may elect to perform classifications using four

of the channels when originally a total of twelve channels were
recorded. A statistical quantity called "divergence" between class
pairs is computed for all possible groups of four channels included
within the original twelve channels. This divergence is a measure

of the spectral separability of the classes based upon each group

of four channels. Based upon this quantity, one group of four
channels would be selected to perform the classification. Usually

the four channel combination chosen will be the set which haes the
greatest average divergence between pairs, although other selection
criteria may be used. The net result of the feature extractor as

used at LARS is to select some subset of dimension m from the original
n channels of the measurement space vector (m S n). Thé feature
extractor could, however, be a more complicated transformstion.

The measurement space vector would be
—S lT

Sp

\J
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and the feature space vector for analysis would be

s' = (1.5)

The decision maker is of course an important step in the
classifying procedure, since it assigns each point in the data array
to some particular class based upon a decision rule formulated from
calculations made upon the feature space vector.

Fach element and its associated m-dimensional vector represents
a point in an m-dimensional feature space, and it is the location
of points within this space which serves as a basis for classification.
Figures 1.13 and 1.1h represent a two dimensional example, in which
two wave length bands, Ay and Ap are the feature space coordinates.
Figure 1.13 (course notes, EE 595, Purdue University) shows typical
spectra of soil and vegetation. The spectra are assumed to be
sampled as noted on the figure at wavelengths Ay and Ao. The points
in the two dimensional feature space (215 Ap) are then plotted in
a two dimensional feature space as shown in Figure 1.1k,

Natural phenomena, however, such as radiated and reflected
electromagnetic energy from which spectral data are derived exhibit

o

some inherent randomness. Spectra from two separate representatives
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of the same class would not be identical, and therefore the (Al, Ag)
measurements would not fall at the same point in the feature space.
Instead, samples from different elements tend to fall in areas
or "clouds" within the feature space. For example, Figure 1.15
depicts many observations from 3 classes plotted in the feature
space. The decision making function of the classifier divides the
feature space into a number of regions (the basis of which will be
discussed subsequently) each representing a class of interest.
The decision making algorithm examines each new data point to determine
into which region it will fall, and classifies the point accordingly.

The classification problem then, becomes one of defining decision
surfaces separating the appropriate regions, as shown in TFigure 1.15.
For the two dimensional feature space shown, the decision surfaces
become lines. In order that the classifier may designate the decision
surfaces before classification of unknown data points takes place,
definition of these surfaces is done based upon "trainiﬁg samples',
which may be generated from two different approaches, the data bank
approach and the extrapolation approach (1].

In the data bank approach, an attempt is made to gather as
many samples of spectral signatures as possible, in as many classes
as may be useful to the data analyst. For any given problem a subset
of classes present in the scene scanned would be chosen and decision
surfaces calculated between these classes. Each incoming data
point would then be placed into one of the regions defined by these
classes. This method would have the advantage of requiring a minimum

of a priori knowledge of the data to be classified, and the same
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data bank of spectral signatures could be used to classify any number
of new data sets.

This method has serious drawbacks, however, since the data
bank of spectral signatures would have to be very large, and would
have to inc;ude signatures gathered under many different conditions
in order to account for natural statistical variations, such as
temporal (time) variations, sun angle variations, variations in
the atmosphere, seasonal variations, etc.

Using the extrapolation approach, however, these problems
are circumvented to some extent. The training samples for this
method are samples of known classification, drawn as a subset of
the data to be classified, assuring that the training samples were
gathered under the same conditions as the data to be classified.
Decision boundaries are determined from these training samples, and
the entire set of data is then classified accordingly. Thus, the
classification is based upon an extrapolation of a few known points
within the data set itself.

The method has the advantage that much less calibration is
required'of the sensor. However, it does require the acquisition
of some a priori knowledge of the scene being scanned. This knowledge
mey be gained from ground observations in populated or accessable
areas, limited photographic missions in inaccessable areas, or a
combination of the two. It is this method which is primarily utilized
at LARS.

The actual assignment of decision surfaces is the subject of

continuing investigations. As a simple example, the centroid of each
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class may be calculated, and the surface equidistant between centroids

of adjacent classes used as the decision surface. In this case,

the decision surfaces shown in Figure 1.15 would become straight

line segments. At LARS, the decision surfaces are calculated to
minimize the average expected loss of classification accuracy, as

based upon some assumed loss function. The data in the spectral
channels is assumed Gaussian in its randomness, and the resulting
classification system is a maximum likelihood decision rule.

If the feature space is divided into regions as just described,
every incoming point must be assigned to one of the designated
classes. In virtually any scene, however, thefe are elements which
do not belong reasonably to any of the finite number of classes
designated. To avoid these gross misclassification errors, the
concept of thresholding is used. If the probability of an element
belonging to any of the designated classes is smaller than some
preassigned threshold probability, then that element is assigned
to none of the classes of interest but instead is placed in & null class
which will represent "all others”.

If training sample areas are difficult to delineate, another
procedure called clustering, or unsupervised classification, may
be used to supplement the above procedure. In using clustering,
the analyst decides upon Some number of groups into which he desires
that the spectral data be divided. The clustering algorithm then
performs this division, dividing the data into this number of groups,
chooéing those groups which are most separable based upon the spectral

values stored in the data arrays. These groups are called "clusters".
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After these groups have been isolated, however, the data analyst
must determine whether each cluster represents a class in the physical
sense, whether each cluster represents a single class or a combination
of classes, and whether the classes isolated are of interest.

The above brief summary of data classification has used as
an example the system utilized at LARS. The system is based upon
spectral separability of data elements. It should be noted that
other information may also be used for interpretation, such as spatial
information, temporal (time) information, polarization, and combinations
of these.

To date, all of the algorithms and procedures described have
used as the basic data source the arrays directly as they have come
from the A-D conversion. No attempt has been made to snalyze the
geometry of the data arrays. This analysis is desirable in order
to be able to extract from digital MSS data arrays not only the
interpretive information of "shat" is included in the information,
but also the metric information of "where" and the qﬁantitative
information of "how much". In the next section an introduction to
the geometric distortions present in the data arrays will be given,
to aid in understanding the types of geometric deformations to which

the data arrays are subject.

1.4 Geometric Distortions in MSS Imagery

Investigations concerning MSS digital data arrays have previously
dealt primarily with the automsted interpretation phases of analysis
through pattern recognition using statistical concepts. Geometry

of the image has been either neglected entirely or subordinated to
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the interpretation analysis. The M35 data, however, is subject

to geometric distortions, which may be serious if it is desired

to analyze the data to extract metric as well as quelitative information.
It would be desirable to be able to obtain metric information from

the data arrays. Positional information may then be associated

with each properly classified element, and reliable information

concerning areas may be obtained.

1.4.1 Ideal Geometry

Figures 1.16 and 1.17 illustrate geometry of a multisbectral
scanner under ideal conditions. The case illustrated represents
the recording of the j-th element in an arbitrary scan line, i.

In this case the following assumptions are made:

1.) The aircraft is flying perfectly straight, at a constant

elevation above datum, and at a constant ground speed.

2.) The aircraft is subject to no angular exterior orientation
perturbations. That is, there is assumed to be no roll (w),
pitch (¢), or yaw (k) of the aircraft.

3.) Each scan line is assumed to be instantaneously recorded.
Under these conditions the resulting image is recorded as an ortho-~
graphic projection in the direction of flight (X), and as a perspective
projection in the direction normal to the direction of flight (Y).

In Figure 1.16, B represents the angular resolution of the
beam in the down strip or X direction and will be the same as the
physical resolution of the scanner. The angle Yy represents the

effective angular resolution in the along-scan or Y direction and
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Figure 1.16. Gecmetric Parameters of Scanning
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is determined during the analogue to digital conversion. This represents
the gffective instantaneous field of view (IFOV) of the sensor.
The total angle scanned, called the total field of view (TFOV) is 2a.
The effective aperture of the sensor is represented by the B by v
solid angle.

Figure 1.17a depicts the down strip or X direction. For this
direction the Xj coordinate for the object point J is a funection
of time down the strip and may be written

T

Xy = X, = Xg+J " v(t)at (1.6)

To

in which X, is the X coordinate of the scanner at the instant of
imaging point J on scan line i, Xj for point j, Ty is the time

epoch at the instant of recording point J and is the same for all
points on scan line i under the assumption that the scan line is
ins;antaneously recorded, X, is the X position of the first scan
recorded and V is the aircraft velocity which is assumed constant

for the ideal case. If the scanning rate is adjusted such that an
overlap (overscan) will occur between scans at the nominal aircraft
velocity, then the average advance for each scan line will be (1-8)4x,
where S is some overlap factor, and dX is the scan width on the

datum given by (see Figure 1.1T)

aX = ZgB (1.7)
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In this expression Zc represents the altitude of the aircraft above
datum when recording scan line i. Further, the image element size

in the down strip direction is given by
dx = cB (1.8)

in which ¢ is an effective sensor constant, analogous to the record-
ing barrel radius (camera focal length) in penoramic photography.

Noting from Figure 1.1T7a that

vat = (1-s)&X (1.9)
and solving Equation (1.8) for B, the following expression results

from substitution of the expression for B8 into Equation (1.7).

X .
X; = Xo = X+ [ (1-8) 2Zp ax' (1.10)
o [¢]

0, the image strip coordinate is equal to zero, and at

For To
time t = Ty, x' = x, the image x coordinate of point j.

Applying the ideal assumptions mentioned above, in which aircraft
velocity and flying height above datum are assumed constant down

the flight line, the expression becomes

Xy = X = Xt (1-S) Zo x (1.11)
o

In reality, of course, the aircraft velocity and flying height
may be a function of time, and hence of the image X coordinates.
If a polynomial form for these quantities is assumed, then a polynomial

form of one degree higher will result for XJ after integration of
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Equation (1.10). If a harmonic form is assumed, then a harmonic
form will remain after integration.

In Figure 1.1Tb is shown the recording geometry in the direction
perpendicular to the direction of flight. For this case, the ground

coordinate Yj is given by

Y,j YC‘+Y'j
or . (1.12)

Y5 Y, + (2, - Z) tandy

in which Yj is the ground coordinate of point j, Y, is the ¥
coordinate of the sensor at the instant of recording Jj, Z is the
elevation of the terrain (assumed level) in which Zj in Figure 1.17b
has been replaced by the constent elevation Z. The angle ej is the

scan angle at the instant of recording given by
6, = yy/e (1.13)

and Y3 is the image position normal to the flight line axis and
would be represented in digital recording by the column position

with respect to the scan line center.

1.4.2 Variations from Ideal Geometry
This idealized geometry is obviously not realized in practice,
since the ideal positions as given by the projection Equations (1.11,
1.12) are perturbed by the following geometric factors.
1.) The effects of changing ground resolution element size
at different scan angles, and effectively recording on a
cylindrical rather than plane surface, which causes a

"
penoramic appearance. These are termed "scan angle effects .
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2.) The effect of neglecting relief difference of object points
above or below the assumed datum surface. This will be
called "topographic effect”.

3.) Removing the assumption of ideal flight conditions leads
to "sensor exterior orientation effects”.

L.) Relaxing the assumption that each scan line is instantaneously

recorded, but in fact, requires some finite recording time,

leads to "scan time effects”.

1.4.2.1 Scan Angle Effects. Although each element along the
scan in the image is displayed with equal width, significaﬁt dis-
tortions occur along each scan due to a changing ground size of
resolutions elements. From Figure 1.16, the element size in the

direction of flight, or X direction, is given by

ey = B(Zy - Z4) sech (1.1k)

In the direction perpendicular to the direction of flight,
or along-scan direction, the ground coordinate of the point j is

given by
Ty = Yo+ (Zo - Zy) tenb (1.15)

If the sampling angle, v, (see Figure 1.16) is sufficiently small,
as is usually the case, then it can be considered as a differential

change in the scan angle ej, that is

y = 4o | (1.16)
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Differentiating Equation (1.15) with respect to ej, the resulting

expression is

=
'

(ZC - Z.j) Seczej ae
or ) (1.17)
eyj Y(Zy - Zj) sec 0

Figures 1.18 and 1.19 show plots of the ground resolution element
size as a percentage of flying height above terrain in the X and ¥
directions, respectively. These plots show various values of the
angular resolution. Most aircraft data handled by the LARS system
is digitized in the vy = 3-6 mrad range in the Y direction. The
angular resolution of the ERIM M-T scanner, from which most present
LARS aircraft digital data is derived is on the order of 2-3 mrad,
representing B. The scan angle limits of the ERTS scanner is on
the order of 5.75° either side of nadir.

As an example consider a typical aircraft flight as utilized
by LARS, with nominal flying height above terrain of 5000 ft. (1.52 km),
digitization parameter y = 6 mrad, B = 2.5 mrad. Then the ground
size of & resolution element would vary from 12.5 ft. x 30 ft.

(3.81 m x 9.14 m) at nadir to 17.7 ft. x 60 ft. (5.39 m x 18.29 m)

at a scan angle of 45°. As may be seen from Figures 1.18 and 1.19,

the ground resolution element size increases very rapidly, particﬁlarly
in the Y direction, for scan angles in excess of L45°, which would
result in great image distortions. Therefore, most aircraft scanner
data is collected within the range of a <X 40°. For small scan

angles (e.g. ERTS, in which a < 6°) the effect is not as serious

as for larger angles.
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Relative Ground Size € x;j/(Z¢-Z;) in Percent

| ] |

20° 40° 60°
Scan Angle (8)

Figure 1.18. Resolution Element Ground Size in X Direction
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Relative Ground Size €y;/(Z¢-Zj) in Percent

i i 1
20° 40° 60°
Scan Angle (6)

Figure 1.19. Resolution Element Ground Size in Y Direction
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In addition to the distorting effect of changing ground reso-
lution element size, there exists in each scan line a panoramic
image displacement. This displacement is due to the fact that the
data are effectively imaged upon a cylindrical surface, rather than
a plane. From Figure 1.1Tb, this displacement may be seen to be
the difference between some hypothetical image position, denoted a',

and the actual image position a. The resultant image displacement

is given by
§y = Oa' - Qa = c(tanej - ej) (1.18)

Figure 1.20 shows graphically the magnitude of this displacement
relative to the effective principal distance, c, for varying scan
angles. It should be noted that this displacement increases very
rapidly for scan angles in excess of L5°.

1.4.2.2 Topographic Effect. The neglect of terrain variation

is not uncommon in the interpretive treatment of multispectral

scanner datsa arr;ys. The resulting displacement may become appreciable
at large scan angles. Referring to Figure 1.17b, if point A is

imaged and assumed to be on some datum surface, while in fact it

lies at some elevation Zj above datum, the effect is to image the
point as if its Y position was at A' on the datum. The effective

ground displacement due to neglecting topography may be given Dby

in which Zj is the element elevation relative to datum, and @Yj

is the resulting Y displacement at ground scale. The proper image
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position for this element would then be at a", if the element is

to retain its proper Y position, after reduction to the datum surface.
This error, GYJ, will vary from zero at nadir to a value equal to

Zj at a 45° scan angle and would increase rapidly for scan angles
greater than 45°. In order to alleviate this error, some method

must be chosen to assign elevations to every element with an acceptable
accuracy. This problem will be dealt with in greater detail in

a later section. At this point it should be mentioned, however,

that if multiple coverage of ground areas are available, for example
from side lapping flight lines, the possibility exists to obtain

these element elevations directly from the imagery, by forming inter-
sections. However, if only singly scanned data are available, then
some source external to the data arrays must be used to provide

these element heights.

1.4.2.3 Exterior Orientation Effects. In addition to scan

angle and topographic effects, a major source of error is that of

sensor exterior orientation variations during scanning. In actualit&,

of course, an aircraft cannot be controlled such that its elevation

and velocity remain constant, nor can it be constrained to lie

on a perfectly straight flight path. In addition, an aircraft

cannot be stabilized such that roll, pitch, and yaw are held negligible.

Many scanning systems, however, are roll stabilized, such as the

ERIM M-T scanner which supplies the present bulk of aircraft data

to LARS. TFor these systems, the w term may be approximated by zero.
Figures 1.21 and 1.22 illustrate the resulting deformations

which occur when the perfect orientation assumptions of Section 1.4.1
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are not realized. Figure 1.21 illustrates the effect of two of
the angular orientation elements and one of the positional elements.
In Figure 1.2la, the effect of pitch (¢) variations down the strip
is to cause the scanner to "gallop" in the X direction, alternately
increasing and decreasing the nominal scan overlsp value, S, described
in Section 1.4.1. The effect of a éhange in flying altitude is
to cause a spread of the sensed ground element in the direction
normal to flight as may be seen from Figure 1.21b.

The yaw (k) variation is due to the rotation of the scanner

about a near vertical axis as it flies the strip. For example,

in Figure 1.2l1c, assume a road is exactly perpendicular to the

flight direction, but is imaged when the aircraft has a yaw. Then

when the imagery is displayed, each line is displayed horizontally,

and the x coordinates along the road will be displaced such that

the road will no longer appear perpendicular to the flight line axis.
Figure 1.22 [20] shows the resultant ground coverage of a scanner

under various perturbations in sensor exterior orientation elements.

From Figure 1.22, an important aspect of scanned imagery becomes

apparent. Bécause only two-dimensional information is available

from the imagery, it becomes impossible to separate the effects of

each orientation element variation. For example, considering 1.22a,

a constant aircraft pitch in scanning several successive lines is

impossible to distinquish from the effect which would be recorded

if a constant X shift of the coordinate system was done. From

1.22i, it is not possible to distinguish between a linear rate of

aircraft pitch, and a linear rate of change of aircraft velocity.

——



o7

SOT3TTIqRISUI 3JBIDITY SWOS JO 3093JF 'T2'T 2an31d

Mok Jo }o8443 (0

Buipioosay

PDOY =

lybiay buikly o o3443 ('q




58

—~

>
Direction of
Travel

Theoretical image Coverage

{ a Dl; - Linear

o= e Sy

i S T w—"

I o
— +  Pitch — : { Velocity
: ' ; 3 Change
[ J.L_h‘ L b ’
g S s s g c. :— d.
=+ +=+F Roll F ~ Linear Roll
S i S g = Change

| T
EP r € ! f
Yaw Linear Yaw
\ Change
1 { | .
i\ It 1. |

EEEER g T h

T T T7]  Alitude Linear
Altitude

T :“__ LT ~ Change

- i
Velocijty Linear
Pitch Change

!
I
|
;
|

i
|
1 ]

Figure 1.22. Resultant Earth Coverage of Scanner in 1.;h<.a Presence of
Different Vehicle Orientation Irregularities (Adapted
from [20])




9

Thus, it would be unreasonable to expect the recovery of all orientation
parameters from the imagery, especially if only singly scanned imagery
is available. Kratky [21] also points out this inseparability of
orientation elements based upon scanner imagery.

The variation in these elements of sensor exterior orientation
down the flight line are in general stochastic in nature, or random
time functions. The cumulative effect of these, however, may be
considered deterministic or analytical, particularly for short sections
of the flight line [22]. It may be possible then to approximate
these variations within a short section using such functions as
polynomials or harmonics [21, 22, 23].

Ideally, the mathematical functions expressing the behavior
of exterior orientation elements should be in terms of time. However,
time may not be recorded with sufficient accuracy to be relied upon
for such analysis. Alternatively, if the concept of a constant
effective speed of "film" travel (v) is utilized, then the x coor- .
dinate of the imagery may replace time in these functions. When
the data is in the form of digital arrays, x may further be replaced

by the scan line number as the independent variable,

"
[

v(T - T,) (1.20)

x (1.21)
;’

where t = T - To‘
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As an example, if Y, is assumed to be approximated by a second

order polynomial in time within a section of a flight line
Yo = alg+aly t+al,t? (1.22)

then the resulting polynomial form in terms of the image x coordinate

would be
Te = &g +ag x+ apx? (1.23)
in which
ag = a'y
a] = a'l/v (1.2%)
w = apl¥ |

Derenyi and Konecny [22, 24, 25] investigated the effect of
differential changes in each of the exterior orientation elements
on the ground coordinates. The equations utilized were based upon
Hallert's differential formulas [26] modified for scanned imagery.
The resulting form of the equations is

AX; = (Z. - Zs) tanbs dc + (Z. -~ Z4)de + dX
J c J J c J c (1.25)

ayy tan8y dZ, - (Zo - %3)(1 + tan?0;)dw + a¥,

For the present investigation, ground displacements were calculated
for representative values of the orientation element differential
changes for various combinations of flying height and scan angle.
Figures 1.23, 1.24, 1.25, and 1.26 illustrate the ground displacements

due to some of the terms in Equations 1.25. Figure 1.23 depicts
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Figure 1.25. Y Groumnd Displacement Due to Flying Height Change (ch)
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the X ground displacement relative to flying height above terrain

due to a differential change in yaw (dx). Figure 1.24 depicts the
absolute displacement at ground scale for various values of flying
height due to a small change in pitch (d¢). Figure 1.25 illustrates
the resulting Y coordinate change as a function of scan angle, 6,
for various values of differential changes in flying height (ch).
Figure 1.26 gives the Y displacement relative to flying height as

a function of scan angle, due to changes in the roll angle (dw).

1.4.2.b Scan Time Effect. If the assumption that each scan

line is recorded instantaneously is relaxed, then the data would
be recorded as shown in Figure 1.27, assuming aircraft velocity, V,
to be constant during the very short time span of a single scan.

The X’j coordinate of any point may then be written as

X3 = Xo* Y3tV (1.26)

2mTece

in which Y3 is the along-scan image distance to point j, or the
colum number for digitally recorded arrays. The t,. term is, as
before, the period of revolution of the scanning mirror, and c is
the sensor constant (see Figures 1.16, 1.17).
The period of revolution, t,, is a well defined term for most
scanning systems. However, the aircraft velocity V, is a function
of time, and some difficulty may be encountered in accurately monitoring
this velocity. It is possible, however, to include this scan time

effect into the k term of sensor exterior orientation as observed

from Figure 1.27.
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1.5 Review of Previous Investigations

The imagery generated by an optical-mechanical scanner contains
many of the features of imagery generated by more conventional strip
and panoramic photography. Consequently, many of the geometric
characteristics of the panoramic and strip imageries serve as a basis
for analysis of scanned imageries, and the review will begin with
a discussion of these more conventional sensing systems. This will
be followed by a chronological review of previously published investi-
gations of the geometric aspects of nonconventional sensors. These
sensors include radar sensors such as Plan Position Indicator (PPI)
and Side Looking Airbornme Radar (SLAR), infrared line scanning systems
(IRIS), and multispectrél scanning systems (MSS). The last porticn
of the review deals with the recent advent of remote sensing from
spacecraft, and the geometric peculiarities of such systems, par-
ticulariy the simplifying assumptions which are possible due to the
relatively high stability of such sensing platforms. Particular
attention will be paid to the Earth Resources Technology Satellite
(ERTS), which contains an MSS system. The inclusion of this sensing
system led directly to several Truitful investigations of scanner
geonetry.

In the late 19th century an Italian named Porro developed a
camera employing the panoramic principle. The instrument, fitted
with a telescope and level, recorded photographs on a strip of
sensitized paper held against the surface of an upright cylinder.
Only fairly recently, however, have intensive efforts been directed

toward the design, development, testing, and routine application
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of panoramic cameras to aerial photography [27]. Continuous strip
photography was first used in 1932, and was initially intended for
low aititude, high speed reconnaissance. G

Early papers by Katz [28, 29] presented methods by which object
heights could be extracted from continuous strip imagery using
parallax measurements made on the photograph. Wohl and Stickle [30]
in 1959 derived data concerning traffic velocities and volumes based
upon thé geometry of the continuous strip camera. In an article
published in 1962, Elms [31] proposed the possibility of using the
convergent strip camera system as a mapping tool. In that article,
the requisite equations for determination of ground elevations and
distances were derived under the assumption of the aircraft flying
straight and level. The effects of errors due to insufficient
image motion compensation, aircraft velocity and positioﬁ variations,
and aircraft angular orientation variations were investigated and
their effect upon the original equations was presented. The conclusion
which Elms reached was that mapping was possible using imagery from [
a sirip camera, although the use of conventional plqﬁting systems
as they then existed was precluded.

Ockert [32], in an article published in 1960, compared the
frame and strip cameras for potential use in satellites. The con-
clusions he reached were that the frame camera, due to its highly
refined and perfected geometry was preferable to the strip camera
with its complex geometry. The problem of time dependent orientation
parameters was recognized, with its attendant difficulties in performing

radial and space triangulation based upon strip imagery.
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In a paper published in 1961 [33] Abraham developed projection
equations for frame, strip, and panoramic cameras, and used these
equations to perform variance propagation investigations in an attempt
to quantitatively evaluate the accuracies obtainable from the three
camera types. After first formulating the projection equations
of the frame camera, Abraham developed transformations for the pan-
oramic and strip imageries to reduce measured coordinate values in
these systems to equivalent frame camera coordinates. These trans-
formations were introduced into the original projection equations
to form projection equations for the penoramic and strip cameras.
Variance propagation was carried out for a test case and numerical
values computed. The results indicated that expected ground coordinate
standard errors were about 10% greater for X coordinates obtained
from panoramic images than those from frame photography, and about
15% greater for Y coordinates. The strip camera yielded expected
errors about 14% in X and 23% in Y over those of the frame camera.

A two article series [3L4, 35] authored by Itek Laboratories
and published in Photogrammetric Engineering in 1961-62 did much
to acquaint the photogrammetric community with the advantages,
disadvantages and geometric peculiarities of the various panoramic
cameras. The first article, published in Dec. 1961, dealt with the
advantages of the panoramic camera (high resolution coupled with
wide angle coverage), its disadvantages (longer cycling times resulting
in unsuitability for low altitude, high speed aerial photography) ,
and the two basic physical configurations possible in panoramic

camera (direct scanning or rotating prism). The second of the
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articles dealt with the geometric properties of the images produced
by panoramic photography. In particular, effects of cylindrical
imagigg (previously discussed in Section 1.4.2.1), the scan (sweep)
positional effect due to camera motion during exposure, and the
effect of image motion compensation were discussed.

Kawachi [36] in 1965 presented image displacement equations
for image motion due to angular orientation instsbilities of frame
and panoramic cameras. Kawachi also presented plots of rates of
change for the roll, pitch and yaw orientation elements for a typical
reconnaissance aircraft. These plots indicated the stochastic nature
of the orientation elements.

Gullicksen [37] in 1967 advocated the use of strip photography
as a map substitute in order to eliminate the mosaicing necessary
with frame photography. Equations for planimetriec errors which
resulted from the direct use of a strip photograph as a map substitute
were presented, and a numerical example was computed.

An article by Gill [38] in 196k presented parallax equations

for convergent panoramic photographs, and related these to a relative
orientation procedure by analytic means. The photographs were
relatively oriented in segments or parts, in order that the method
could be used in an analytical plotter with limited format size.
A test grid was simulated and the procedure tested using the AP-II
analytical plotter, with the results indicating the feasibility
of analytic¢ relative orientation of panoramic photography.

Hovey [39] in 1965, reiterated the advantages of panoramic

photography, reviewed the image displacements inherent in the imagery,
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and advocated greater use of panoramic imagery by the photogrammetric
comunity.

Skiff [40] in 1967 published an article treating strip and
panoramic photographs analytically. The article used tensor notation
throughout. Coullinearity equations were presented for frame, strip
and panoramic photography, and the basic equations necessary for
triangulation using two photos were obtained. ©Skiff included the
concept of time varying orientation parameters, and assumed a linear
time function for aircraft positional elements for the strip case,
and a uniform angular velocity for the panoramic sweep. Derivatives
of the resulting equations were‘presented for subsequent linearization.
In concludihg, Skiff suggested the use of a constant orientation
assumption over a portion of the imagery.

