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Preface  

This report provides a summary of results for the second year's  
effort under contract NAS9-14016. The contract called for work on a  
wide variety of separate and distinct but related tasks. Below is a  
list of the tasks as contained in the original Work Statement.  

As a result of this contract a large volume of results has been  
generated. Technical and research reports previously submitted or  
presently being published are listed in Table I.  

Because of the diversity present in the task list for the contract,  
each major subdivision of this report has been written to be relatively  
self-contained. We hope this will facilitate use of the report by  
readers with different interests.  

The various tasks have been managed by various Purdue staff members  
during the year and a NASA-appointed task monitor was associated  
with each. It is appropriate that the contributions of these people  
be recognized.  

Task Purdue Task Manager NASA Task Monitor  

Exhibit D 

2.1 Layered Classifier Adapted to 
Multitemporal Data Sets P.H. Swain Kenneth Baker 

2.2 Development of Signature 
Extension Strata from 
Clustering Techniques M.E. Bauer J.G. Garcia 

2.3 Field Measurements Research 
for Remote Sensing of Wheat M.E. Bauer Michael McEwen 

2.4 Scanner System Parameter 
Selection L.F. Silva Kenneth Demel' 

2.5 Transfer of Computer Image 
Analysis Techniques J.C. Lindenlaub J.D. Sargent 

2.6 Research in Remote Sensing 
Technology P.A. Anuta A.E. Potter 

2.7 Forestry Applications of 
Computer Aided Analysis R.P. Mroczynski Linwood Smelser, US] 
Techniques 

2.8 Analysis of Texas Coastal R.A. Weismiller G.E. McKain 
Zone Environments 

Exhibit B 

EROS Data Center Tasks T.L. Phillips Donald Orr 

The efforts of Dr. A.E. Potter, the contract Technical Monitor are  
especially to be noted and greatfully acknowledged.  
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052076  Mroczynski, Goodrick, Berkebile and Scholz. Analysis of Aircraft  
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2.1 Layered Classifier Adapted to Multitemporal Data Sets  

INTRODUCTION  

Rationale  

Most contemporary systems which use classification in analyzing  
multispectral remote sensing data employ classifiers which consist of a  
single stage of decision logic. As depicted schematically in Figure 2.1-1,  
to classify each point in the data, these classifiers use a single set  
of features (multispectral measurements) to compute a likelihood or  
discriminant function for each class and categorize the point according  
to the class with the largest discriminant function value. For many  
practical applications, and particularly those utilizing multitemporal  
data, such a simple decision procedure is often found seriously lacking  
in the flexibility needed to most efficiently and effectively incorporate  
the multitemporal aspects of the data.  

As a simple illustration, consider a situation in which data from  
two passes of a satellite are available over an area to be classified.  
The conventional single-stage classifier treats the "stacked" combination  
of the two four-dimensional vectors (one vector from each pass) as a  
single eight-dimensional vector. If for any reason the data in one or  
more of the channels is "invalid," the classifier will probably not be  
able to assign the data to the correct class. For example, if on either  
date, the ground at a given point happens to be cloud-covered, the  
classifier would not be able to correctly identify the ground cover. If  
pass #1 has Cl percent cloud cover and pass #2 has C2 percent, as much  
as C1 + C2 percent of the multitemporal data may not be classifiable.  

On the other hand, a layered classifier, designed as shown in  
Figure 2.1-2 to make a sequence of decisions, alleviates the problem  
significantly. Using this classifier the only points which cannot be  
classified at all are those obscured by clouds on both passes.  

This illustration is but one representative of a wide range of  
classification problems which are most effectively solved by means of  
layered decision logic. Several other examples are noted below:  

*Multitemporal data  

-Training drawn from multiple areas  

-Change detection  

*Use of mixed data types  

-Spectralttopographic data  

-Spectral/textural data  



2.1-2  

unknown sample 

d s use features fl,f2,..., fn  

water bare soil corn soybeans wheat trees  

Figure 2.1-1 Common single-stage classifier. 

C = [corn,soybeans,clouds, 
cloud shadows, other]  

likelihood flf2f3f4  

corn goybeans other clouds & shadows  

max. C1 = [corn,soybeans, 
likelihood other] 

RF 2 = [f5 ,f6,f7,f8] 

corn soybeans other  

Agricultural classification in the  
Figure 2.1-2 presence of clouds.  



2.1-3  

-Spectral/geophysical data  

*Detection of class specific properties  

-Crop disease detection  

-Forest type mapping  

-Water temperature mapping  

*Minimization of data dimensionality  

-Efficiency (speed) improvement  

-Minimization of the effects of severely limited training data  

We have pursued the development of procedures for effective design and  
utilization of layered classifiers in order to exploit their potential  
for (a) dealing with classification problems not well suited to conven-
tional classifiers, (b) improving the efficiency of the classification  
process, (c) improving the accuracy of the classification process.  

Previous Work at LARS  

The theoretical foundations for this classification approach and  
for the design of layered decision trees were developed at LARS in  
earlier contract years. A set of research software for both the design  
and implementation of layered decision logic was also developed. The  
final report for the immediately preceding contract year reported  
advances in the development of both manual and automated design pro-
cedures and the application of these procedures to a number of practical  
remote sensing problems. Solution of the multitemporal cloud problem  
described above was reported and the accuracy and efficiency of layered  
classifiers in remote sensing data analysis were demonstrated.  
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OBJECTIVES AND GOALS  

The objectives of this research and development task are threefold:  

1. To develop an effective method for the design and realization  
of layered classifier logic applicable to multispectral/multitemporal  
remote sensing problems;  

2. To implement effectively the products of the development on a  
general purpose computer in order to make them available to applications-
oriented research; and  

3. To demonstrate the effectiveness of layered decision logic in  
the context of a number of current applications.  

The goals of the research for this contract year focused on the  
development of layered classifier logic applicable to multitemporal data  
sets, particularly for the case in which the training data for all  
available channels cannot be drawn from a single set of points (a single  
training segment). Other goals included upgrading the research software  
for the layered classifier to make it LARSYS-compatible, and surveying  
possibilities for improving the procedures for designing optimal decision  
trees. The first of these goals was principally motivated by the  
potential applicability of the results to LACIE. The latter goals  
represent advancements in the ongoing development of data analysis  
techniques for remote sensing.  
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ACCONPLISIMENTS  

A candidate strategy was formulated for the multitemporal problem  
involving training data from multiple sites. Preliminary tests of this  
decision strategy were carried out using data from CITARS and LACIE, but  
tests adequate to provide a definitive evaluation are awaiting avail-
ability of suitable data sets.  

The layered classifier approach was also applied to related problems,  
including change detection.  

Software for implementing layered decision logic was upgraded  
considerably and made available to users at LARS. Compilation of user  
and programmer documentation for this software has yet to be completed  
but is well under way at this writing.  

The process of designing optimal decision trees has been modeled as  
a four-stage process involving (1) feature selection, (2) cluster  
analysis, (3) specification of a classifier at each node of the tree,  
and (4) tree search. A research plan aimed at optimal choice of algorithms  
for each of these stages has been formulated and the work has been  
initiated.  
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DESCRIPTION OF RESEARCH  

A. Applications of the LayeredClassifier Approach  

The Multitemporal/Multisegment Problem  

One way to state the problem is as follows:  

Given three segments (ground areas) A, B and C and two satellite  
passes over these segments, reference data is assumed available for  
segments A and B, but not for both segments at all times of interest.  
Segment C is to be classified using statistics from the available  
multipass data from segments A and B.  

Assume that training data is available from segment A at time 1  
(but not time 2) and from segment B at time 2 (but not time 1). The  
classification of segment C (data available at both times 1 and 2) can  
be carried out utilizing a sequential (layered) decision strategy.  

We make three further assumptions:  

1. Segments A, B and C belong to the same spectral stratum (i.e.,  
similar ground covers in all three segments have similar spectral  
response characteristics);  

2. The informational classes in segment C may be assumed to be a  
subset of the union of the classes in segments A and B;  

3. No dramatic changes occur in climatic conditions during the  
acquisition of data which would cause the time 1 data for segment C to  
differ in spectral character from the time 1 data for segment A; and  

.similarly for the time 2 data with regard to segments C and B.  

The analysis strategy is as follows: Training is performed on the  
cloud-free passes of segment A and B utilizing the available ground  
truth. (Even if several cloud-free passes should be available, train-
ing is performed for each pass individually.) All spectral classes are  
investigated for separability and classes that are not separable are  
either deleted if determined to be unimportant or else combined,  
resulting in "mixture classes" in those cases in which the spectral  
classes were derived from different cover types. It is then decided  
which date (satellite pass) will serve as the base date to provide the  
initial stages of the classification logic. For classification of  
agricultural scenes, it is often most logical to use as the base date  
the data from the date at which the crops of interest are most discrimin-
able. The stages of the decision tree for this data are then designed  
using the Optimal Decision Tree Design procedure. Terminal nodes of  
this treewhich represent mixture classes are replaced by small subtrees  
which use data from a date other than the base date, if possible, to  
resolve the mixture into individual classes. The tree thus assembled is  
used in the classification of segment C.  
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There are a number of practical difficulties associated with this  
strategy, some of a minor technical nature, some more serious and funda-
mental. A minor problem is that the total number of spectral.classes  
involved for a given case equals the sum of the number of classes  
obtained for each pass. This number can be very large and the software  
must be designed to handle both the volume and the considerable amount  
of "bookkeeping" involved with the classes and their associated statistics.  

A more fundamental problem is that this procedure-does not allow for  
explicit interaction among the data from different times. That is, the  
training statistics used at any decision node must be drawn from a  
single time/segment and any interactions between times which might  
improve the classification accuracy cannot be used to advantage. This  
restriction arises from the fact that a simple correspondence between  
classes in different segments (or even the same segment at different  
times) cannot be routinely established. We do not at this time have a  
practical solution to this problem implemented.  
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EXPERIMENTAL RESULTS  

The data chosen for the analysis described below consisted of three  
multitemporal data sets assembled for LACIE. The data were collected  
during early 1974 over the Intensive Test Sites in Finney, Morton and  
Ellis Counties, Kansas. A map of the state of Kansas shows the position  
of the three counties relative to each other (Figure 2.1-3). The  
available dates and corresponding channel numbers-in the overlaid data  
set are given in Table 2.1-1. Reference data for the three segments  
were available in the form of aircraft photography- at a scale of  
1:24000 taken in June 1974 and plastic overlays containing field  
boundaries and field numbers for each test site. A listing of the  
cover type for each field was available from field visitation reports.  
Unfortunately, the ground truth for Finney County was assembled prior to  
the time that the Intensive Test Site was moved southward because of an  
atypically large number of irrigated fields. Therefore, only ground  
observations about the southern part of the original test site could be  
used. It was decided that Finney and Ellis would be used as training  
segments "A' and "B," respectively, and Morton would serve as segment  
"C," the segment to be classified.  

In order to ease the burden of manually picking training and test  
fields using the overlays, the three sites were geometrically corrected  
and scaled to 1:24000 for line printer output.  

As information about spectral strata concerning these three sites  
was not available, grayscale prints and color composites were studied.  
The sites are approximately 130km (80mi) from each other and one might  
suspect that they would not belong to the same stratum. The color  
composites showed for all three available common dates that there were  
significant differences in spectral response. Channel 3 for each of  
the segments in each date is shown in Figure 2.1-4 (a-i). These also  
reveal large differences from segment to segment at each time. Channel  
means and variances are given in Table 2.1-2.  

Based on these observations, it was clear that these three segments  
could not be considered to belong to a single spectral stratum, thereby  
violating one of the basic assumptions of our present approach. However,  
since these were the only data.available to us with reference data and  
appropriately related with respiect to timing of the respective satellite  
passes, we decided to press ahead with the analysis to see what could  
be determined.  

Training and test fields were selected on a random basis for each  
segment, allocating roughly twice as many fields for testing as for  
training. To provide a basis for evaluating the layered classification  
results, each segment was classified by a single-stage classifier using  
training statistics from the same segment and pass (see Table 2.1-3a).  
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Table 2.7-1 Dates data taken for overlays used in multitemporal/multisegment problen  

FINNEY MORTON ELLIS  

Pass Tape Tape Tape  
Designation Channel date Channel date Channel date  

1 Oct. 23, 1973  
2 
3 
4 

1 5 1 
2 Feb. 25, 1974 6 Feb. 25, 1974 2 Feb. 24, 1974  
3 7 3 
4 8 4 

5 9 5 
6 May 26, 1974 10 May 27, 1974 6 May 26, 1974  

8 12 8  

9  
10 11 June 12, 1974 11  
12  

9 13 13  
III 10 July 1, 1974 14 July 2, 1974 14 July 2, 1974  

11 15 15  
12 16 16  
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To estimate the impact of the three segments not belonging to the  
same spectral stratum, a single-stage classification was performed using  
the statistics from Finney and Ellis, separately, to classify the  
corresponding dates of Morton (Table 2.1-3b). The results showed  
marked deterioration of results as compared to Morton classified with  
Morton statistics.  

In an attempt to ameliorate the multiple stratum effects, an  
additive shift was made in the training class means and the single-stage  
classifications of Morton were repeated. The results, shown in Table  
2.1-3c, appeared sufficiently improved to warrant continuation with the  
experiment. However, we would not advocate this sort of. treatment of  
the data on a routine basis. Nor does this provide a general justifi-
cation for relaxation of the assumption that all segments be from the  
same spectral stratum.  

The test of the multitemporal layered classifier logic consisted  
of using the mean-adjusted statistics from Finney II and Ellis III to  
classify Morton II + III. A decision tree was designed using Finney II  
as the base date and using Ellis III to resolve occurrences of the  
"mixture" classes. The results are shown in Table 2.1-3d.  