In a very important paper [L4L1] published in 1967, Case formulated
analytic expressions for projection and collinearity equations
associated with panoramic and strip photography. The basic principle
advocated in this paper is the reduction of image coordinates from
strip or panoramic photography to coordinates on an "equivalent
frame photograph", through simple transforming equations. The re-
sulting image coordinates, it was believed, could then be treated
using existing programs for space resection, relative orientation,
and block adjustment. This formulation differed from that of the
earlier work of Abraham [33] dealing with the same concept, in that
a unified matrix approach was utilized, rather than deriving each
case separately from the geometry of the projection. Derenyi’ [22]

points out that Case advocated the use of a constant orientation
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assumption for short sections of the imagery. This paper used
standard matrix notation and a photogrammetric approach, and served
as a basis for further analyticel formulations of the less conventional
sensors, such as SLAR and optical-mechanical scanners.
A panoramic rectifier described by Wright [L2] effectively
projected a panoramic negative from a cylindrical surface having as
its radius the principal distance of the imaging camera onto a tangent
plane, forming a rectified image which would eliminate scan angle
effects. Problems in lens design for this rectifier were presented
in this paper.
Masry [23] in 1969 published- an article treating convergent
stereo strip photography in a rigorous analytical manner. The neces-
sary coplanarity condition for relative orientation was presented,
and it was noted that all exterior orientation elements of the strip | !
camera were dynamic in nature, that is, stochastic functions of
time. Masry proceeded to make the aésumption that the angular or-
ientation elemeﬁts of roll, pitch, and yaw were constant during any )
short period, or piece of imagery. The positional elements of
relative orientation X,, Y., Z, were assumed to have some general
polynomial form for both sides of the stereo strip photography, (
resulting in a polynomial form for the base elements of relative
orientation Bx’ By, Bz‘ Relative orientation was presented by
dividing the strip into sections of a length approximately equal
to the image length covered by the parallax angle. Corresponding
sections were relatively oriented using a successive procedure in

which the orientation elements of the section just relatively oriented, .
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on one side of the film, were used as the elements of orientation
for the opposite section on the other side of the film, since they
were simultaneously recorded.

Masry then presented projection equations to form model coordinates
if orientation parameters were assumed known, and test cases were
run on both simulated and real imagery. Problems occurring were
due primarily to the instability of the solution for orientation
parameters and resulting model coordinates, caused mainly by small
parallax angles in the convergent strip camera. Model coordinate
errors were found to be largest in the Y direction (perpendicular
to flight direction). Masry concluded that if monitoring of orientation
elements were done, the model coordinate stability would naturally
be greatly enhanced.

In 1971 Derenyi [22] cdmpleted 8 thesis relating to relative
orientation of strip imagery. The dynamic nature of the imagery
caused by continuously changing orientation parameters was recognized
and described. .Two basic schemes of relative orientation were pre-
sented to cope with this problem.

In the first of these, called the line-by-line method, two
corresponding lines perpendicular to the flight direction were rel-
atively oriented, and this procedure was repeated down the strip
to form a series of line models. Intermediate values were obtained
by interpolation by hermonics or polynomials. Since only three orien-—
tation parameters were recoverable by relatively orienting a line
pair, an investigation was conducted into the effect of theabmission

of two orientation parameters upon the remaining three. The results,



Th

as indicated by both theoretical error propagation studies and tests
on rigl and simulated imagery, indicated that serious errors would
be introduced unless the omitted parameters were monitored or sta-
bilized to the same precision expected from the relative orientation
itself.

In the second method investigated, termed the section-by-section
method, portions of the strip were treated as a unit for the relative
orientation procedure. In this method, some assumptions concerning
the behavior of the exterior orientation elements over the section
are necessary. Two assumptions were investigated in detail. 1In
the first of these, the constant orientation assumption, the aircraft
orientation parameters were assumed to remain fixed for each section
pair to be relatively oriented. Error propagation studies by Derenyi
indicated this meﬁhod could result in serious errors due to the low
attainable precision of the d¢ term. Since Derenyi's analysis dealt
primarily with convergent stereo systems, this low precision, coupled
with a small parallax angle of convergence, would result in large
expected errors of model point elevations formed by subsequent inter-
sections. This problem could be alleviated by larger parallax
angles, but if this is done, then longer sections are required,
resulting in a loss of validity of the constant orientation assumption.
An analysis was also carried out to assess the effect of this error,
i.e. the assumption of constant orientation when, in fact, orientation
is dynamic in nature. It was found that large errors in d¢ and dx
result from relatively small non-uniformities in orientation.

A further manifestation of the constant orientation assumption within
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a section is also apparent. At section boundaries down the strip,
discontinuities in orientation parameters, and hence, model coor-
dinates, will appear.

As an attempt to partially overcome these problems, a changing
orientation assumption, to be approximated by linear orientation
changes within a section, was also investigated. It was found that
significant improvement in accuracies resulted from this more realistic
assumption, and the discontinuities at section boundaries disappeared.

As a further attempt to strengthen relative orientation procedures,
Derenyi suggested a "triple channel recording" system, in which
a8 convergent stefeoscopic system would include not only fore and
aft looking sensors, but also an additional vertical one. By this
method, the three lines recorded could be treated much as lines
from a single frame in a frame camera, and many of the techniques
of frame photography could be employed. It was felt that use of
~ this scheme would allow greater parallax angles, and hence help
alleviate the low precision attainable in the d¢ term, and subsequent
model point elevations.

Derenyi also analyzed the sidelapping flight line configuration.
As mentioned in Section 1.k4.2.3, the inability to separate analytically
petween some orientation elements results in the possibility of
recovering only two orientation elements, and then only by using the
line-by-line approach. Derenyi draws the conclusion that this flight
configuration was therefore unsuiteable for relative orientation.

It should be mentioned, however, that this means relative ofientation

in the strict photogrammetric sense, in which it is desired to recover
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five orientation elements. While this is clearly impossible using
sidglapping flight lines, it may be possible, after some type of
relative or absolute orientation has been done, to obtain model
elevations by intersection.

In fact, Leberl [6] in 1972 studied the propagation of error
from orientation parameters to model coordinates for optical-mechanical
scanners. His results indicated that, with regard to error propagation,
the sidelapping of flight lines was the optimum scheme in order to
minimize cofactors of the Z model coordinate, or elevations.

A recent use of panoramic photography of general interest was
reported by Alderman [43], in which a convergent panoramic photography
system was used in establishing control on the lunar surface. Oper-
ating from the Apollo 15 Scientific Instrument Module, an optical
bar camera was used to generate overlapping panoramic photography.

The resulting imagery was used to generate models by the process

of relative orientation utilizing the constraintsnimposed by the
orbit of the spacecraft. Thése were subsequently assembled into

a strip using the method of Schut [4L]. Subsequent transformation

of the assembled strip to control points was then carried out.

A linear rate of change for exterior orientation elements was assumed
to accomodate the dynamic nature of the imagery.

With the advent of the concept of "remote sensing" in the general
sense, beginning in the early 1960's, the photogrammetric community
has been faced with problems of an unusual and challenging nature.

The unconventional sensor types advocated for use, such as SLAR

and MSS, although having unique data gathering capabilities such
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as all weather operation and image forming capabilities outside
the visible range of the spectrum, suffer from problems of reduced
resolution and image distortion due to the dynamic mode of image
formation.

The use oi radar as & remote sensing system has been progressing
for some time, beginning with the Plan Position Indicator (PPI)
first developed around 1940, with Side Looking Airborne Radar (SLAR)
coming into existance around the mid 1950's. Leberl [45] presents
a detailed history and literature review on radar remote sensing
systems.

Suits [46] reported in 1960 on the nature of infrared radiation
as a source of imagery. Recording systems basedyupon both cameras
and scanner-detector configurations were presented. Colwell [L7]
in 1963 published an article which did much to acquaint the photo-
grammetric community with the basic matter-energy relationships
necessary for image formation by remote sensing. Leonardo [L8]
in 1964 published a further article dealing with general advantages
and problems associated with remote sensing systems.

In an early paper, Harris and Woodbridge [49] presented the
basic configuration for a thermal scanning system and the concepts
of spectral radiance in the emissive region of the spectrum, as
well as atmospheric transmission.

Suits [50] in 1966 advocated that security restrictions on
infrared scenning devices be lifted, in order that the scientific
community as a whole might benefit from this relatively new data

gathering system. Suits reported on an eanticipated reduction in
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the classification of instruments, thus alerting the photogremmetric
profession to its availability.

Other sources of general information on remote sensing and
remote sensing systems may be found in references [4, 10, 11, 27,

51, 52], as well as the series of LARS annuel reports [53-56],
and the proceedings of symposia held at the University of Michigan [57].

In the mid 1960's, the airborne multispectral scanner was used
at the Willow Run Laboratory of the University of Michigan (now
Environmental Research Institute of Michigan). Since 1966 Purdue
University's Laboratory for Applications of Remote Sensing has been
formulating and developing a digital system of MSS data handling to
perform automated interpretation based upon spectral differentiation
by statistical and pattern recognition techniques [53, 54, 55, 56].
Recent papers by Wilson [58] and Lapides [59] have emphasized the
utility of multispectral scanners and enumerated their wnique advan-
tages, as well as limitations associated with the data available
from them. Carnes [60] reported on advances in auxiliarly equipment
associated with such scanning systems.

Until recently, much effort has been spent on investigations
into the radiometric and interpretative aspects of data gathering,
data handling, and automated interpretation. The geometric aspects
of the data arrays generated were ignored or sublimated to the more
pressing problems of research into and development of the radiometric
and interpretive aspects noted above. As the analysis of non-metric
facets progressed, however, the problems of geometric factors in these

scanning systems became more apparent and work in this area was begun.
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In a series of two papers [24, 25] Derenyi and Konecny first
applied a photogrammetric approach to the optical-mechanical scanning
system. These papers dealt with the basic recording system, the
scan angle effects of varying resolution size and panoramic displace-
ment mentioned in Section 1.4.2.1, and the dynamic nature of scale
factors involved in a scanning system. The study of exterior orien-
tation effects was based upon a modification of Hallert's differential
formulas. The effect of errors in determination of angular resolution
size was also assessed. In the second of the papers, the authors
presented a projection equation in matrix form which considered the
dynamic nature of the imagery, accounting for the movement of the
projection center during recording.

Konecny, in a series of papers, [T, 61, 62, 63] summarized the
basic projective relationships assoclated with various remote sensihg
systems. These papers dealt with methods of approximate relative
orientation and rectification of imageries recorded with dynamic
systems and discussed accuracies which may be expected utilizing
these systems. The latest paper [T] provides an excellent summary
of most of the work done on geometry of non-conventional remote
sensors to date.

A paper by Taylor [64] provides useful insight into rectification
procedures for infrared line scanning sensors. Rectification equations
are derived from basic projection equations by first assuming a

perfect orientation case, and analyzing image displacements after

subsequent perturbations in roll (w), pitch (¢), and yaw (k)
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A series of papers [6, U5, 65, 66, 67, 68] written by Leberl
treat geometric aspects of the two most popular non-conventional
remo;e sensors, side looking airborne radar (SLAR) and the optical-
mechanical scanner. Leberl was primarily interested in SLAR imagery,
and his work culminated in a doctoral thesis [45] which is particularly
notable for two reasons. The first of these is the extensive bibli-
ography included on radar in general, and in particular, SLAR.

The second notable point in this work is the introduction of inter-
polative techniques for the rectification or restitution of SLAR
imagery. Using stochastic concepts, these interpolative techniques
present a viable alternative to the projection equations for image
rectification or restitution. These techniques may prove to be
guite useful for the rectification of digital MSS dsta arrays, since
they appear well suited to this digital data handling format (parti-
cularly when scanned terrain is relatively flat).

A paper by Markarian, et. al. [69] in 1971 presented a scheme
of utilizing general polynomials for rectification of digitized
imagery. The concept of treating the data as an uncorrected input
array used to generate a rectified output array was utilized, and
the principal of digitally "stepping" on the output array and placing
gray scale values from computed positions in the distorted input
array wes advocated. Further, it was recommended that the "nearest
neighbor" be used as the gray scale value from the input arrsy,
rather than to attempt interpolation of gray scale values.

Increasing interest in these geometric aspects of remote sensing

systems is evidenced by the increase in literature in this area
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very recently. Masry and Gibbons [70] reported on the use of the
analytical plotter for rectification of scanned infrared imagery.
Rectification of planimetry using the LR-2 line drawing rectifier,
as reported by Forrest [71] handles either SLAR or scanned imagery.

In a paper by Bosman, et. al., [72] a programming system called
KARIN is described for planimetric mapping from single or overlapping
strips of remote sensing data such as SLAR or infrared line scanner
(IRLS). Graham [73] and Yoritomo [TL] described restitution schemes
for éadar imagery at this same meeting.

In the early 1970's the use of satellites and spacecraft as
remote sensing platforms was realized. The culmination of this long
awaited event came about with the launching of the ERTS-1 satellite
on July 23, 1972, which contained both return beam vidicon (RBV)
and multispectral scanner (MSS) imaging systems. Because of this
event, considerable effort was expended prior to, and immediately
after, the launch on geometric probléms associated with the MSS.

The Skylab manned orbiting Earth resources laboratory contains
photographic and MSS imaging systems. The Skylab MSS is of the
conical scanning type.

General information on the imaging of the Earth's surface from
space, and the ERTS-1 and Skylab systems and their sensors in par-
ticular may be found in references [75, 76, 77, 78, 79, 80, 81,

82, 83]. In a very revealing paper, Forrest [75] explains the unique
advantages of using satellite imagery, particularly from scapners,
for cartographic use. Consideration was given to the scanner geometry

and resolution, and the use of ground control points extracted from
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existing maps was advocated to resect for sensor orientation elements
for t?e precision required for mapping beyond that obtainable from
satellite ephemeris data. Forrest points out the greater stability
of orientation in spacecraft over that of airborne sensors. The
conclusion was drawn that mapping from space images economically
compares very favorably with that of conventional techniques, and
this cost may be spread among users of the imagery outside of those
with cartographic interests.

In two recent papers [81, 82], Doyle summarizes the types of
sensors which have to date been used from spacecraft, and describes
some of their uses. Processing of the data and imagery generated
is also discussed.

The geometric problems associated with imaging with spacecraft
mounted sensors have been addressed by several investigators.
Although, as previously mentioned, spacecraft orientation insta-
bilities are éenerally less pronounced in these systems than with
airborne systems, these investigations yield valuable insight into
possible analysis methods for airborne systems.

Colvocoresses [84] as early as 1970 published an article dealing
with geometric errors to be expected in ERTS imagery. He analyzed
image displacements for 5 possible sources: Earth curvature, at-
mospheric refraction, camera obliquity (or exterior orientation
angular elements), terrain relief, and map projection error. The
effect of atmospheric refraction was found to be negligible, and
that due to terrain relief would be minimal except in extreme cases.

Other errors were easily modeled except for the obliquity error.
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Colvocoresses advocated not processing images in an element by element
manner except for special purposes.

A series of papers by Kratky [21, 85, 86, 87] addressed these
problems from the photogrammetric viewpoint. Of particular interest
for this investigation is the formulation of functional forms to
account for orientation instabilities of the scanning system.

After presenting the basic projection and collinearity equations

for the scanned imagery, the use of two alternate functional forms

to approximate orientation variations with time is inves%igated.

These are polynomial and harmonic functions. Kratky presents the
equations in matrix form for resection to solve for the parameters

of these functions, including explicit presentation of the coefficient
matrix and constant vector for each of the functional forms considered,
when substituted into the linearized collinearity equations. Because
of the smaller and smoother orientation behavior of spacecraft systems
over airborne systems, it was possible to incorporate small angle
approximations into the analysis, yielding simplified equation forms.
Kratky also points out the inability to distinguish between the
correlated orientation elements ¢ and X., the pitch and sensor X
position, using singly scanned imagery. Thus, it is indicated,
resection for all orientation parameters is impossible. However,

the remaining parameters may compensate for these neglected elements,
and result in acceptable image positions after subsequent projection.

The gecmetric processing of ERTS imagery in the United States
has been discussed by several investigators [20, 88, 89]. Forrest [20]

describes the bulk image processing scheme (currently called 'system
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corrections"), as well as the more refined precision processing
("sgene corrections'") used on selected imagery as requested by the
user. The bulk image processor transforms the scanned imagery to

a central perspective projection. The purpose of this transformation
is to generate a series of "frames" from sections of the imagery

as they would appear if recorded by a frame camersa. The element
corrections are fully calculated for intersections of a nine by nine
grid. These displacement values calculated incorporate corrections
for Barth rotation, as well as roll, pitch, and yaw values, which
are taken from satellite data. Image positions between these 9 by

9 array points are assigned by linear interpolation.

The precision processed (scene corrected) images are generated
as a subset of the above bulk processed (system corrected) imagery,
incorporating more sophisticated techniques for geometric improvement.
The use of ground control points extracted from existing maps, and
identifiable on the imagery are used to refine image position cor-
rections. Forrest points out several advantages in the use of ground
control points.

1.) The use of control points allows for obtaining the positional

accuracy desired in the precision processed imagery.

2.) Failure of the attitude sensor (the sensing wnmit which

monitors the angular orientation elements of the spacecraft
sensor) will not jeopardize the possibility of geometric

improvement of the imagery.
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3.) The direct determination of sensor orientation elements
by resection from these points serves as a check on the
attitude sensor, and serves to refine the orientation element
values used in the bulk processing.

L.) The use of redundant control points and least squares
adjustment techniques allow the estimation of obtainable
accuracies for orientation elements and indicate the positional
accuracies of the control points used.

The resection equations used to correct the MSS imagery in
precision processing solve for eight parameters. These parameters
reflect the image d@splacements caused primarily by errors in pitch,
roll, and yaw, and by rates of change of these orientation elements.
Once again, due to the small, smooth nature of the spacecraft orien-
tation variations, the use of polynomial functional forms may be

used to represent these image displacements. The equations used are

a. + [1+ (x/HS)Z] + a1X + apy + Xy

Ax o

(1.27)

Ay by + [1+ (y/Hs)z] + byX + boy + DXy

in which Ax and Ay represent image shifts from the x and ¥y positions
recorded on the bulk processed imagery, Hg is the spacecraft altitude
at image scale, and aj, b; are the eight parameters to be solved

for in the spatial resection. It should be noted that terrain
relief is neglected in these equations. Kratky [21] points out that
the effect of terrain relief is less than the ground rgsolution

.size of an element unless terrain elevation differences on the order

of 2600 ft. (800 m) are encountered within a single frame. Such
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relief differences do exist in some ERTS frames, and the planimetric
accuracy in such frames will suffer accordingly.

Since digital data handling techniques fo£ MSS data have become
operational at LARS and elsewhere, it is desirable to investigate
the geometry of such imagery in greater detail. The geometry of the
scanning system will be analyzed in this investigation, with particular
emphasis to be placed upon techniques which are suited to the digital
data handling approach. Existing published literature in this ares
has dealt with data from spacecraft platforms, in which simplifying
assumptions may be made, or for digitized frame photography. The
investigation in this thesis will attempt to deal with the more
general problem of gathering MSS data from an airborne platform,
for which the simplifying assumptions based upon platform stebility
do not in general hold. This combination of a general geometfic
analysis, valid for both airborne and spaceborne systems, coupled
with the digital data analysis, it is felt, will provide a much
needed work not present in existing literature. The chapter immediately
succeeding this will therefore deal with the general geo@etric
problems associated with the MSS scanning system, in order that the
relationships obtained may be utilized for the analysis of specific

areas of interest in MSS digital data systems.
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2. GEOMETRIC ANALYSIS OF MSS DATA ARRAYS FROM SINGLY SCANNED AREAS

2.1 Remote Sensing as a Transformation

According to Mikhail and Baker [5], remote sensing may be thought
of as a mapping of multidimensional object space onto another space,
the sensor space, having the same or fewer dimensions. Such a mapping
may be effected through a transformation taking a multidimensional
object space vector into multidimensional sensor space vector to
be stored for subsequent retrieval and analysis. This may be termed
the "remote sensing transformation'. The dimensions of each vector
will depend upon the degree of simpiification cf the physical phenomena
involved, and the characteristics of the sensor employed. Examples
of information content which may be included in the obJject space
vector are [5]: spectral radiance from each resclution element in
a particular wavelength band, polarization of the radiant energy with
respect to the object space coordinate system, and coherence, both
spatial and temporal, of the radiant waves. Components of the sensor
space vector may include: spectral irradiance incident on the sensor
in each wavelength band considered, the direction of polarization
(if retained) with respect to the sensor coordinate system, the
degree to which coherence is attenuated, and frequency and phase
shifts of the carrier or force field if active semsing éysteﬁs are

utilized.
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An important characteristic of sensors with image forming
capabilities is that geometric image positions can be generated from
the'éensor space vector record stored. In most non-mapping systems
to date, this geometric image position is not considered the primary
goal of the recording. However, the fact that it can be recovered
affords a unique opportunity to the interpretive data analyst and
photogrammetrist. This leads to a wnified data analysis concept
in which analysis of both the non-metriec data for interpretstion
as well as the metric record inherent in the data becomes possible.
As indicated in Chapter 1 in the review of previous investigations,
a two step sequential procedure has been used for some scanning
systems (notably spacecraft systems) in which scanned data has been
processed for geometric restitution, with the resulting data then
utilized for automated interpretation. However, the possibility of
simultaneous digital analysis of both the interpretive and geometric
aﬁpects has not been greatly exploited to date. With the more
traditional photographic sensors, the nature of the methods used for
both interpretation and photogrammetry has largely precluded this
unifyiné concept. The photo interpreter has used methods of visual
inspection, relying on visual "keys'" to arrive at decisions. The
photogrammetrist has relied heavily upon accurate reconstruction of
the geometry of the photograph to extract positional and metric
information about the object space. An examination of the object
and sensor space vectors for black and white frame photography may
perhaps explain why these traditional fields of interpretation and

photogrammetry remain separated. For each point imaged in the
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photograph, the object space and sensor space vectors may be thought

of as each having two parts. The first part will contain the non-metriec

information which may be sensed and recorded (such as spectral

information, polarization, etc.), the second portion will contain

geometric information. Consequently, the object space wvector for

each point may take the form:

— 811
'

spectral radiance from

n wavelength bands within

the photographic region

n
X
point position in object
Y
space
L Z

where consideration is given only to spectral values for the non-
metrie portion. The resulting sensor space vector is of the form

film density recorded

for the point
b'd point position in
y image space

These vectors are related through some physical-geometric transfor-
mation which transforms the (n + 3) dimensional vector for a point
in object space into a 3-dimensional vector in the sensor space.
The physical transformation takes the n spectral values emanating

from the point into a single density value D. The geometric portion
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of the transformation takes the object space position (X, Y, Z)
into the two-dimensional imege position (x, ¥). The parameters

associated with this geometric transformation are well known in

photogrammetry, and consist of sensor position (Xc, Y Zc)’ sensor

c)

b

attitude (w, ¢, k), and internal sensor characteristics (xo, Yos T
particularly for frame photography).

The problem with this transformstion in general, vwhich led to
the traditional separation of the fields of photo interpretation
and photogrammetry, lies in the suitability of each part of the
transformation for numeric analysis. Traditionally, the interpreter
does not look only at a single point density value, but notes the
density, texture, size, shape, shadow, tone, color, and pattern of
objects before concluding their nature [90]. Recent attempts at
automating this procedure, in which photographic densities are
quantified and computations performed upon them are actually attempts
to simulate these visual "keys".

The geometric portion of the transformation, however, lends
itself quite well to both analog as well as analytical treatments.
This characteristic has spawned the practices of photogrametry.

However, with the advent of the unconventional sensors, par-
ticularly the multispectral scanners, the extensive volume of the
data severely curtails the role of direct human interpretation.
Furthermore, the availability of the acquired deta in digital form
makes it possible to apply efficient computational decision making
techniques and automated interpretation, as briefly described in

Section 1.3. TFor the MSS system, considering only spectral information
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for the non-metric portions of the vectors, the total object space

vector would be of the form

[ 51 ]
)
' spectral radiance reflected
' and emmitted in n wavelength
bands
Sp
-5
element position in object
Y
space
Z
__'E;—; time

and the form of the resulting sensor space vector would be

S
-1
spectral irradiance recorded
1]
in m channels (m < n)
t
SI
m
b'd element position in image
A space

For the MSS transformation, the nature of the sensor makes it
necessary to regard time as part of the object space vector, and the
dynamic nature of the sensing process is reflected in the way in
which the transformation parameters of the geometric portion are
handled.

Because the sensor is recording continuously during the aircraft

flight, the sensor position (Xa» Yo, Zo)as well as attitude (w, ¢, x)
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become continuous stochastic functions of time. Other parameters

of transformation for the geometric portion are c¢, a sensor internal
conséant analagous ta the principal distance of panoramic recording,
and v, a rate of imaging recording surface advance (see Section 1.k.2).
Because of the dynamic nature of the sensing process, geometric anal-
¥ysis becomes more involved and less precise. However, the main
advantage of the system is the retention of the several spectral
irradiance numbers for each element, which allows measurement and
computation for interpretive purposes.

In summary then, the MSS sensor allows the retention of sufficient
information to make feasible a simultaneous analysis of both the
physical (non-metric) characteristics as well as the metric (geometric)
aspects of the data recorded. This simultaneous analysis may be
brought about by combining the automated classification techniques
discussed briefly in Section 1.3 with the geometric analysis methods
to be discussed in this thesis. Therefore, the opportunity is avail-
able for considering a unification of the activities of both inter-
pretation and photogrammetry.r

This has not as yet been effected, however, for two primary
reasons:

1.) Historically, interpretation and photogrammetry have been
considered separately. It was thus only natural to continue
this trend even after these new sensors became available.
Also, there exists a shortage of personnel who are adequately
trained in both interpretive (particularly automated inter-

vretation) and photogrammetric techniques.
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2.) The concept of combining the two computationally oriented
fields of automated interpretation and photogrammetry, while
logical, is quite a complex problem. Perhaps correctly,
researchers to date have concentrated on one or the other
aspect, in order to simplify the problems confronted and
gain new knowlege.

The work done in automated interpretation has largely ignored the
geometric aspects of the data vectors. As more sophisticated classi-
fication algorithms became available, however, and as progress

was made in automated interpretation, it has become apparent that

the geometric aspects are gaining in importance. It is now becoming
the task of the data analyst to raise not only the question of

"what" (interpretation) but also of "where" and "how much” (geometry).
This problem is well illustrated by the operaticnal ERTS system,

in which it was felt that, even for bulk (system corrected) images,
some geometric analysis and preprocessing was necessary to efficiently
utilize the data. It is therefore the objective of the work reported
on herein to analyze in detail the geometric aspects of MSS digital
data arrays in an attempt to provide answers to these queries.

The subsequent section will introduce the basic transformation
relationships which serve as the basis of analysis of MSS data from

the geometric standpoint.



ok

2.2 The MSS Geometric Transformation

Figure 2.1 represents the recording of one channel of data
dur{ng the scanning process of the MSS, in which the data array
is considered as an image. Each array position would then have an
associated "picture element" or "pixel". The two dimensional matrix
of numbers would then be equivalent to the size of the imagery record.
The line number i would represent a single scan, and within each
scan the value J would represent the element position. With these
comments in mind, Figure 1.17 may be thought of as the recording
of the j-th element along the i-th scan line. Each picture element
is recorded at a particular instant of time, thus making time an
important variable. Following are the basic variables for subsequent
analysis. Many of these variables have been previously introduced,
but are included here for ease of reference.

T the epoch, or time instant, of beginning of

e}

recording (at zero x¥*-coordinate)

tr time period for one revolution of the scanner

Tij time instant of recording point j on scan
line 1

SJ instantsaneous scan angle with respect to

a scanning axis passing through the effective

perspective center and the scan line center

2« total scan angle (a on either side of scanning
axis)
c constant representing a "principal distance”

or the equivalent of the radius of a cylindrical

recording drum
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speed representing "film" advance in case

of pictorial recording, or its eguivalent when
recording in other modes (magnetic tape,
etc.), taken as a constant

cartesian coordinates of point Pij (either
image or its equivalent in digital recording)
as shown in Figure 2.1

distance along scan line i from scan line

center to Pij

instantaneous orientation matrix at Tij
(taking object system to sensor system)
distance along the image center line from the
beginning of the recording, represented in
digital recording by the scan line number i
scale factors between object and sensor spaces
for point j on scan line i, (kj = k'j/cos ej).
k'j is the actual scale factor of panoramic
recording. Referring to Figure 1.17b, this
scale factor would be représented by the
ratio of lengths Ca and CA. ‘kj is the scale
factor for the equivalent frame photograph.
instantaneous position of exposure station

at Tij

object coordinates of any point j on scan

line 1
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Using the above variables, several useful relationships may be derived.
If, as 1Is usually the case, the period of revolution of the scanner
(tr) is a well defined quantity, then the time of imaging each element
within the array may be determined from its array position by the

relationship

Tij =T+ (1-1)1;r + (a2+ 9.) t_ (2.1)

s
in which the substitution 0y = yj/c has been made.
The x* cartesian coordinate of the point may then be determined

by introducing v defined above:

5" fro) (2.2)

* =
x¥*, v(Ti

iJ

If the relationship of Equation (2.1) is introduced into this ex-

pression, the result becomes

X¥g = v (i-1)t + (a2; ei) t (2.3)

The y* cartesian coordinate may be determined using the Pythagorean

Theorem from Figure 2.1.

*2 = v2 _ 2 E_h
y*455 TV v t}] (2.4)
Tt may be seen from Figure 1.1Tb that in the y direction,

imaging takes place from about a perspective center having object

space coordinates (XC, Y., Zc) at the instant of imaging point Pj'
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The vector between the perspective center and a point in the object

space coordinate system may then be written

"

Xj - XC
i = Y
- J —YC <2~5)
Zj - Zc

An image space coordinate system may be defined by a right hand
system in which the xy plane is tangent to the effective panoramic
cylinder at the scan line center with the y axis in the direction
of a scan line. The z image axis would be perpendicular to the xy

plane and complete the right hand system. The vector above may then

be written in this coordinste system as

. FXJ - X
A= Mij(t) Yj - Y, (2.6)
zj - Z,

In the image system, the vector from the perspective center to

the image position may be written

[~ 0 ]

o

= ¢ sin ej (2.7)

-c cos @

_ I ]

+ .
The vector A would be represented in Figure 1.1Tb as the line segment

EK, and vector a would be represented by line segment Ca.
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Assuming no systematic effects, these vectors must be collinear.
>
If vector a of (2.7) is multiplied by the proper scale factor, the

resulting vector will be equal to that from Equation (2.6), leading

to:

0 Xy - X,
ﬁ% c sin o, = M_ij(t) Y, - Y, (2.8)
-C cOS eJ Zj - Zc

Combination of the expressions of (2.2) and (2.8) with k'ij =k,, cos 8
iJ

results in the following four dimensional metric MSS transformation

J

for rectilinear scanning:

— o — g

x*ij Tij - To
0 v 0 X, - X
= 1,3 J e (2.9)
c/iy tan 6 0 —M:i%(t) Yy - Y,
3,
“C/kj Z. - Z !
: 3 c
L ] L N

This general transformation may then be used in subsequent analyses
to investigate the geometric characteristics of digital M35 data
arrays.

When digital arrays are displayed, all elementis in a single
scan line i are displayed with a constant strip coordinate xi.
The data may then be analyzed as if all points in a single scan
line were imaged instantaneously with some residual yaw, as explained
in Section 1.4.2.4. The instant of recording would be‘assumed equal

for all points j in a scan line i, i.e. X*ij = X5 and Tij = Ti in
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the first equation of (2.9). The image coordinates which would be
measured from a digital array display would be the i, J array element
posi%ions, or Xy, yj if the array is comsidered as an image.

It may be shown that the projection equations presented in
Section 1.4.1, which were generated from the basic geometry of scan-
ning wnder ideal conditions, may also be derived from this general
transformation if appropriate assumptions are made. For example,
the first equation of (2.9) yields directly the transformation from
time to image x coordinate as given previously in Equation (1.20)
Under the assumption of ideal orientation, the matrix Mij(t)
becomes identity. If this substitution is made, the second equation
of (2.9) yields directly the relationship of Equation (1.11).

Also under this assumption, if the last equation is solved for
—c/kij, and the result is substituted into the third equation, the
resulting expression will be identical to Equation (1.12).

The general transformation of Equation (2.9) may also be used
to investigate the effect of small perturbations in orientation
elements from the idealized case. Considering a single scan line,

using ej = yj/c and introducing

hy = c/kj (2.10)

the three dimensional geometric MSS transformation, after inversion,

may be written as
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XJ- - Xc O

Y, - Y = W, |n

j c = LI y ten 6, (2.11)
Zy - Zg -,

and rearranging,

xj X, 0
t
Y = Y +
J c M 3 hy ten ej (2.12)
Zj Z "hj

In order to investigate the effects of small changes in the

orientation parameters Xos ¥ Zas W, ¢, ¥, on the coordinates of

c,
an object point the total differential of (2.12) must be evaluated.
In order to evaluate the total differential, the partial derivatives
of the equation set must be evaluated for each of the six orientation

elements. Considering the sequential set of angles (w, ¢, k),

according to Lucas [91]

0 0 0
;%5 = y% 0 0 1
v 0 -1 o
[~ 0 sin w -CcOSs
= v ~51i 0 0
Egg lg sin w
o |_cos w 0 o .
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0 1 0
M = -1 0 0 Mj
ax 0 0 0 (2.13)

It is also necessary to evaluate the differential of the equations

3° as it contains the scale factor

which is a variable for each point. Proceeding with the evaluation

with respect to the parameter h

ks

of this total differential:

ax ax 0
ay = ay + M, ltan 6, |an
= J J 3
az | az -1
J
0 0 0 0
+ o o -1 Mt h. tan 8, | duw
=J J J
0 1 0 -
(2.14)
0 -sin w cos W) 0
+ | sin w 0 0 Vi h, ten 6, |dé
~J J J
-COS W 0 0 —hJ
0 -1 0 0
t
+ M 1 0 0 h, tan © dk
=3 J J
0 0 0 -h
J

It is now assumed that the changes in engular orientation elements

take place from a perfect orientation position of w= ¢ =k = 0.
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Then Mﬁ =1, for which hj = ZC - Zj as may be seen from the last
equation of (2.11) wnder this ideal orientation assumption, and the

resulting equations become

dax dX 0 0
Y = ay + dh
d tan ej 3 + hj dw
4az -
3 daz R 1 hj tan ej
(2.15)
~h - .
3 hj tan GJ
+ 0 aé + 0 dx
0 0

Tt should be noted here that Equation (2.15) represents a projection
from two-dimensional space in the sensor to three dimensional object
space. It is not possible from single imagery to determine all three.
coordinates (X, Y, Z)j’ because the unknown scale factor kj is
impliecit in hj' Therefore, in order to derive the two possible
coordinates it will be assumed that 7 is constant for all j. Since

7 is assumed constant, de = 0, and the last of the equations in

(2.15) may be written explicitly as

0= ch - dhj + hj tan GJ dw
Then

dhj = ch + hj tan ej dw
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Substituting this expression into the first and second equations

of-(2.15) results in

de = dX, - hj d¢ - hj tan ej dx

) (2.16)
d¥e + tan 84 AZ, + hy(1 + tan 04) dw

de

Equations (2.16) may be seen to be termwise identical to those

of Equations (1.25) in which hj = Z, - Z. The contradiction in

signs for the dw, d¢, and dc terms is due to the fact that Equations
(1.25) were written as a special case of Hallert's original projection
equations. Hallert, in his derivation [26], defined the positive

sense of rotation for the angular elements in the opposite sense

from that customarily used in the United States, and applied here.

2.3 Collinearity Equations for MSS

The collinearity condition introduced in Section 2.2 serves
as the basis for collinearity equations. The collinearity equa%ions
for frame photography have been used extenéively in the past as the
basis of analytical photogrammetry [93, 94]. Similar equations
for scanned imagery may be derived using Equations (2.9). Considering
a single picture element the i, j subscripts mey be dropped and the

geometric portion of Equations (2.9) may be written as

0 oy M, M3 e
oy Moo o3 =Y (2.17)
_.c/k mBl m32 m3 Z - ZC

c/k tan O
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Performing the matrix multiplication, dividing the first two

equations by the third, and rearranging yields

_ my (X = Xo) + m(Y = Yo) + m3(2 - 2)

0 =
ma (X = Xo) + map(Y - Yo) + my3(Z - Z) (2.18)
2.1
(X - X)) + (Y -Y)) + Z -2
0=tme+mm_ c/ T Moo c my5( e)
ma (X - Xo) + m3a(Y - Yo) + moa(Z - Z4)
An alternate form may be derived using the transpose of (2.17),
0=(Xe - X) + (2 -25) my; tan 6 - m3y
) (2.19)
0= (Y, -Y) + (2 -12,) my tan & - mgyp

ms 3 tan 6 - m33

If, in these equations, an ideal orientation assumption is made

in which M is taken equal to I then Equations (2.19) reduce to the

same results given in Equations (1.11) and (1.12) in Section 1.h.1.
If six orientation elements were assumed unknown for each

scan, it would be impossible to have a solution and derive metric

information from MSS data arrays. Therefore, some type of functional

behavior (polynomials, harmonics, ete.) must be assumed for those

orientation elements. Once decided upon, object space contfol may

be used to determine the coefficients of these functions (resection),

then Equations (2.19) may be used to determine other object points

(intersection). In practice, both operations are performed simul-

taneously. . ' ”
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2.4 Linearization of MSS Collinearity Equations

. The equations represented by (2.18) and (2.19) are nonlinear
in nature. In order to investigate image and object point coordinate
deformations, and to perform space resection utilizing the method
of least squares, it is desirable to generate linear approximations
for them. The usual technique applied in photogrammetry utilizes
a Taylor's series expansion about some approximations for the variables
involved. The resulting linearized equations, as customarily written

in adjustments, will be of the form

F_ = A v + B A + F° = 0 (2.20)

in which A represents the Jacobian matrix of the functions with respect
to observed quantities, and V the vector of observational residuals.
The B matrix in Equation (2.20) is the Jacobian of the functions

with respect to -the parameters of the transformation, and A represents
corrections to approximations for these parameters. The F° vector

in Equation (2.20) represents the numerical values of the functions
evaluated at initial observation values and parameter approximations.

The final estimates of the observations are given by

(2.21)
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in which L° is a vector of a priori values of the observations.

For the problem under consideration,

L = (2.22)
2,1

in which the image space coordinates for each point will be considered

as observations. The final parameter estimates are

X = X° 4+ A ) (2.23)
q,1 q,l a,l

in which X° is a vector of approximations and q is the total
number of parameters. Of these q total parameters, 3 will represent
the object space coordinates (X, Y, Z), and the remaining p = g - 3
parameters will represent those parameters necessary to the functions
used to model the six exterior orientation elements.

Consider, first the linearization of the collinearity equations
as given in Fquations (2.18). The functions may be written in the

short form

(2.24)

1t
o

F = tan y/c +

=l
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where

U X - Xc
v = M Yy - Y, (2.25)
3,3
W A - Z
The elements of exterior orientation are functions of time (and
hence x), and may be written in functional form as
XC = XC (E—X’ X)
YC = Yc (-E-Y’ x)
7 = 7. (Py, %)
fg»
¢ ¢ (2.26)
w = o (B x)
o = ¢ (Bys %)
K = « (B, x)

where EX’ Ey: EZ’ Ew’ E¢, EK are vectors of the specific parameters
in each of the given functions. If polynomial forms are assumed
for these functions, these vectors, will contain the polynomial -
coefficients of the functions. For example, if it is assumed that

the aircraft altitude Z, is represented by the second order polynomial

then the EZ vector would be of order three and of the form
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The linearized form of equations (2.24) may be written in matrix

notation as

._F..=_E_°_+_‘[fl6y+_i§__5_+ Bo Ao = _O_ (2.27)
2,1 2,1 2,1 2,3 3,1 2,6 6,1 2,1
in which
At = [sX &Y &Z] (2.28)
3,1
it = [8X, oY, 6Zc Sw 56 &l (2.29)
6,1

and A, B and ép are Jacobian matrices of the collinearity equations
with respect to ¥, the (X, ¥, 7) cocrdinates, and the exterior
orientation elements respectively. The functional dependency of

the Ao vector is now introduced, in linearized form:

5 C A
5Xc = X X + §x
l.,r r,1 dX
§, = Cy by 4+ g ex
1l,s s, 1
§Z. = c; Ay o+ & sx
¢ - 7 7
1, t,1
o . (2.30)
Sw = w Dy + 4, 8%
1,7 f,1
- C A
6¢ = 9 é + d¢ 8X
l,g g,1
o = G Be o+ g8

o
o2
=3
[
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in which the C terms are Jacobian matrices of the functions assumed
with respect to the parameters, the A vectors are corrections to

the functional parameters, end the d terms are derivatives with

respect to the observed gquantity x. Using (2.30), equation (2.27)

becomes
Cyx 7 é.x—l
Sy Ly
] ]
= o B
F £+£15~Y+§A+§p ' '
1 ]
Ce | |2
. - e
(2.31)
ay |
dy
1]
+ ED §x = 0
1]
1
dK
or
P = F + B,Déx + A Sy + BA + B, CA =0 (2.3
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To get (2.32) in the conventional form of (2.20) then
p) A
6,1 2,1
C

¢) B = [__l?_j_
6,p 2,3 2,p 2,3

mZ!>
}0‘
1
[\)f\
td .

E..?.

B = [
2,p+3

6
vt = [8x 8y]
1,2
i T R e
AF = At At at A% A%, AT 8x SY 87
= — ———
1,0 [; A TY T2 1,/ 1.8 1.n .}

EES

1,p 3,1

where p=r+s+t+ f+gt h = the total number of parameters
in functions of the exterior orientation elements.

Tn order to evaluate the matrices in Egquation (2.32), the

following relationship for a quotient of two functions, may be utilized

H 3G - G 31

U B %[_B_q 9_21{.] (2.33)

Where p is any independent parameter.
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Utilizing this relstionship the Jacobian matrices may be evaluated:

.- [eE, oE, 3F 23, 2F 3
: vl e e
C C
B
_o =
2,8 r, aF, ¥, 2, ¥, IE,
aX- oY YA 3¢ oK
L C (o]
U g 4 '
N [-my, + §7 By ] [-m, + 7 By, ] ['m13+wm33]‘
== ' (2.34)
|
fon + Tm ] [om, + Syl [omgy + i mgs]
o1 T W 31 o2 T W 32 23 T W 33" |
|
| g )-m (Y=Y )}]
|[mlg(Z—Zc)—ml3(Y—Yc)—U/W{m32( e/ ™33 e :
|
| o ) vy oy _ |
l[mez(z zc) m23(Y YC) V/W{m32(Z Zc) m33(Y YC)}] l
|
‘[—W cos k ~U/W (U cos k -V sin «)] (v]
|
:[ W sin ¢ -V/W (U cos k =V sin «)] [-U]
3F, - 0 .
& ayl
21 = = 2 (2.35)
3F, 1 sec (y/c)
oy c
L __




| oF. 3T, oF, |
. ? e 7
B =
2,3
9F, Fy 3F,
| 3% oY 37 _|
o W ) (2.36)
(myy - Um m, - Umn m.,-Umn
- 1 117 T e T T 13 7 "33
W
( - Vmy) - Vomys) ( - ¥V ma3)
el T & 3L o2 T o N32 ez T4 73

The C, D matrices will depend upon the functional forms assumed
to model the elements of exterior orientation. As an example, if

second order polynomials are assumed for these functions, then

1 x 20 0 0 . .« « « « O]
0 0 0 1 x ¥ 0
c =
6,18
o000 . . . . . . 1x X2
n—PlX + 2p2x xj
P1Y + 2p2y X
D
6,1 =
| P1c * 2P X

(2.37)

(2.38)
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Finally, the F° matrix may be written as

_ i .

W’o

tan (y°/c) + ¥°

L We_

(2.39)

in which the "°" indicates the evaluation at the original observa-

tions and parameter approximations.

An alternate linearized form may

Fq (xc-x)+(z-zc)%:=
(Yo -Y) +(2-25) ¥' =
wl

1)

be obtained from Equation (2.19):

(2.40)

in which the auxiliaries U', V', W' are defined as

! 0

A = Mt {tan (y/c)
3,3

W' -1

For this case, the linearized equations mey be written in the same

form as Equation (2.32), and the Jacobian matrices may be evaluated

as
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3F, 8F; 3% 9F; dF; 23F
) 3%, °Y, 3Z, du 3 3
B'y =
2,6
3F. 9F_ oF_  9F, JF, OF
9o 9%5 9,
| 3%, 3% 322 e a6C e
[¢] (o]
1 o -U u'v(z - Zg) :
= W ' '.
o 1 v -[1+v?Z(z -2
W' ﬁvZ '
(2.41)
5: 7 —'Z (- V' sinw + W' cosw * %:2 cosw) ;
| a
i 72 - 2,(U" sine + V'U' cosw) i
T W 3
1] — t -
:, tan(y/c) (-myq * %' ml3) 7 w'-Z:—‘
1
H tan(y/c¢) (-m,,, + V' 7 - 7
(y/e) (-my, - m13) e
ﬂé_F_'T E - U 1
el o1 T =, 723
A, = = (z -12.) sec?(y/c) (2.42)
2,1 W'
3F. T
K2) oo — VT
Lay B L W' 3_

. -1 0 ur/m’
B! = (2.43)
0 -1 VANA'A
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And the C, D matrices would be as previously defined. The F'°

vector is

(X o _ XO) + (ZO - ZO ) U!O
pre = ¢ ¢ e (2.h)
2’1 (Yoc - YO) + (ZO - ZO ) _V_'O
wlo

c

These linearized collinearity equations may also be used to derive
the differential displacement equations (2.16). (see Appendix A).

Tt has been the purpose of this chapter to provide the deriva-
tion of the most general forms of analytic expressions which may
be used to analyze the geometric aspects of MSS data recording.
In the following chapter these general expressions will be used to gen-
erate algorithms for the purpose of restituting MSS data arrays.
In addition, alternate restitution methods based upon stochastic
concepts rather than the known geometric relationships will be

introduced.
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3. RESTITUTION OF MSS DATA ARRAYS FROM SINGLY SCANNED AREAS

The term "restitution”, as used in this investigation, indicates
the processing of MSS data arrays in an attempt to generate within
the spectral arrays, element positions which will represent a plan-
imetric orthographic projection. If a display of the arrays'is
done after such processing, the resulting image would appear as
a map substitute, much like the more conventional orthophoto.

The term "rectification” has also been used by other investigators
to denote this process.

In this chapter, methods of restitution for MSS digital data
arrays are presented, and the advantages and disadvantages of each
method enumerated. In all of the discussion presented, it is assumed
that only data from singly scanned areas are available. In the first
section, procedures utilizing resampling algorithms are presented.
These algorithms are useful as an initial step in order to simplify
subsequent, more refined procedures. The second section deals
with parametric methods using collinearity equations and polynomials
which are derived from the linearized form of collinearity equations.
Alternative methods based upon stochastic rather than deterministic
concepts are presented in section three. These methods are denoted
as nonparametric methods. Section four contains a discussidon of

the problem of assigning element elevations. These elevations may
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be utilized in the parametric methods of restitution. Finally,
special techniques useful for restitution of MSS digital data, as
oﬁéoéed to continuously recorded data, are presented in section

five.

3.1 Resampling Algorithm

Under the assumption of ideal orientation of the sensor, the
date generated by the MSS in the direction of flight, or X direction,
represents an orthographic projection with no further processing.
Further processing would be required, however, in the direction
perpendicular to flight, along each scan line, to remove the scan
angle effects and topographic relief displacement. This may be ac-
complished using resampling algorithms which operate on a single
scan line at a time. The purpose of such algorithms are to digitally
resample each data array line such that each element in the resampled
line contains spectral values representing ground elements having
equal dimensions in the Y direction on a datum. After applying
such algorithms, the resulting arrays may still be in error due
to the following:

1.) The use of such processing is based upon the assumption

of perfect orientation, and the effects of changes with

respect to time in the orientation elements Xc, Yc, ZC,
w, ¢, Kk are neglected, which may result in appreciable
image position errors.

2.) A lack of perfect synchronization between the aircraft

velocity and angular scanning velocity, as well as the
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difference between the angular resolution size in the

x and y directions (B and v, see Figure 1.16), results
in a differential scale in the x and ¥ directions after
processing.

Nevertheless, these resampling algorithms have several advantages:

1.) They are computationally efficient. The processing of one
scan line at a time requires only a small image point
buffer within the computer, and the computing time for
such algorithms is relatively small.

2.) The algorithms result in the correction of image displacements
due to panoramic recording. The arrays resulting after
processing "look better" upon display, and may thus be
useful for interpretation and identification of control
points.

3.) These algorithms may be useful as an initial step in process-
ing. Subsequent more refined algorithms for further geo-
metric processing may therefore be simplified. For example,
the piecewise polynomial to be discussed in Section 3.2.2
will contain fewer terms if the arrays are first processed
in this manner. Some of the nonparametric techniques to
be discussed in Section 3.3 require that the arrays be
first transformed to a trend surface, and the resampling
algorithms accomplish this.

This section is devoted to the derivation of resampling algorithms.

The derivations consider two cases, the first of which deals with
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the correction of scan angle effects only, under the assumption
that the object space points have a constant elevqtion, and the
second deals with a generalization to include topographic relief

displacements.

3.1.1 Resampling to Correct Scan Angle Effects [95]

The purpose of this algorithm is to resample the data so that,
after resampling, every sample element in the data array represents
an element with equal dimension in the Y, or along scan, direction.
That is, every scan line after resampling contains the same number
of elements as before resampling, but object space elements are
equally spaced along the d;tum. The elgorithm developed by Phillips
[95] at LARS is presented here.

Figures 3.la and 3.1lb represent the geometry of this resampling
procedure, with 3.1b being an enlarged view in the vicinity of the
sensor. Referring to these figures, the following parameters may
be defined:

h - flying height above datum defined as before by h = (Zc -2),
where 7 is the elevation (assumed constant) of the datum
surface

W - length of the scan line in object space

N - total number of samples per scan, constrained to remain
the same before and after resampling

n - number of samples to right of nadir (if symmetric scanning
is employed, as is usual, then n = N/2 and ny = o)

! - sample number after resampling
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Figure 3.1. Resampling to Correct Scan Angle Effects
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S'J - spectral value to be placed in the j-th position by
resampling

UJ - sample number in the same line in the array before resampling
corresponding to the j-th resampled position, to be
solved for by the resampling algorithm

L; - integer portion of Uj

CJ - fractional portion of U,

SLJ - spectral value stored in position Lj in the array before
resampling

dj - distance along datum from beginning point of sampling
to position J in the resampled array

The variables 8, vy, a, and sensor constant c are as described

in Section 1.k,

With the above variables, several relationships may be written.

The scan line length is given by
W = h ten(ny) + h tan(Ny - ny) (3.1)

After resampling, every sample along the datum has the same dimension

in the Y direction along the scan, defined by
Y = W/N (3.2)

From Figure 3.la, the distance dj may be written, in terms of sample

widths as

dy = Jw/m) - (1/2) (W) = (2§ - 1) w/N (3.3)
2
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This distance may also be written in terms of sample angle (y) as
dJ = h tan(ny) + h tan(UJY - ny) (3.4)

Equating the right hand sides of (3.3) and (3.4), and solving for

Uj yields

v_r_[ej-l
Uy = ny + tan"! | hlW | 2 J- tan ny (3.5)
Y

If Equation (3.1) is substituted into (3.5), the final expression is

(23-1)

1
Uy = n +y tan~! [(tan ny + tan{Ny - ny)) 2N - tan ny | (3.6)

Figures 3.2 and 3.3 depict this relationship in graphical form.
Figure 3.2 shows a plot of Uj versus j for a real data case, with
v & 6 mrad, and N = 222. Figure 3.3 represents the image displacement
Uj - j versus j. The slight lack of symmetry in this example is
due to the fact that, for this particular flight, n # N/2.

If the quantities S'j, S'p, « « + Blgs o - - S'y (see Figure 3.la)
represent the spectral values to be stored after resampling, a
linear interpolation scheme may be used to assign the S"j values.
If the quantity Uj computed above 1s considered to be composed of

an integer part Lj and a fractional part Cj such that

Uy = Ly+ Cy (3.7)
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then the S'j values may be interpolated from the spectral values
originally stored in the array before resampling. The spectral

value assigned to the j-th position would then be

s', = 8 +¢, (

3 L 3 SLj+1 - SLJ) (3.8)

Alternatively, if a nearest neighbor approximation is to be
used, as advocated by Markarian, et. al. [65], the resulting function
would be

<
s, = 4t E I (3.9)

SLj+l Cj > 0.5

Resampling in this manner results in the removal of the pan-
oramic distortion within the data arrays. This processing differs
from the usual reduction of panoramic image coordinates to a plane
"equivalent frame photograph" position as presented by Case [b1].
The ef}ective plane photograph position by Case would by y'j = ¢ tan ej,
in which the panoramic image position is projected to a plane tangent
to the cylindrical recording surface. The result of resampling
is to project the pandramic image onto a plane at some effective
principal distance c'. The case under consideration is illustrated
in Figure 3.1b, for the symmetric case (n = N/2). Since the total
number of samples is constrained to remain the same, and each sample
will be displayed with the same dimension before and after resampling,
the distance Ob before resampling and O'b' after resampling must

be the same. This is equivalent to imaging on a plane, indicated
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by the dashed line in Figure 3.1b, lying at some equivalent principal

distance from the perspective center and given by

e
et = k, (3.10)

where k, is a function of the number of samples along the line
and the angular resolution (y).

From Figure 3.1b
0'p' = 0Ob
hence
(c/kq) tana = ca (3.11)

for symmetric scanning of o on either side of the scanning axis.

The above equation may be solved for ka

tano
ky = « (3.12)

and subsequent image positions on the resampling plane are given by
y' o= ¢! tan(ij-a) = c' tand, (3.13)

A simplified example may be illustrative. Consider the case
of symmetric scanning, in which n = N/2 and ny = a. For this case,

the resampling algorithm may be written

1 21 -1
Uj = n+ vy tan™! N tan ny - tan ny
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or

1 2j -1
Uj = n+y tan™! N tan vy - tan vy

If it is assumed for this simplified example that the total number
of samples per line is eight (N = 8), and that the angular sampling
interval (y) is 0.1 radian, then the total scanning angle on either
side of the scanning axis (o) will be 0.4 radian. Referring to
Figure 3.1b, to determine the spectral values to be placed in the

third sample position in the resampled line (J = 3),

1 [(2)(323 - (1)

U, = k4 + 0.1 tan tan 0.k —tmzoAJ
or

U3 = 2.26

This represents the sample position along the line in the uncorrected
array which would be used to assign spectral values to the J=3

sample position in the resampled array. If the linear interpolation

method is used, then

L3 = 2

C3 = 0.26
and the spectral value assigned would be given by

8'3 = S, + 0.26(83 - 32)
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If, on the other hand, the nearest neighbor method is applied,
then the spectral value assigned to this resampled position for

each channel would be given by

3.1.2 Resampling to Include Topographic Displacement [96]

The algorithm given by Equation (3.6) is valid only for the
case in which element elevations are assumed constant, i.e. ZJ = 7
for all j. A generalization of this algorithm was developed by
Trinder [96] and corrects simultaneously for scan angle effects
and image displacement due to terrain relief. The result to follow
is a slight modification to that algorithm.

Figure 3.4 shows the geometry of this resampling. The illustra-
tion is similar to that of Figure 3.la except that the actual topo-
graphic surface has replaced the assumed flat plane representing
the terrain. It is assumed that an elevation wvalue, ZL , is
available for each element in the uncorrected array. With this
assumption, the variables given in the preceding derivation are
used except that a flying height above terrain may now be defined

for each element as
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The derivation proceeds in a manner similar to that given for
the preceding case, and the resulting algorithm may be given by

(See Appendix B)

1 . 1 [23 -1
U: = n+y tan *\h 2N h, tan(ly - ny)
. k3 " (3.14)
21 - 1

+ 2N tan(ny) - hy tan(nyi]

The spectral values may be assigned after resampling using
either of the two methods cited in the preceding section, i.e.,
by linear interpolation of spectral values from the uncorrected

arrays, or by a nearest neighbor approximation.

3.2 Parametric Methods of Restitution

In this section, methods of restitution based upon the MSS
collinearity equations and piecewise polynomials are discussed.
These methods are called "parametric methods”, since an attempt
is made in them to estimate scanning parameters. In both of these
methods, an attempt is made to estimate the parameters of functions

assumed to represent the behaviour of the scanner orientation elements.

3.2.1 Restitution by MSS Collinearity Equations
Probably the most logical mathematical technique to generate
restituted arrays of singly scanned data is the direct use of the
M3S collinearity equations as given in Equations (2.19). These
equations represent most closely the actual physical situat}on as
it occurs during recording. After the assumption of appropriate

functions to represent the behavior of the exterior orientation
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elements, a solution may be obtained using sufficient object space
conirol points to apply least squares. For this purpose, the ex-
panded linearized form of the collinearity equations, as presented

in Equation (2.32), may be utilized. An iterative technique employing
successive relinearizations about updated estimates from each
preceding iteration is utilized. The final result is the determination
of other points at any desired scale, as a restituted array for

each channel representing a single wavelength band. The method

is subject to several limiting factors.