To evaluate these results, one must first decide what to compare  
them against. There are a number of possibilities and we shall look  
at several.  

1. We can compare the results with classifications of Morton using  
Morton statistics. Although in the practical problem, our hypothesis is  
that training data are not available from Morton, in the experiment this  
provides us a reasonable "upper bound" on what we might expect to  
achieve; i.e., this provides an indication of how separable the classes  
are in the classified segment.  

2. We can compare the results with the classifications of Finney II  
using Finney II statistics and Ellis III using Ellis III statistics.  
The latter two classifications provide an indication of how separable  
the classes are in the training segments--another "upper bound."  

3. We can compare the results with classifications of Morton II  
with Finney II statistics and Morton III with Ellis III statistics.  
This provides probably the best indication of the contribution of the  
layered classifier approach in the context of the actual application.  

The reader who tries to make these comparisons based on the results  
in Table 2.1-3 will find it quite a task because of the erratic nature  
of some of those results (see especially Morton III classified with  
Morton III statistics). All of these analyses were performed using the  
same "standard" procedure, and we have not been able to attribute the  
peculiarities to anything specific except for some.of the irregularities  
in the data set, especially the reference data. We look forward to  
conducting further tests on data sets of greater integrity.  



Table 2.1-2 Channel Means and Variances for Finney, Morton and Ellis  

FINNEY MORTON ELLIS 

pass ch mean vart, Ch mean var oh mean var 

1 30.7 5..32 
2 32.1 7.07 
3 37.4 8.06. 
4 18.9 4.20 

1 26.1 3.56 5 27.6 2.46 1 24j.6 3.26 
2
3 

27.0
28.8 

4.62
5.02 

6 
7 

29.4
33.0 

3.71 
4.82 

2
3 

24.7 
26.9 

3.56
4.81 

4 14.7 3.06 8 17.1 3.22 4 13.9 2.32 

5 35.9 7.11 9 46.8 6.89 5 30.8 7.58 
I 6 35.5 11.7 10 55.0 10.9 6 26.9 8.42 

7 48.4 10.9 11 57.7 6.74 7 37.9 10.8 
8 24.5 7.74 12 27.2 3.56 8 19.8 7.37 

9 35.2 4.77 
10 33.5 7.91 
11 44.3 7.81 
12 21.8 5.04 

9 39.9 6.22 13 49.1 6.24 13 38.5 3.90 
10 46.3 12.7 i4 56.5 10.1 14 40.8 7.02 
1i 
1i 

57.7 
29.3 

8.34 
6.38 

4g 
16 

59.7 
27.5 

10.5 
5.32 

1 
16 

48.0 
23.4 

7.65 
4.4§ 





Table 2.1-3 Multitemporal/Multisegment Classifier Performance  

Training Classified  
Site Site  

Fi Fl  
Fli FlI  
FIll FIll  
El El 
ElI Eli  
ESil EIll 
MI MI 
NUU0 Mil  
MIII MIll  

Pi Mi  
FII MII  
Fill MIll  
EI MI  
Eli MII  
Eilli MIII  

PI MI  
FII Mil  
Fill MIll  
El MI  
Ell mix  
Ei MIII  

FII+EllI MiI+M111  

Wheat  

24.6  
58.2  
45.1  
42.3  
97.2  
89.7  
42.2  
79.3  
2.2  

14.5  
9.7  
41.0  
38.7  
5.5  

97.6  

27.2  
59.6 -
23.1  
57.1  
82.0  
54.0  

62.9  

Pasture  

12.8  
58.6  
27.6  
49.3  
66.5  
10.5  
31.0  
52.3  

-19.2  

5.9  
4.9  

11.3  
25.6  
7.5  
0.0  

0.7  
8.5  
15.5  
1.2  
0.0  
3.3  

4.9  

Other Grain  

22.8  
25.8  
44.7  
-(note 1)  

- 
32.0  
16.9  
18.6  

16.5  
89.8  
12.1  

-
-

25.5  
34.1  
38.5  

-
-
- 

33.2  

Fallow  

20.6  
23.3  
43.6  
20.0  
62.6 
68.2  
14.8  

4.0  

23.1  
18.8  
16.0  
i.4  
0.0  
5.1  

21.2  
0.3  
0.8  

19.4  
41.8  
39.3  

10.3  

(a) Sites classified  
usihn "ij lw  
statistics  

(b) Morton classified  
using unadjusted  
statistics from  
Finney and Ellis  
(note 2)  

(C) Morton classified  
usihg adjusted  
statistics from  
Finney and Ellis  

(d) Multitemporal  
classification  
of Morton using  
Finney and Ellis  
statistics  

note 1 - indicates no training data available.  

note 2 - Ellis 1I cloud class had substantial impact.  

I-'  
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The following observations from Table 2.1-3 are encouraging, however:  

1- The multitemporal layered classification yielded slightly more  
accurate classification of wheat than either Morton II classified with  
Finney II statistics or Morton III classified with Ellis III statistics.  

2. With the multitemporal data, it was possible to classify the  
"other grain" in Morton whereas this was not possible using the Ellis III  
statistics alone (Ellis III has no training data for "other grain").  

Thus, although we cannot draw very strong positive conclusions from  
this single test, we feel that in the face of the data quality problem  
and the multiple stratum situation which had to be dealt with, the  
results are sufficiently encouraging to warrant further tests as  
appropriate LACIE data sets become available.  

Change Detection  

The layered decision strategy used for multitemporal classifications  
is easily adapted to change detection. Training is againperformed  
separately-for the respective passes. In the base date, all classes  
are considered, while in the second date the analyst need only account  
for the classes into which the change is assumed to happen. For the  
base date, a tree is designed using the Optimal Decision Tree Design  
prodedure. A second tree is then designed using the second date for  
the possible change classes. The trees are joined such that the tree  
from the second date is attached to each terminal node of the base tree  
representing-a class for which change is anticipated. Thus, data from  
the second date is used only for those points classified from the first  
date as candidates for change.  

An experiment was performed using data over the Texas Coastal Zone  
consisting of a two date overlay, the first date November 27, 1972 and  
the second date December 15, 1973. Because of the relative dates of  
the two passes, seasonal differences were not expected to seriously  
influefice the outcome of the change detection procedure. To keep the  
problem simple, only change from water to sandbank was investigated.  
Figure 2.1-5 shows the tree used in the procedure. Figure 2.1-6 shows  
part of the resulting classification. The shaded area shovis points  
where water had changed to sandbank in the course of a calendar year.  
The result was compared to a "straightforward" change detection, in  
which the results of two classifications were compared on a point-by-
point basis. The results of the two procedures were in good agreement.  
Based on the outcome of this experiment, further change detection work  
using the layered classifier was conducted under this contract as part  
of the Regional Applications Project.  
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Detection ("water" to "sandbank").Figure 2.1-5 Decision Tree for Change 
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B. Layered Classifier Implementation  

Approach  

Results'of previous research included computer programs which  
implement the layered classifier approach to data analysis in two phases.  
The first phase, called the Optimal Decision Tree Design procedure, is  
an algorithm for automatically determining the optimal layered decision  
logic for a layered classifier. The second phase accepts as input the  
description of layered decision logic, generated by the Optimal Decision  
Tree Design.procedure or any other method, and performs classification  
of multispectral remote sensing data. We actually refer to this phase  
as the Layere Classifier.  

The specific goal of the implementation effort is to upgrade the  
research software to the point of being LARSYS-compatible so that (1)  
this method of data analysis will be conveniently available to applica-
tions-oriented researchers,who need it,, (2) further upgrades to incor-
porate advances in the technology will be facilitated, and (3) the soft-
ware will be sufficiently documented for transfer to NASA and others  
requesting it.  

To accomplish this goal required detailed analysis of the existing  
software to determine its operation and the nature of the desired  
interfaces with both the user and other software needed,in the analysis  
process; planning and execution of the software design;,and generation  
of documentation appropriate both for users (data analysts) and programmers.  
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RESULTS  

The first step taken was to go through the programs with an eye to  
how they should look when finished. A list of problems was laid out and  
ordered by priority. This list included the following:  

1.  What control cards are needed to input all necessary data?  

2.  In what format should the decision tree information be input?  

3.  What internal representation of the tree is best in terms of  
flexibility and storage efficiency?  

4.  How can all of this information be saved on a results tape  
for later display and further manipulation?  

After examining the programs, it was decided that for expediency  
the LARSYS CLASSIFYPOINTS processor would be modified to perform layered  
classification. Figure 2.1-7 shows a diagram of the Layered Classifier  
which resulted.  

The Layered Classifier research software used a fixed format data  
deck for the .decision tree input. Because users could be expected to  
need to design and modify their tree decks manually, a free format tree  
representation scheme was necessary. This involved drastic changes to  
the format and necessitated the development of a new program utilizing  
original card reading and decoding techniques. Table 2.1-4 shows the  
control card description for the new layered classifier.  

Internally, a new tree format had to be devised. The old one used  
fixed array sizes and greatly limited the number of nodes in the decision  

-tree as well as the size of the data set to be classified. A new linked  
list system was developed to internally describe the tree. A dynamic  
memory allocation scheme was devised to increase the utilization of the  
available storage.  

A method for graphically representing a tree on the computer output  
was  developed. This should prove to be a great help to analysts as it  
provides a permanent, easily interpretable record of what their tree  
looks like. An example of this output is shown in Figure 2.1-8.  

Some initial consideration has been given to the problem of putting  
the tree information on the results tape. Probably the easiest way is to  
copy the tree deck to the tape in card image form similar to the  
statistics deck. At present, however, this has not yet been implemented  
because of the impact upon other programs which read the results tape.  

In summary, then, over the contract year a new Layered Classifier  
program was developed and implemented. This software was written  
according to-LARSYS standards and is compatible with current LARSYS  
programs. The output tape is compatible with LARSYS PRINTRESULTS and  
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Table 2.1-4 Control Card Summary foi the Layered Classifier  

REVISED 02/01/76  
LARSYS CONTROL CARDS  

LAYERED CLASSIFIER  

R  
E KEY LONTROL  
Q WORD(COL.II PARAMETER FUNCTION DEFAULT  

+ *LAYER (NONE) SELECT LAYER CLASSIFICATION (NUNE) 
FUNCTION. 

+  RESULTS DESTINATION OF RFSULTS (NONE) 
TAPE(XXX) PUT ON TAPE XXX. 
FILEIFF) FILL FF.  
INITIALIZE INITIALIZE FILE ONE OF A SEE CONTROL CARD  

NEW RESULTS TAPE DICTIONARY  
(REQUIRED WHEN USING A  
NEW TAPE). 

DISK RESULTS WILL BE STORED ON  
LARSYS DISK.  

PRINT STATS PRINT STATISTICS TO BE USED. NO STATISTICS  
PRINTED  

MAP PRINT RESULTS MAP. NO MAP  
PRINTED  

NOFIELDS NO TRAINING FIELDS PRINTED. TRAINING  
FIELDS PRINTED  

CARDS KEADSTATS  STATISTICS FILE wILL BE STATISTICS EXPECTED  
INPUT ON CARDS. FROM DISK  

DATA -----START OF DATA DECK.------------------------------------------I  I 
I PUNCHED STATISTICS FILE FROM SIAIISTICS I  
I FUNCTIUN IF 'CARS AEAOSTATS' CONTROL CARD I  I IS INCLUDED.  I 

DUATA -----START OF DATA DECK-----------------------------------
I DECISION DECK USED FOR THE LAYERED CLASSIFIER  

I CARDS ARE FREE FORMAT ON EACH CARD BUT CARD ORDER 
I MUS[ BE PRESERVED. DECK IS ALWAYS REQUIRED.  

I DATA CARD FORMATS---- 

I TREE TOP(NODEANODEB,NQDEC),NOOEA(NDDEINODE3,NODE4) 
I TREE NODEB(NOOE2,NODES), ETC  

I FEATURES TOP(XY),NOEA(YZ),NODEDIW,XY), ETC  

I REPRESENT NDODEI(IJ).NODE2(KLM),NODE3IN),NCDL4()  
I REPRESENT NOOE5(PI, ETC  

I RENAME CLASSI(I/I,J/),CLASS2(2/K/),CLASS3(3/L,M/), FTC  

I THE TREE CARDS DESCRIBE THE NODE SEQUENCE OF THE  
I DECISION. THE FEATURES CARDS ULSCRIBE THE CHANNELS I USED AT THE  EACH DECISION NODE. IHE REPRESENT 
I CARDS ARE USED TO INDICATE THE REPRESENTATIVE LLASS  
I USED. THE RENAME CARDS ARE USED THE ASSIGN A NEW NAME 
I TO GROUPS OF INPUT CLASSES.  

I TOP IS A REQUIRED NAME ON THE TREE AND FEATURES  
I CARDS. THE NODE AND CLASS '4A.ME5 MAY BE UP TO EIGHT  
I CHARACTERS.  

+ DATA  -----START OF DATA DECK"------------------------------------------I I 
I FIELD DESCRIPTION CARDS DESCRIBING AREAS TO I 
I BE CLASSIFIED (ALWAYS REOUIRED). EITHER FORM OF THE I  
I FIELD DESCRIPTION CARD MAY BE USED.  I 
I  I 

+ END  (NONE) END OF FUNCTION. (NONE) 

P POop ,QUAxjfPAGE is 
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LISTRESULTS. In addition, a set of software documentation and user  
documentation%is being completed to describe the, implementation and 
usage of the Layered Classifier. We did not reach the point of being  
able to expend effort on the Optimal Decision Tree Design software,  
however; it is desirable that this software be developed into a program  
similar to the Layered Classifier as it is an important component of the  
layered classifier system. Some additional effort should be directed  
toward appropriately saving the decision tree on the results tape  
together with the corresponding classification.  

C. The Optimal Decision Tree Design Procedure  

Approach  

For a fixed set of features, classes., and candidate classification  
criteria (maximum likelihood is-only one example of the latter), it is  
possible to enumerate all possible decision trees which-could, be. 
constructed. In theory, one could evaluate each of these trees and  
select for implementation the tree which gives the best performance.  
In practice, however, the number of possible trees is generally so  
large as to preclude such an exhaustive search for the optimal decision  
tree, and we therefore seek to devise more clever means of determining  
the optimal decision tree.  

In earlier research at LARS, Wu (Information Note 090174) developed  
a heuristic-search procedure for decision tree design which we refer  
to as "guided search with forward pruning." Essentially, the strategy  
-is to construct the decision tree a node at a time, estimating the  
suitability-of-all candidate substructures for the node under considera-
tion, and discarding all but the most promising candidate subtree.  

The strategy requires a means for evaluating each node in the tree.  
For each candidate structure following-node d+, the evaluation is  
computed as follows:  

n. 
E(di) = -T(d.) - Ks(di) + Z'E(di+j)j=l  

where T(d.) and s(d.) express the efficiency (computation time) and  
accuracy associated with node di and the summation is an estimate of the  
evaluation functions of the descendent nodes of di (assumed to be ni in  
number). A lower bound is used to form this estimate, which -is the  
evaluation of a conventional single-stage classifier applied at that point.  
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Constructing the tree in this sequential fashion cannot guarantee  
that the optimal tree will be obtained, because, unfortunately, the  
optimal choice at any level in the tree is not necessarily independent  
of choices at later stages. Still, the suboptimal results have been  
demonstrated in many applications to be an improvement over the alterna-
tive single-stage classifiers. Research is,proceeding in the direction  
of improved heuristic search and mathematical programming techniques to  
further improve the decision-tree design.  
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RESULTS  

Four key steps in the design process have been identified: (1) class  
clustering at each node, (2) feature selection at each node, (3) specifi-
cation of the classifier at each node, and (4) tree search. The first  
of these steps partitions the set of classes into the class subsets to  
be discriminated at the node; the second assigns the appropriate subset  
of the available features to be used to discriminate the class subsets;  
the third step determines the degree of complexity to be implemented  
in the decision process at the node; and the fourth step implements  
the search through all candidate trees for the desired (and, ideally,  
optimal) decision tree.  

A research plan has been formulated and is being pursued which  
involves the systematic consideration of several alternative methods  
which could te applied to each of these key steps in the decision tree  
design procedure. However, further results are not yet available.  
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RECOMMENDATIONS  

Research in thedesign and application of layered classifiers has  
demonstrated-the great potential of this generalized fori of data analysis  
by pattern recognition. Continuation,of this research can be expected  
to be very productive. In particular, we recofmend that the following  
be pursued vigorously..  

*Applications in the temporal domain. Continue to ,develop and  
improve layered decision logic for a range of multitempotal/multisite  
applications. Demonstrate the performance achievable by acquiring and  
analyzing appropriate data sets. Determine the impact ofthd spectral  
stratification research on the layered classification appoach.  

*Software upgrade and documentation. 'Completedocumentation of  
the *LAYER (Layered Classifier) processor. Perform similar upgrade of  
the software for Optimal Debision Tree Design in order to fa'cilitate  
incorporation of new research developments, make-the capability available  
to applications research, and facilitate transfer of the software to  
other potential users, especially NASA.  

*Optimal Decision Tree Design research. Pursue techniques for  
determining the optimal layered classifier logic. Much remains to be  
done in this area, and the potential exists for improving both the  
accuracy and the efficiency of the classifiers produced for any given  
application.  
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2.2 Development of Signature Extension Strata from Clustering Techniques  

INTRODUCTION  

Full realization of the potential advantages of the synoptic coverage  
provided by LANDSAT will require the development and use of data analysis  
techniques which take into account the large variation and diversity of  
patterns found over many LANDSAT scenes. Analysis techniques which are  
satisfactory for data acquired by airborne sensor systems or for limited  
areas of LANDSAT data cannot be effectively used to classify an entire  
LANDSAT frame of data. Fortunately, however, the variation found in  
LANDSAT scenes is not random, but occurs in very definite patterns.  
These landscape patterns are associated with the different topographic  
features, soils, crops, farming practices, and climatic zones found in  
a 35,000 square Km area.  

This suggests that one of the first steps in the analysis and  
classification of LAIDSAT data covering one or more LANDSAT scenes is  
to divide the scene into areas that have similar characteristics.  
Division of a heterogeneous population (or area) into subpopulations  
(or subareas), each of which is internally homogeneous is known as  
stratification and is frequently used by statisticians performing surveys  
to increase the precision of estimates. If each stratum is homogeneous  
in that the measurements vary little from one unit to another, a precise  
estimate of any stratum mean can be obtained from a small sample in that  
stratum. Estimates from several strata can then be combined into a pre-
cise estimate for the whole population. Use of stratification in the  
sampling designs used for remote sensing applications is therefore  
advantageous.  

A second use of stratification directly related to remote sensing  
applications is to potentially permit training statistics developed for  
one segment or portion of the scene to be successfully used to classify  
other segments which are spatially and/or temporally removed from the  
training segment. In this context the term spectral stratification is  
useful in that it connotes the division of the scene into areas which  
are internally spectrally similar. A spectral stratum may be defined  
as an area within which the scene (including atmospheric effects) is  
sufficiently similar that training statistics from one portion of the  
stratum can be used to classify other portions of the stratum without  
significant change in classification performance. Conversely, if the  
same training statistics are applied to areas outside the stratum in  
which they were developed, classification performance will decrease.  

Computer-implemented clustering techniques provide an objective  
and efficient method for determining the similarity of units within  
LANDSAT scenes. The objectives of this project are: (1) develop  
multivariate pattern recognition procedures for determining and  
delineating spectral strata in LANDSAT data and (2) determine quanti-
tatively.the physical factors which account-for the spectral strata.  
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Clustering Procedures for Spectral Stratification  

The technique of clustering has been adopted to define the spectral  
strata present in LANDSAT scenes. Clustering has been used extensively  
in remote sensing to group together units which are similar, based on  
observation vectors and a measure of similarity. Most remote sensing  
data analysts are familiar with the process of clustering pixels into  
spectral classes to be used later in classification. The observation  
vector in that type of clustering is the spectral response of the pixel  
in each waveband, and a commonly used measure of similarity is the  
Euclidean distance in the observation space.  

In spectral stratification, the sample unit is much larger than a  
single pixel and the objectives of the clustering technique are slightly  
different from the familiar process mentioned above. Instead of grouping  
together vectors of spectral responses for single pixels, we wish to  
group distributions of the spectral responses of sample units. Two units  
are spectrally similar if the distribution of spectral response in one  
unit is close to the distribution of the spectral response in the  
second area.  

We can state the generalized procedure for clustering to define  
spectral strata in five steps.  

1.  Select sample units- in the scene.  

2.  Characterize the distribution of the spectral response of  
each unit.  

3.  Choose a measure of similarity.  

4.  Apply a clustering algorithm to the units to determine  
groups of spectrally similar units.  

5.  Delineate the strata boundaries.  

Each step and its application to stratification will be explained  
further.  

Selection of Sample Units  

The sample units to be used in this procedure may either be segments  
whose geographic position has been fixed by a sampling scheme before the  
LANDSAT data is acquired or rectangular areas chosen from the LANDSAT data  
itself without regard for their geographic position. The size of the  
sampling unit affects the kind of strata that can be found as it is the  
effective lower limit on the size of strata that can be observed. For  
example, if the sampling unit is larger than the largest city in the scene,  
then urban areas cannot be separated as distinct strata. TMe smaller  
the sampling unit chosen, the smaller the geographic extent of the strata  
and the finer the division, or levels, that can be observed. For example,  
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if a pixel is chosen as the sampling unit, the strata essentially are  
the spectral subclasses of cover types present in the scene.  

Characterization of Spectral Response  

The distribution of the spectral response within a sampling unit  
may be characterized in several ways. Two methods have been pursued in  
this work. In the first method the distribution of the spectral response  
in an area is represented by its first and second moments, that is, by  
its mean vector and covariance matrix. These parameters are easy to  
calculate and to use with similarity measures. However, they do not  
contain complete information on the skewness, multimodality, and non-
normality of the distribution, all of which may be important in applying  
a statistical measure of distance between distributions.  

A second method is essentially non-parametric. The distribution  
of the spectral response is characterized by the marginal density  
functions of the distribution. The marginal density functions rather  
than the joint density function are used to meet computer space limita-
tions when dealing with large numbers of sample units. The character-
ization of distributions of the sample units is accomplished by first  
tabulating a base histogram for each feature (wavelength band) for the  
entire scene which is to be stratified. Equally probable bins are  
established from these histograms. Then a vector is constructed for  
each sampling unit in which each entry in the vector is the number of  
pixels in the sampling unit which fall in the corresponding bin in the  
base histograms. Thus the histograms or marginal densities of each  
sampling unit are characterized relative to the base histograms. The  
"histogram vectors" formed in this manner can then be used as data by  
a clustering routine.  

Similarity Measures  

In addition to the choice of characterization of the distribution of  
each unit's spectral response, a choice must be made of how to measure  
the similarity of two or more sample units. Sample units will be  
spectrally similar if the distance between their distributions or-
density functions is small. For the first method, that of representation  
of a distribution by its mean vector and covariance matrix, several  
statistical measures are possible.

2  

The transformed divergence has been the primary similarity measure  
used in this research as its properties are closer to the Jeffreys- 
Matusita distance 2 than are the properties of divergence, yet it is  
computationally less complex that the Jeffreys-Matusita distance. The  
desirable properties of the Jeffreys-Matusita distance are that it is  
a metric among multivariate normal densities and it is related to the  
probability of error (amount of overlap) between two densities.  

The implementation of these distance measures assumes that the  
distributions involved are multivariate normal. The assumption of  



2.2-4  

normality may be violated when the sampling unit contains bad data or  
clouds which saturate the dynamic range of the data or when the sampling  
unit is divided into two distinct spectral classes, leading to bimodality.  
Use of large sample units has tended to alleviate the second problem, and  
we have tried to avoid bad data lines. Examinations of histograms have  
indicated that the normality assumption is not unreasonable for the data  
we have been using.  

For the second method, that of "histogram vectors", the Euclidean  
distance between the vectors was chosen as a similarity measure for two  
reasons. First, it is a familiar measure whose properties are well  
known, and secondly, it has been previously implemented and extensively  
used in clustering analysis.  

Clustering of Sample Units  

Once a characterization of the spectral response and a distance or  
similarity measure have been selected, groups of spectrally similar units  
must be determined. If the analyst were to manually examine all possible  
pairs of units, the process would quickly become unwieldly and the results  
difficult to interpret for a large number of units. For example, if 150  
units are to be stratified, over 10,000 pairwise comparisons are necessary.  
A machine-implemented clustering algorithm calculates the many pairwise  
distances and combines the information before presenting the analysts  
with the natural groups of the sample units.  

Two clustering algorithms have been applied in this project. The  
first is an iterative algorithm which has been available for both obser-
vation space and parameter space clustering.2 The algorithm can be  
simple stated in its general form.  

1.  Determine initial group centers.  

2.  Assign each unit to the nearest group center.  

3.  If no unit has changed allegiance, go to step 4.  
Otherwise, determine new group centers and return to  
step 2.  

4.  If groups are distinct, stop. Otherwise modify the  
number of groups, determine new group centers, and  
return to step 2.  

In our research this algorithm has been applied to cluster units  
characterized by their mean vectors and covariance matrices in the  
parameter space, and to cluster the histogram vectors in the observation  
space manner.  

The second clustering algorithm is a systematic procedure for  
grouping spectrally similar units in such a way as to minimize the total  

Quagp  
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number of groups while avoiding the grouping of non-similar units.
3  

This procedure is slightly more complex than the first, as is seen in  
the following description.  

1. Assign each unit to its own group, GI, G2,..., Gn.  

2. Order the pairwise distances (d..), by magnitude. The  
algorithm considers (di.)in ascnding order. Let d  

. xy equal the smallest d.  

3.  If d >T, a threshold of non-similarity, grouping is  
compted. Otherwise, proceed to step 4.  

4.  If the units x and y belong to the same group, go to  
step 7. Otherwise proceed to step 5.  

5.  Construct the average distance d between G and 
each other group G 4G for whichxUd < for al a inG  

and b in G - The average distance etween groups is 
defined as the average of all pairwise distances between 
units in the different groups. 

6.  If di is the minimum of the set of inter-group distances  
consgucted step 5, then combine G and G into one group. x y  

7.  Set d to the next d.. and return to step 3. xy  13 

We have used this algorithm to group the spectrally similar units  
characterized bytheir mean vectors and covariance matrices.  

Delineation of Strata Boundaries  

After clustering is completed, the strata boundaries are delineated.  
Presently, this process is done manually when full LANDSAT frames or  
portions of frames have been stratified, although in the future we  
intend to adapt the "Extraction and Classification of Homogeneous Objects"  
(ECHO) approach to establish the boundaries of strata determined on the  
basis of fixed segments or a small sample of a LANDSAT frame.4 When  
fixed segments based on a sampling scheme are stratified, a list of the  
segments in each stratum is produced rather than a map since this is the  
knowledge desired in this case and since the geographic location of  
strata boundaries between the segments is uncertain. That is, even though  
it is known that the boundary is between certain segments, the exact  
location is unknown.  