1.) Functional forms, such as polynomials or harmonics, repre-
senting exterior orientation variations must be éssumed.
If the actual stochastic variation of these elements is
not reasonably approximated by these functional forms,
serious errors may result. To partially overcome this
difficulty the flight line muy be divided intc sections,
each having a separate set of coefficients.

2.) If the flight line is treated in sections, it is necessary
to introduce constraining conditions at the section inter-
faces. This insures obtaining the same results for each
element along an interface frum either side of the inter-
face. (Thus the least squares solution must consider
the problem of parameter constraints.) Tnis problem is
addressed in more detail in Section 3.2.3.

3.) Some exterior orientation elements are highly correlated,

and therefore recovery of all such elements may not be
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possible using singly scanned data arrays. A previous

example demonstrated this correlation for the ¢ and X,

terms. Under the conditions of flat terrain it is not
possible, using singly scanned arrays, to differentiate

between the effect of a §¢ change and a GXC change. This
result was verified in real data tests using arrays obtaiued
over terrain having relief differences of up to 300 feet (90 m).
Referring to Figure 1.21a as a first approximation, the

change in X object space coordinate may be given as
§X = (2, -12)¢

But the effect of this change may not be distinguished

from the effect of =a GXC change. Thus, if functional forms
are assumed for the Xc, Zc terms, the ¢ term may not be
recovered. Koneeny [7] and Derenyi [22] note this problem
and suggest that recording of selected exterior orientation
parameters to sufficient accuracy represents a possible,
although expensive, solution. Kratky [21] notes the problem
as well, but suggests that acceptable restitution of the
image may be accomplished even though absolute values of

the elements will be in doubt.

If topographic relief displacement is to be compensated

for during restitution, some method of assigning an elevation
to each data array element must be devised. Since only

.«

singly scanned data arrays are being considered, the source



13k

of such elevation information must be external to the data
arrays themselves, such as existing topographic meaps.
The problem is further Eomplicated in that these element
elevations must be assigned prior to processing for resti-
tution, i.e., they must be assigned to the uncorrected
arrays with acceptable accuracy. This problem is dealt
with in Section 3.L.
In summary, although the direct use of the MSS collinearity
equations is accompanied by some problems which must be considered,
these equations represent the best obtainable mathematical model
for scanngd imagery, and must be considered as the basic restitution
method on which other approximations are based. In the next section,
the use of polynomials derived from the linearized collinearity

equations is investigated as a restitution method.

3.2.2 Use of Piecewise Polynomials

Since the recovery of absolute orientation parameters, based
upon the M3S collinearity equations and availability of control,
is not possible for each individual scan line, the use of such
collinearity equations requires an approximation. It may be reason-
ably argued therefore that a restitution based upon another math-
ematical model could result in final element positions having posi-
tional accuracies approaching those obtainable using collinearity.
One such possibility is the use of piecewise polynorials. Using

appropriate simplifying assumptions, these polynomials maey be derived
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directly from the more rigorous collinearity equations and thus
represent a logical step in a search for an alternative mathematical
model.

Two cases may be derived. In the first case, it is assumed
that the data are panoramically recorded. In the second case, the
data are assumed to be resampled such that they are effectively
recorded upon a planar surface (i.e. an attempt has been made at
eliminating the panoramic effect).

3.2.2.1 Polynomials for Panoramic Recording. Fordthis case,

Equations (2.16) may be utilized directly. The object space coor-
dinates are given by combining the ideal positions from Equations
(1.11) and (1.12), and the differential changes from Equations (2.16).

It h=2, -2, and both Z, and Z are assumed constant, then h is

[
a constant, and the transformetion from the two dimensional image
space into an object space which has been approximated as two di-

mensional may be written

>
il

X * GXC - hé¢ ~ h tan 6 Sk
(3.15)

=
"

Y, + 8Y  + h ten 0 + tan 6 82, + h(1 + tan? 6)éw

Any number of polynomial forms may be defined, depending upon
the functions selected to represent the variation of exterior
orientation elements within a section. As a first example the
assumption is made that the change in each orientation element

(i.e., 6X GYC, etc.) varies as a linear function of x within

‘CQ

each section, or
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GXC = AX + BX X

GYC = A.Y + BY X
- 87 = A ; B, x
c Z 2
(3.16)
Sw = Aw + Bw b'd
§¢ = A¢ + B¢ x
Sk = AK + BK X

These relationships may be substituted directly into Equations

(3.15) with the results, after regrouping, of

X = (X + Ay - hAg) + (By - hBy)x - hA, tan6 - hBx tane

Y = (Yo + A, +hAy) + (By + B )x + (h + A )tane

7)
2 2
+ BZ x tant + hAm tan<6 + hB,x tan<8

If the first two terms of the series expansion are taken for
tan6(tand = ¢ + -%93), and using 6 = y/c (c‘is the effective
panoramic recording radius), the resulting polynomials are
X o= A+ Aox o+ Agy + (A3/3cP)y3 + Ay + (4),/3¢2)xy3 (3.17)
Y = By +Byx + Bgy + (By/3c?)y? + By + (B,/3¢2)xy® .
* Bgy? + (2B5/3c2)y" + (B5/9¢*)y® + Boxy?

+ (2Bg/3e2)xy" + (B6/9c“)xy6
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in which

Al = Xc + AX - hA¢ Bl = Y, + AY + hAw
A2 = Bx"'hB¢ B2 = BY+hB0J
A3 = —hAK/C B3 = (h+Az)/C
Ay, = —hBK/c By, = Bz/c

Bs = hA /c?

Bg = hB,/c?

The last six terms of the second equation of (3.17) will be zero

if the system is roll stabilized (i.e. w = 0). Note that the original
12 perameters of Equations (3.16) have been consolidated to only

10 parameters,’since the parameters for the §X, and §¢ terms always
appear together, and therefore cannot be distinguished using singly
scanned imagery of flat terrain. These parameters are A; (i =1, W)
and Bj (3 =1, 6).

If the exterior orientation variations within a section are

assumed as second order polynomials of the form

- 2
8X, = Ay * Byx + Cyx

= . 2
éYc = AY + BYx + Cyx
82, = Ay +Bx+C x2

c 7 Z (
3.18)

Sw = A, +Bx+ Cpx?
§¢ = Ay + Byx + C¢x2
Sk = A+ Box + Cex?
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and these relationships are substituted directly into (3.15), the

resulting polynomials are

X o= Ap+ Ax+ Apd + Ay + (8)/32)° + Ay
+ (Ac/3c2)xy3 + Apx2y + (Ag/3c?)x%y3
5 6 6
(3.19)
Y = Bl + B2x + B3x2 + Bhy + (Bh/3c2 )Y3 + BS}W
+ (Bg/3c2)xy3 + Bex?y + (Bg/3¢?)x%y? + By’
+ (2B7/3¢2)y“ + (37/90“)y6+ B8xy2 + (238/3c2)xy“

+ (Bg/9c*)xwy® + Box?y? + (2Bg/3¢?)x*y" + (By/9¢*)x2y®

in which
By = Xt Ay - by 51 = Yo * Ay + by
A, = By - hBy B, = By + hBy
Ay = Cy - hCy B, = Cy + hC,
Ay, = -hiAc/c B, = (h+ A/
A = -hB,/c Bg . = BZ/c
Ay = -hC/e Bg = Cylc
By = hay/c?
Bg = hB,/c?
By = hC,/c?

The last nine terms of the second equation of (3.19) will be zero
if the system is roll stabilized (w = 0), since these coefficients
are dependent upon w only. The original 18 parameters in

Equations (3.18) have been reduced to only 15 in (3.19) because
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of the inability to separate parameters for SXC and 8¢ using singly
scanned data from flat terrain. The parameters are A, (i =1, 6)
mdBi(J=l,9L

In both of these examples it has been assumed that all orien~-
tation elements were modeled using the same order polynomial.
This need not necessarily be the case, since different order poly-
nomials may be used. (e.g. X = Ax + Byx + Csz + Dan,
Yo = Ay + Byx + Cyx?, Ze = Ay + Byx, &k = Ac).

These polynomials represent a transformation from a 2 dimensional
image space into a 2 dimensional object space. The objJect space
is actually 3 dimensional, and the assumption has been made that
h is constant in order to perform this transformation. This assumption
may be relaxed if Z coordinates have been assigned to the data arrays
prior to processing. In this case, h is no longer a fixed constant,
but instead, h = Z, - Z may be used in Equations (3.15), where
7. denotes the elevation assigned to each point, and Z, is the constant
nominal flying altitude taken from the flight log. For linear func-

tions, the polynomials when Z is included take the form

X = Ap + Agx + Agy + (A5/3¢2)y% + Mpxy + (8),/3¢%)xy?

- 2l- A5 - Agx + (A3/Zc)y + (A3/3¢%Ze)y’

+ (Ay/2c)xy + (4),/3c*2e)xy?]

, (3.20)

Y = By + Box + By + (B3/3c2)y3 + Byxy + (B),/3¢?)xy3

+ Bsy? + (2Bg/3c?)y"* + (B5/9¢*)y® + Bgxy?

+ (2Bg/3c%)xy™ + (B6/9c"‘)xy6 - ZL(Bscz/Zc) ¥ (Bs/Zc)y2

+ (2Bg/3cze)y" + (B5/9c*Ze)y® + (Bge?/2e)x + (Bg/Ze)xy?

+ (2Bg/3c2Zc)xy* + (Bg/9e*ze)xy® + (1/e)y + (1/3¢%)y°]



in which

"Al = XC+AX_ZCA

hp = By - 2.8,
Ay = -Z.A/c
Ay = -2B//c
As = A

Ag = By

The BS’ Bg coefficients will become zero if the system is roll

stabilized (w
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Yc + AY + ZcAm
BY + ZcBm

(Z, + Ag)/c

Bz/c

Zehy

ZoB,,

/c?

/c?

0) and the corresponding terms in Equations (3.20)

will drop from the second expression.

Similar expressions, with

a corresponding increase in the number of terms within the polynomials

may be derived under the assumpticn of second order polynomial

variations for exterior orientation elements within sections.

Again polynomials of different order could be assumed for the dif-

ferent orientation elements.

Other investigators, notebly Kratky [21], have considered the

possibility of approximating the behaviour of orientation elements

within a section by harmonic functions.

may be written for

8X
8Y
8Z
Sw
6¢

Sk

c

C

c

exterior orientation elements of the form

Ay

Ay

sin

sin

sin

sin

sin

Cxx + BX
CYx + BY
sz + BZ
wa + Bw
C¢x + B¢

Cex * By

coSs

cos

cos

cOos

cos

cos

In this case, functions

{3.21)
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These expressions may be substituted into Equations (3.15), which
results in a complicated harmonic equation set. Kratky, in a
subsequent communication with this investigator, indicated that

use of these harmonics was troublesome. It was found that, umless
very close estimates of the parameters in these functions were known,
it was difficult to obtain convergence for the parameters using
least squares.

3.2.2.2 Polynomials for Equivalent Rectilinear Recording. The

polynomials in Section 3.2.2.1 may be simplified if resampling is
first done using the resampling algorithms presented in Section 3.1.
The resulting data arrays will represent the data form as if the
arrays had been recorded on & planar surface at an effective principal
distance of ¢', as presented in Section 3.1.1. The algorithm of
Equation (3.6) is first considered, in which the j term would cor-
respond to the y' parameter of Equation (3.13), and Uj would

represent the corresponding position in the arrays before resampling
and hence define the scanning angle 8. Since the y' and 6 values

are teken with respect to the scan line center,

o = (Uy - n)y (3.22)
v
y' = N(J -n-1/2) (3.23)

If the assumption is made that symmetric scanning is employed, in

which n = N/2, and that resampling takes place upon a planar surface
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at an effective principal distance of ¢' = c/ka as shown in Figure

3.1b, the scan line length is given by
W = 2c¢' tan ny (3.24)
The resampling algorithm for symmetric scanning is given by

[(QJN— 1)

Us = n+ 1/y tan™! tan ny - tan ny:l

Substituting this expression for Uj into Equation (3.22) yields

(23 - 1)
tan”! l: N

6 = tan ny - tan ny:] (3.25)

Solving Equation (3.23) for J and substituting the result into (3.25),

yields
+ )
p = tan ! W tan ny - tan ny
or
C
6 = tan"! \W tean ny (3.26)

Taking the tangent of both sides of (3.26) and substituting the

expression for W from (3.2L4) results in

J_
tang = c' (3.27)
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If (3.27) is used in Equations (3.15) the resulting differential

equations become

4
1}

X, + §X, - hé¢ - (h/e")y' 8k
(3.28)
Y, o+ 8Y, + (h/e")y' + (y'/e')82Z, + n[1 + (y'/e")2 18w

=
n

Assuming h is constant, in order to accomplish a transformation
from two dimensional image space into a two dimensional object space,
and that linear functions are used for the orientation element

variations, as given in (3.16), the resulting polynomials for this

case are
X = A+ A x+ A3 v+ A xy!
5 ) (3.29)
-— L 1 1 \j
Y = By + B, x + B3 y' o+ Bh xy' + B5 y'c + Bg xy
in which
Al = X, + AX - h A¢ B, = Yc‘+ AY + h Aw
A2 = BX - h B¢ By = BY +h Bw
po - ]
Ay = -hA/e! By = (h+ Ay) /e
A, = -h BK/c' B, = BZ/c'
- 12
35 = h Aw/c
_ 2
Bg = h Bm/c'

If the scanner used is roll stabilized, the last two terms of the
second equation of (3.29) will disappear. As mentioned before, the
parameters associated with the 6¢ and GXC functions. always appear
together combined in‘the Al’ A2 polynomial coefficients, éhd hence

the effects of the GXC and 8¢ terms are not separable, resulting
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in the reduction of the original 12 parameters to 10 for flat terrain.
Thise parameters are A, (in= 1, 4) and Bj (3 =1, 6).

Noﬁe that the formulation of polynomials utilizing the resampling
algorithm does not reduce the number of parameters. The parameters
within these polynomials are dependent only upon the functions assumed
for the elements of exterior orientation, and hence are unaffected
by resampling. The effect of rgsampling is to reduce the number
of terms within the polynomials by making unnecessary an expansion
to approximate the trigonometric function within Equation (3.15).

Assuming second order polynomisls to represent orientation

variations within sections as given in Equations (3.18) results in

X = A, + X+ Ay x2 + A, y' + A '+ AL x2y!
1+ 4 3 LYy xy 6 XY
, 2 ) (3.30)
- . 1] 1
Y = Bl + B2 x + B3 X< + Bh y' o+ B5 xy' + B6 Xy
in whicﬁ
Al = Xc + AX -~ h A¢ B1 = Yc + AY + h Am
A2 = BX - h B¢ ,B2 = BY + h Bw
Ay = Cy-hCy By = Cy + h C,
A, = -hA/c’ B, = (h+4A)/c
= . 1 = '
.t\.5 h BK/c 135 BZ/c
— - 1
A6 = -h CK/C' B6 = CZ/C
v \j
B7 = h Aw/c
- 2
BB = h Bw/c'
B9 = h Cw/c'2
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Similar to the presentation in Section 3.2.2.1, the effects of
topography may be included within these polynomials by relaxing the
assumption of constant h and including the element elevations assigned
(h = Z, - 7) for each element. Under the assumption that orientation

element varistions are linear, the resulting polynomials become

X = M +hAx+ A3y +A) xy -2[- A5 - Agx
+ (A5/2.)y" + (A),/2.)xy"]
(3.31)
Y = By +3B,x+3Byy' +B, xy'+Bg y'2 + Bg xy'?
- zl(B5 e'2/2,) + (Bg/Z)y'% + (Bg c'?/2.)x
+ (Bg/z )xy'% + (1/e')y']
in which
Ay = Xt Ay - T A By = Y, + A+ Z, A,
A, = By - Z, B, B, = By + Z, B,
Ay = = 2o AJe! By = (Zo+ Ag)/e’
Ay = - I,Bg/e’ B), = By/c!
= = 12
Ay = Ay By = 7, A/e
A = By By = Zo B,/c'?

and the B5’ B6 coefficients will become zero if the system is roll
stabilized (w = 0).
If second order variations in orientation elements are assumed,

the resulting polynomial functions become

X = A+ Ay x+ Ag X2+ A Y+ A X+ Ag %2y’
- al- Ay - By x - Ag X2+ (/207" + (Ag/2C)w"

+ (A6/ZC)X2Y' ]
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Y = B +3B,x+B, 2+ B, ¥y + By xy' + Bg x2y' + B, y'2
+ Bg xy'2 + By x2y'2 - Z2l(B, ¢'2/2,) + (B./2,)y'?

+ (Bg ¢'2/2)x + (Bg/Z )xy'2 + (By ¢'2/2,)x?

+ (By/Z,)x%y'2 + (1/c')y'] (3.32)

in which

B = X+ Ay - T A By = Yo+ Ay + 7, A

Ap = By - Z_ By By = By + 7, B,

Ay = Cy-1Z,¢C4 By = Cy + Z, C,

Ay = -Z, 4/ By = (Zo+ &;)/c’

As = -17Z,B/c B; = B,/c'

Ag = -1Z,C/c Bg = Cy/c'

Ap = Ay By = Z, A /c'?

Ag = By Bg = Z, B,/c'?

b = Cy Bg = Z, C,/c'?

and the B7, B8’ B9 coefficients become zero if w = O.

3.2.3 Constraints at Section Boundaries

It has been stated previously that if a restitution is to be
attempted using the collineasrity or polynomial models, it is desirable
to treat the flight line in sections. Dividing the flight line into
sections allows the use of simpler functional assumptions for the
exterior orientation elements to approximate their actual stochastic
behavior with acceptable accuracy. If the entire flight line is
treated as one unit, the functional behaviour assumed for the exterior
orientation elements must be correspondingly more complex to yield

comparable results. On the other hand, if the flight line is treated
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in sections, control points within each section masy be used to determine
functional parameters which are valid only within that section.

This is desirable in an element by element restitution, since fewer
terms must be evaluated within the computer for each element than

if more complirated functional forms were assumed in treating the

entire flight line as a unit.

Treatment of the flight line in sections, however, introduces
some problems. If each section is treated entirely independently,
with an independent set of parameters, then restituted X, Y coordinate
discontinuities will occur at the section boundaries. To avoid
these discontinuities, introduction of cénstraints at section boundaries
is necessary. -

In using collinearity equations or polynomials, the arrays
are segmented along lines of constant x coordinate, i.e., constant
data array line number. The Joining conditions consist of the
requirement that restituted positions along the line have the same
values after transformation by either of the two possible collinearity
or polyncmial functions. Other constraints may also be considered
in which, not only positions, but derivatives of first, second,
or greater order may also be constrained to be equal along these
section borders and thus a smoothing of the imagery across section
boundaries mey be introduced. These, however, are unduly complex
and for this investigation, only the simplest case of constraints
on coordinate position along the interface are considered. This

problem may be efficiently treated if the concept of parameter con-
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straints is applied at the time of estimating the parameters by

least squares. In this caese the linearized model may be written

+BA+BA+TF = 0

| 3=
P
|3

+

ja .
>
fop!
—
w
I
W

o] = 9

in which linearized constraint equations are used to augment the
original linearized condition equations.

If, for example, the polynomial forms given by Egquations (3.20)
are considered as a mathematical model, the constraint equations
along the interface between one section, u, and the succeeding section,
v = u+ 1 may be determined as follows.

Considering the first equation of (3.20) and equating X coordinsates

from sections u and v yields

) + 8 x+ Ay y + (A3/32)7% + 4 xy + (4,/3¢2)xy?
- 2l- Ay - Mg x + (A/2)y + (A3/3¢%2.)y°
+ (/2 )xy + (8,/3¢72 )xy3])

= (A *+ A x+ Ay y o+ (Ag/3e2)y% 4 Ay xy + (4,/30%)xyd
- 2= Ag - Ag x + (Ag/Zo)y + (A5/3¢22,)y3

+ (872 )xy + (8y/3¢%2 ) xy31Y




Equating the constant terms and the coefficients of the y and

7 terms respectively yields

Equating the coefficients of

(a) + &y x)y

(A3 + Ah x)u

(A + Ag x)y

additional equations.

Since the ¢ and Zc terms sre treasted as known constants for each

[(a5/3c2) + (a/3eD)x], = [(Ag/3c?) + (8/3¢%)x],

[A3/2,) + (8,/2.) ]y

y3, yZ, and y3Z yields the following

(45/3¢22,) + (8y/3¢%2.)x],

1ko

(Al + A2 x)v
(A3 + A, x)v

(AS + A6 X)v

[(Ag/z_) + (my/2)x],

[(A3/3¢22,) + (8,/3¢%2.)x],

(3.34)

(3.35)

flight line, it may be seen that Equations 3.35 are redundant since

each of them can be reduced to the second equation of (3.3k4).

may

the

The remaining condition equations at each section boundary

be determined using the second equation of (3.20), and enforcing

constraint condition of equal Y coordinate along the boundary.

condition equations which result by equating the constant terms,

coefficients of y, and the coefficients of y2 in this constraint

as follows.

(Bl + 32 x)u
(B3 + B), x)u

(BS + B6 X)u

(B, + B, )y
(B3 + B), x)y

(Bg + Bg x)y

(3.36)
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The additional constraint equatioms which mey be formed by equating

y3, y*, ¥8, 2, Zy2, Zy*, Zy and 2Zy3 coefficients, respectively,

v

are

[(B3/3¢2) + (By/3¢2)x], = [(B4/3¢2) + (By/3¢2)x],

[(2B5/3c2) + (2Bg/3e2)x], =

[(B5/9c*) + (Bg/9¢*)x], = [Bg/9c) + (Bg/9e¢*)x],

[(Bge2/z,) + (Bge2/20)x], = [(Bge2/z,) + (Bge?/z)x],
[(B5/2.) + (Bg/z.)x], = [(Bs/z) + (By/z,)x],

[(2Bg/3¢22,) + (2Bg/3¢27.)x], = [(2B5/3¢22,) + (2Bg/3c22,)x],
[(B5/9¢%Z,) + (Bg/9cHz )x], = [(Bg/9c%z,) + (Bg/9cz,)x],

/e = 1/c

1/3e3 = 1/3¢3

[(2B5/3¢2) + (2Bg/3¢2)x],,

(3.37)

All of these equations are either identities, or may be reduced to

one of the equations of (3.36) and are thus not independent.

final set of six independent equations necessary to enforce the

constraint condition at section boundaries when utilizing the method

of piecewise polynomials may be written by combining Equations (3.3L)

and (3.36) as follows

(Al + A, x),

(Aq
(A
(B4
(B3

(BS

+

+

+

Ah x)u
A6 X)u
B, x)y
Bh X)u

Bé x)u

(4 + A5 %),
(A + Ay x),
(A5 + A¢ x)
(By + B, x)y
(B3 + By, x)y

(Bg + Bg x),,

(3.38)
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The x image coordinste value in these equations represents
the constant image x value at the boundary. Thus these equations
contain only parameters and mey be linearized and used to augment
the linearized condition equations during the process of least squares
adjustment. If higher order polynomials are assumed for the elements
of exterior orientation, the number of constraint equations will
remain the same. However, each constraint will contain higher order
terms in x.

If the collinearity equations are utilized the necessary con-
straints may be written quite simply by enforcing the conditions
that, along the béundary between sections, the values of the exterior
orientation elements must be the same whether computed using the

parameters from section u or those associated with section v.

Xeu = Xev
Teu = Yoy
feu = Fov (3.39)
Wy = Wy
oy = 9y
Ku = Kv
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For example, if linear variations are assumed for these elements

within each section, the necessary constraint equstions are

-

(Ay + By x)y = (& + By x)y
(Ay + By %)y = (Ay + By x)y
(A7 + By x)y = (Ag + By X)y
(Ay + By x)y = (B + By x)y
(Ay + By %) = (44 + By x)y

+
o
g®

(A + B x)y = (A +3B,

It is noted that the number of equations is the same as in the
piecewise polynomial formulation, since the piecewise polynomials
simply represent a different parameterization based upon a linearized

form of the same collinearity equations.

3.3 Nonparametric Techniques

The preceding parametric methods of restitution attempt to
esﬁimate the coefficients of polynomials used to approximate the
stochastic variation of scanner exterior orientation elements.
Completely different techniques for restitution ef remote sensing
imagery have been applied by Leberl [L45, 68], which may be termed
"nonparametric" or '"stochastic". The methods outlined by Leberl
are in turn based upon earlier work by Pinkwart [97] and Schatz [98].
In this case, the difference in coordinate values in the x and y
directions between uncorrected and restituted arrays is assumed to
be a realization of a two dimensional stochastic field and attempts

are made to obtain estimates for these differences by nonparametric
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interpolative methods. No effort is made with these methods to
estimate parameters associated with orientation. An estimate is
made of the correlated portion of these coordinate differences,
under the assumption that the mathematical model governing these
correlated effects (often improperly called "systematic" effects)
is not known.

The use of these methods assumes that a data array is a realization
of a stationaryqrandom function, i.e., a random function for which
the associated probability distribution functions remain unchanged
with a shift along the independent variable axis or axes. Furthér,
the property of ergodicity is assumed for the data array, which
allows the use of values at different points in a field from only
one of its realizations instead of many values at one point, which
would require many realizations of the random field. References [109]
and [114] may be consulted for a detailed discussion of stationary
random functions and ergodicity.

In addition, for certain of the nonparametric techniques to be
discussed, particularly the linear ocnes, it is desirable to assume
+hat the data array is isotropic. That is, that the correlated x
and y mismatches between uncorrected and restituted data arrays
are independent of coordinate direction, and dependent only upon
distance between points. Thus, the field is assumed to be point
symmetric. This assumption is definitely not valid for uncorrected
MSS digital data arrays,.and preprocessing is necessary in ‘order

to make this assumption applicable.
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3.3.1 Arithmetic Mean [L5, 98]

In this method, estimates of mismatch in the x and y directions
are ‘computed for each data.array element based upon a known vector
of such differences for a control point set. The control point

vector of differences is defined as

(3.%0)
Syi T ¥i - Yi

for i = 1,...n control points, where Xij, ¥4 represent the uncorrected
image coordinate values for the i-th control point, taken from a

gray scale display of the arrsy, and X;, ¥; are the corresponding
objéct space coordinates of the same control point, after a conformal
similarity transformation to the image coordinate system. Estimates
of the x, y differences for an arbitrary element within the array

are defined by a simple weighted arithmetic mean of the form

(3.41)

in which the w; terms are weighting factors assumed to be dependent

only upon the distance within the arrsy between the element in
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question and the control point being considered. Empirical weighting

functions are then assumed [L45, 98] of the form

or (3.42)

in which

[o7]
1]

5 x -2 )%+ (y - 7502

is the distance considered. The choice of the power m to be used
is relatively arbitrary, depending upon the desired amount of cor-
relation between widely separated points. If it is desired that
correlastion between points decrease rapidly, a choice of ﬁ =3
is suitable, in that correlation will drop off rapidly with distance,
and only a nominal amount of computation is required.
If this technique is applied directly using uncorrected data arrays
and object space control whieh has been scaled to the image, the
results will be acceptable in the x direction, but serious errors
will remain in the y coordinate direction. The reasons for this are
two~fold.
1.) The arithmetic mean is & linear algorithm, both in x and

Y. While linearity of the data arrays can be well approximated

over limited areas in the x direction, the recording of

the data arrays in the y direction is panoraﬁic in nature

and hence non-linear.
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2.) Due to the nature of scanning, the y direction in most

instances will not have the same sceale within the datsa
arrays as in the x direction. (Scales in the x andy direc-

tion will be the same only if the 8 and y semple angles
are the same, and the period of rotation of the scanning
prism is perfectly coordinated with the aircraft velocity.)
Thus the data arrasys, or images have differential scale
values in the x and y directionms.

In order to effectively utilize the method of the arithmetic
mean, then, it is desirable to pre-process the data arrays in a
simple manner to circumvent the problems outlined above. To handle
the first problem, each element y coordinate, or column number,
would be processed using the resampling algorithm of Equation (3.13),
in order to remove panoramic displacements. To resolve the second
problem, these resulting column values would then be scaled to the
object space control Y values, to remove differential scale.

Thus, the processing of the data arrays by arithmétic mean

would more realistically be defined by

(3.43)

in which y'; represents the image y coordinate values after pre-

processing.
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3.3.2 Moving Averages [L5, 98]

The method of moving averages represents a generalization
which allows greater flexability in the point mismatch estimate
computations than does the arithmetic mean. In using the method,
the x, y mismatches are to be estimated using polynomials or other

types of functions. The most commonly used examples are the linear

(affine) case

0>
!