Data Set Available for Stratification  

In the course of this contract, two data sets have been supplied to  
LARS by NASA/JSC. The first data set (LACIE) was received in July, 1975,  
and contained LANDSAT-l data covering twenty-five 1973-74 LACIE segments,  
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including five Intensive Test Sites. All of these images were 117 lines  
by 196 pixels. Only the Intensive Test Sites were multitemporal. Train-
ing field coordinates and identifications made by photointerpretation  
were available for all segments and test field coordinates and ground-
level identifications were also available for the Intensive Test Sites.  

The second data set (SRS) was received at LARS in August, 1975  
and contained multitemporal images of LANDSAT-l data covering eighteen  
SRS sites and five Intensive Test Sites. The SRS segments were all 200  
lines by 200 pixels in size while the Intensive Test Sites were larger  
and varied in size.  

In addition, several full-frames of LANDSAT-l data for Kansas  
acquired during the 1973-74 winter wheat growing season were available  
in-house at LARS.  

Stratification of Full-Frame Images  

Several full-frames of LANDSAT-l data were stratified under this  
effort. During preliminary work, scenes 1583-16525 (Feb. 26, 1974) and  
1689-16382 (June 12, 1974) were stratified using a sample unit of 200  
lines x 200 pixels or 13 x 16 Km. The distributions of the spectral  
response of the sample units were characterized by both methods described  
in the section Characterization of Spectral Response, and both algorithms  
described in the section Clustering of Sample Units, were used to define  
spectral strata within the above scenes.  

These preliminary stratifications were quite "blocky" and seemed to  
correlate only with major soil or land use divisions. This suggested  
that the size ofthe sample unit should be decreased, and so sample  
units of 100 lines x 100 pixels (or 6.5 x 8 Yim) and 50 lines x 50 pixels  
(3.2 x 4 K(m) were used in further investigations of full-frame stratifi-
cation.  

Sixteen LANDSAT-l scenes over Kansas acquired during the 1973-74  
winter wheat growing season and one LANDSAT-2 scene acquired in 1975 were  
stratified using a smaller sample unit size. Generally, strata could be  
found which correlated with soil and land use patterns. However, in  
these stratifications, there were sample units which were not geographically  
linked to other units in the same stratum. That is, sample units from  
one stratum were surrounded by units from another stratum. When these  
sample units were examined closely, it was discoveredthat they did have  
spectral characteristics which distinguished them from the surrounding  
units and allied them to units which were spatially removed. This re-
suit, though perhaps counter to an intuitive conception of strata as  
spatially contiguous, is consistent with spectral strata as regions  
which are internally spectrally similar.  

The accuracy of the stratification can be assessed indirectly by  
comparing the strata found by clustering with maps of physical factdrs  
which are known to influence spectral response. Presently the LANDSAT  
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imagery, strata maps, and physical factor maps are being compared  
manually. The illustrations in Figures 2.2-3 permit a qualitative  
comparison of a spectral stratification and soil and land use maps for  
the same area of southwestern Kansas. The spectral stratification  
shown in Figure 2.2-1 was produced by the "histogram vectors" method  
described in the section on Clustering Procedures for Spectral Stratifi-
cation. The sample units in this example are 50 pixels x 50 pixels or  
roughly 4 Km x 3.2 Km.  

The soil association map shown in Figure 2.2-2 exhibits several  
features easily seen in both LANDSAT imagery of the area and the spectral  
stratification. The areas of the Udic Ustolls (12) are easily visible,  
as are the patterns of the Typic Ustolls (9, 10, and 11). 5 The land  
use map, Figure 2.2-3, was developed from LANDSAT imagery acquired  
during June and July 1973.6 Almost two years later, the same land use  
patterns can be found in the stratification of the May 21, 1975 image.  

These evaluations of full-frame stratification are subjective. A  
complete, more objective comparison of the stratifications with physical  
factor ancillary data was planned. But due to problems in the regis-
tration of ancillary data (see section on Ancillary Data Registration)  
and redirection of stratification efforts to the partitioning of LACIE  
segments (see section on Partitioning of LACIE Segments), this evaluation  
has not been carried out.  

Later, when the digitization of the ancillary data is completed, we  
plan to conduct a regression analysis which will quantify the degree of  
correlation between the strata and various physical factors.  Such an  
analysis will not only provide a measure of the accuracy of stratification,  
but also provide quantitative information on the influence of major  
agronomic and meteorological factors on spectral reflectance. The  
physical factors being investigated include crop maturity stage, soil  
association, land use, precipitation, temperature, and grain yield.  

Partitioning of LACIE Segments  

At the end of November, 1975, NASA/JSC requested that all segments  
in the two data sets which had been supplied by JSC be stratified, or  
partitioned into strata.  

To accomplish this, the segments in the above data sets were  
separated into groups according to crop reporting district and wheat  
biophase. The majority of the segments in the two data sets lie in the  
Central and the Southwest Crop Reporting Districts. Of the remaining  
crop reporting districts in the western two-thirds of Kansas, only the  
South Central Crop Reporting District had sufficient segments in a bio-
phase to partition within itself. In order to stratify all the segments 
available to us, an additional partitioning effort was made in which  
the segments outside the Central and the Southwest Crop Reporting  
Districts were assigned to  the closest of those two major crop reporting  
districts. These extended groups were then partitioned.  
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4 4  

Figure 2.2-1  

Machine-Implemented Stratification of the Kansas Poi~tiofi  
of LANDSAT Scene 5032-16310.  Each number epesents..a  

different stratum.  
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*  SOILS ASSOCIATIONS  

r \  - / 6 ARIDIC USTOLLS 
2.  7 IUstolls, Orthents, and Ustalfs 

. ,,Deep,  grAyish-brown and dark grayish-
7-- - /1 brown silt loans 

1. Ulysses, Colby 
- 2. Richfield, Ulysses 

3. Ulysses, flrummond5- Ustalfs, Psannents, Ustolls, and Argids 
Deep, grayish-brown silt leans and 
sandy loans, and pale-brown loamy 

7fine  sands and fine sands  
4. Tivoli, Vona  
5. Dalhart, Richfield, Vona 

.-- - TYPIC USTOLLS 
/f 1 Ustolls and Usterts 

Deep and moderately deep, dark 
Igrayish-brown  silt loams and mod-

erately deep, gray clays  
6. Harney, Uly, Wakeen  
7. Harney, Spearville 

Ochrepts, Ustolls, Ustalfs, and Psamment  
Moderately deep and shallow, reddish-
brown loams and clays, and deep,  
grayish-brown silt loans and clay  
loans and pale-brown loamy fine sands  

Figure 2.2-2. Soil Association Map and fine sands 
of the Kansas Portion of LANDSAT 8. Manter, Pratt 

9. Mansic, Mansker
Scene 5032-16310.  10. Tivoli, Pratt 

11. Woodward, Carey  
UDIC USTOLLS  

Ustalfs, Ustolls, and Aquolls  
Deep, dark grayish-brown loans and  
fine sandy loams and pale-brown  
loamy fine sands  

12. Pratt, Carwile  

a -al 

5- 33 

zC  LAND USE CATEGORIES 

aI 
3 1. Unirrigated - areas with  

greater than 50%  unirri-
gated cropland  

C3 2. Irrigated - areas with 
S greater than 50% irrigated 

cropland 

2 ,3. Rangeland - areas with 
a greater than 50% rangeland 

30  4. Urban and built-up land 

5. Water and wetlands 

Figure 2.2-3. Map showing Major Land  
Use Categories for the Kansas  
Portion of LANDSAT Scene  

5032-16310.  
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The four procedures used for this stratification effort can be  
easily specified in terms of the general procedure given in the section  
on Clustering Procedures for Spectral Stratification. In Step 1 of the  
generalized procedure, the sample units were chosen in two ways. First,  
each segment was considered one unit, except for the larger intensive  
test sites which were divided into units approximately the-size of the  
other segments. Thus, the sample units were between 117 lines -x 196  
pixels to 200 lines x 200 pixels in size.  

The second sample unit size chosen was approximately 100 lines x  
100 pixels. In this selection of sample unit, a sample unit was a.  
.quarter-segment, and sample unit size ranged from 57 lines x 98 pixels to  
100 lines x 100 pixels.  

In either set of sample units, the spectral response of the unit  
was characterized by the mean vector and covariance matrix of the pixels  
in the sample unit. The similarity of two sample units was measured by  
transformed divergence. Both clustering procedures, given in the section  
on Clustering of Sample Units, were applied to the groups of sample units  
of each size, and lists of segments in each stratum produced.. Thus, four  
partitions were generated for each group of segments within a crop  
reporting district and wheat biophase.  

Generally, the stratifications produced by the two clustering pro-
cedures were consistent for each sample unit size. The first algorithm  
usually generated fewer strata than the second clustering algorithm, and  
these strata were combinations of the strata produced by the second  
algorithm. When the smaller sample unit was used, parts of the LACIE  
segments were often assigned to different strata. The distributions of  
the smaller sample units are more prone to problems of nonnormality,  
skewness, and multimodality which may contribute to this effect.  

We have attempted to measure the success of stratification of  
LANDSAT data by clustering through classification performance in local  
and non-local recognition of LACIE segments. The criterion for success  
is that classification accuracies for all segments within a stratum  
classified using training statistics developed within a given stratum  
should be similar.  

To statistically evaluate a stratification, two or more areas with  
known crop identification data must be available within each stratum.  
These test areas should fall entirely within the stratum, and should be  
large enough to conduct a reasonable classification analysis. Such a data  
set will give an adequate test of the stratification of the test areas,  
but cannot be used to determine the accuracy of the strata boundaries. -

The data sets presently available to us do not meet these requirements and 
a statistical evaluation of the classification evaluation is not possible. 
A portion of the classification results are presented in order to draw 
some limited conclusions.  
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Classification results from one stratification of segments in  
LANDSAT scenes acquired June 12, 1974 for central Kansas are presented  
in Table 2.27I. Each segment is either a 8x9.7 or 4.8x4.8 Km area  
for which the crop types and LANDSAT data coordinates of the agricultural  
fields are known. The stratification procedure treated the segments as  
the sample units and characterized each segment by its first and second  
moments.  The procedure placed the segments from Stafford, Ellis, Ellsworth,  
and Rice Counties in one stratum along with one of the segments from  
Barton County. The other segment from Barton County was placed in a  
different stratum. Both of the procedures, described in the section on  
Clustering of Sample Units, gave the same result when transformed diver-
gence was used as the similarity measure.  

The classification results show that the stratification technique  
was successful in identifying segments which are indeed different.  In  
no case was a high classification performance achieved when using 
training statistics from segments outside the stratum.' For segments 
identified as members of the same stratum, similar high (approximately 
90 percent correct) classification performances were obtained for both  
local and non-local classifications of several combinations of segments. 
This indicates that these segments are from the same stratum.  But, in  
several other instances the non-local classification result was lower  
than the local classification performance, indicating these segments may 
be from different strata. This would mean that the clustering procedure  
is grouping the segments into groups or strata which are too broad.  

Similar results have been obtained with two other crop reporting 
district-wheat biophase combinations.  With the available data, however,  
we cannot state with certainty whether the stratification procedure  
should be modified or whether the inconsistencies in results are due to  
limitations of the available data sets.  The evaluation of stratification  
procedures by classification performance has been limited by the resources  
available and plagued by problems with the data sets such as misregistra-
tion of multitemporal data, mislabelled fields, and inadequate amounts  
of training data. Lack of a more adequate test data set is a major 
problem at this time; greater emphasis will need to be placed on this  
requirement of stratification evaluation before additional progress can  
be made.  

Ancillary Data Registration  

The requirement for registration of ancillary data (soils, meteor-
ology, etc.) is based on the requirement to relate spectral strata to  
physical and environmental factors in a quantitative manner.  The assump-
tion is that the variations in spectral response for a particular crop is  
related to the crop characteristics and the physical environment and  
knowing this relationship will enable extension of crop recognition 
algorithm parameters from one location to a distant location.  
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.Table 2.2-1. Classification Performances  
(Wheat vs. Other) for Segments Within and  

Outside of Strata Determined by Clustering  

Source  
of Areas Classified*  

Strata Training  
No. Statistics Barton-i Barton-2 Rice-Ellsworth I- -EIis Stafford  

- Overall Percent Correct"'  

1 Barton-i 83.7 42.9 15.1 69.4 54.1 61.5 

2 Barton-2 27.1 96.0 93.8 90.0 56.2 52.5 

2 Rice 34.1 92.0 93.4 85.7 47:4 69.1 

2 Ellis 63.4 -43.4 26.4 60.4 64.8 51.4 

2 Stafford 58.2 55.4 42.0 59.9 61.7 89.9 

*  LANDSAT scenes 1689-16392 and 1689-16385 acquired June 12, 1974 over 
Central Kansas. 

1Ellsworth was not used as a source of training statistics because  
only wheat field coordinates were available.  
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Figure 2.2-4, Source Map for Soil Association Data,  
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Figure 2.2-6.  Source Map for Land Use Pattern Data.  

Figure 2.2-5.  Gray Scale Map of Soil Association Information for  
Scene 1689-16382, Acquired June 12, 1974.  
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Precipitation Data Registration  

The precipitation data was available on only a county basis; thus  
the task was to digitize the county boundaries for Kansas and then in-
sert the appropriate number in each county area. County boundaries were  
digitized from the soil map used previously and the digital county boun-
daries were combined with the county values to produce two additional  
data channels with a temperature or precipitation value for each pixel.  

The precipitation data was obtained from data tapes supplied by  
the National Oceanic and Atmospheric Administration. The precipitation  
data were summarized on a monthly basis for each of the counties in  
Kansas. For the initial registrations the values used for each county  
were the total precipitation for the periods October 1, 1973 - June 30,  
1974 and March 1 - June 30, 1974. Additional intervals of accumulation  
will be defined in CY77 to further explore the correlation of spectral  
properties with temperature as well as precipitation.  

Outlook on the Use of Spectral Stratification  

Large scale surveys using satellite-acquired multispectral data  
require classifications to be made over areas at least the size of indivi-
dual LANDSAT scenes. The diversity of landscape patterns found over  
many areas of this size indicates that a logical first step in the  
analysis and classification of LANDSAT data is to stratify or divide the  
scene into units which are internally similar. Such a stratification will  
be helpful in constructing sampling frames which minimize the variance  
among sample units and in determining the boundaries of areas over which  
training statistics can be satisfactorily extended.  

Stratification for sampling purposes can be based on static factors  
whose boundaries are either static or change only very slowly. For  
classification, however, the stratification should be based on the  
LANDSAT spectral data and will include the effects of dynamic as well  
as static factors.  

The use of computer-implemented clustering procedure for dynamic  
stratification has been developed and tested over several LANDSAT  
scenes of Kansas. Initial results indicate that the technique can be  
used to determine the similarity of sample units and that the strata  
produced agree with major physical factors. The use of such a procedure  
should enable scenes to be more efficiently and objectively stratified  
than would be possible using manual methods.  

We recommend that stratification be considered a prerequisite of  
signature extension or signature adjustment algorithms such as the  
multiplicative and additive signature correction (MASC) technique described  
by Henderson. 7 Our observation of results from such algorithms is that  
the results are highly variable and are data dependent. This shortcoming  
may be largely overcome by applying such signature adjustment algorithms  
only within a stratum, thus taking advantage of the knowledge gained from  
spectral stratification.  
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2.3 Field Measurements for Remote Sensing-of Wheat  

INTRODUCTION  

Major advancements have been made in recent years in the capability  
to acquire, process, and interpret remotely sensed multispectral measure-
ments of the energy reflected and emitted from ciops, soils, and other  
earth surface features. With the initiation of experiments such as the  
Large Area Crop Inventory Experiment (LACIE) the technology is moving  
rapidly toward operational applications. There is, however, a continuing  
need for quantitative studies of the multispectral characteristics of  
crops and soils and the agronomic and meteorological factors influencing  
them if further advancements in the technology are to be made. In the  
past many such studies were made in the laboratory because of a lack of  
instrumentation suitable for field studies. However, the applicability  
of such studies is generally limited. The development of sensor systems  
capable of collecting high quality spectral measurements under field  
conditions now makes it possible to pursue investigations which would not  
have been possible a few years ago.  

A major effort was initiated in the fall of 1974 by NASA/JSC with  
the cooperation of USDA to acquire fully annotated and calibrated multi-
temporal sets of spectral measurements and supporting agronomic and  
meteorological data. Spectral, agronomic, and meteorological measure-
ments are being made on three LACIE test sites in Kansas, South Dakota,  
and North Dakota. The remote sensing measurements include data acquired  
by two truck-mounted spectrometers, a helicopter-borne spectrometer, an  
airborne multispectral scanner, and the Landsat-l and -2 multispectral  
scanners. These-data are supplimented by an extensive set of agronomic  
and meteorological data acquired during each remote sensing data collec-
tion mission. Together these data form one of the most complete and  
best documented data sets ever acquired for remote sensing research.  
Thus they are well-suited to serve as a data base for research defining  
future remote sensing systems and to quantitatively determine the spectral-
temporal characteristics of spring and winter wheat crops.  

At the beginning of the project, Purdue/LARS was requested to  
provide the technical leadership and coordination for the project as well  
as assume a major responsibility for the acquisition, processing,  
archiving, and analysis of the data. This report summarizes the activities  
of LARS in carrying-out these functions during the past year. The final  
sections of the report include summaries of analytical results of three  
investigations being pursued with field measurements data and recommenda-
tions for the future direction of the field measurements project.  
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DATA ACQUISITION AND MEASUREMENT TECHNIQUES DEVELOPMENT  

Data acquisition activities were focused on the spring wheat crop  
in Williams County, North Dakota. The principal .measurement sites were  
located at the North Dakota State University Agricultural Experiment  
Station near Williston, North Dakota. Spectral bidirectional reflectance  
factor, radiaht temperature, agronomic crop parameters, meteorological  
conditions and total irradiance were measured for 60 plots.arranged as  
shown in Figure 2.3-1. The treatments were chosen to represent the major  
agronomic factors affecting the growth, development, and yield of spring  
wheat. A summary of these measurements is shown in Table 2.3-1. Three of  
the plots were also used for measuring the thermal properties of wheat  
canopies; the results in the section on data analysis and results.  

In addition, a large commercial wheat field was used for canopy  
modelling measurements. At this site, spectral.bidirectional reflectance  
factor and radiant temperature were measured at view angles distributed  
over the complete hemisphere of observation for nearly fixed sun posi-
tions. Other data acquired for canopy modelling included photographs,  
agronomic data and ERTS-band reflectance factor measurements-.  

The following sections describe the instruments and procedures  
used in acquiring the data, the.development of new instruments, and  
the development of improved field measurement techniques an& procedures.  

Radiometric and Reflectance Data Acquisition  

The Purdue/LARS field data acquisition system (mobile tower,  
instrument van,-and portable generator) was used to operate the Model  
20C Spectroradiometer and precision radiation thermometer (PRT-5)  
above the plots-on the experiment farm, the "modelling" field and the  
canvas calibration panels located at the helicopter site. This system  
also provided a maintenance and-calibration facility for the instruments  
discussed below.  

1. Calibration Procedures. A painted barium sulfate standard was  
used as the reflectance surface for spectral bidirectional reflectance  
measurements. For measurements in the thermal spectrum, two blackbodies  
were used to bracket the spectral radiance of the subject scenes. One  
of the blackbodies was used to calibrate the PRT-5 for temperatures from  
150 C to 500 C.  

2. Model 20C Field Spectroradiometer. The spectral bidirectional  
reflectance factor from 0.4 to 2.4 micrometers of the experimental plots  
and the canvas calibration panels was measured (150 field of view) with  
sun zenith angles less than 450 and view angle of 00 (straight down).  
For the modelling field, spectral bidirectional reflectance factor  
measurements were made over the hemisphemeof observation at azimuth 
angles of 0, 45, 90, 135, 180, 225, 270, and 315 degrees with:view angles  
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o  South Agriculture Experiment Station  

Williston, North Dakota  

Wheat in 19711  Fallow in 1974' - i-.- - - - ---iolil2J~o~D21---'----- ~Ol~Oll~O ~iLI1I 
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Treatment Descriptions 

Soil Moisture  Planting Date  Variety Nitrogen Seeding  Rate  

M. Wheat in 1971  . May 20 D1 V1. Olaf (Semi dwarf) No None  ft 30 lbs/acre 1  

N2 Fallow in 1974 D2 May 30 V2 Ellar, N1 30 lbs/acre 60 R2  

R 90  

Figure 2.3-1.  Experimental plots and treatments being studied by  
Purdue/LARS at Williston, North Dakota.  
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Table 2.3-1. Summary of data acquired by Purdue/LARS during 1975 at  
Williston, North Dakota.  

Wheat Target Description  
Data Growth Stage Reflective Data Thermal Data  

June  1 Emergence Plots 29, 30 
5 Seedling Plots 20-30, Cal panels Plots 20-30 
7 " Plots 40-60, Fallow, Grass Plots 55-60, Fallow 

22 --- Cal panels 
24 Tillering Modelling field-47 obs. 

July 9 Boot Plots 31-41, Cal panels 
10 Plots 1-60, Grass, Winter 

Wheat, Fallow Plots 52-60 
11 " Modelling field-57 obs. 
18 Heading Cal panels and grass with 

ERL 
19 " Plots 31-60, Fallow 
20 Modelling Field-29 obs. 
21 Plots 52-60, Grass Plots 52-60 
27 Headed Plots 31-60, Cal panels 
28 Mature Winter Wheat 
29 Headed Plots 1-60, Fallow, 

Alfalfa Plots 52-60 
Aug. 12 Dough Plots 1-60, Fallow, -

Alfalfa Plots 52-60 (twice) 
13 Modelling Field-129 obs. 
15 Ripening Plots 13-30, Cal panels,  

Grass, Fallow and  
Alfalfa  

23 Mature Plots 9-12, 20-22  
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of Ol15, 30, 45, and 60 degrees from normal. The reference for these  
observations was viewed at 0. These measurements were made over the  
entire day, when possible, providing data for sun zenith angles distributed  
over a wide range. The model 20C spectral reflectance factors were  
corrected for the reflectance of Barium Sulfate.  

The thermal unit of the Model 20C was used to measure the spectral direc-
tional radiance in a 150 field of view for selected experimental plots.  
Measurements were performed with a view angle of 00 simultaneous with  
spectral reflectance factor and PRT-5 measurements. Thermal spectral  
measurements of these plots were completed within ten minutes under  
stable wind and incident light conditions.  

During all measurements the Model 20C and PRT-5 were positioned at  
a height of seven meters above the canopy. The motor drive camera was  
aligned with the reflective unit to acquire photographs of each plot  
during the measurement. Additionally, oblique photographs of each plot  
were taken using a hand-held camera at a height of approximately two  
meters.  

3. PRT-5 Precision Radiation Thermometer. This instrument was  
used to view the plots during spectral reflectance factor measurements.  
Data were recorded manually and entered in the data bank with the  
description of the measurement which is recorded for each reflectance  
spectra.  

4. Model 100 ERTS-Band Radiometer. The spectral-band reflectance  
factor (in ERTS/Landsat bands) of four plots within the modelling field  
was measured using-a tripod based mounting beam to position the radio-
meter at a height of 2 meters. The 150 field of view was used with a  

. view angle of 0 Data were acquired on June 24, July 11, 20, and 30,  
and August 13. The reflectance factor relative to a painted Barium  
Sulfate panel was measured several times during the day for various sun  
angles. The directional-hemispherical transmittance of green, yellow,  
and brown leaves was measured using the transmittance attachment developed  
at LARS during the previous year.  

Photographic records of the canopy included color slides taken at  
angles of 0, 10, 20, 30, 40, 50, and 60 degrees perpendicular and parallel  
to the row direction and silhouette photos of single rows and single  
plants.  

5. Total Incidence Pyranometen An Eppley Model 8-48 pyranometer  
was stationed near the plots on the experiment station. Total irradi-
ance versus time was recorded on a strip chart for each-day on which  
spectral data were recorded.  
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Meteorological Data Acquisition  

Meteorological datawere measured and recorded at the experiment  
station during.each day on which spectroradiometric data were acquired.  
The measurements were acquired using the meteorological data acquisi-
tion system designed and implemented the previous year. Measurements  
of barometric pressure, temperature, relative humidity, and wind speed  
and direction are recorded on strip charts using-instruments manufac-
tured by Weather Measure, Inc.  

Measurements of temperatures-at various positions in'and above  
wheat canopies were accomplished using a system developed at-LARS in  
FY75 and 76. Five thermilinear probes for measuring air and contact  
temperatures were deployed from a single post and up to nine posts were  
multiplexed to a temperature to voltage converter for measurement  
using a digital voltmeter.  

Agronomic Data Acquisition  

Agronomic observations and measurements describing the condition  
of each of the plots were made at the time of the spectral,data acquisi-
tion. These data include: maturity, height, percent ground coveryleaf  
area index, biomass of leaves, stems, and .heads, soil moisture and condi-
tion, and grain yield. These data are supplemented,by'vertidal and  
oblique photographs of each plot.  

Instrument and Procedures Development  

A number of developmental tasks were required in support of the  
data acquisition activities described above. These tasks included:  

1. Documentation of the directional-hemispherical transmittance  
attachment to the Model 100 ERTS-Band Radiometer was completed. [LARS  
Information Note 052075] Extensive tests were performed on the trans-
mittance measuring system to determine the comparability with-Beckman  
DK-2 transmittance measurements. Source and system transfer character-
istics of both instruments were digitized directional-hemispherical  
transmittance of typical-leaf samples was measured by both instruments,  
and the results were compared. Documentation of this evaluation, in  
process, indicated that the instruments compare favorably.  

2. Development of a directional-hemispherical reflectance attach-
ment for the Model 100 ERTS-Band Radiometer was begun. Field tests of  
the attachment in May of 1976 indicated that further devel6pment is  
required. Modifications were made and further tests will be performed  
in June of 1976.  
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3. Field performance evaluations were performed for the truck  
spectrometers involved in the Field-Measurements Project. At the request  
of NASA/ERL, tests were performed on their Model 20D system to determine  
the cause of reflectance values which were inconsistent with previous  
performance. The causes were established and a procedure to determine  
the instrument behavior over the summer was developed. This enabled ERL  
personnel to correct the data.  

In cooperation with NASA and Lockheed personnel, the operational  
procedures for the Field Signature Acquisition System were examined and  
it was determined that the number of observations per plot could be  
significantly reduced without reducing the quality of the data. This and  
other modifications of operational procedures enabled the operation crew  
to acquire high quality data at a rate consistent with the requirements  
of the experiment.  

Field procedures used routinely to check the performance of the  
LARS Model 20C were demonstrated to the operation crews using their  
instruments. Frequent, on site, tests especially field of view tests,  
were shown to be very important to the acquisition of quality data. As  
well, the measurement of the spectral bidirectional reflectance factor  
of the gray panels by all instruments proved to be of great value in the  
production of comparable data.  