= a,+ a x +
X (o] 1 a.2y
R (3.Lk4)
Sy = by + by x + by Y
or the second order polynomial case
éx = a +8)X+ayy+ayx+a x?+asy?
. (3.45)
Sy = byt by x+byy+byxy +hy x2 + bs y?

The 85 » bi coefficients of these functions are computed by
weighted least squares utglizing the n reference points at which
the x, y mismatches are known. The weight for each reference point
is assigned as a function of the distance from the element where
the estimate is being computed to the control (reference) point,

such as the expressions of (3.42). For each point to be interpolated,

a new set of the a; b.

i coefficients must be computed using

weighted least squares.
As an example, consider the affine case of Equations (3.L4k4).

Condition equations would be written for the control points-where



X, ¥ mismatch values are known.

the x coordinate, linear condition equations may be written of the

form
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Considering the interpolation for

1 %9 y1| _ _ Exi_
8¢
Y% 1 % 75 Sx2
n,l + . a1 i = |.
oo as .
+ X5 Yn L Sxn

end the parameters (ao, ay, a2) mey be determined by weighted least

squares using the method of indirect observations (V + B A

o).

The weight matrix may be taken as

w1

An identical analysis and least squeres solution technique may be
used for the y coordinates to solve for the (b,, by, by) parameters.
Having obtained a;, b;, Equation (3.44) is then used to c;mpute

éx’ éy. The entire procedure is repeated for every point to be
interpolated.

Note that as each x, y position is interpolated, the di terms
of Equation (3.42) will vary, hence the w; terms will also vary.
Therefore, a different coefficient set (ai, bi) must be evaluated
for every point during & restitution, and the method may become

computationally time consuming.
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An advantage of the method lies in the fact that it will
ordinarily require DO pre-processing of the data arrays, as is nec-
essary when using the arithmetic mean. The "systematic" effects
of panoramic displacement ang differential X, ¥y scales gre adequately
incorporated within the estimating eéxpressions. Such bProcessing
however, may allow the use of simpler functional forms to model the
displacements in lieu of more complicated functions.

It may be shown that the arithmetic mesn method of the Preceding
Section (3.3.1) is g special case of the method of moving averages.
In this instance, only the constant terms are used to estimate the .

mismatch at the point being interpolated, or

Sx = ag
Ax (3.46)
sy = bo

For this case, the linear condition equations become for the x

coordinate

1 B

V. o+ 1 _ 5=
n, ' a, = '
] 1
1 s

L~ _XI}J

from which, using the same diagonal weight matrix EX above, the

barameter estimate becomes
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Performing the same for y, leads to results identical to those of

Equation (3.41).

3.3.3 Meshwise Linear Transformation [45, 98]

For this method, the control point set is first conmnected into
a mesh. A commonly used mesh consists of a set of contiguous tri-
angles. TFor each element to be transformed, this set of triangles
is searched to determine the one in which the element being considered
lies. Once this is determined, the transformstion is accomplished
by & linear affine transformation of the form given in (3.44),
in which the coefficients are determined uniquely from the three
control points forming the triangle in which the element is found
to lie. Three equation pairs of the form of (3.LL) are written
at the triangle vertices where coordinate displacements are known,
and these are solved uniquely for the 6 coefficients (a8, b;) required.

The method requires no pre-processing of the data, as the affine
transformation allows for differential scale values in the x and y
direction, and accomodates the panoramic effect by defining "secant
planes" in the y direction. The method is computationally efficient
in that only three points in the neighborhood of the element being
transformed are used to uniquely define the coefficients, utilizing

explicit formulas rather then least squares. The method gives
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identical results along the boundary between adjacent triangles
when utilizing the parameters associated with either triangle.

A variation of this method is termed overdetermined meshwise
linear transformation. In this case, the control point field is
used to define quadrangles, rather than a triangular mesh. For
each quadrangle it is possible to define four possible triangles
using three of the four possible points each time. Any element
within a quadrangle will fall in two of these four triangles.

The transformation outlined above may be performed on the element
for each of these-two triangles, and the final estimates of mismatch
will be taken as the average of these two, or may be determined by
the method of least squares.

The method, however, suffers from serious drawbacks. The
foremost of these is that it may not allow the transformation of
all elements within the data array. In order that all elements
&ithin the data array may fall in one of the triangular meshes defined
by the control points, it is necessary that, as a minimum, four
of the control points fall at the extreme corners of the flight
line. A control point, however, must be identifiable both on a
map sheet (if maps are being used for planimetric object space
control) and on a display of the data arrays. Clearly it is impos-
sible that such points would fall at the flight line corners for
every data array. Thus, the definable mesh using identifiable
control points will not cover all of the flight line. This would
make it necessary, if using a meshwise linear transformation, to

define some element transformations by extrapolation utilizing the
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paremeters of Equation (3.k4), which in turn are based upon only
3 control points. Such extfapolation is dangerous and may lead to
gross errors, depending on the distance from the nearest control.

A lesser, but still serious disadvantage of the method lies
in the amount of humen intervention necessary. The restitution
of M55 digital data arrays, by whatever method, must be basically
a. computer oriented procedure to be compatible with automated inter-
pretation when the two fields are finally combined. The necessity
of defining triangular meshes by hand, which is necessary when using
meshwise linear transformation, largely defeats the automated aspects

so desirable in such arrays.

3.3.4 Linear Least Squares Interpolation and Filtering
Probably the most sophisticated of the nonparemetric methods
is that of linear least squares interpolation and filtering.
The reader is referred to [99] for a detailed explanation of the
method by Kraus and Mikhail. Basically, the method defines the x
and y mismatch estimates in terms of observed mismatch values at

the n control points and covariance matrices, written in the form

gx et c! 2
] = 2.on on,2n  2n,l (3.47)
Sy

2,1

The vector % of observed mismatches at control points, is considered
to be composed of correlated random components, s, and uncorrelated

random components, r.
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C C
=xx =
c n,n n’gy
2n,2n = (3.49)
Syx C
A
n,n n,n

and the ¢ matrix is the Cross-covariance matrix of the element being

transformed with respect to the control points,

2n?é

(3.50)

The elements of both of these matrices are computed from
covariance functions which are determined by & priori knowledge,

or may be obtained from the control point data if & general form

may be taken as the independent variable for generating the covariance
functions. If thig assumption is to be approximately valid, the
data arrays must be bre-processed as described in Section 3.3.1,
using the resampling algorithm of Equation (3.13)to reduce panoramic
distortion, and scaled in thg Yy direction. | )

A more serious assumption associated with the method is station-

arity. The method is predicated upon the faect that the random function
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being considered for the field is stationary. If a non-stationary

prqgess is modeled as if.it were stationary, then the computed sample
covariance will not fit reasonably to an sllowable coveriance function
form. One of the characteristics for an auto-covariance function
associated with a stationary process is that its largest magnitude

is at the origin. Thus, if sample auto-covariance values computed
from the control point data increase in magnitude with increasing
distance, this is evidence that the process is not stationary, and
that one of the basic assumptions of the method of linear least
squares interpolation is not being fulfilled.

If this result is found within MSS data after pre-processing,
it is possible to apply linear least squares only if stationarity
is assumed for the stochastic field within a limited region about
the point being interpolated. Therefofe sesmple covariance points
may be calculated only withir a limited region, and allowable covar-
iance functional forms fit to these points. The net result of this
technique is that reference points beyond some critical radius about
the point being interpolated are assumed to have insignificant cor-
relation with the point, and thus do not contribute appreciably
to the filtering and interpolation process.

The theory of linear least squares interpolation and prediction
has been used with success in geodesy, and its application in this
field has been documented by Moritz [100, 101]. In the latter paper,
Moritz presents a generalization of the concept, in which correlation

among points to be interpolated is considered. Leberl [L45], however,

——
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points out that work by Wolf [102] has shown that the inclusion
of correlation between points to be interpolated leads to an over-
constrained situation, and thus the independent interpolation of

points as represented by Equation (3.L47) represents the most feasible

method of applying linear least squares.

3.4 Assignment of Element Elevations

Element elevations must be pre-assigned to the uncorrected
data arrays if the resampling algorithm of Section 3.1.2 is to Be
used, or if analysis or restitution is to be attempted using collin-
earit& (Section 3.2.1) or the more general polynomials (Section 3.2.2).
The purpose of this section is to investigate methods by which this
may be accomplished, and the problems associated with such methods.
Element elevations may be derived from the MSS data itself
only if the object space has been scanned more than once, as will
be the case if overlapping strips of data are availsble. Most
present data pertain to singly scanned areas, as were the data avail-
able for this investigation. Therefore, elevations must be obtained
from sources external to the MSS data. Possible sources for these
data are existing topographic maps, such as the 1:24000 scale topographic
maps of the U. S. Geological Survey which were utilized for this
investigation. For compatability with the MSS digital data, height in-
formation must be processed intc a digital terrain model (DTM).
The DIM is a numeric representation of a topographic sgrface, in

which elevations are given at discrete, closely spaced, X-Y point

positions over the area being considered.




166

The DTM may be of two types.

1.) Random, in which the planimetric point positions at which
elevation values are known have s more or less random
pattern over the area considered. This type of DITM would
result, for example, if the digitization of a contour map
was carried out by following selected contours, sampling i
X-Y point positions at intervals along each contour.

2.) Uniform pattern, such as a grid, in which the DM is
represented by closely spaced planimetric point positions
arranged in a regular grid over the area. This type of
DTM would result, for exemple, if the contour map were
digitized by teking profiles at equally spaced intervals
over the area. Then point elevations would be sampled
at equally spaced intervals along each profile.

In some cases, the DTM may be constructed from the random contour

following method, and pre-processed into the patterned form.

3.4.1 Accuracy Restrictions

At this point a method must be found to reliably assign an
appropriate elevation to every data array element. A seeming paradox
exists, since the DTM is essentially in an orthographic systenm,
having been generated from map data. At the time when element ele-
vations must be assigned, the MSS data arreys have all of the image
displacements and distortions due to scan angle, torographic, and
exterior orientation effects. However, the two data sets must be
superimposed such that "acceptably accurate" element elevations

may be obtained for the MSS data from the DIM. For purposes of
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this investigation, elevations were assumed to be "acceptably
accurate" if the planimetric error due to height assignment would
be less than a single resolution element.

The solution to the problem of superimposing the two data sets
lies in the nature of the MSS arrsys themselves. Since the data
arrays can resolve only to the value, ey, given in Equation (1.17),
it is only necessary to assign element elevations with an accuracy
yielding a planimetric error of a magnitude equal to or less than
ey, after subsequent processing. Recalling (1.17), the resolution

in Y is
) = - 2
eYj Y(Zc Zj) sec<H

Using Equation (1.19), the allowsble height assignment tolerance

Ze, is obtained as

7. = eYJ/tan 8
= v(Z, - 2j) sec?0/ten ©
(3.51)
= Y(Zc - Zj)/sin 8 cos 6

= 2y(Z, - 25)/sin 260

Figure 3.5 shows graphically the magnitude of this allowable
height assignment tolerance for various values of angular resolution,
Y. Using Equation (3.51) at nadir, the allowable tolerance is infinite
since a change in elevation has no effect on the image y position.

The value of Z, decreases to a minimum at 45°, where‘planimetric

-

displacement becomes equal to height assignment tolerance. The
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allowable value then increases for scan angles beyond h5°, since
the ground size of a resolution element increases rapidly beyond
this point. Such high values of Sscanning angle are rarely used
in practice at the Present time.

To superimpose the two data sets within this tolerance, it is
necessary to find a transformation which will yield a height assignment
error of less than that given by Equation (3.51). To do this,
ground slopes must be considered. In Figure 3.6, the term 8Y represents
the planimetric displacement in Y resulting from some transformetion
used to superimpose the MSS data upon the DTM for height assignment

purposes. The ey value is the size of the element at the given

Scan angle 8. The resulting elevation tolerance is given by
Ze = A(8Y) (3.52)

in which A is the ground slope in the vicinity. If the expression
for allowable height assignment tolerance ( eY/tan 8) from Equation
(3.51) is substituted for Zo into this expression and the resulting
equation is solved for §Y, then

e

Y

§Y = (3.53)
A tan 8

which represents the allowable planimetric tolerence which may be
acceptable in an approximate transformstion for height assignment
purposes, and still result in less than a one resolution element

planimetric error after subsequent processing, utilizing for example
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Figure 3.6. Y Displacement Due to Ground Slope
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the methods of Section 3.2. In reality, ground slopes rarely exceed
0.5 and scan angles (g) normally do not exceed 40°. Thyus a trans—
formation yielding errors on the order of 3 resolution elements
may be appropriate for this step of height assignment. This value
is necessary only near the flight line edges, and even larger toler-
ances would be acceptable near the flight line center.

A simple transformation which may be used for this step in
the processing is the well known affine transformation. If this
transformation is utilized within sections down the flight strips,
the resulting planimetric error is found to be within acceptable
_limits. No constraints are necessary at section boundaries, since
the transformation is used only internally within a program to
approximately fit the data arrays to selected control points within
the DTM. Coordinates of the control points required for this trans-
formation may be taken‘from the same map source used to generate
thé DIM. The transformation is used only to assign element elevations,
and no actual horizontal restitution of the M55 array positions
would be done at this time. The more sophisticated approaches given
in Section 3.2 would be utilized for the actual transformation of

elements into a restituted array.

3.4.2 Contour-Scan Intersections
This method of element elevation assignment seems to be the
simplest conceptual procedure if the DTM available is of the random
type generated by the contour following procedure. The DTMMdata,

if stored according to contours, may be used directly in the form
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generated by the digitizing equipment. For this type of DTM, as
mentioned previously, contours may be sampled in a digitizer at
réhdom intervals along their length.

Each scan line may be transformed according to the affine
transformation described in Section 3.4.1. The Parameters of this
affine transformation are estimateqd using the method of least squares,
based upon ground control points. At this stage, the contours and
the transformed scan lines will be superimposed approximately in
& near-orthographic system. For each scan line thus transformed,
all contours in the vicinity are searched digitally until an
intersection of the contour and the scan line is detected. At this
point, that position along the scan line is assigned the elevation
of the contour. The tracing of the contour is then continued to
determine if any further intersections occur with this same scan
line. All contours in the ares are traced in this manner until
all intersections are found for this scan line. The intersection
points are then re-sorted sotthat they are in order along the scan,
and elements which are intermediate between intersection points
are assigned elevations by linear interpolation between these known
elevations. This process is repeated until every scan in the flight
line has been processed. The resulting element elevations are stored
on the original MSS data tape as an extra channel of data, in the
Same format as that given in Sectien 1.2.3.

The advantages of the method are:

1.) Relatively efficient computation: Only straight line

equations are used throughout for finding contour-scan
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intersection points and for interpolating element elevations
between these intersections.
2.) Small storage requirements: At any time, the computer
is required to store only the positional dats for a single
scan line and a single contour.
The major disadvantage of the method is the determination of
the element elevations near the beginning and end of each scan.
Contour-scan intersections will obviously occur exactly at the scan
line ends only by éhance, and with virtually zero probability.
Thus, some method must be devised for assigning those elevations
near scan line ends before the first intersection point and beyond
the last. Extrapolation may be dangerous. An attempt must be made
to interpolate these end points between contours, and a complex
decision procedure is necessary to determine the contour pair between

which an end point lies.

3.4.3 Polyconic and Polynomial Surface Approximations
A different approach to the problem of element élevation
assignment is to attempt to adequately model by analytic expressions
the topographic surface in the region of each element, based upon
some subset of the digitized sample points. One example of a mathe-
matical modeling technique is the multiquadric analysis advoeated

by Hardy [103, 104]. The latter reference contains an excellent

summary and introduction to the method.
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The general form of the mathematical model which Hardy advocates

is

z Ck[Q.(xks yka X, Y)] =z (3'5h)

in which x, Yks (k=1,...n) are the coordinates of the sample points be
being considered in the vicinity of the element position X, ¥y after
its approximate transformation by the affine transformation, and

2 is the estimated element elevation associated with the point.

The Cy terms are coefficients to be multiplied by each of the quadric
surface equations assumed. The Ck coefficients are estimated only
once, and retain the same value over the section being considcred
regardless of the (x, y) location of the point being interpolated.
The z elevation is a function of x ang ¥ resulting from a summation
of a series of quadric surfaces having axes of symmetry at the Xy »

Y Sample points. According to Hardy, the most often utilized forms

of the quadric surfaces chosen are those of g cone, in which
alxygs yxs %, ¥) = [(x - x)2 + (v - ¥)211/2 (3.55)
of a hyperboloid, in which,
alxe, yes X, ¥) = [(x - x)2 + (yg - ¥)2 + c]i/2 (3.56)
of a paraboloid, in which,

Uxes ¥s % ¥) =[x = 02 + (3 - y)2]%; & < 1/2 (3.57)
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and an inverse hyperboloid, in which

a(x, Vo % ¥) =[x - x)2 + (3 - )2 + ¢]-1/2 (3.58)

Thus, when given a set of n semple points such as would be
generated, for example, in contour digitization, at every sample

point an equation could be written of the form

0 .
kfl Celalxe, v, xp, vp)] = Zm (3.59)

in which m is the sample point being considered. There would be
n such equations generated, assuming it is desired to have a quadric

axis at each sample point. Using the matrix notation of Hardy

A C = 7 (3.60)
n.n n,l n,l
the coefficient vector desired, C, could be solved for by
c. = a1 g (3.61)
n,l n,n n,l

and elevations for elements could then be calculated from
Equation (3.5k4).

The system has many advantages, one of which is that it allows
nonlinear modeling of the topography, which is obviously not possible
with the linear interpolation scheme of the contour-scan in?ersection
method. It also allows the computation of element elevations near
scan line ends with more reliability than with contour-scan

intersections.
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However, if a large data set of points is available in the
DIM, then the matrix A in Equations (3.60) and (3.61) will become
very large. The computing time necessary to solve (3.60) for the
coefficients will be quite large, and the time necessary to compute
each element elevation will also become excessive, as the summation
of n polynomials to be evaluated must be performed. In cases of this
nature, Leberl [45] suggests using a relatively small subset of the

total sample points available, such that
<
dk = 4

where d defines some convenient "circle of influence" for each element,
end 4, is the distance from the element being considered to each

sample point.

G = Ylxg - x)% + (yx - )2

Another possible compromise to cut computing time would be to use
a larger subset of the sample points (and hence larger A and C
matrices), but evaluate the multiquadric function of Equation (3.5L)
only at selected element locations along each scan line, for example,
every fifth element. Then points intermediate between these could
be assigned elevations by linear interpolation.

A recent paper by Jancaitis and Junkins [105] presents a
polynomial procedure for modeling the topographic surface, with new
polynomial coefficients being computed as the vicinity being considered

is varied. In this method, the area is divided into a number of
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small square areas to form a lattice. Within each Square, the topo-
graphic surface is to be represented by a polynomial of the form
2 = I Cyy xt yd (3.62)
iJ

in which the coefficient subscripts correspond uniquely to the ex-
bonents i, 4 of the x, y arguments.

The coefficients of this polynomial, which ordinarily is
chosen to contain 12 terms, are determined by matching the estimated
elevations and slopes in the x and y dlrectlons of the four corner
points for each Square incrementsl area, thus enforcing continuity
in elevation and slope at the boundaries between adjacent squares.

These estimated elevations and slopes at each corner or lattice
point are obtained by fitting a plane at each lattice point to some
subset of the sample points determined during digitization, in the
immediate vicinity of the lattice point.

After the preliminary affine transformation of each element ,
these transformed coordinates are utilized directly in Equation

(3.62) to obtain an estimate of the elevation for that element.

3.L.4 Other Interpolative Methods
The methods of Section 3.3 may also be utilized to estimate
elevations of elements within the MSS data arrays. In this case,
the interpolation becomes & one-dimensional case, in which the
reference point set would be represented by the digitized values

of the DIM.
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The methods which may be applied may be taken directly from
Section 3.3. For the arithmetie mean, for example, the estimate

for elevation of an element would be given bya

n
- L v oz
2 = k=1
n
z Wy
k=1

in which the Zx values are the elevations at the sample points of
the DTM, z is the estimated elevation of the point being considered,

and, the weighting factor Wk for each sample point may be evaluated

by either
W = i or W = 1
dk l+dmk
in which
G = Ax-x)% + (y - y)2

where x, y is the approximate orthographic element position after
the affine transformation, and Xg> Yk is the digitizead position of
the point at which 2z has been sampled.

The DTM will generally contain a very great number of sample
points. To obtain reasonable computing times it will normally
be required that only points within some circle of influence will

be considered, such that

[=7]
W
in
7]
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The same procedure as that outlined in Section 3.3.2 may be
used for a moving average interpolation, which will allow a non-
linear interpolation. The estimate will, of course, be only a one
dimensional estimate in z. The use of the meshwise linear transfor-
mation is hardiy practical for estimation of element elevations,
in that it requires the determination of g unique set of contiguous
triangular meshes in order to implement the method. With the very
large data set of points genersted in digitizing the DTM, the number
of triangles becomes excessive. J

The use of linear least squares interpolation to estimate element
elevations requires first the reduction to g reference, or trend
surface. Leberl [U45] points out that meaningful correlations between
terrain points exist even over sizeable distances (30 km). He
recommends the use of the method of moving averages to first estimate
the trend surface, and subsequent utilization of the linear least
squares in an attempt to refine the element elevation estimate.
Since, as was shown in Sec£ion 3.4.1, the final positional accuracy is
relatively insensitive to small errors in element elevations, it
is doubtful that the increase in element elevation accuracy is worth
the increased computing time necessary to implement the method
of linear least squares interpolation.

All of the above discussion has been concerned with general
mathematical models which may be used for analysis or restitution
of MSS data. In thelfollowing section, the uwnique pro?lems %ssociated

with restituting MSS data stored in digital form are discussed.
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3.5 Direct and Inverse Restitution Techniques

The restitution equations described in Sections 3.2 ang 3.3
were based upon the premise that g transformation was being used
from the uncorrected data array (or image) into the orthographic

object space. These equation forms and relationships are most con-

media, such as photographic imeging. The use of such relationships
may be termed a "direct" approach to restitution, since pProjective
relationships are used to project directly from wcorrected x, y
image positions to restituted X, Y positions (by analogue or analytical
means).

Because of the nature of digital MSS data, however, further
considerationsAare necessary in attempting to apply this approach
to such a digital data form. The digital date is stored in a line
by line fashion, and within each line, spectral value locations are
limited to integer positions, both in the mcorrected image array,
and the restituted output arrsy resulting from such processing.
If the diréct technique were used, then restitution would be
accomplished by measuring x, y uncorrected image coordinates and
projecting to restituted X, Y positions using, for example, the
collinearity equstions of (2.19) or one of the piecewise polynomial
formulations. This leads to two problems.

1.) The resulting X, Y position pairs will be randomly generated.

This means that a large number of the coordinate pairs
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must be stored in am output buffer. A continuous sorting
must be implemented to arrange these pairs into positions
along array lines to be stored in s restituted output
array.
2.) Unique X, Y pairs may not be generated for output. The
X, Y pairs thus generated must be in integer form in order
to occupy locations within the output array. The same
integer position within the output array mey result from
two or more x, y positions in the uncorrected input array,
and thus result in a multiplicity of spectral combinations
which could be assigned to it. Further, there will be
positions within the output array which would have no
spectral values assigned because for some X, Y output array
positions, there may be no x, ¥y pair which would map into
these positions through the projective expressions, since
the X, Y values are limited to integer values. Spectral
values for such "holes" may be assigned by interpolating
spectral values from surrounding output buffer positions.
The advantage of this method is that use of the direct projective
restituting relationships (collinearity or polynomial) requires
no iterative procedure. The element elevation values assigned are
associated with the x, y uncorrected image positions. Hence, for
each element to be projected, x, y and object space Z coordinates
are known, along with the parameters of projection. The X, ¥
restituted position may be calculated with a single application

of the restituting relationships.
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An alternate restitution technique is to "step" along positions
in the restituted output array as the independent varisbles (x, v)
as advocated by Markarian, et. al, [69], and compute the associated
X, ¥ position for each restituted array position. The spectral
values in this bosition are then assigned to the restituted array
Position. For burposes of this discussion, such an approach will
be called the "inverse" restitution technique.

This procedure circumvents the storage and sorting of an output
buffer within the computer, and assurés that each point within the
output array will have assigned to it g spectral value for each
channel.

However, this approach also has two major drawbacks associated
with the dats Processing.

1.) Since X, Y values are assigned as the independent variables,
then x, y uncorrected array positions are rendomly generated,
thus necessitating the storage of g large number of %hese
values in a buffer during restiéution. After the computation
of the x, y position for each associated X, Y output location,
this buffer must be searched for the nearest integer array
position to the desired X, ¥ image position, and the associated
spectral values stored in the restituted output array
position. This input buffer, however, is somewhat easier
to handle than an output buffer, since it is in array form,
containing integer array positions in a line by line arrange-

ment.
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2.) Perhaps more serious is the requirement of an iterative
computational procedure. This may not apply for those
based upon the greatest simplifying assumptions, such as
the assumption of flat terrain and constant or linearly
varying exterior orientation elements. The following
analysis explains the procedure.

For this purpose, the inverse form of the MSS collinearity
equations (2.18) are considered. Capitalizing on the fact that the
left hand side of the first equation of (2.18) is zero, these
equations may be written as (dropping the J subscripts)

0 = my(X - X)) + mp(Y - o) + mslz - 2,)

(3.63)
tan(y/e) = - [mpy(X - X)) + mpo(Y - Yo) + my3(2 - 2,)]

m31(X = Xo) + m3p(Y = Yo + mag(z = Zo)

Note that in the first equation of (3.63), the only variables are

X, Y, Z, and x, which is included in the functions assumed for ex-
terior orientation elements. Assuming for the present that Z has

a constant value (perfectly flat terrain) then if X, Y are treated

as independent variables, and if the parameters associated with

the X., Y., Zo positional orientation elements and the w, $,
angular orientation elements are known from a previous space resection,
then the first equation of (3.63) may be solved for x. This solution
may be direct if fairly simple functional forms have been assumed

for orientation elements, or iterative if more complex functional
forms have been assuméd. The value obtained for x may be substituted

directly into the second equation of (3.63) to then solve for the

Y image coordinate.
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If for this case the assumption of constant 7 is relaxed, an
iterative technique is required. If element elevations have been
assigned to the data arrays before Processing is begun, then they
are associated with the x, ¥ uncorrected image positions not the
X, Y coordinate values used as the independent variasbles. An iterative
technique would then be employed in which a 7 value would be estimated
(perhaps as an average elevation) and equations (3.63) would be
solved for new x, y values. The element elevation stored in this
location would then be taken as an updated value of %, and new
X, ¥ values computed. This process would be repeated until no
meaningful difference iﬂ the x, y values is noted. This is the
technique to be utilized if a restitution based directly upon col-
linearity is to be employed.

If a polynomial approximation is to be used for an element
by element transformation qsing this inverse technique, the problem
becomes more complex. It is, in general, not possible to write
a8 linearized transformation equation which may be solved explicitly
for x, y image coordinates if X, Y object space coordinates are
designated as independent variables, since the orientation elements
of scanning are given as functions of the x image coordinates.

If an element by element restitution is to be attempted by the
inverse technique utilizing polynomial approximations, it is
suggested that the polynomials of Section 3.2.2 be uwtilized in

an iterative manner.
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This choice between the direct and inverse methods of final
transformation of elements is necessary only with the direct col;
linearity and polynomial formulations. The resampling algorithms
of Section 3.1 are already in the inverse form, in which the resti-
tuted array position, j, is used as the independent variable, and
the corresponding position, UJ, in the original uncorrected array
is computed in order to assign spectral values within the restituted
array.

The inverse technique is easily incorporated within the non-
parametric methods. These techniques are not based upon analytic
forms of modeling the transformation, but are based upon stochastic
concepts in which an attempt is made to estimate the correlated
components of a stochastic field without defining an analytic form.
The mismatch estimates resulting from these methods may be applied
to the X, Y positions to estimate the X, ¥ uncorrected image position
in order to assign spectral values.