4. Techniques developed at NASA Goddard and adapted'at Purdue for  
the application of Barium Sulfate in a durable, highly reflecting coating  
for reference surfaces for field instrumentation were used to produce  
reference panels for spectral reflectance factor calibrations. Four  
1.3 meter square panels were painted for use by the truck spectrometers,  
two 0.6 meter square panels were prepared for the modelling measuremients,  
two 0.3 meter diameter panels were also pointed for the JSC/FSAS system.  

5. Construction of an eight channel printing data logger was  
completed and conditioning cards were prepared to acquire  

* five channels of temperature data from 00 to 450 C using  
Thermilinear probes  

" four channels of Model 100 ERTS-Band Radiometer data and  
one channel of PRT-5 data  

* eight channels of unconditioned data from 0 to 2.0 or 0  
to 20 volts.  

Major features of the data logger include: two digits of sequential data  
coding, one digit indicating the channel being printed, and 3 digits of  
measured data. The instrument will measure and print the data in a  
selected channel or scan and print sequentially up to and including a  
selected channel at a rate of about three channels per second. More  
complete documentation of the system is in progress.  
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6. Documentation was nearly completed for the bidirectional reflec-
tance factor reflectometer designed to use the Exotech Model 20C and a high  
intensity source to make indoor measurements of large area samples. The  
device facilitates the comparison of pressed Barium Sulfate with the painted  
Barium Sulfate panels and has provided the basis for three investigations of  
the reflective characteristics of soils. The document discusses the bidi-
rectional nature of reflectance in accepted definitions and symbols. Result,  
for typical sample surfaces--paints, soil, and cloth--are presented in  
several formats which are convenient for physical interpretation.  
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DATA PROCESSING AND REFORMATTING  

After the data have been acquired in the field they must be  
prepared for analysis. It is important that the data be calibrated  
consistently and made available in comparable formats in order to make  
meaningful comparisons among data acquired by the several sensors at  
different times and locations. A second key step in the processing of  
all the data is to correlate the agronomic, meteorological, and photo-
graphic data with the spectral data and as fully as possible integrate  
the various data types. To accomplish this the agronomic and meteorolog-
ical data are keypunched and entered on the digital tapes along with the  
spectrometer data.  

This section summarizes the data processing and reformatting steps  
performed by LARS and reports on the current status of the data.  

Procedures  

The processing functions performed not only by LARS, but also by  
NASA/JSC and NASA/ERL have been previously described in detail in the  
Field Measurements Project Status Report prepared in January 1976 by  
LARS. Thus, they will only be briefly summarized in this report.  
Figures 2.3-2 and 2.3-3 illustrate the major steps in processing the  
spectrometer data. The spectrometer data is calibrated to reflectance  
factor using known Barium Sulfate standards and the data for each sensor  
is put in the same wavelength bands to facilitate comparisons among data  
from the several spectrometer systems being used in the project. The  
wavelength band intervals are 0.02, 0.05, and O.lOm for the regions  
0.4-1.4, 1.4-2.4,-and 2.7-14.Opm, respectively.  

The multispectral scanner data processing is primarily reformatting  
from Universal to LARSYS format. The Landsat data are being multitempo-
rally registered to facilitate their analysis.  

Status  

The status of preparation of 1974-75 mission data is summarized in  
Table 2.3-2. Processing of the 1974-75 data has been delayed while  
software for handling the newer types of data and putting data into the  
field measurements format have been prepared. Also, a number of unexpected  
problems in instrument performance occurred which have required additional  
processing to correct. Software systems are now complete and all-pro-
cessing of 1974-75 data will be completed by August 1976. Processing of  
1975-76 data has already begun and is expected to proceed much more  
smoothly and quickly since the necessary software-and procedures have been  
developed and tested.  
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Table 2.3-2. Summary of 1974-75 Field Measirdments Data Preparation Status.  

Landsat MSS Data, CCT's and Imagery  
30 frames received and in library  

MSS and MMS Aircraft Scanner Data  
16 missions received at LARS  
6 missions reformatted  

10 missions available upon request  

FSS (S-191) Data  
20 missions received at LARS  
3 missions final processing complete and in libriry  

17 missions partially processed  

20C Spectroradiometer Data  
6 missions final processing complete and in library  
3 missions partially processed  

20D Spectroradiometer Data  
2 missions final processing complete and in library  

13 missions partially processed  

FSAS Interferometer Data  
3 missions received, processing complete, and in library  

ASCS Inventory and Periodic Observation Data  
23 missions received and keypunched  

Meteorological Data  
18 missions received and keypunched  
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DATA QUALITY VERIFICATION AND EVALUATION  

An important part of the field measurements project is the acquisi-
tion of high quality, calibrated spectral measurements. To a large degree,  
this depends on having a timely and quantitative method available for  
determining data characteristics. This information can be used (1) for  
identifying sensor deficiencies which can be corrected and (2) by data  
analysts in selecting data for analysis and in interpreting analysis  
results. The importance of quantitative data verification has become  
increasingly apparent to LARS as the project has progressed and this  
section summarizes our initial efforts to strengthen this part of the  
project.  

In April 1976 a document describing our technicai recommendations  
for data quality evaluation and verification for the spectrometer and  
aircraft scanner systems was prepared. The key points of those recommen-
dations are presented along with our current evaluation of data quality.  

Data Quality Evaluations  

The uncertainity of measurement for each of the spectrometer  
systems has-been determined. For reflective data, the values are  
7, 10-15, and 8-29 percent for the LARS, ERL, and S-191 spectrometer  
systems, respectively. It has been demonstrated that the LARS system  
produces repeatable data from mission to mission. The high value for  
the ERL data is due to misalignment of the first minor, but the system  
was stable and it has been determined that the solar port data can be  
used to compute reflectances based on calibrations before and after the  
occurrence of the problem. The problem has been corrected in the data  
processing and the final data is expected to be similar to the LARS  
data.  

The FSS (S-191) data has exhibited an unusually high degree of  
uncertainity for certain missions which are attributed to collection of  
data during partially cloudy periods, missing the calibration panel, or  
instrument malfunctions. The latter is considered least likely and steps  
have been taken to reduce the re-occurrence of the first two problems  
in 1976 missions.  

The 24-channel MSS data has been plagued by data quality problems  
including banding, bit errors, saturation, and inoperative bands. By  
averaging pixels, i.e., degrading the spatial resolution, and other  
preprocessing stops, the data quality has been substantially improved  
and high classification performances have been achieved with the data.  
Insufficient amounts of MSS data have been received to evaluate its  
quality.  
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Data Quality Determination  

Recommendations for determining data quality have been prepared  
and submitted to NASA/JSC. Some of the initial steps would be carried-

out by JSC, with the final quantitative steps performed by LARS. The  

key steps are summarized here for the aircraft scanner, helicopter  

spectrometer, and truck-mounted spectrometers.  

1. Aircraft Multispectral Scanner  

The first step in collecting high quality data in the field is  
determined acceptable limits of illumination. We have recommended the  
use of a recording total incidence pyranometer to determine quantita-
tively and at a glance whether illumination meets the minimum require-
ments.  

Histograms of data can be used to determine detector operation, bit  
dropping or favortism, dynamic range, sensitivity, and saturation.  
Several quantitative measures based on analysis of histograms of each  
data  channel have been defined. These include: (1) serial correlation  
coefficient to determine low order bit errors, (2)'peak relative change  
in frequency to determine high order bit errors, and (3) percentage of  
saturated data points to detect improper range and/or offset settings.  
In addition, a comparison of NEAp and NEAT with sensor performance  
specifications as a measure of system noise, and determination of the  
number of line synchronization errors is recommended. Threshold levels  
denoting unacceptable performance have been defined for each of these  
measures. Further tests to determine the correspondence between the  
data quality indicators and classification performance are required and  
should be carried-out during the coming year.  

2. FSS (S-191) Data  

Major factors contributing to the uncertainity of helicopter  
spectrometer data are, in order of importance, clouds, calibration  
procedures, atmospheric conditions, instrument performance and, data  
processing system performance. The requirement for sensor performance  
evaluation has long been recognized and quick-look and other, more  
extensive, instrument tests are routine. To establish a measure of the  
uncertainty and causes of uncertainty throughout the system, the following  
steps have been recommended:  

(1)  A record of the total irradiance at the helicopter  
calibration site as a function of time to determine  
the illumination conditions.  

(2)  A calibration uniformity test. After a cosine cor-
rection for sun angle the calibration spectra should  
ke nearly identical.  
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(3) Histogram tests for the processed data to indicate  
proper A-D conversion. These tests would be similar  
to those described for the scanner data.  

(4) A system performance test utilizing measurements of  
a series of gray-scale calibration panels.  

3. Truck Spectrometer Data (Exotech 20C, Exotech 20D, FSAS)  

Major factors contributing to the uncertainty of truck spectro-
meter data are, in order of importance, calibration and operation pro' 
cedures, calibration frequency, instrument performance, atmospheric 
conditions, and data processing system performance. In the case of the  
FSAS interferometer system it is diffcult to separate the data proces-
sing from the instrument; but, with software changes and hardware  
refurbishing and improvements, operational and calibrational procedures 
should become the limiting factors on the performance of this system.  
To establish a measure of the uncertainty and causes of uncertainty  
throughout these systems, the following steps have been recommended:  

(1) Operational and calibration procedures which include  
(a) frequent checks of alignment of the field of view  
and (b) calibration using large Barium Sulphate panels.  

(2)  A record of total irradiance at the site as a function  
of time.  

(3) A calibration uniformity test similar to the one described  
above-for the S-191 data.  

(4) Histogram tests for verifying analog to digital con-
version similar to the ones described for the scanner  
data.  

(5) A system performance test including measurements of  
gray-scale calibration panels. Spectra would be  
examined for continuity, form, and magnitude.  
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DATA LIBRARY  

The field measurements data library contains a broad spectrum of  
information collected for the three agricultural test sites in Finney  
County, Kansas, Williams County, North Dakota, and Hand County, South  
Dakota. Data is collected at the agriculture experiment stations and  
the LACIE intensive test sites in Finney County and Williams County;  
but, only over the LACIE intensive test site in Hand County. For the  
Finney County and Williams County sites, canopy modelling data is also  
collected over a commercial wheat field.  

LARS is the central facility for storage and dissemination of  
field measurements data being collected over the above three test sites.  
The organization of the library is shown in Figures 2.3-4, 5, and 6.  

A computerized catalog listing of all data in the library is  
currently being prepared and should be available by August 1976. The  
listing will contain key items of information for each data run. A  
run is an individual observation or scan of spectrometer data, a flight-
line at a given altitude of aircraft scanner data, or for Landsat data  
the entire test site. The items describing each run include: mission  
date, time, location, crop, sensor, and type of data (reflective and/or  
thermal), plus the run number uniquely identifying each item of data.  

A summary of the spectral data currently in the library is shown  
in Table 2.3-3. The spectral data for each mission is supplemented by  
photographic, agronomic, and meteorological data acquired during each  
mission. The types of data acquired have been described previously in  
the project plan and the January 1976 status report.  

During the past year the following data have been distributed to  
researchers:  

- Selected bands of 24-channel MSS data for four missions to  
ERL, GISS, and GSFC. CSee section 2.4 of this report).  

- S-191 data for eight missions to Texas A&M and two missions  

to ERIM.  

- Exotech 20C (LARS) data for two missions to Texas A&M and ERIM.  
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Table 2.3-3.  Summary of remote sensing data in the field measurements  
data library. A full set of agronomic and meteorological  
data is also in the library for each mission.  

Sensor Type  
Wheat Landsat.IA/C IModelling  

Mission Growth Stage 1 2jMSS S-191 Truck. Data  

Finney Co., Kansas 
Oct. 17-20, 1974 Seedling X X 
Nov. 4-7, 1974 Tillering X X 
Nov. 23-25, 1974 Tillering X X 
March 19-22, 1975 Tillering x X X 
April 6-9, 1975 Jointing. X* X X 
April 24-27, 1975 Jointing X X X 
May 13-16, 1975 Boot X X X 
May 21-24, 1975 Heading XI X. X X X 
May 30-June 2, 1975 Milk X XI x 
June 8-11, 1975 Dough X X X 
June 17-20,, 1975 Ripening X X XM x X 
June 25-28, 1975 Mature X X X X 
July 5-8, 1975 Post Harvest X X X X 
Sept. 14-17, 1975 Pre-emergence X X 
Oct. 2-.5, 1975 Seedling X X X 
Oct. 20-23, 1975 Seedling X X X 
Nov. 11-12, 1975 Tillering, X k 
March 13-19, 1976 Tillering X 0 x 
March 30-April 2, 1976 Jointing, X X XI 
April 18-21, 1976 Jointing 0 X X 

Williams Co.,. North Dakota 
May 25-28, 1975 Emergence X X x 
June 3-7, 1975 Seedling X X X X 
June 12-15, 1975 Seedling X X 
June 21-24, 1975 Tillering X x X r X 
June 30-July 3, 1975 Jointing X X 
July 9-12, 1975 Boot X X X X X 
July 18-21, 1975 Heading 0 k XC 
July 27-30, 1975 Headed X X X X 
Aug,. 5-8, 1975 Milk-dough 0- X X 
Aug. 14-17, 1975- Ripening. X I . X - x 
Aug. 23-27, 1975 Mature X X  
Sept. 1-4, 1975 Post Harvest 0 X  

Hand Co., South Dakota  
Sept. 25, 1975 Pre-emergence 0  
Oct. 15, 1975 Emergence x  
Oct. 30, 19.75 Seedling x  
Nov. 5, 1975 Tillering X  

* X=MSS, O=M 2S 
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TECHNICAL COORDINATION  

A substantial amount of effort has been devoted to technical  
communication in order to coordinate all phases of the project. It  
would be virtually impossible to site all of the many exchanges of  
telephone calls and letters which have gone between NASA/JSC and  
LARS in the process of establishing data collection schedules,  
defining measurement; instrumentation and procedures, calibrating and  
processing data, and verifying and evaluating data quality. These were  
supplemented by visits of several LARS staff members to JSC as well as  
to the three test sites. Meetings were also held at Purdue in September  
and at Texas A&M in March with data users from ERIM, and Colorado  
State and Texas A&M Universities. As part of our technical coordination  
role, LARS prepared an update of the project plan in August 1975 and  
an overall project status report in January 1976.  
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DATA ANALYSIS -AND RESULTS  

Analytical results have been obtained for three expriments  
conducted with field measurements data acquired..at Willistn, North  
Dakota during the summer of 1975. Brief summaries of the major results  
will be presented in this report and complete, detailed reports of  
each of the experiments will be prepared in 1976.  