In summary, if direct restitution is attempted using projective
collinearity or polynomiél forms, one is confronted with problems
of output buffer storage and sorting in generating restituted arrays,
and the problem of assigning spectral values to the X, Y restituted
position for which there are no associated X, ¥ image positions
based upon the direct projective releticnships. On the other hand,
if inverse relationships are used, the storage and sorting procedures
are simplified, but the actual transformation calculations require
an iterative procedure. For this investigation, no attempt was

made to assess the relative efficiency of the direct approach with
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respect to the inverse technique. The restitutions performed in

ey

this study utilized the inverse approach, in order that modifications

of software routines already available -at LARS could be used. It

is left to future investigation to examine the direct technique.

3.6 Concluding Remarks

This chapter has served to introduce possible methods of
restitution for singly scanned MSS digital data arrays, and some
of the problems associated with such restitution methods. The
resampling algorithms first presented are useful in many cases as
a first step in the restitution process. The pre-processing of the
data using these algorithms is useful in simplifying subsequent
parametric algorithms, or in approximating isotropy for some of the
nonparametric methods.

The parametric methods of restitution utilizing MSS collinearity
equations or piecewise polynomials represent perhaps the most
intuitively obvious methods of restitution, since they are based
directly upon the known relationships of the MSS transformation.

If these methodsrare to be used to obtain the best possible acecuracy,
then Z coordinate information must be introduced into the data
arrays from some source.

The nonparametric methods included represent an entirely dif-
ferent approach to the problem of restitution. These algorithms
assume that no analytical form is known for a mathematical model.

An attempt is made to estimate the correlated effects within the

data arrays, based upon stochastic concepts.



are compared.
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L, NUMERICAL RESULTS

4.1 The Data Arrays

éxperiment administereq by LARS during the summer of 1971 [106, 107].
The University of Michigan scanner ¥was used at a nomina] altitude
of 5000 ft. (152% m) above sea level end digitizatiop performed with
& nominal angular resolution of 6 milliradians.

The first of these flights, number 208, was located in north-
western Indiana near the city of Lafayette. Figure 4.1 depicts
& grey scale display of this array froﬁ the line printer. The display
is of channel 6, which represents the spectral band between the
wavelengths of 0.58 and 0.65 micrometers. Figure k4.2 portrays this
same flight line, also from channel 6, as an image taken from the
digital display monitor. These images are st a&n approximate secale
of 1:58000. This array contains 1591 lines ang 222 colums, and
represents a ground aresg approximately eight miles (13 xm) long
and one mile (1.6 km) wide. Since it was desired to utilize existing
U. 5. Geological Survey maps as g source of specific‘poinﬁ'positions,
as well as terraih elevations, it was necessary to locate array

positions on the line Printer display which were also identifiable

s e e e
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Upper half Lower half

Figure 4.1. Line Printer Display of Unprocessed Array for
Flight 208
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{lvver hailf Lower half

Figure 4.2. Digital Display of Unprocessed Array for Flight 208
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on the map sheet. This flight line was well suited for this purpose.
Terrain variation within the fliéht line was quite small, on the order
of SOFft. (15 m), ranging from an elevation of approximately 700 ft.
(213 m) to approximately T50 ft. (229 m) above mean sea level.
A large proportion of the area within the flight line was under
cultivation, with no forest cover. The ares contained numerous
fence, road, and stream intersections which could be easily located
on both the line printer display and the map sheet. These array
positions were determinable on the line printer display to within
one or two resolution elements. After extracting these array positions,
the corresponding points were marked on the map sheet "for later
coordinate digitization.

All points thus located on both the digital array and the map
sheet are referred to in this section as reference points. From
this set of reference points, a subset of control points was chosen.
These control points served as the basic data source froé which
parameter estimates or nonparametricralgorithms were calculated
in the analysis methods to be discussed. The points in the remaining
subset of reference points are referred to as check points, and
are used to assess the accuracy obtained in the subsequent analysis
methods. A total of one hundred such reference points were located
within the flight line. Of these, thirty nine were used as the
actual control points to determine the parameters for the wvarious
analysis methods, and sixty one were withheld as check points to

investigate the results which were obtained. A mistake in digitizing
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one of the check points was subsequently discovered, and the tests
performed used only sixty check points.

The second flight line chosen, flight number 218, is located
in west central Indiana near the city of Bloomington. Figure 4.3
shows a line printef display of this flight line, and Figure L.k
depicts the same flight line from the digital display monitor.
As before, the images shown are for channel 6§ representing the
spectral wavelength band from 0.58 to 0.65 micrometers. These images
are at an approximate scale of 1:54000. This array contains 1439
lines and 222 cdiumns, and represents a grQund area approximately
seven miles (11 km) in length, with a width of approximately one -
mile (1.6 km). Total terrain elevation variation within the flight
line is on the order of 300 ft. (91 m), ranging from a low elevation
of approximately 550 ft. (167 m) to a high of about 850 £t. (259 m)
above mean sea level. Most of the area is wooded such that a tree
cenopy obscures much of the ground. The area contains fewer roads
and fences than the flight line previously discuésed, with far
fewer recognizable intersections and easily identifiable array
positions. For these reasons greater difficulty was encountered
in reliably locating reference points within the array. Thirty
three points were finally assigned over the entire flight line,
of which twenty four were utilized as control to determine the
parameters of the analysis, and nine were withheld as test points.
However, because of discovery of a misteke in digitization of one
of the control points, a set of only 32 was used (23 control, 9

check) in performing the tests of analysis methods discussed below.
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Figure 4.3. Line Printer Display of Unprocessed Array for
Flight 218
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Upper half Lower half

Figure U.k, Digital Display of Unprocessed Array for Flight 218
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Uncertainties of 3 or 4 resolution elements were not unusual in 1

assigning array positions to these 32 points.
In order to illustrate the geometric distortions inherent in
data arrays obtained by multispectral scanners, planimetry was traced

from the map sheets for both flight lines for comparison purposes.

Figure 4.5 shows some of the planimetric features of flight 208

near the top of the flight line, and Figure 4.6 portrays planimetry
from flight 218, near the bottom of the flight line. In these
figures, a heavy solid line is used to denote roads, a lighter solid
line is used to represent streams or ditches, and a light broken
line represents fences. A comparison of these figures with those

of Figures 4.2 and 4.4 will illustrate the deformations in the imagery T
which are perceivable to the human eye. The most readily apparent %
deformation is that due to the scan angle effects, and the different

scales in the x and y directions. For example, the triangular area

(arrow A in Figures 4.2 and 4.5) near the top o£ flight 208 formed

by the intersecting roads a;d the stream cutting across them has

been visibly deformed, showing a widening at the top and a resultant

lessening of the inclination with which the stream cuts across the

flight line in this area. Another good example of these deformations

is found near the bottom of flight 208. Here an interstate highway

cuts diagonally across the flight line (arrow B, Figure L.2),

Careful visual study reveals image deformation displacing the originally

straight alignment of the roadway into a curved alignment. Also

apparent, particularly on the display for flight 208 (Figure k4.2),

is the perturbation due to changes in Yc, the sensor Y position,
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Figure 4.6, Partial Planimetric Map Near Bottom of Flight 218
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as evidenced by the departure of the central roadway from the straight
alignment shown on the map sheet. Upon close inspection of the
display for flight 208 (Figure 4.2), the effects of scan time and/or

k rotation down the flight line, is evidenced by the rotation of

the cross roads andg field boundaries. Scan angle deformation is

also apparent in flight 218, near the river bend area. The river
bend itself shows g visible spread due to these effects (arrow A,
Figures 4.4 and 4.6). Also the road running diagonally across the
flight line above the river upon close inspection shows g reduction

in the inclination (arrow B, Figures 4.k ang 4.6),

4.2 Flow Chart for MSS Digital Data Analysis

Figure 4.7 illustrates the system for analysis of digital
MSS data arrays which was used in this investigation. The flow
chart shown displays a method of integrating the principles and
mathematical techniques discussed in the previous chapter into a
coherent and organized system for the enalysis and restitution of
digitally recorded multispectral scanner arrays. Referring to
Figure h.T, the first step in the Procedure, after the desired control
points have been chosen, is the digitization of map data for the
control point coordinates, and contour information for subsequent
assignment of element elevations. For this investigation, the
digitization was carried out on a LARR-V cartesian coordinate
digitizer at Purdue University. 1In the following, the coordinate
axes of the digitizing equipment will be denoted U-V to Qifferentiate

them from the object space X-Y system, or the image x-y system.
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In Figure 4.8 is shown the operation of this digitization equipment.
The material from which U-V coordinate values are to be digitized
(in this case, the map sheet) is fastened upon a large flat bed.
Points are located by the operator with a cursor operating along
perpendicular U-V axes. The U-V coordinates under the cursor are
instantaneously displayed upon a console shown in Figure 4.8 directly
behind the operator. The U-V coordinate values of a point may be
automatically recorded upon punched cards using the keypunch shown
in the lower right foreground of Figure 4.8. This keypunch is
interfaced with the digitizer, and the operator activates a relay
when he is over a point for which he wants the U-V coordinate value
recorded on cards.

For this investigation, the following steps were followed in

the digitization of the map information.

1.) The map sheet was fastened upon the flat bed. An attempt
was made to approximately align the direction of the flight
line with the U axis of the digitizer.

2.) Universal Transverse Mercator (UTM) grid marks on the
map edges were digitized, first along the map edge aligning
more nearly to the digitizer U axis, then along the other
edge. These 1000 m (3281 ft.) intervals could then be
used to define an absolute scale to transform dats arrays
to ground system coordinates after the analysis and/or
restitution has been accomplished.

3.) All reference point U-V coordinates were digitized in the

order of their numbering.
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4.) Contour information was digitized. The method used was
the contour following mode, in which selected contours
were followed and U-V coordinates were digitized at random
sample intervsls along each contour. These values were
recorded directly upon punched cards. Each card was formatted
to record first a count index, representing the total
number of contour points recorded previously for the contour
being followed. Next, the elevation of the contour was
recorded, followed by 8 values of U-V coordinates of 8
of the sample points digitized along the contour. Using
this format, a total of about 1000 cards resulted for
flight 208, and approximately 3000 cards were required
for the more rugged terrain of flight 218.

After digitization of the map data, this information was trans-~
formed from the U-V digitizer system into a cartesian coordinate
system at the image, or array scale. The transformation used to
generate these scaled control and contour X-Y points was the well
known conformal similarity transformation. The equations of the

transformation are of the form

>~
]

MU cos ¢ + V sin ¢) + X,
(4.1)
Y = X-Usin ¢ + V cos ¢) + Y,
in which Xos Y, are translations, ¢ is the rotation between the
two systems, and ) is & scale factor. These four parameters were

determined using least squares techniques, to bring the digitized

map data to the same approximate scale and orientation as the digital
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data arrays. All coordinates of the digitized map data were then
trw%forx;led using Equation (4.1), and all subsequent steps were
performed at image scale. Table L.l shows the values of the reference
point positions for flight 208 after their transformation to image
scale, and the line-column array positions for the corresponding
points within the data arrsy. Table 4.2 shows the reference point
coordinatés for flight 218. After these preliminary steps, the

elements of the arrays, were transformed to the scaled control values

using an affine transformation, and elevations were assigned to each
element. Geometric analysis and restitution was then performed
using the methods described in Sections 3.1 - 3.3. These steps

in the flow chart are explained in more detail in the following

sections.

4.3 Results of Elevation Assignment Algorithms

In Section 3.4, several possible methods of assigning elevations
to elements within the data arrays were presentéd. Two of the
possible methods were tested in this investigation. For flight 208,
having flat terrain and hence relatively few digitized contour
points, both the contour-scan and arithmetic mean nonparasmetric
methods were attempted. For flight 218, having more rugged terrain
and many more digitized contour points, only the contour-scan inter-
section method was done, for reasons which will be discussed sub-
sequently.

As pointed out in Section 3.k4.1, the affine transformation was

used within the element elevation assignment program, to approximately




Point
Number

204

Table 4.1

Reference Point Coordinates for Flight 208

Map Position
X

209
210

352.
N
559.
593.
677.
612,
793.
903.
908.
96k,
102k,
1136.
1141,
1253,
1316.

1490

3b.
57.
91.
152.
325.
325.
hh3,

Ly
kog

502.
624,

27
734
846
850
1048
1308
1428
1488
1571

Control Points

Transformed

.3
.8

9
1
6
9
L
3
6
T
8

6
1
1
1
6
1
.6
7
9
8
2
k

7
3
.0
.0
3

1
-7
]
.8

-9
5
-3
.6
-9

-7

1571.4

Line
(x)

215
208
356
Ly
564
595
679
611
798
909
907
965

1024

1139

1138

1254

1310

1479

30

L5

93
153
324
321
b7
L43
502
501
630
T26
Thi
854
852

1051

1305

1426

1482

1568

1565

Array Position
Col
(y)

26
187
29
27
26
10k
103
218
105
a7
186
106
185
31
187
30
189
194
97
215
21
105
167
188
10k
218
103
218
26
186
27
27
187
105
107

116
33
195



Point
Number

Transformed
Map Position

X Y
92.5 105.
179.7 L7,
209.7 75.
210.5 105.
92.9 132.
353.7 69.
354.5 105.
443.6 165.
560.4 105.
677.1 L.
792.4 L8.
795.2 164,
905.8 106.
1022.0 106.
1023.3 136.
1311.9 50
1314.0 108
1370.7 50
1486.9 50
1492.6 50
1k90.2 138
35.9 162
63.5 75
122.2 7.
123.0 10k.
152.6 134
180.5 Th
181.3 104
210.4 134
268.7 164
325.0 46,
384.9 164
Lok .6 L6,
397.2 164
412.9 iy d
L412.9 75
Yik.o 164
k2.5 75
453.9 104
500.7 134
530.8 105.

Table 4.1, cont.

Check Points
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Array Position
Line

(x)

90
185
212
212

88
355
355
443
564
681
801
195
908

1024

1024

1310

1309

1370

1L48L

1490

1482

28

62
122
121
1ko
184
182
210
263
326
384
410
396
418
418
415
Lh7
k5T
503
535

Col
(y)

102
26
62

105

1h1
6h

106

186

104
26
28

185

105

106

148
30

107
27
33
33

157

179
58
64

105

148
62

106

148

189
29

188
27

187
27
62

187
60

10k

146

104
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Table 4.1, cont.

Check Points

Point Transformed
Number Map Position Array Position

X Y Line Col

(x) (y)

73 T6h4.5 105.4 764 104
76 8L48.8 106.0 851 105
78 879.2 134.8 880 148
79 879.6 164 .4 879 186
80 936.3 106.2 936 106
81 1020.3 78.5 1025 N
82 1029.6 78.6 1032 65
8L 1110.7 135.7 1110 149
85 1137.8 7.9 1138 65
86 1194.9 49.8 1198 29
87 1197.4 107.6 1198 . 107
88 1256.1 112.6 1253 117
90 1315.3 136.6 1310 150
91 13444 136.7 1339 150
93 1429 .4 49.9 1hos 31
95 1545.5 78.8 1541 T1
96 1546.4 110.2 1538 120
98 1571.6 78.9 1566 Th
99 1571.5 110.2 1566 120

Note: Check point 70 was omitted after a mistake in digitization
for this point was discovered.
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Table L4.2-
Reference Point Coordinates for Flight 218

Control Points

Point Transformed
Number Map Position Arrey Position
X Y Line Col
(x) (y)
1 5.4 88.5 9 91
3 115.7 166.7 117 178
i 132.6 86.3 137 86
6 269.5 12L.0 265 130
7 313.7 138.7 310 146
9 4h1.3 51.6 ks 36
11 483.8 183.8 485 190
12 Lkg2.9 127.8 L95 128
13 529.3 93.8 532 85
14 588.1 37.2 589 26
16 690.0 42,2 695 26
17 688.0 103.7 692 _ 100
19 871.2 124.2 877 124
20 928.1 212.1 922 219
22 993.3 130.1 99k 136
23 999.5 61.5 1001 52
24 1101.7 122.9 1099 131
25 1116.1 16.2 1122 12
28 1174.9 126.7 1171 134
29 1324.6 33.8 1325 2L
30 1296.5 206.2 1289 213
32 1ko7.4 66.6 1409 - 57
33 1362.0 177.7 1358 189
Check Points
2 66.1 113.0 63 117
5 257.6 108.1 256 109
8 436.8 172.8 437 182
10 6.6 76.5 Lo 65
15 627.5 99.4 627 ok
18 ThT.7 120.7 748 121
21 985.8 133.9 986 1k2
27 1121.3 106.8 1120 110
31 1367.5 64.5 1372 56

Note: Control point 26 was omitted after a mistake in digitization
for this point was discovered.
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transform the data arrays into the conformal system of the scaled
control points. Parameters for this transformation were determined
by least squares methods utilizing as input the scaled control point
coordinates and the data array positions for the control points,

as given in Tables 4.1 and 4.2. The flight lines were divided into
sections, and an independent determination of the affine parameters
was determined within each flight line section for the affine equa-

tions of the form

e
il

Ao + Al X + A2 ¥y

Y=BO+B1X+B2y

(Lk.2)

Table 4.3 portrays the results of this least squares fit for flight
208. In this instance, the flight line was divided into five sections.
Table 4.l depicts the results of the analysis for flight 218, in
which the flight line was segmented into four sections. The resulting
standard deviations and variances are given in terms of array
elements. The average ground size of such an element for the arrays
tested is about 40 ft. diameter. This wnit is often called a remote
sensing unit, and is abbreviated rsu. Therefore, the statistical
quantities given in such units reflect the accuracies of analysis
methods in terms of the resolving power of the system, rather than
absolute distances.

The pooled variance in these tables was computed as the summation
for all sections divided by the summation of the degrees of freedom

for all sections.
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» the analysis described in Section 3.4.31 must be per-

formed. Ground slopes within flight 208 were very small, rarely

exceeding 0.1, and the resultant allowable error for the affine

For flight line 218, ground slopes were much steeper, approaching

0.5 in some Places within the flight line, Assuming the worst case,

of element elevations. These values however, represent the worst
case. Over most of the flight line, allowable Planimetrice error
would be larger than the 2.5 resolution elements given, ang resulting
relief displacement €rrors would be reduced. For Scan angles Jessg
than 26,50 for €Xample, the allowable Planimetric error would be

-

greater than ) resolution elements,



211

In Figures 4.9 and 4.10 are shown typical profiles from each
of theﬂtwo flight lines from which an indication of the reliability
of the height assignment algorithms may be gained. In Figure 4.9
is depicted a typical profile across the flight line for data array
line 763 of flight 208. In this figure, the solid line represents
a reference ground profile taken from the map sheet. The circle-
dash combination represents the profile obtained by the contour-
scan intersection method of element elevation assignment, and the
dashed line represents the profile resulting from element elevation
assignment using the arithmetic mean method. It should be noted
that the elevations from the map are also subject to some error.
The National Map Accuracy Standards for vertical map information
state that 90% of the elevations interpolated from map contours
shall be correct within 1/2 contour interval. For the relatively
flat terrain in this flight line, the contour intervai was 5 ft.
(1.52 m) resulting in a 90% error of 2.5 ft. (0.76 m) and an approximate
standard deviation of only 1.5 ft. (0.46 m) due to the map. It may
be seen in Figure 4.9 that the profile from the map in almost all
cases differs from that obtained by either of the elevation assignment
methods by less than ten feet (3.05 m). In Figure 4.10, a similar
portrayal of a typical scan line for flight 218 is shown. For this
flight line, the map contour interval was 10 ft. (3.05 m) and elevation
errors for points taken from the map were therefore 5 ft. (1.52 m)
at the 90% level, for an approximate standard deviation of 3 ft.

(0.92 m). Mismatches of up to 40 ft. (12.2 m) between the map profile
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and that obtained by element elevation assignment are seen to exist
for short sections along the scan line. As will be shown subseguently,
the allowable elevation assignment error for these flight lines
is on the order of 60 feet. Thus, the maximum elevation assignment
errors for these sample profiles (10 feet and 40 feet for flights
208 and 218, respectively) would result in planimetric errors of less
than one resolution element.

A statistical test was performed to evaluate the sufficiency
of the element elevations assigned. For this test, the elevations
assigned to the reference point array locations by the element
elevation assignment programs were compared with elevations for the
corresponding points taken from the map sheet. The differences
between elevations assigned from the programs and those taken from
the map sheet were used as the data upon which to perform the statis-
tical analyses. Table 4.5 gives the data generated for the control
points of flight 208. In each case, the column noted as "Difference"
shows the value obtained by subiracting the value taken from the
map sheet from that assigned by the elevation assignment algorithm
noted. Table L.6 gives the same information for flight 218.

In order to evaluate the results of a statistical analysis,
it is important to state the objectives and the desired results
of such an analysis. First, it would be desired that the mean of
the elevation differences be statistically near zero, in order that
it may be stated that, on the average, the height assignment al-
gorithms are assigning correct elevations. In addition-it is desired-

that the variance, and the resulting standard deviation, be such
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Table b.6

Elevation Information for Flight 218

A. B. c.
Control Elevation Elevation Assigned
Point from Map, by Contour-Scan, Difference
Number in ft. (m) in ft. (m) B-A in ft. (m)
1 595 (181.L4) 599 (182.6) L (1.2)
3 559 (170.4) 625 (190.5) 66 (20.1)
Y 587 (178.9) 609 (185.6) 22 (6.7)
6 615 (187.4) 599 (182.6) -16 (=-k.9)
T 580 (176.8) 599 (182.6) 19 (5.8)
9 705 (21k.0)* 699 (213.1) -6 (-1.8)
11 561 (171.0)% 5Th (175.0) 13 (k4.0)
12 587 (178.9) 599 (182.6) 12 (3.7)
13 673 (205.1)% 663 (202.1) -10 (-3.0)
1k 593 (180.7)% 61k (187.1) 21 (6.4)
16 715 (217.9) 690 (210.3) =25 (-7.6)
17 725 (221.0) 687 (209.L4) -38 (-11.6)
19 759 (231.3) 748 (228.0) -11 (-3.4)
20 660 (201.2) 6L9 (197.8) -11 (-3.4)
22 650 (198.1) 649 (197.8) -1 (-0.3)
23 581 (177.1) 599 (182.6) 18 (5.5)
2k 580 (176.8) 574 (17k4.9) -6 (-1.8)
25 543 (165.5) 550 (167.6) 7 (2.1)
28 633 (192.9) 625 (190.5) -8 (-2.4)
29 725 (221.0) 717 (218.5) -8 (-2.k4)
30 632 (199.6) 550 (167.6) -82 (-25.0)
32 552 (168.2) 576 (175.6) ° 2h (7.3)
33 613 (186.8)* 549 (167.3) -6k (-19.5)

# These values were noted on the map as spot elevations. Other
values were obtained by interpolating between contours on the map.

Resulting Statistics

Data Set C
Degrees of freedom 22
Mean, in ft. (m) -3.48 (-1.06)

Variance 924.1
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that the great majority of the data array positions would be within
the allowable height assignment error as derived in Section 3.k.1.
Referring to Figure 3.5 ang Equation (3.51), it may be seen that
the minimum value of this allowable error would occur near the flight
line edge, at a scan angle of 38.6°. at this scan angle, with a
flying height of 5000 ft. (1.52 km), the ground size of a resolution
element in the Y direction is approximately 50 ft. (14.9 m) and the
resulting allowable height assignment error is approximately 61 ft.
(18.8 m). At a scan angle 6f 20°, the resulting ground size of a
resolution element is 34 ft. (10.4 m) and the resulting allowable
height assignment error is 93 rt. (28.5 m). Thus, it may be seen
that 60 ft. would represent a conservative value, the square of which
yields a variance against which to test the results from the height
assignment algorithms.

A complete statistical analysis of flight 208 was not performed.
A cursory inspection of the differences between the assigned element
elevations and those from the map sheet (data sets C ang E, Table L.5)
reveals that no value in the data even approaches the minimum accep-
table value of 60 feet. Hence for this flight line the elevations
may be assumed to be assigned with suitable accuracy, using either
the contour-scan or arithmetic mean method. Due to its computational
efficiency, the contour-scan method was utilized in subsequent analysis
and restitution computations when element elevations were required.

For flight 218, the data from which statistical quantities

were computed for testing were the differences between the elevations
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assigned and those taken from the map (data set C, Table Lh.6).

As a first step, the data were tested for normality, in order that
subsequent tests ﬁbon the mean and the variance would be wvalid.

The Shapiro-Wilk test for small samples was used [108]. 1In this
test a statistic, denoted w, is computed and compared with tabular
values published in that reference in order to test the hypothesis
that the data are normally distributed against the alternative

that the datae are not normally distributed. When the computed w
from the data is below the appropriate tebulated value, then non-
normality of the data is indicated. The value of w calculated from

the data of flight 218 was 0.925. The value of w is computed as

in which s.s. represents the sum of squares of the data values.
The quantity b is calculated by first ordering the data in ascending
order (dy, dp, . . . dp where dj is the smallest value and dj the

largest data value). If n is an even integer, then a parameter k

is defined such that n 2k- and b is computed with

o
1]
!I. ™~ R

ap_i+1 (dpg+1 - 44)

i=1

where the a values are coefficients tabulated in the reference.
If n is an odd integer then the central data wvalue is omitted from
the set and k is defined such that n = 2k + 1 and the expression

for b becomes

b= oan(dy - ) ¢+ (G - )

*r,,_.
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where the value of dyx+1s the sample median, does not enter the com-

bputation of b. The tabular values for the appropriate data sample

of 0.10. The hypothesis that the data are normal may then be accepted
at an ¢ level of 0.05.

Next, the mean value of these data was computed and testeq,

The null hypothesis formulated was that the mean was €qual to zero,
versus the alternate hypothesis of a non-zero mean. The hypothesis
was tested at an o level of 0.05. 4 t statistic was calculated
from the data ang found to be -0.549. The tabulated value for
t.975 ,22 ¥as found to be 2.07k, Thus, for a two-sided test, the
null hypothesis would be rejected only if the t value calculated
was greater than 2.07h or less than -2.07Thk, ang the hypothesis of
2ero mean was accepted.

The final test was performed upon the variance. Thig represents
an important step, since it ig here that the adequacy of the height
assignment ig determined. For this step, the Sample variance of
924 .1 calculated from the data was compared with the allowable height
assignment variance assumed as 3600 (from the allowable height as-~

signment error of 60 feet). It was assumed that the degrees of freedom

that this variance is larger than 3600. The hypothesis may then
be tested using a x2 statistic, or an F statistic having infinite

degrees of freedom in the denominstor. A x2 statistic was calculated
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from the dats and found to be 5.65. The test was performed at an o
level of 0.05, for which the tabulated value of'x2.95’22 was found
to be~33.9. The null hypothesis would be rejected only if the )(2
value calculated from the dasta was greater than the value tabulated,
and the hypothesis was accepted.

The net result of this test is that the elevation data assigned
to the element array positions may reasonably be assumed to lie
within 60 ft. of the true value. The resulting planimetric error
due to elevation assignment errors will then be less than one res-
olution element. With this knowledge, attention is directed in the
next section to the problem of testing the various methods of analysis

and restitution previously presented.

4.4 Comparison of Analysis Methods

The purpose of this section is to systematically test the analysis
and restitution methods presented in Chapter 3, when operating upon
the actual data arrays chosen. For each method, the assumptions
made for each analysis will be presented, numerical data resulting
from the analysis will be given, and meaningful differences in the

results under different assumptions will be pointed out.

L.4.1 Collinearity Equations
In testing this method a two step procedure was carried out
in which control points from the map and the corresponding arfay
positions were used to estimate parameters of the exterior orientation,
followed by computation of coordinates of check points withheld

from the adjustment. This results in two useful statistics.
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1.) The a posteriori reference variance which is computed from
the adjustment itself.

2.) A "positional check variance", based upon the variances
in the X and Y directions computed from the check points.

For this purpose the square of the circular standard error as defined

in [113] was used. A conservative estimate for this value ¢, is
given in this reference as c = 0.5(0, + oy). These quantities
were assigned n - 1 degrees of freedom, where n is the number of
check points, and were statistically tested for significant differences,
in order to ascertain which of the assumed functional forms produced
better results.
For each flight line, several cases with the following functional
assumptions were performed, and the results from each were compared.
Case Cl: For this case, the functional forms for the exterior

orientation parameters were of the form

XC - -AX + BX X
ZC = AZ + BZ X
(4.3)
K = AK + BK b'd
$ = 0
w = 0

In which the recoverable orientation elements are assumed as linear

functions of x within a flight line section.
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Case C2: For this case, functional forms are assumed to be

X, = AX+BXx+CXx2

Yo = Ay + By x + Cy x?

Zo = Ay + By x + Cg x ()
Kk = A +B x+C x2

6 = O

w = 0

These polynomials were used to investigate the usefulness of non-
linear variations of orientation elements within a flight line section.
Case C3: For this éase, an attempt was made to assume polynomial
forms which would correct for non-linear effects
within a section, and retain computational efficiency
for the later element by element transformation of

the arrays. The functional forms assigned here were:

- 2
XC = AX + BX X + CX X
— 2
Y. = AY + BY x + CY X
Z. = A, + B, x
c 7 A
(4.5)
K = AK
¢ = 0
w = 0

Using these polynomials, the intent was to model the non-linear
effects within each section using non-linear functions which affect

most directly the element positions, i.e. Xc’ Yc. The k term is

modeled as a constent within each section in order to avoid the
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re-evaluation of trigonometric functions for each scan line. Note
here that only a linear form was assumed to model the flying altitude.
Experience gained during the investigation showed that the addition
of an x2 term in the polynomial used to model this element produced
negligible improvement over the case using the functional form shown.

Case Ch: In this case the following polynomial forms were

assumed:
- 2

Xc = AX + BX X + CX X
Te = Ay + By x + Cy x?

Z = + B x

c

L (L.6)

K = AK + BK b

¢ = 0

w = 0

The purpose here was to test if a significant difference could
be detected by linear modeling of the k term over the computationally
more efficient model in which k is assumed constant for the flight
line (Case C3).

For each of the cases given above, three different procedures
were used. The adjustment and checking was done first treating
the entire flight line as g unit. That is, it was assumed that a
single set of parameters was valid for the entire length of the
flight line. Then the flight line was treated in two sections,
in which a separate set of parameters was solved for in each section.

For this mode, the flight line was divided into sections each about

half the length of the flight line. As a third case, the flight
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line was segmented into thirds and separate parameter sets computed
for each of the three sections. For the instances in which the flight
line was divided into sections, the constraints of Equation set (3.39)
were enforced at the section boundaries.

A summary of the results for flight 208 is shown in Table L4.7.
For each case, the total number of parameters is given, and the
number of degrees of freedom for the adjustment. The reference
variance resulting from the adjustment is next shown. This reference
variance is & wnitless quantity which, when multiplied by the assumed
a priori variances of the observations will result in & posteriori
estimates of these variances, as indicated by the least squares
adjustment. For flight line 208, the a priori estimates of variance
assumed were 1.0 for the scaled control points from the map, end 2.25

for the corresponding array positions taken from the line printer

display. Table 4.8 shows the corresponding information for flight 218.
For this flight line, the & priori estimates of variance on the

control points were 1.0 for the scaled X-Y map coordinates and 6.25

for the corresponding x-y array positions.

The unit; for the standard deviations are in terms of elements
within the data arrays, or remote sensing units (rsu). The estimates
of standard deviation taken for the digitized map control points
were based upon the National Map Accuracy Standards. The standards
state that 90% of all "well defined" points plotted fall within
1/50 in. (0.5 mm) of their true position. Assuming equal errors
in X and Y, the component 90% error estimates would be Ey = EY = E/V2

where E,, Ey are the 90% errors in X and Y, and E is the positional
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Table k4.7

Statistics from Collinearity Analysis of Flight 208

(60 Check Points)

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsu?(d.o.f.
Check Variance y in rsu?(d.o.f.
Positional Check Variance in rsu

N

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsuz(d.o.f.
Check Variance y in rsu?(d.o.f.
Positional Check Variance in rsu

N

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsu?(d.o.f. =
Check Variance y in rsu?(d.o.f. =
Positional Check Variance in rsu?

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsu®(d.o.f.
Check Variance y in rsu®(d.o.f.
Positional Check Variance in rsu

NI on

59)
59)

59)
59)

59)
59)

Number of Sections

L

8

70
2.58
9.10
L.55
6.63

66
1.10
2.48
4.13
3.25

1.1k
2.63
4,05
3.29

10

68
1.10
2.56
4,06
3.27

2

16

66
1.14
3.05
L. ok
3.53

2k

58
0.78
2.27
2.81
2.53

18

0.86
2.53
2.81
2.67

20

0.81
2.45
2.82
2.6L4

3

2k

62
0.96
2.k
3.4
2.88

36

50
0.59
2.03
1.86
1.94

27

59
0.65
2.21
1.90
2.06

30

0.57
2.08
1.91
1.99
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Teble 4.8

Statistics from Collinearity Analysis of Flight 218
(9 Check Points Only)

Number of Secetions

i 2 3
Case Cl: Number of Parameters 8 16 2L
Degrees of Freedom 38 3k 30
Reference Variance 1.39 0.98 0.87
Check Variance x in rsu?(d.o.f. = 8) 7.30 6.59 T7.30
Check Variance y in rsu?(d.o.f. = 8) 4.80 3.31 1.89
Positional Check Variance in rsu? 5.98 L4.81 L4.15
Case C2: Number of Parameters 12 24 36
Degrees of Freedom 34 26 18
Reference Variance 1.08 0.70 0.48
Check Variance x in rsu?(d.o.f. = 8) 6.69. 15.51 17.86
Check Variance y in rsu?(d.o.f. = 8) 3.64 1.63 0.9
Positional Check Variance in rsu? 5.06 6.80 6.75
Case C3: Number of Parameters 9 18 27
Degrees of Freedom 37 32 27
Reference Variance 1.0k  0.79 0.T1
Check Variance x in rsu?(d.o.f. = 8) 7.55 9.92 8.69
Check Variance y in rsu?(d.o.f. = 8) 3.78 1.91 1.35

N

Positional Check Variance in rsu 5,50 5.13 4.22

Case Ch: Number of Parameters 10 20 30
Degrees of Freedom 36 30 2k
Reference Variance 1.06 0.78 0.65
Check Variance x in rsu?(d.o.f. = 8) 6.74 9.12 9.hk
Check Variance y in rsu?(d.o.f. = 8) 3.78 1.91 1.3k

N

5.15  L4.84 L. LT

Positional Check Variance in rsu
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error given by the accuracy standards. The resulting standard de-
vigtion estimates in X and Y then become approximately .008 in. (0.2 mm )
each. The resulting ground scale distance when these numbers are
divided by the 1:24000 scale of the U.S.G.S. 7 1/2 minute quadrangle
maps used is about 10 ft. (3.1 m). This is on the order of one

half the ground size of a data array element at nadir. However,

many of the map points digitized were not "well defined", as described
in the accuracy standards. A value of 1 rsu was therefore assigned
for the a.priori estimates of standard deviation for map coordinates.
The a priori standard deviation for corresponding data array positions
were based upon the difficulty found in assigning these positions
within the data arrays. Thus, for flight 208, standard deviation
estimate of 1.5 rsu (variance 2.25) was chosen, and for the more
difficult flight 218, a standard deviation of 2.5 rsu (variance 6.25)
was chosen.

In order to compare the accuracies obtained for the cases tested,
tables of F statistics were computed based upon the & posteriori
reference variances obtained from the adjustments, and the resulting
positional check variances. These F statistics were computed as
ratios of resulting variances between the various cases. Table 4.9
shows the resulting F statistics formed by the quotient of the
& posteriori reference variances for the various cases tested for
flight 208. As an example the value 2.26 in the second row, first
colum of Table 4.9 represents the ratio of the a posteriori reference
variance of 2.58 obtained in Case C1 treating the entir; flight line

as a unit, divided by the a posteriori reference variance of 1.1k
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obtained for the same functional assumptions (Case C1) but dividing
the flight line into two approximately equal sections. The asterisk
opposite this value indicates a significant difference between these

variances. Therefore, significant improvement ig noted for this

is treated as g single unit. Table 4.10 tabulates the F statistics
resulting between cases tested if the positional checg variances
are used to form the values. Tables 4.11 and k.12 show the resulting
F statisties obtained in this manner for flight 218.

Based upon the information in these tables, several facts may
be pointed out.

1.) In general, in order to discern statistically significant
improvement over the linear assumptions of case Cl, a
combination of higher order assumptions was necessary,
coupled with a division of the flight line into three sections.

2.) In general, no significant difference was noted between
Case C2 and Case C3. This suggests that the computationally
efficient model of Case C3 is adequate for non-linear effects.
For the arrays tested then, medeling of Zc and k by second
order functions resulted in no statistical improvement
over modeling Zc as a linear function and Kk as a constant
value.

3.) No statistically significant difference was noted between

Case C3 and Case ch, suggesting that for the arrays tested,
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assuming k to be a constant throughout the flight line is
practical.

For flight 208, having small terrain elevation differences
and a large number of control points, Tables 4.9 and 4.10
reveal a statistically significant improvement in the three
section breakdown as compared with treating the entire
flight line as a single section regardless of the analytical
model. This suggests that, for flights having sufficient
control and lo#)terrain relief differences, adequate seg-
menting of the flight line should take precedence over the
use of more complicated analytical models.

As shown in Table 4.12, no significant differences between
the various cases were obtained based upon the check variances
for flight 218. This was expected since the degrees of
freedom for these variances was quite small (8).

Examination of Table 4.8 points out a danger aséociated
with modeling the exterior orientation elements using a
large number of parameters. For this flight line (218)
having relatively few control points, it may be seen that
when the higher order assumptions are made to model exterior
orientation elements, combined with. segmenting the flight
line, the positional check variance actually increases over
those cases having fewer parameters. This indicates that
unless many control points are available, the more highly
non-linear interpolations.may be misleading and dangerous.

Although these combinations result in lower reference
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variances from the adjustment, the actual measure of the
validity of the interpolation, the positional check variance,
increases, due.mainly to the relatively small degrees of
freedom.

In summary, the analysis of the data from the two flight lines
tested suggests that linear modeling of exterior orientation elements
(Case Cl) coupled with segmentation of the flight line represents
a modeling method which avoids the problems discussed in 6. sbove.
However, the functional forms of Case C3 are recommended. This
combination of polynomials represents a computationally efficient
method of accounting for non-linear behaviour in the data, and suitably
;voids the problems of overparameterization discussed in 5. above.
This case also results in less computation than for Case Cl, since
the trigonometric functions in the collinearity need be evaluated
only once for each flight line section. It should be emphasized
that the conclusions drawn and recommendations made are valid only
for the two flight lines tested. Additional testing of arrays
generated under varying conditions is necessary before firm conclusions
may be drawn for digital MSS arr;ys in general.

Similar to the collinearity, the piecewise polynomial formulation
represents another "parametric" method suggested for use in resti-
tuting MSS digital date arrays. In the next section, test cases
for this method and results of their application to the data arrsys

chosen will be presented.
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4.4.2 Piecewise Polynomials

To test the suitability of the use of piecewise polynomials
in analysis and restitution of digital MSS data arrays, the polynomial
forms of Section 3.2.2 were used. The data arrays were not resampled,
but were used directly as they came from the digitizing equipment.

As with the collinearity formulation, each polynomial form chosen

was tested as the mathematical model, treating the entire flight

line as one unit, in two approximately equal sections, and in three
approximately equal sections. The constraints of Equations (3.38)

were invoked at section interfaces. The arrays were roll stabilized,
so that w = 0 was assumed, and the effect of ¢ was assumed incorporated
within the X, variation.

As previously mentioned in Section 3.2.3, the formulation of
piecewise polynomials will yield results identical to the collinearity
equations if the trigonometric series for tan 6 is taken to a sufficient
number of terms, and if the coefficients of the polynomials are
estimated using the same least squares models as was used to estimate
the parameters of the collinearity equations.

As a test of this supposition, the case was investigated in
which the orientation elements were assumed to be approximated by
second order polynomials for the entire length of flight line 218,
This would represent Case C2, with the flight line as a single unit,
in the previous section. Polynomials were generated similar to
those of (3.20) except that tan 0 was represented using additional

terms in the series expansion beyond the first two represented in
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(3.20). This formulation was programmed using the least squares
model of combined observations and parameters. The g.pfiori
estima;es of variance for the x, y, X, Y obserfed quantities were
assigned the same values as were assumed for the collinearity
formulation. The coefficients of the polynomials were then estimated
using successive relinearizations in an iterative least squares
solution. The results obtained were a reference variance of 1.08

and a positional check variance of 5,04. These values are identical
to those obtained for the corresponding collinearity analysis, as

may be seen in Table 4.,8. In fact, the results were identical in

all respects to those from the collinearity analysis. Thus, if
sufficient terms are taken in expanding tan 6, and if the same rigorous
least squares procedure is used to estimate coefficients, the results
of a piecewise polynomial formulation will be identical to those
using the collinearity equations.

However, the polynomials in Section 3.2.2.1 were derived assuming
only the first two terms in the series expansion of tan 6. (Fhrther,
it is customary when utilizing polynomials to solve for the coefficients
by least squares using the method of indirect observations (multiple
regression). This approximation requires no iterative procedure.

The estimates of the polynomial coefficients result from a
single solution of the linearized equations (X_+ BA = F°) and
the observations are assumed to have identity weight matrix. These
approximations were made for the same test case from flight 218

and resulted in a positional check variance of 5.83 and an

a posteriori reference variance from the adjustment of 7.78.
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The positional check variance for the more rigorous adjustment was

5.04. The reference variance resulting from the more rigorous

» Which when multiplied by the g Priori variance

estimate of 6.25 assumed for positions in the data array, yields
a value of 6.75. The differences between these variances from the
more approximate procedure (5.83 and 7.78) and the rigorous procedure
(5.04 and 6.75) are not statistically significant at an q level of
0.05. It may reasonably be assumed then that the approximate procedure
is suitable for use with piecewise polynomials. In the subsequent
tests, the approximate polynomials of Section 3.2.2.1 were used,
and coefficients were estimated using the least Squares model of
indirect observations.

The polynomial forms chosen to be tested were the following:

Case P1: The polynomials for this case were of the form:

P
[

ALt Ry XAy Y+ M 3y 4 (A3/3¢2)y3 4 (a/302)xyd ()

[
I

By + By x + Byy + B, xy + (B3/3¢?)y + (By/3¢2)xy3

which represents one of the simplest polynomial forms possible.

In this case orientation element variations are assumed linear,

and the first two terms of the trigonometric series expansion are

used to approximate the scan angle. Topographic effects are neglected

in this formulation.
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Case P2: For this case, the polynomials used were:

X =- A+ M x+ A3y + 4 xy+ (A3/3c2)y3 + (4),/3¢?)xy3
- 2l(A3/2)y + (A3/3¢2)y3 + (A)/2.)xy + (A),/3¢22,)xy3]
(L.8)
Y = Bl + BQ x + B3 y + Bh xy + (B3/3C2)Y3 + (Bh/302)xy3

- 2[(1/e)y + (1/3e3)y3]

This formulation represents linear modeling of exterior orientation
variation, but includes the effect of topographic elevations.

It is equivalent to Case Cl of the collinearity formulation, in that
the same assumptions concerning exterior orientation varistions were
made.

Case P3: The polynomials

X=A1+A2x+A3x2+Ahy+A5xy+A6x2y
+ (8y/3c2)y3 + (A5/3¢2)xy3 + (Ag/3c?)x2y3 (1.9)
Y = Bl + 32 x + B3 x2 + Byy+ B5 xy + Bg xzy

+ (By/3¢2)y3 + (B5/3c?)xy? + (Bg/3c?)x2yd

were used. This formulation represents the assumption of second i
order polynomials for the variations of all of the elements of exterior

orientation, in which terrain elevations are neglected.
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Case PLh: The polynomials used for this case are:

X = A+ A, x+ Aq x2 + By ¥y + A5 xy + Ag x2y

* (8,/3¢2)y3 + (A5/362)xy? + (ag/3¢2)x2y3

- 20(8y/2 )y + (8,/3¢27,)y3 + (As/2.)xy

* (Ag/3¢%2,)xy3 + (Ag/2,)x2y + (863c22,)x2y3] (4109
Y = Bl+B2x+B3x2+Bhy+B5xy+B6x2y

+ (By/3e2)y3 + (B5/3¢2)xy3 + (Bg/302)x2y3

- z[(1/c)y + (1/c3)y3]

This form of the polynomials assumes second order variations of
orientation elements and attempts to include topographic effects.
It represents the same assumptions concerning exterior orientation
behaviour as were made for the collinearity model in Case C2.

Table 4.13 summarizes thé results of the analysis for flight 208.
Table 4.14 depicts a tabulation of F statistics for this flight
line formed from the reference variances from least squares analysis,
and Table 4.15 is a tabulation of F statistics for this flight based
upon check variances computed using check points withheld from the
adjustment.

It may be seen from these tabulations that for this flight
over flat terrain, the inclusion of elevation data had virtually

no effect upon the accuracy obtained, as would be expected. For the

lower order polynomials of Case Pl and Case P2, statistically significant

improvement was noted in dividing the strip into 2 sections over

that of treating the flight line as a unit,ﬂand little further

improvement was noted for these lower order polynomials in going



Statistics from Piecewise Polynomial Analysis of Flight 208

Case P1l:

Case P2:

Case P3:

Case PL:
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Table 4.13

(60 Check Points)

Number of Parameters

Degrees of Freedom

Reference Variance

Check variance x in rsu?(d.o.f. =
Check variance y in rsu?(d.o.f. =
Positional Check Varisnce in rsu 2

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsu?(i.o.f. = 59)
Check Variance y in rsuz(d.o.f. 59)
Positional Check Variance in rsu

N

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsu?(d.o.f. = 59)
Check Variance y in rsu?(d.o.f. = 59)
Positional Check Variance in rsu

Number of Parameters

Degrees of Freedom

Reference Variance

Check Variance x in rsu?(d.o.f.
Check Variance y in rsu?(d.o.f.
Positional Check Variance in rsw

]|
J1 \n
O \O

N

Number of Sections

i

.91
.10
.5k
.62

AN F\ON0O

.92
.10
ST
.6k

NFWO—gJO @

.16
)
.05
.22

2

16

66
3.29
3.06
3.96
3.50

16

66
3.29
3.06
4.0l
3.52

2k

2.41
2.28
2.8k
2.56

24

58
2.k0
2.28
2.86
2.57

3

2k

62
2.87
2.k2
3.39
2.89

24

62
2.86
2.k2
3.41
2.89

36

50
1.82
2.01
1.88
1.95

36

50
1.83
2.01
1.92
1.96
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from 2 to 3 sections. For the higher order polynomials, it was

in general necessary to segment the flight into 3 sections before
significant improvements could be discriminated over treatment as

a single unit. In most cases, significant improvement was noted
in going from the lower order polynomials of Case Pl and Case P2

to the higher order polynomials of Case P3 and Case P4 for the same
number of sections.

Table 4.16 summarizes the results of the polynomial analysis
for flight 218. Tables L.17 and 4.18 depict tabulations of F statistics
formed from the reference varisnces and check variances, respectively.
Although improvements in the reference variances weretgenerally
noted when elevation information was included for this flight over'

moderate terrain relief, such improvements were not found to be

- statistically significant. Segmenting of the strip had no significant

effect upon the accuracies obtained for the lower order polynomials.
The only generally apparent statistically significant improvement

in the reference variances appears to be in going from the lower

order polynomial cases to the higher order Case PL combined with
segmenting the flight line into 3 sections. No éignificant differences
were detected for flight 218 based upon the check variances, as may

be expected due to the small degrees of freedom associated with

these (8). Note that for this analysis, as with the collinearity
model, the assumption of a large number of prarameters could be
dangerous, as indicated by the increase in the check variances.

Thus, although the points included in the adjustmenf were fit quite



245

Table 4.16
Statistics from Piecewise Polynomial Analysis of Flight 218
. | (9 Check Points Only)
Number of Sections
102 3
Case P1l: Number of Parameters 8 16 2y
Degrees of Freedom 38 34 30
Reference Variance 10.20 T7.9% 6.80
Check Variance x in rsu?(d.o.f. = 8) T7T.20 6.61 7.33
Check Variance y in rsu?(d.o.f. = 8) 5.67 L.74 1.84

N

6.h0 5.6 14,13

Positional Check Variance in rsu

Case P2: Number of Parameters 8 16 2k
Degrees of Freedom 38 34 30
Reference Variance 9.11 T.02 6.33
Check Variance x in rsu®(d.o.f. = 8) 7.19 6.58 T.26
Check Variance y in rsu?(d.o.f. = 8) 4.96 L.72  2.36

N

Positional Check Variance in rsu

6.02 5.61  L.hT

Case P3: Number of Parameters 12 2k 36
Degrees of Freedom 34 26 18
Reference Variance 8.88 5.52 L4.19
Check Variance x in rsu?(d.o.f. = 8) 6.67 14,96 17.71
Check Variance y in rsu?(d.o.f. = 8) k.91 2.02 1.32
Positional Check Variance in rsu? 5.76 6.99 T.1T

Case Ph: Number of Parameters 12 2y 36
Degrees of Freedom 3k 26 18
Reference Variance “7.78 5.07 3.56
Check Variance x in rsu?(d.o.f. = 8) 6.64 1k.88 17.69
Check Variance y in rsu?(d.o.f. = 8) 5.02 2.13 1.h40

N

Positional Check Variance in rsu 5.81 T7.0T T.26
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closely as shown by the lower reference variances, the true test
of the fit, as given by the check variances computed from points
withheld from the adjustment, deteriorated.

The value in including Z coordinate elevations is doubtful

for this test array over moderate terrain relier. For this test, no sig-

nificant improvement was gained in doing S0, indicating that terrain
relief effects are relatively small for this array, and such effects
are at least partially compensated for in estimating the parameters
of exterior orientation. However, a test with many more check points
should be carried out before s more concrete assertion can be made

regarding the inclusion of point elevations in the polynomials.

4.4.3 Nonparametric Methods
The four nonparametric methods of MSS digital dats array
analysis and restitution which were attempted for testing are:
1. Arithmetic mean
. 2. Moving average
3. Meshwise linear transformation
b, Linear least squares filtering
The first three of the above represent algorithms which may be
applied to MSS digital data arrays in a fairly straightforward
manner. The linear least squares filtering is highly dependent
upon the validity of assumption of some statisticsl properties
concerning the datsa arrays. Considerable difficulty was experienced
in applying this method to the data arrays available for testing.
In implementing the arithmetic mean algorithm, the data arrays

were first preprocessed using the resampling algorithm of
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Equation (3.13), followed by approximate scaling in the y direction,
in order to approximately equalize scales in the x and y directions.
A we{éhting function was then chosen using only separation distance
between points as the independent variable. For the flight lines

tested, the weighting function was assumed to be of the form

1
v = &7 (4.11)

For the test of the moving average algorithm, no preprocessing
of the data was done. The weighting function of (L4.11) was also
used for this method, and the non-linear form of Equation (3.45)
was utilized.

The meshwise linear transformation was also tested on both
flight lines. No preprocessing of the data is required for this
method, and no weighting function need be defined. The control
points were connected into a triangular mesh, and eachncheck point
was transformed according to the qnique parameters of an affine
transformation defined by the coordinates of the three control points
forming the triangle within which the check point lies.

Attempts were also made to analyze the applicability of the
linear least squares filtering method as a restitution technique.
The results of these attempts, however, were disappointing. Suc-
cessful application of the method depends upon the data having
specific statistical properties. The property of ergodicity must
be assumed, which in turn depends upon stationarity of the data. In

addition, isotropy of the two dimensional data field must be assumed [99].
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The resampling algorithm of Equation (3.13), followed by ap-
proximate y direction scaling was used to pPreprocess the flight
lines in an attempt to satisfy the isotropic requirement. Sample
covariance points were then computed from the data sets using the
method presented in [99]. Results of these steps for flight 208
are represented by Figure 4.11. From these plots, it is apparent
that the data set cannot be considered to satisfy the statistical
requisites over the entire length of the flight line, since no logical
fit to these sample covariance points may be obtained using an allowable
autocovariance functional form. Yaglom [109] and Bendat and Piersall
[114] enumerate the characteristics of an autocovariance function‘

as follows:

c(o) > o
c(-t) = c(1)
c(t) = ¢(0)

in which C represents the value of the autocovariance function
and T represents the independent variable. The cross-covariance
function need only satisfy the condition ny(r) = ny(—r) [114].
It may be seen from the figure that no function having the properties
described above may reasonably be fitted to these points. Similar
results were obtained for flight 218.

In an attempt to alleviate these problems, covariance functions
were calculated based only upon sample covariance points within
limited regions, limiting the distance to less than 500 eiements.

Within these regions it was attempted to fit CGaussian functional
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X Covariance (Cx)

Y Covariance (Cy)

XY Covariance (ny)
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forms, as suggested by Kraus and Mikhail [99], to sample covariance
points. The Gaussian type covariance function may be written in

the form:
c(@) = c(o) e-kd? (4.12)

in which the C(0) and k parameters are estimated by a least squares
fit of the function to the sample covariance points.
After these covariance functions were determined, they were
used to calculate the elements within the C matrix of Equation (3.49),
as well as the ¢ matrix. Each element of the sub-matrices Cs» gy,
Cxy» gyx in Equation (3.49) are computed from the appropriate covariance
function. For the present investigation, two cases were considered.
In the first, three separate covariance functions wvere determined
for calculation of the terms in the Cxs Gy and -c-xy sub-matrices
by a least squares fitting to the sample covariance points. For

this case it was assumed C = C

Cxy T In the second case, it was

0. This represents the case for which

assumed that gxy = ny

independent interpolation and filtering are done in the x and y
directions.

If interpolation only is to be done, the diagonal elements
of the C matrix will contain values C(0) from the appropriate auto-
covariance functions. However, if estimates of random components
T at the reference points are to be filtered, in addition to interpo-

lation of the s components, the diagonal terms of the C matrix are

replaced by variance terms Vs V& computed from the data set.
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For the x variance terms, for example, the variance is computed

by
° 2
VX =.22.xi
i=1
in which in = Xy - x; forn control points. It was this technique

which was attempted in this investigation. Hence, simultaneous
interpolation and filtering was attempted.

For the data sets available for testing, however, the results
obtained using this linear least squares procedure were highly
erratic. Combinations of covariance functions which appeared to
yield acceptable results on one flight line yielded very large
positional check variasnces on the other. A preliminary supposition
is that the data sets, even after the preprocessing steps described
above, do not adhere to the requisite statistical properties necessary
for the successful application of the linear least squares algorithm.

Because of this unpredictebility of results from the linear
least squares procedure, this technique is not included in the

tabulated results to be presented. In Table 4.19 the resulting

statistics obtained from the processing of the data arrays for flight 208

by nonparametric interpolative methods are shown. The statistics
shown are based upon check variances formed by applying the non-
parametric methods to the check points as based upon the control
points available within the strip. Sixty such check points were
available for flight 208. 1In Table 4.20 a similar tabulation is

shown for flight 218. Only nine check points were available for this




254

Table L4.19

Statistics from Analysis of Flight 208
by Nonparametric Interpolative Methods
(60 Check Points)

Arithmetic Mean

Degrees of Freedom (x and y)
Check Variasnce, x, in rsu?
Check Variance, y, in rsu?
Positional Check Variance

Moving Average

Degrees of Freedom (x and y)
Check Variance, x, in rsu?
Check Variasnce, y, in rsu2
Positional Check Variance

Meshwise Linear Transformation

Degrees of Freedom (x and y)
Check Variance, X, in rsu
Check Variance, ¥, in rsu?
Positional Check Variance

59
1.82
5.09
3.26
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Teble 4.20
- Statistics from Analysis of Flight 218
by Nonparametric Interpolative Methods
(9 Check Points)

Arithmetic Mean

Degrees of Freedom (x and y) 8

Check Variance, x, in rsu? 10.69
Check Variance, y, in rsu? 2.32
Positional Check Variance 5.76

Moving Average

Degrees of Freedom (x and y) 8
Check Variance, x, in rsu 7.49
Check Variance, y, in rsu 3.82
Positional Check Variance 5.52
Meshwise Linear Transformation

Degrees of Freedom (x and y) 8
Check Variance, x, in rsu? 6.25
Check Variance, y, in rsu® 5.86
Positional Check Variance 6.05
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flight line, and the resulting degrees of freedom (8) for the x and
¥ coordinate values, respectively, is quite small. Table 4.21 ig
a tabulation of the F statistics computed from the positional check
variances for flight 208. of interest here is the fact that the
simplest interpolative method, that of the arithmetic mean, shows

a significant reduction of variance over the meshwise linear transfor-

i mation method. No other statistically significant differences were

noted for this flight line. Table 4.22 shows a similar tabulation

for flight 218. As might be expected, no significant differences

§ between the interpolative methods were detected for the small degrees

of freedom available. The inference to be drawn from these tables

is that if restitution is to be done for the arrays tegted using

& nonparametric method, the choice of the simple arithmetic mean
repreéents a logical and computationally efficient choice, well

suited to automated restitution as g portion of automated interpretation.
General conclusions should not be drawn, however, based upon such
limited tests. TFurther investigations utilizing data arrays generated
under a variety of conditions must be performed before a definitive

statement may be made.