Thermal Modelling of Spring Wheat Canopies  

The primary obj ectives of the thermal modelling research"conducted  
during 1975 at.Willston, North Dakota were threefold:. (I) to.measure 
and identify the spectral characteristics of the radiance of crop canopies. 
from 2.7-14.0pm that are relevant to remote sensing applications, (2)- to 
measure the daily transient, temperature .proftles in selected crop'canopies 
and interpret these profiles in terms .of agronomic and environmental 
parameters on a temporal basis-, and (3) to relate the measured spectral  
radiance to canopy temperature profile.  

Using the observations on selected: spring wheat canopies primarily  
in the greenand mature stages of development, the thermal' modelling  
analysis has treated three major topics which are discussed.  

1. Spectral Radiance Characteristics in the Thermal Infrared  

The-spectral radiance, LX, of the test canopy was measured by the  
Exotech 20C spectroradiometer in the thermal infrared spectiral region,  
2.7-14 pm, using observation and calibration procedures, described in  
previous publications,by the LARS/Measurements group. In addition to  
spectral radiance as a function of wavelength, the data set contains.  
all the relevant thermal,. agronomic and environmental parameters that  
are necessary to more fully characterize the canopy.  

The spectral radiance of a typical,mature crop canopy- for the 
wavelength region 2.7 to 14.Opm is shown in Figur 2.3-7. Physical 
interpretation of the observations in this-form is difficult as. only. a 
few gross features can be discerned such as the wavelength at which the 
spectral radiance peaks and atmospheric absorption bands. It should be 
mentioned that the observations are generated in two spectral segments 
since the atmospheric-water absorption effects between 5.5 and.7.0pm 
are so large. 

To identify important physical features of the spectragl.radiance  
spectra, the following analysis was performed. The temperature, TR,  
at which the Planck function, Lb(X,TR), describing the spectral radiance,  
LX, at 4.6pm for the 2-6m region and at 11.21im for the 6-14pm region  
was determined. These matching wavelengths were selected on: the basis  
that atmospheric absorption, target anomalies (the silicarestrahlen  
phenomena for example) or reflected solar irradiance effects-should be  
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Figure 2.3-7. Observed Spectral Radiance of a Typical Mature Wheat 
Canopy (Plot 52, 1627GMT, July 1976). 
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minimal. The difference in the observed canopy spectral radiance, L., 
and the Planck function, Lb ( ,TR), was then shown as a deviation plot 
in Figures 2.3-8 and 2.3-9 were the deviation, DEV; is: 

DEV = L-L( 1TR). 

These deviation curves are amenable to physical interpretation. First,  
note the-deviations are zero at the wavelength match points 4.6 and  
10.5pm in Figures 2.3-8 and 2.3-9, respectively. In Figure 2.3-5, two  
two important effects can be seen; the positive deviation in the 3-4pm  
region indicates the presence of reflected solar irradiation while the  
negative deviations at 4.3pm and beyond 5.Opm can be explained by CO2  
and H20 absorption bands. The deviation plot of Figure 2.3- for the  
spectral region 6-14pm is less simple to interpret. The positive devia-
tions are likely to be atmospheric emission bands while the negative  
deviation is a restrahlen phenomena resulting from, in this case, the  
presence of silica in the soil which may constitute a portion of the  
target.  

From more detailed consideration of these figures using procedures  
not reported in this abbreviated account, the following conclusions can  
be obtained from analysis of the deviation plots: (1) The spectral  
reflectance of the target can be estimated in the 3.5-4.Om region;  
this has been done for bare soil (typically 13%) and for full green  
canopies (typically 3%). Analysis has been performed on selected  
canopies to show that these reflectance values correlate in a rational  
manner with leaf area index, percent ground cover, and biomass per unit  
area and (2) the observed spectral radiance in the 4.6-4.8pm spectral  
region results almost exclusively from the target emission. The conse-
quences of the last two conclusions are very important and allow for the  
reliable determination of the spectral radiance temperature.of the canopy.  
Further discussion on this will be presented in a later section.  

2. Canopy Temperature Profile Measurements  

The second objective of the past year's thermal modelling research  
activity was to measure temperature profiles in selected crop canopies  
and interpret these profiles in terms of agronomic and environmental  
parameters on a temporal basis. The purpose of these measurements was  
to learn in what manner temporal variations of leaf temperature, canopy  
air, and soil temperatures might-be important to the remote sensing  
problem. The thermal radiation emitted by a canopy originates from  
surfaces (leaves, stems, and soil) that are at different temperatures  
and consequently the remotely sensed spectral radiance of the canopy will  
be dependent upon the temperature profile in a very complicated manner.  

Three adjacent canopies (Plots 52, 53, and 54) were selected for  
profile temperature measurements in-addition to detailed radiometric  
and agronomic observations. Using thermistor probes, Yellow Springs  
Instrument Co., Type 705, the temperatures with the canopy at the  
following locations were observed:  

http:temperature.of
http:3.5-4.Om
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Probe # Location 

1 Soil Surface, bead just covered with soil 
2 Surface air temperature, approximately 5cm above the soil 
3 First green leaf 
4 Flag leaf 
5 Air temperature, approximately 10cm, above the canopy 

In some instances subsurface soil temperature at various depths  
were measured but not collected as a matter of routine. The probes  
described in the above table were mounted on a stake assembly which  
permitted easy placement in the canopy with minimum disturbance. In  
order to obtain a meaningful average three such stake assemblies were  
located on the circumference of a 3m diameter circle which bounded the  
radiometric observation target.  

Figure 2.3-10 represents the temperature profile within a typical  
mature canopy (Plot 52, 27 July 1976) as a function of time. The  
probe positioning is as described in the above table; in addition two  
points at 1650GMT and 2225GMT are shown for measurements of spectral  
radiance temperature using the Barnes Model PRT-5 radiation thermometer.  
Interpretation of these observations without consideration of the solar  
irradiance, ground cover, and other canopy characteristics is not very  
meaningful. The purpose in presenting this figure is to illustrate the  
nature of the temperature profile observations that have been made.  

The extent to which such information can be useful in thermal  
modelling studies is shown in Figure 2.3-1 and illustrates the vari-
ability of-temperature between the three adjacent canopies during the  
day. The ordinate, maximum temperature difference, is defined as the  
magnitude of the difference between the highest and lowest temperatures  
measured by similar probes in the three different plots (Plots 52, 53,  
54; 27 July 1975) tested as a function of time of day. The purpose in  
plotting the observations in this manner is to show what temperature  
variations are likely to occur between canopies with differing charac-
teristics; that is, what kind of temperature differences are likely to  
exist at any one time under identical environmental conditions. The  
curve for probe number 1, soil surface temperature, indicates that at  
2030GMT (1530 local time and approximately 90 minutes after solar noon)  
the maximum difference in soil temperature between the three plots  
amounts to 9.40C. For other probe locations the variability between the  
three plots is less in magnitude and shows less temporal variation. The  
exception is the temperature of the first green leaf which shows a very  
marked change in variability during the day.  

These observations are still under analysis and some progress has been  
made in explaining the temperature profile in terms of the agronomic and  
environmental parameters. An extensive data archive has been organized  
that will permit ready access to the temperature profile measurements  
and other measurements made at the same time on these canopies..  



2.3-27  

0 prionc of400 b PAODE 02 

4 6D 0 PRDDC 3440  
PROE-5 . 

VPRT-5  
420j 

400  

" 340 

300' 
2S01 

260 

240 
220 I I [

1500 600 1700 100 9O'0 2000 210 2200 23W00 2400 

Time of Da (CIAT) 

Figure 2.3-10. Temperature Profile in a Typical Mature Wheat Canopy  
(Plot 52, 27 July 1975)  

ORIGINAL PAGE IS 
01! POOP QUALITY 



00 

• L-.A 
0(7) 0(rfl, 

RROD;:';"2 
. 

,,, FJP 

r6 0.0 

. 

:-- .0 02 .. ..... 

TI;-0 . 0:, 

>.."0 ..D:,. 

Figure 2.3-11. Variation df Canopy Temperature Profiles in Adjacent Test Plots 

(Plots 52, 53, and 54; 27 July 1976) 

10 

CO 



2.3-29  

3. Spectral Radiance Temperature Measurements  

The spectral radiance temperature, T (A) of a target is defined ,  
as the temperature of a blackbody having the same spectral radiance as  
the target. Using Wien's approximation to the Planck function, the  
relationship between the target temperature, T, and its spectral radiance  
temperature, Tft(X), is given as  

1 1 + X!nc 
T TR C2  

where the temperatures are in absolute units (K), C2 = 14,388pm.K  
is the Second Radiation Constant, and eA is the spectral emissivity. If  
the spectral bands over which the measurement is made is greater than say,  
10% of the wavelength at the center of the band, then th6 derivation must be  
modified to properly define an effective waielength at which the spectral 
radiance temperature is to be associated.  

In the thermal infrared, the spectral emissivity of most natural  
targets is near unity but it should be quickly pointed out that a small  
variation in the emissivity has a large effect in the difference between  
the target temperature and the spectral radiance temperature as can be  
seen in Table 2.3-4. At the shorter wavelengths where the spectral  
emissivity may be in the 0.95 to 0.97 range for canopies and 0.85 to 0.90  
for bare soils, the difference between radiometrically deduced temperatures,  
T ,and temperature may differ by to 50C. In the longer wavelength region, 
lke near 10im which may approximate the effective wavelength of the  
Barnes Model PRT-5 radiation thermometer, variations in spectral  
emissivity from a value of unity are much less-suspected to be 0.97 to 0.99-
for all types of targets; hence the difference between the temperatures  
so deduced would be quite small and probably less than 20C.  

An objective of the thermal modelling study is to relate the  
spectral radiance temperature-the parameter which is remotely sensed-to  
the temperature profile within the canopy as determined by contact sensors.  
In addition to the canopy emissivity effect discussed in the previous  
paragraph, it is necessary to consider what effect the temperature  
gradient within the canopy has on the remotely sensed spectral radiance  
temperature. This obviously is a complicated radiation transfer problem  
and the intent is to develop some understanding through parametric anal-
ysis much of which still remains to be performed.  

The Figure 2.3- provides a comparison between the spectral radiance  
temperature (Barnes Model PRT-5, 8-13m spectral region) and the canopy  
temperature profile. For the two times of day, 1650 and 2225GMT, the  
location in the canopy which most closely agrees with the spectral  
radiance temperature is that of the air just above the surface of the soil,  
Probe 2. Further analysis and additional temporal observations are  
necessary before this statement can be generalized. Particularly inter-
esting will be to determine whether the most representative temperature  
is that of the soil surface air or the temperature of the air just above'  
the canopy as is currently thought to be most important.  
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Table 2.3-4.  The Difference Between Spectral Radiance Temperature T (X)  
and Temperature, T, as a Function of Spectral Emissiviy  
and Wavelength for Target Temperature of 30° C.  

Spectral TR(X) - T, K or° C 
Emissivity, eX x = l m X=5 m J . = 10pm 

1.G0  0.00 0.00 0.00 

0.99  -0.06 -0.32 -0.64  

0.98  -0.13 -0.64 -1.28  

0.95  -0.33 -1.63 -3.26  

0.90  -0.67 -3.36 -6.71  

0.85  -1.04 -5.21 -10.4  

O_0  
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A comparison of spectral radiance temperatures on the wheat canopies 
is possible by the analysis of spectral radiance observations from the 
Exotech spectroradiometer as shown in Figures 2.3-8 and 9. As discussed 
in the test associated with these figures, it was assumed the spectral 
radiance at 4.6pm and lI.25pm was due only to target emission and hence 
the spectral radiance temperature can be deduced as is reported in 
Table 2.3-5 for adjacent test Plots 52, 53, and 54 on 27 July 1976. Also 
on this same table are the Barnes PRT-5 observations (8-13pm band pass) 
and the spectral radiance temperature derived from appropriate averaging 
of the Exotech spectroradiometric observation over the 8 to014m spectral 
region. It should be noted these two results are within + C agreement 
for this limited set of observations; this is to be expected by virtue of 
the instrument designs and calibration procedures. Further analysis on 
the variation of T (X) as a function of wavelength (including bandwidth), 
canopy characterisfics, and temperature profiles are still in progress 
and it is not appropriate to make generalized conclusions from the 
limited observation sets examined. 

Interception of Sunlight by Wheat Canopies  

A new method utilizing a laser probe simulating sunlight has been  
developed and used to calculate the sites and magnitudes of energy  
interception by crop canopies. Initial results obtained for a spring  
wheat canopy are presented and discussed.  