L. L.} Summary of Results
The results of the tests performed on the data arrays chosen
indicate that the nonparametric methods, particularly the arithmetic
mean algorithm, represent perhaps the optimum methed for restitution
of M3S digital data arrays. TFor flight 208, each of thg‘check var-

iances from the collinearity and piecewise polynomial analysis were

pem g T
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Table 4.21

Tabulation of F Statistics for Flight 208
Formed from Positional Check Variances from Nonparametric Methods

Arithmetic Moving Meshwise
Mean Average Linear
Trans formation

Arithmetic
Mean 1.00
Moving
Average 1.50 1.00
Meshwise
ILinear 1.75% 1.17 1.00
Transformation

¥ TDenotes values which are statistically significant at an a level
of .05.

Table 4.22

Tgbulation of F Statistics for Flight 218
Formed from Positional Check Variances from Nonparametric Methods

Arithmetic Moving Meshwise
Mean Average Linear
Transformation
Arithmetic
Mean 1.00
Moving
Average 1.04 1.00
Meshwise
Linear 1.05 1.10 1.00
Transformation

'r?_,_«
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compared using the F statistic to that obtained by the arithmetic

mean algorithm. It was found that, for the collinearity analysis,
only the higher order polynomial assumptions, coupled with dividing
the flight line into sections could compare favorably. In all cases
of linear orientation variation assumption the check variances from
the collinearity analysis were significantly higher than that obtained
from the arithmetic mean analysis, at an o level of .05. QSimilar
results were obtained when a comparison of the results of the poly-
nomial analysis with that of the nonparametric methods was done.

For flight 208, only the higher order polynomials coupled with

dividing the flight line into three sections could compare favorably

with any of the nonparametric methods. The nonparametric methods
in general produced statistically better results than those from
the lower order polynomials.

For flight 218, a comparison of the check variances obtained
from the collinearity analysis and those from the nonparametric
methods was also done. Xo statistically significant differences
were found. A comparison of check variances from the polynomial
analysis with those from the nonparametric methods alsc revesled
no significant differences. These results are noteworthy, because
in using the nonparametric methods no attempt was made to account
for displacements due to topography. This would indicate that for
arrays obtained by scanning areas of moderate terrain relief (e.g.
flight 218) that errors due to relief displacement are small compared
to those due to other sources (orientation, scan time, etc.), or

that the nonparametric algorithms at least partially account for
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the topographic effects or a combination of these factors. There-
fore the nonparametric methods (particularly the relatively simple
arithmetic méan algorithm) were shown to represent an effective
method for use in the restitution of such arrasys, at least

for the arrays tested, although no general conclusions should be

drawn from such limited tests.

4.5 Final Transformation of Flight Lines

A final transformation of the test flight lines was attempted
utilizing the collinearity method of restitution. The method used
was as described in Section 3.5. After estimating the parameters
of the model, the restituted st Yj coordinate values were assigned
as the independent variables in the transformation equations. An
iterative procedure was utilized in which Zj was first estimated,
the collinearity equation for the coordinates in the direction of
flight was then solved explicitly for xj, the uncorrected array
position, and this value was utilized in the second collinearity
equation to solve for Yo the along scan array position in the
uncorrected array. These values were used to locate an updated
value for the Zj term, and the process was repeated until no change
in the resulting array position was found. The spectral values in
the Xy yj uncorrected array position were then assigned to the
Xj’ YJ restituted array position after iterative transformation.
This procedure was repeated for each data array element. The program
utilized was a modification of Anuta's OVERLA program [110], which
was originally written to superimpose different arrays of data con-

taining essentially the same ground ares.
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Digital displays of the restituted arrays were then generated
to assess qualitatively the results. In Figure 4.12 isg shown the
digital display of channel 6 for flight line 208 after restitution,
which may be compared directly to Figure 4.2, the digital display
of the unprocessed array. A careful study of these images reveals
that improvements in the geometric characteristics of the array
have been obtained. The narrowing of the flight line results from
a correction of the scan angle effects and the di fferential scale
in the x and y directions. The triangular area near the top of the
flight line (arrow A, Figure 4.12) has been visibly restored to g
configuration more closely matching the shapeeit should have as
illustrated in the msep pl;nimetry of Figure L.5. The alignment of

the interstate highway cutting diagonally across the bottom half

of the flight line (arrow B, Figure 4.12) has been visibly straightened,

as has the alignment of the central roadway running down the flight
line. Cross roads appear more nearly perpendicular to this central
roadway, indicating that the scan time effects and the effects of
aircraft yaw were compensated for.

The restituted array from channel 6 for flight line 218 is
shown in Figure 4.13. The river bend (arrow A, Figure 4.13) in
this display is seen to reflect more closely the map planimetry
illustrated in Figure 4.6 than in the unprocessed array of Figure L.L
The inclination of the roadway (arrow B, Figure 4.13) in this ares
also has been restituted into an alignment more closely matching

-

that shown in Figure k.6.
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Upper half Lower half

Figure 4.12, Digital Display of Processed Array for Flight 208




Upper half

Figure 4.13. Digital
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-

Lower-half

Display of Processed Array for Flight 218
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These displays illustrate the feasibility of algorithms to
restitute the originally deformed data arrays into array systems
displayable in an orthographic projection system. These restituted
data arrays may be used to extract metric as well as interpretive
information, and may serve as a basic data source for the existing
automated interpretation algorithms, reflecting more closely the

geometry of the area sensed as it actually appears in the ground

system.
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5. CONCLUSIONS AND RECOMMENDATIONS

The scope of the investigation has encompassed the analysis
of the geometric aspects of recording multispectral scanner (MSS)
data in g digital manner. An introduction to the digital techniques
of utilizing MSS data has been presented, and the geometric distortions
present in such arrays were described. The basic transformation
equati;ns for recording MSS data were given and specific expressions
were derived from these for analysis and restitution of the data
arrays. Nonparametric techniques of restitution were also utilized
as an alternative to the barametric methods based upon the trans-
formation relationships. Testing of both methods of analysis and
restitution on actual digital data arrays was attempted. The
numerical results obtained were for the case of singly scanned flight
lines only, since no overlapping flight lines were available for

testing in this investigation.

5.1 Conclusions
The investigation conducted supports the following conclusions:
1.) Significant geometric distortions are Present in unprocessed
MSS digital data arrays, and must be considered in order to reliably

obtain reliable metric information for surveys of resources at
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the Earth's surface. The major causes of these geometric pertur-
bations present within the arrays are:

a.) chahging ground resolution size at different scan angles

and image position displacement due to panoramic recording

b.) terrain relief displacements due to topographic relief

differences within the area scanned

¢.) perturbations caused by the continuous changes in sensor

exterior orientation elements during recording of the data

d.) effective image displacements due to forward motion of the

sensor during the short time interval required to record

a single scan line.
Two types of investigations were carried out for data arrays containing
such geometric displacements. The problem of analysis was considered,
in which it is desired to investigate the causes of the geometric
displacements, and determine the resulting megnitudes and directions
of the errors within the data arrays due to each cause. Subsequently;
the problem of restitution of the data arrays wa; considered, in
which it is desired to correct the geometric errors within the arrays
using any convenient method, without necessarily isolating and
investigating the individual causes of the errors.

2.) The MSS collinearity equations derived from the geometric
portion of the more general MSS transformation provide a suitable
mathematical model for both analysis and restitution of MSS data.
These expressions represent the actual geometric relationships
between ground points and image array positions at the moment of

recording. Therefore they represent the most obvious mathematical
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model, and serve as the basis of other approximate methods of analysis
and restitution.

3.) The collinearity equations may be used with ground control
points to perform space resection in order to obtain estimates for
the elements of exterior orientation of the sensor during recording
of the data. However there are some severe limitations on such
resections. The most serious is that, since the multispectral scanner
records continuously, each scan line has different exterior orientation
elements than any other scan line. To solve for a separate set
of exterior orientation elements for every scan line is impossible.
Therefore, some assumption must be made concerning the variation
of each exterior orientation element as the sensor Progresses down
the flight line. If a functional form is assumed for each of these
orientation elements, the parameters of these functions will be de-
termined by a space resection. If the actual stochastic variations
of the exterior orientation elements are not reasonably approximated
by the functional forms assumed, then the collinearity formulation
and methods based upon the collinearity formulation lose their ad-
vantage, and other methods of analysis may compete favorably with
the collinearity formulation as a mathematical model. It was fownd
in this investigation that the assumption of polynomial functional
forms for the orientation elements provided adequate accuracies
and reasonable computational efficiency for the date arrays tested.

h.) If space resection is performed utilizing ground control
points based upon the MSS collinearity equations for a ;ingly scanned

flight line, not all of the elements of exterior orientation for the
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sensor can be recovered. A constant pitch (¢) of the semsor is
not distinguishable from a constant X translation of the sensor
perspective center (Xc). Likewise, a constant rate of change of
pitch is not distinguishable from a constant aircraft velocity.
Similar dependencies are found if higher order terms are attempted
to simultaneously model the pitch and X translation of the sensor.
Therefore not all of the elements of exterior orientation are re-
coverable.

5.) Significant improvements in the results of restitution
using collinearity equations may be realized by bresking the flight
line into sections. For.the flight lines tested, sections of 800
lines or less were used. Control points within each section can
then be used to define independent parameter sets for that section
by space resection. Discontinuities in the restituted array bositions
at section boundaries may be avoided by utilizing parameter constraints
during.the least squares estimation of the exterior orientation
parameéers. This problem of discontinuities at section boundaries
will be discussed further in a later conclusion. i

6.) If restitution of MSS digital data arrays is to be attempted
using the collinearity equations, then terrain height information
may be introduced into the uncorrected data arrays in some manner,
in order that relief displacements may be removed during the restitution
procedure. One possible source of this information (used for this
investigation) is the U.S. Geological Survey 7 1/2 minute quadrangle

topographic map sheets. If these or other topographic map data

are used as a source of elevation information, the data contained
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on the map must be transformed into a digital data format in some
menner. This digitized data must be superimposed upon the uncorrected
digital MSS arrays such that an elevation is assigned to each element
within the MSS digital data array with sufficient accuracy to allow
restitution of the arrays to a precision within the size of the
resolution of the data.

T.) Piecewise polynomial forms for restitution of MSS digital
data arrays may be derived from the collinearity equations. These
polynomials may be formulated to account for various assumptions
concerning exterior orientation element variations, and for relief
displacements within the arrays. These polynomial formulations
require that a series expansion be used to approximate the trigono-
metric functions resulting from scan angle variations. If sufficient
terms are taken in the series approximétions, and if the proper
rigorous least squares procedure is used, the results obtained
are identical to the results using the collinearity formulations.

If only a few terms are carried for the series expansion, and a
simpler least squares procedure is used, the results from these
polynomial models are in general, inferior to the results from col-
linearity analysis. The difference, however, was found not to be
statistically significant.

8.) Both the collinearity and piecewise polynomial formulations
were found to be relatively insensitive to moderate errors in assignment
of element elevations to the uncorrected data arrays. The derivation
of an allowable height assignment error formula reveaiedﬂthat an

element elevation error of 1.2% of the flying height above terrain
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would result in an error in position of less than the ground reso-
lution size of an element for arrays digitized at 6 milliradians,

at the Bxtreme case of a scan angle of 45° from the vertical. In
conducting tests on real data having flat and moderate terrain relief,
it was found that the resulting positional error was affected to

a greater degree by the assumption of functional forms for exterior
orientation elements than by the inclusion of element elevation
information within the expressions utilized.

9.) The assignment of elevations to element positions within
the uncorrected arrays to the required accuracy was found to be
relatively insensitive to the approximate planimetric transformation
used to transform the original array positions to the coordinate
system based upon digitized control points. An affine transformation,
applied to sections of the flight line was found adequate for this
purpose. Tests of real data arrays revealed that assignment of
element elevations utilizing the affine transformation resulted
in element elevation errors less than the theoretical allowable
height assignment error.

10.) The‘ﬁssignment of element elevations by digitally searching
for contour-scan line intersections followed by linear interpolation
for elements between these intersection points was found to result
in acceptable values for element elevations for the purposes of
restitution. A more general interpolative technique (arithmetic
mean) was attempted and found to result in much greater computation

time with no significant improvement in accuracy.
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11.) The use of MSS data in digital array form allows for two
alternative transformation procedures for restitution. In the first
instance, the more conventional procedure of utilizing image coordinates,
or, for MSS digital data, array positions as independent variables
is pursued. These are utilized in the restitution functions to
generate restituted arrays having improved geometrical properties.
This method has the advantage that the projective relationships
may be used directly and requires no iterative steps in restitution.
However, the method requires a large output buffer, interpolation
of spectral density data, and may result in multiple assignments
of spectral values to a single element location.

The second possible method utilizes the output array positions
as independent variables and involves s solution of the restitution

equations for the corresponding uncorrected data array positions.

An input buffer is required in this case, and an iterative procedure

is necessary, since elevation data are associated with the uncorrected

array positionms.

12.) If discontinuities are to be eliminated at section boundaries,
constraints may be enforced to accomplish this. If the flight line
is divided along lines of constant x image coordinate, the general
constraint to be enforced is that the restituted X, Y position computed
for every element along this boundary must be the same when computed
using the parameters for the section on either side of the boundary.
This results in six constraint equations whether utilizing the

-

collinearity or piecewise polynomial formulations.
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13.) The nonparametric methods introduced appear to be quite

promising as an alternative to restitﬁtion of MSS digital data arrays

-

using collinearity equations or piecewise polynomials. These non-

parametric interpolative methods have some advantages over the

more conventional methods of restitution which make them appear to

be well suited for application to digital MSS data arrays.

a.) The accuracy of restitution using these nonparametric methods,

b.)

d.)

as indicated by tests on resl data arrays having flat and
moderate terrain relief, was comparable to the restitution
accuracy achieved by the more conventional methods utilizing
collinearity equations or piecewise polynomials. .

The problem of assignment of element elevations may be
avoided. The treatment of the geometric displacements

as a realization of a two dimensional stochastic field

from which trend has been reasonably removed, appears to
have at least partially corrected for relief displadéments
within the interpolative algorifhms themselves, without

the need for assignment of element elevations for every

data array positionm.

Some of the nonparametric algorithms, notably the arithmetic
mean slgorithm, are quite simple and relatively fast com-
putationally, resulting‘in efficiency in transforming

large numbers of array point positionms.

There is no problem of breaking the flight line into sections,
and hence no problem of removing discontinuities at section
boundaries. The nonparametric algorithms are continucus

throughout the flight line.




methods is that some of them depend upon certain assumptions

(isotropy, stationarity, ergodicity) of the stochastic fielq.
MSS digital data arrays must be breprocessed in some manner to
approximate isotropy. Serious doubts were raised during the inves-
tigation as to whether the digital MSS arrays obtained from aircraft,
may be considered stationary, even over limited areas. For most
of these nonparametric methods, however, the results of restitution
were found to be acceptable even though the assumptions were not
fully realized.

1k.) For the arithmetic mean algorithm, it was foung that g
simple resampling algorithm, followed by approximate scaling in the
direction normal to flight could be used to acceptably approximate
isotropy.

15.) Of the nonparametric algorithms, the arithmetic mean al-
gorithm appeared to be most promising for the data arrays tested.
The method is simple, fast, and the resulting accuracy of restitution
is comparable or superior to any of the other nonparametriec methods
or the parametric methods (collinearity eéquations and piecewise
polynomials). The lone disadvantage of the method is that it requires
Pre-processing of each array position as discussed in conclusion 1k.

16.) The moving average interpolative algorithm appears to be
able to compete with that of the arithmetic mean. The ability of
this algorithm to include non linear effects allows for the omission
of pre-processing of the data arrays. However, for each element

calculated during restitution using this method, & unique parameter
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set must be evaluated by least squares techniques, resulting in an

algorithm which is slower than that of the arithmetic mean, with

no statistically significant improvement in accuracy of the restitution

for the arrays tested.

17.) The meshwise linear transformation does not appear promising
as a nonparametric algorithm for restitution of MSS digital data
arrays. The method is predicated upon the fact that each element
to be transformed lies within a triangle whose vertices represent
control points which are identifiable both upon a map sheet and
within the uncorrected data arrays. Such a condition cannot be
fulfilled for every data array element within a flight line. A
further disadvantage of the method is that a large amount of human
intervention is required, in order to define & unique mesh of con-
tiguous triangles formed from the control points. Thérefore the
method does not appear well suited to an automated technigue combining
the interpretive aﬁ& geometric analysis of the data arrays.

18.) The results obtained in attempting to utilize the method
of linear least squares interpolation and filter}ng were highly
erratic. The method is highly dependent upon the fulfillment of the
assumptions concerning stationarity, ergodicity, and isotropy of
the stochastic field. The preliminary supposition as of this time
is that one or more of these assumptions were not fulfilled for the

data arrays tested.
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5.2 Recommendations

The following suggestions are offered for further research
and development efforts in the field of MSS digital data array
utilization bases upon the experience of this investigation.

1.) An attempt should be made to implement a unified approach
to amalgamate the classically separated activities of interpretation
and mensuration. The digital method of analysis of MSS data arrays
appears ideally suited to this purpose. The inclusion of the analysis
and restitution methods presented in this thesis wiéh existing
automated interpretation techniques would result in the ability to
extract quantitative information in addition to the qualitative
information presently being generated, thus increasing the information
obtainable from the MSS data concerning Earth resources.

2.) An investigation should be carried out concerning the
applicability of functional forms other than polynomials to approximate
the stochastic variation of exterior orientation parameters within
sections of the flight line. Functional forms such as harmonics,
although difficult to deal with, may result in greater accuracy

of restitution.

3.) An investigation of the actual variation of exterior orientation

elements with time should be carried out. Ideally, this would be
accomplished by fully monitoring all sensor exterior orientation
elements within an accuracy obtainable by resection. However,
this would be quite expensive and is unlikely. Alternatively, the
monitoring or stabilization of one additional exterior orientation

element (in addition to the roll, w) such as the pitch (¢) term could
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be attempted. If this monitoring were combined with a flight over

an area having very dense control, such that a resection for the
remainihg parameters could be cérried out at very frequent intervals
down the flight line, then a reliable estimate of the actual exterior
orientation elements could be obtained. It would then be possible
to state with more confidence the actual errors resulting from

the omission of one of the exterior orientation elements within a
section.

4.) It would be most useful to generate some experimental data
arrays which include an accurate recording of time. In this way,
the functions assumed for variation of exterior orientation elements
could be formulated directly as time functions, and the suitability
of utilizing the image x coordinate as a measure of time could be
tested.

5.) Analysis and restitution methods should be tested on simulated
data, having known stochastic characteristics. This would allow
for controlled experimentation and reveal insights into the behaviour
of real data arrays.

6.) All of the methods of restitution presented in this investi-
gation should be tested on data arrays generated by flights over
ground areas having more extreme relief differences. Of particular
interest would be the applicability of the nonparametric algorithms
to such data, since the algorithms presented do not consider terrain
elevations.

7.) An investigation of the use of generalized nonparametric algo-

rithms should be pursued, in which Z coordinate information is included.
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8.) An investigation should be carried out °°n°el'ning -
e
effect upon accuracy of the control point distribution Withs
in g
flight line. This should include studies of how the Numb e
r and

configuration of control points available affects accu_l..acy

Results
may then indicate the minimum number of control pointg Whi op
must by
available in order to produce restituted data arrays of & cert
€rtain

accuracy requirement, and indicate the optimum configuration of such
control points within the flight line area.

. 9.) Attempts should be made to utilize sources of planimetric
control points other than maps. One possibility in thig ares ig
obtaining metric photography of E:he area as a control SOurce
Aerial triangulation utilizing such photography could then be Performed
to define X-Y-Z ground control point coordinates. If Such photography
~were available and was digitized, investigations to furthe,. improve

accuracies could be carried out. Digital correlation comPUtation
could be investigated as a method of reducing the a % Variance

of assigning array positions to control points. Digital correlators
using digitized metric photography and the MSS data arrays shoulg
be developed in order to assign these control point array POSitiong
with greater reliability than is possible using subjective humap,
decisions.

Another method of control which should be considereqg is direct
targeting. In this manner, ground control point coordinateg coulg
be determined by direct measurement. This would call fop an invegtj_
gation of suitable target forms for multispectral Scanners,

Speci al

targets would have to be designed for multispectral Scannerg whi
> lch

would be discernable in seversal spectral bands.
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10.) A further investigation should be conducted into methods
of assigning elevations to data array positions. The nonparametric
algorithms and mathematical modeling methods should be emphasized
in this investigation, in order to see if better accuracies can
be obtained, particularly for ground areas with extreme relief
di fferences.

11.) Further investigations should be conducted concerning
the applicability of the linear least squares interpolation technique
for restitution of MSS digital data arrays. These investigations
should include statistical testing of MSS digital data to ascertain
whether the properties of stationarity, isotropy, and ergodicity
may properly be assumed for such data. If so, further investigations
mey be conducted concerning pre-processing algorithms and covariance
functions which may be useful in applying the linear least squares
method to MSS digital date arrays.

12.) A systems analysis should be attempted to try to determine
the most effective restitution method. In this investigation,
accuracy of restitution has been the primary criteria for comparison.
This should be supplemented by an economic analysis to determine
the most efficient of the methods in terms of the total computing
time involved as well as the human intervention necessary.

13.) Algorithms should be developed to determine quantitative
information during the process of automated interpretation and
restitution. Of particular interest would be algorithms to determine
areas on the Earth's surface, in order that a processing system
would result in both classifications and estimations of areas containing

classes of interest.
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1k4.) Investigations should be carrieqd out on the usefulness

of multi-scanned dats arrays, particularly sidelapping flight lines.

of such data. If this data were to become available, it would be

elevation information, in terms or accuracy and cost.

As with most Tesearch efforts, the investigations carried out
point to new problems and possibilities associated with the utilizg-
tion of MSS data arrays. There is certainly no lack of possible
research topics to be considered within this relatively young technology,
As further research is carried forth, new paths of inquiry will

doubtless become apparent.
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APPENDIX A

DIFFERENTIAL FORMULAS FROM LINEARIZED COLLINEARITY EQUATIONS

If the coliinearity equatiqns of (2.19) are linearized using
the procedures of Section 2.4, the resulting linearized form of

the equations is

c_A_ (A.1)

Po= to o 1 + B "+.|
L= EOeBDox+a ey + B i b

in which the Bl» Ay, _I._B'_', L, D Jacobian matrices and F'e, 23'_, A

vectors are as defined in Section 2.4, These equations may be

written in the form

— 10 .v 1 _ "’ 'v .
F = F +_B_026x+_A;1<Sy I|s8x *B'38Z+B!Ca (A.2)
Y
in which
oFq U' /W'
. 9Z
2'3 = = (A'3)
aFs VAWM
97

and is obtained by partitioning the é' matrix (B' = [-I B':D).
This linearized form of the collinearity equations is useful,
as it may be solved directly for (6X, 8Y) object space differential

~

changes, which results in the form
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E‘°+§525x+é'153'+§‘352+13_39:é (A1)

5
&Y
which may be used to investigate object space planimetric coordinate
displacements resulting from small changes in the parameters of
exterior orientation.

As an example, consider the case of a single scan line for
which the elements of exterior orientation may be assumed constant,

due to the short time interval needed to record & single line.

For this case

b
|

X0 + &
(A.5)
Yy = Y°+ &

The term h = Z, - 7 is introduced, and the initial approximations

of (X, Y) may be defined as (using © = y/c)

x° " %o
. = = 0 (A.6)
Y° Yc + h tan® 2,1

and the initial approximations of the angular orientation elements

(w, ¢, x) may be taken as zero (M=1). The F'® vector becomes

X, - X
F'o = ¢ ¢ = 0

Y, - Y, - b tene® + h ten® 2,1
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. 1 o 0 0 -h -h tan6

B! =

2,6 [0 1 tan8  h(1 + tan29) 0 0
o . o

—é’l = §'3 =

2,1 h sec?g 2,1 ~ tand
__C

D = 0 c = I

6,1 6,1 6,6 6,6

Substituting these results into Equation (A.4) results in

§X 86X, - h8¢ - h tanBéx

(A.7)
8Y = h/c sec?s §y - tanp 67 + §Y_ + tang §Z, + h(1 + tan2e)sw

If it is assumed that terrain elévation (2) is constant in order

to accomplish the transformation of a two dimensional vector then
Z=0. Ifit is desired to investigate the effects of changes

of exterior orientation elements only, then the image y coordinate

is assumed to have no error, so that 8y = 0. Making the substitution

sec20 = 1 + tanze, the resulting equations become

§X

[}

6X, - h(6¢) - h tane(éx)
(A.8)

8Y §Y, + tane(dzc) + h sec?6(8uw)

1f these results and those of Equations (A.6) are substituted directly
into Equations (A.5), the resulting differential form of these

equations becomes
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- héd - h tan® ok
(A.9)
2 Suw

tat
|

X * 6%y

Y = Yc + h tanb + GYC + tanb GZC + h sec

Equations (A.8) may be seen to be identical in form to those

of Equations (2.16), demonstrating the validity of the linearized
eneral form from which specific cases

col;inearity equations as & g

may be examined.
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APPENDIX B

DERIVATION OF RESAMPLING ALGORITHM TO INCLUDE TOPOGRAPHIC EFFECTS [96]
Referring to Figure 3.4, the scan line length is given by
W = hy tan(ny) + hy tan(Ny - ny) (B.1)

After resampling, every sample has an equal length in the direction

along the scan.

AY = W (B.2)
N
From Figure 3.4, the distance dj may be written, in terms of
sample widths as
dy = J(W/N) - 1/2(w/N) (B.3)

Introducing the term hL = Zc - ZL~’ the distance may also be written
J J

in terms of sample angle y as
dJ = hy tan ny + th ta.n(UJy - ny) (B.L4)

Equating the right hend sides of (B.3) ang (B.4) ang solving for

Uj yields
Uy = n+1tan-1[ y <2j ~ 1)- h, tan ny (B.5)
] Y Nth 2 hlﬁ



293

If Equation (B.l) is substituted into (B.5), the final resulting

expression is

Uy = n+1l tan~1 [ 1 (?J - 1h) tanny + 2) = 1 h ten(ly - ny)
Y AN 2N

(B.6)
- hl tan nf)

The solution of this algorithm requires an iterative approach,
since the value hL is not known until the algorithm has been solved

J

for U,. As a first approximation,

J

AhLj = hj - hy

The algorithm is solved, the updated value th is found, and the
algorithm is reapplied for an updated Uj value.

As an example, consider a typical aircraft flight in which
2, = 5000 ft. (1.52 km), Y = 6 mrad, and symmetric scanning for
which § = 222, n = N/2 = 111. If it further assumed that 2y =2 =
600 ft. (183 m), then hy = hy = L4OO ft. (1.34 km). For this example
the value of U will be computed for j = 50, a value which results
in a near maximum displacement (see Figure 3.3) and it is further
assumed that Zgy = 600 ft. (183 m) in the unprocessed array and
that the ground slope (1) in the vicinity is 0.5, a relatively
extreme case. Using these values in Equation (B.6), the first

solution for U'j results in
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Uy = 111 + 1/.006 tan~1{(1/4400)[(99/LkL) (4L00) tan(0.666)
+ (99/LLL) (L4400) tan(0.666) - 4400 tan 0.666]1}
Uj = 42,6

For the next iteration the value of ZL = Zh2 is utilized instead

J
of ZSO‘ The size of a ground element in the vieinity for this case

(from Figure 1.19) is approximately 30 ft. (9.1 m), and would result
in a change in elevation over the eight elements of 120 ft. (36.6 m).

If the ground slope is positive then Z)y, = 720 ft. (219.5 m).

Utilizing this updated value in Equation (B.6) results in
Uj = )40.9

a change of approximately 1.7 elements. If one further iteration

is carried out using ZLj = Zho’ the value becomes
U,j = hO.T

If the ground slope is negative, then for the second iteration
Zyo, = 480 ft. (146.3 m). Utilizing this updated value in (B.6)

results in

Uj = 141.8

and a further iteration produces negligible change. It was found
during the investigation that a single iteration is sufficient to

refine the resampled position within one array element.
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