1. Description of Experiment  

The geometrical characteristics of the wheat canopy in a commercial  
durum wheat field-near the Agriculture Experiment Station were measured  
using an inexpensive laser on July 27, 1975 at Williston, North Dakota  
when the wheat was fully headed. Use of the technique allows the pre-
diction of direct solar power and energy interception as a function of  
(1) leaves, stems, heads, awns, and soil, (2) depth into the canopy, and  
(3) time of day. The technique involves the use of the laser to statis-
tically simmulate sunlight. The laser, mounted on a tripod, is aimed  
at the wheat canopy at a random zenith angle. The height above the  
ground at which the beam strikes an object in the canopy is recorded.  
Also recorded is the name of the object (i.e., leaf, stem, head, awn, or  
soil) and the zenith angle of the beam.  

The accuracy of the estimate of the attenuation of the direct  
solar beam in the canopy is directly related to the number of measurements  
made. Two hundred points were measured in the modelling field. Data  
analysis involves averaging all points in a zenith angle 'window'. If  
there are 25 points in the window, then each laser hit is assigned a  
value of 0.04. One unit of sunlight is assumed to fall on the canopy at  
a zenith angle corresponding to the averaging window. As the beam front  
penetrates the canopy and passes the height of a laser hit, 0.04 is  
subtracted from the beam. Prediction of watts per unit-area intercepted  
by each-canopy component is accomplished by.multiplying the normalized  
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Table 2.3-5.  Spectral Radiance Temperature as a-Eunction of Wavelength  
for Three Adjacent Test Plots (27 July .1975)  

Spectral radiance temperatures., TR(A),° C 

Plots Time 
1 m1 1 2 

(GMT) 2 = 4.6pm A - 11.25im 8-4m X : 8-13pm 

52 1627 33.7 36.8  34.7 34 .5 

53 1625 33.2 34.0  33.1 33.9  

33.5 54 1623 32.7 33.6  33.9  

52 2209 41.5 42.2 41.9 42.0  

53 2211 41.3 4-2.1 40.'8 41.9  

54 2214 42.0 42.7 42.5 42.6  

Notes .1 From Exotech Model 100 Spectroradiometer observations  
2 From Barnes Model PRT-5 observations  
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intensity calculated from the heights of the laser hits by the magni-
tude of the solar flux. The magnitude of the solar flux must be  
measured experimentally.  

2. Results  

The interception of power by components in the canopy varied as a  
function of canopy height and of time during the day. Maximum power was  
intercepted near solar noon. This power was intercepted in the middle  
one-half of the canopy. Early in the morning and late in the afternoon  
all power was intercepted by the top most elements of the canopy. It is  
significant that very little power was intercepted by dead leaves near  
the ground. Photosynthetically active leaves intercepted direct solar  
power only during relatively high sun angles. The presence of the grain  
heads significantly diminished the power reaching photosynthetically  
active leaves which are located below the heads. Prior to heading the  
flag leaves of the canopy would intercept direct solar power throughout  
the day. The magnitude of the power intercepted by heads remained almost  
constant throughout the day.  

Bidirectional Scattering Characteristics of Spring Wheat Canopies  

1. Description of Experiment  

The bidirectional scattering characteristics of a spring wheat  
canopy in the "modelling" field at Williston, North Dakota were measured  
on five dates during the 1975 growing season. On each date the LARS field  
spectroradiometer data acquisition system was used to obtain data  
continuously in wavelength, at eight azimuth and five zenith angles of  
view, and, weather permitting, at time intervals of one to two hours.  
Leaf area index, canopy biomass and other ground observation parameters  
describing the condition of the wheat canopy were measured on each date  
that spectral data were collected.  

Analysis of data obtained on July 20, 1975 has involved display  
of the data graphically. The canopy bidirectional reflectance and two  
other variables were displayed on each graph. Implementation of the  
plotting technique required several hundred individual graphs, each  
graph displaying the data in a unique manner. The multidimensional  
character of the data required the large number of graphs.  

2. Results  

Analysis of the data using graphical techniques permitted the  
following conclusions to be drawn:  

(1) The reflectance at nadir of the wheat canopy in the modelling  
field during the day of 20 July 1975 was not constant. The magnitude of  
reflectance at nadir increases with time during the day at all wavelengths.  
The increase during the day was about 100 percent in the red wavelengths  
and 30 percent in the near infrared.  
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(2) The reflectance of the wheat canopy is .close to that of a  
lambertian reflector for data collected near solar noon in the visible  
region of the spectrum.  

(3) The reflectance in the near infrared region of the spectrum  
is non-lambertian throughout the day.  

(4) The deviation of the reflectance from a lambertian assumption  
is most pronounced at all wavelengths early in the morning and late in  
the evening. For an east-west azimuth angle the ratio .ofthereflec-
tance at 60.degrees zenith angle to the reflectanceiat ndditis,2.6 at  
23:lIGMT.  

(5) Except for two small regions of the spectrum,, the-spectral  
reflectance-as a function of zenith-and azimuth angles shows good  
correlation with the reflectance at nadir.  

The measurements will be- epeated during- thel-9Y6  growingseason 
tto verify the-relationships identified in the first year s data. Certain  

improvements in the experimental procedure including sampling.-at more  
frequent time intervals, more.replication of measurements, and more 
complete characterization of the.physical attributes of the wheat canopy 
will be used during the second year. 
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS  

The activities of LARS in acquiring, processing, archiving, and  
analyzing field measurements data during the past contract year have  
been presented. Results describing the reflective and thermal properties  
of wheat canopies were presented. More extensive reports describing  
the analytical results obtained as well as several aspects of acquiring  
spectral measurements in field environments and quantitativelyevaluating  
their quality will be published early next year.  

A calibrated and fully annotated data containing spectral from  
several altitudes, agronomic, and meteorological measurements were  
obtained for winter wheat in Kansas and spring wheat in North Dakota  
during the past year. The data form one of the most complete remote  
sensing data sets ever acquired and should prove useful for research  
defining future remote sensing systems. Research results from the  
field measurements data are beginning to come forth and many studies  
using the data should be made in the next several years.  

Experience gained during the first year of the project is now  
being applied to the acquisition and processing of data being acquired  
during the 1976 growing season. Procedures and systems developed  
and tested during the past year can be expected to result in smoother  
operation of the project, in improved data quality, and faster turn-
around of data.  

Specific recommendations for the field measurements effort during  
the third and subsequent years include:  

- Acquisition of aircraft multispectral scanner data by a  
system with spectral bands from the entire optical  
portion of the spectrum.  

- Implementation of data quality evaluation and verifica-
tion procedures for all sensor systems.  

- Additional efforts and resources devoted to characteri-
zation of crop and soil conditions at the time of each  
data collection mission.  

- Development of plans for continuation of this type effort 
over new crops and locations. Specifically, the addition 
in 1977 of a test site for corn and soybeans in the Corn 
Belt is recommended. It is important to begin collecting  
data and gaining additional insights into the production  
of these crops prior to the expansion of LACIE to other  
crops.  
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2.4 Thematic Mapper Simulation  

INTRODUCTION  

An important question in remote sensing is "what is the optimum set  
of specifications for a multispectral scanner system?" The correct answer  
depends upon the index of performance selected as well as the class of  
applications for which the sensor system is to be optimized.  

There are several ways to attack this question; one is empirically,  
i.e. using experimental data to simulate various sensor parameter combin-
ations. It is the results of such a study which are to be reported in  
this section.  

The ability to derive information from remotely sensed data gathered  
at a given time rests upon five classes of parametric values. These are:  

1.  The spatial resolution and scanning characteristics  

2.  The spectral sampling and bands used  

3.  The signal to noise characteristics  

4.  The amount of ancillary data available  

5.  The classes to be used, i.e. the particular  
information desired  

It is especially important to note that these factors are inter-
related to one another. Thus, assuming an empirical approach, the  
problem resolves itself to searching a five dimensional parameter space  
relative to the index of performance. It is obvious that this search  
cannot be done in an exhaustive fashion due to the size of a five  
parameter space, i.e., the number of possible combinations of the  
parameters. In this study the search was localized around the proposed  
thematic mapper parameters , a region suggested by the state of the art  
of constructing spaceborne multispectral scanners and the expected cost  
factors involved. Even so, it was necessary to limit the number of  
combinations tested. The scope of this investigation was primarily  
limited to three parameters - spatial resolution, noise level, and  
spectral bands although some variation in others was introduced.  

There were two indices of performance used in this study. One was  
the accuracy achieved on multispectral pixels drawn from the central  
portions of agricultural fields. In this case emphasis is places upon  
the identification portion of the analysis task.  

The second index of performance was the accuracy with which the  
correct areal proportions of each class in the flight line used could be  
estimated; this was done by determining the proportion of pixels assigned  
to each class by the classifier. In this case not only are 'pure" pixels  
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from the central portion of agricultural fields involved, but so are  
mixed or multiclass pixels which overlap the field boundaries.  

The general scheme of the study then was to simulate the desired  
parameter set by linearly combining the original pixels of the airborne  
data (IFOV6 meters) to form simulated pixels of the desired IFOV, then  
to classify this flight line using a machine implemented Gausian maximum  
likelihood pattern classification algorithm, and measure the index of  
performance.  

Participants in the study included groups from NASA/JSC, NASA/ERL,  
GISS, NASA/Goddard and Purdue/LARS. After the participants as a group  
agreed upon the algorithms for producing the simulated data, simulation  
software was implemented at LARS. Simulation data sets were produced at  
the LARS Computation Facility and made available to analysts at JSC, EEL,  
GISS, Goddard and LARS. It was believed that variations resulting in  
analysis procedures and algorithms would enhance the value and credibility  
of the results. Indeed, this was the case as the results of the analysis  
relative to the simulated variables were similar and corroborated each  
other. Reported in this section is the work performed at LARS only.  

Simulation Techniques  

Data Utilized - Both airborne multispectral scanner data and field  
spectrometer data were used in this study. The multispectral scanner  
data was collected by the 24 channel MSDS system2 aboard the NC-130 over  
the Finney County, Kansas, and Williams County, North Dakota, LACIE  
intensive test sites during the 1974-1975 growing season. Seven flight  
lines of the MSDS data were processed to simulate proposed thematic  
mapper spacecraft data (Table 2.4-1). The spectrometer data was collected  
by the NASA/JSC FSS S191H system, NASA/JSC FSAS interferometer system,  
and the Purdue/LARS Exotech 20C system over the Finney and Williams  
Counties intensive test sites and agricultural research farms. The  
spectrometer data also included the data collected over the Purdue  
Agronomy Farm by the Exotech 20C system during the summers of 1972, 1973,  
and 1974. A description of the three spectrometer systems can be found  
in the LACIE Field Measurements Project Plan. The spectrometer data  
were used to study wavelength band selections as well as to calibrate  
the airborne data for purposes of determining the signal-to noise ratio.  

Ground observations including crop types and field maps collected  
by USDA-ASCS personnel and color IR photography collected by the NC130  
aircraft were used to support the multispectral scanner and spectro-
meter overflights. A discussion of the ground observations and  
descriptions of the two intensive test sites can be found in the LACIE  
Field Measurements Project Plan and in section 2.3 of this report. The  
ground observations were found to be fairly complete and very accurate.  
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Table 2.4-1.  MSDS'Data Selected  
for Simulation  

Site  Date Flight Comments  

* Williams County, N.D. 6/22/75 1 Poor crop calendar dat 

Williams County, N.D. 6/22/75 3 Poor crop calendar dat  

Finney County, KS 7/6/75 1 Serious banding  

* Finney County, KS  7/6/75 3 Moderate banding 

* Williams County, N.D. 8/15/75 1 Good set 

Williams County, N.D. 8/15/75 2 Good set  

Williams County, N.D. 8/15/75 3 Good set  

* Those that were analyzed at Purdue/LARS 
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Preparation of Simulated Data - The simulation technique included 
spectral, spatial and radiometric considerations. A detailed discussion 
of spatial simulation algorithms is given in Appendix A. A general 
discussion of the simulation technique is given in this section. 

a) Spectral Bands  

MSDS system spectral bands which best matched proposed Thematic  
Mapper bands were selected. As seen in Table 2.4-2, the bands were  
relatively well matched. A combination of two MSDS bands was required  
to simulate one infrared band. The MSDS .53-.63 micrometer band was  
unavailable, and the .57-.63 micrometer band was substituted for  
simulation of the .52-.60 Thematic Mapper band. This substitution was  
recognized as suboptimal but the best alternative. The .74-.91 micro-
meter band was simulated as a result of speculation that Thematic Mapper  
bands 4 and 5 may be combined. A total of eight bands, therefore, were  
simulated.  

Bands 4 and 5 were combined to form the .74-.91 micrometer band by  
equal weighted averaging after conversion to the reflectance domain. The  
combination of thermal bands was similarly achieved using the radiance  
domain.  

b) Mean Angle Response Adjustment  

A correction algorithm was applied to compensate for the non-uniform  
angular response characteristic due to the relatively wide view angle  
of the MSDS sensor. This effect is usually noted as one side of image  
nadir appearing-brighter than the other side. The primary cause of the  
effect is that the scanner sees illuminated portions of the target at  
certain view angles and the shaded side at other angles. The correction  
made was to normalize the average scene response for each look angle.  
The normalization was made on each flight line independently. The method  
used for angle correction was:  

-compute the average response of each look angle  

*smooth the average to the least square error third order  
polynomial.fit  

*compute the inverse polynomial multiplicative correction  
function required to transform the polynomial curve to  
a constant value  

*apply the correction function to each scan line  

c) Spatial Degradtion  

The spatial degradation procedure assumed a Gaussian total system  
modulation transfer funciton and compensated for aircraft scanner  
geometric distortions of unequal size and spacing of picture elements  
relative to scan look angle. Equations which define the method are given  
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Table 2.4-2. Correspondence of Thematic 
Mapper and MSDS Channels 

Channel Thematic Mapper MSDS 

1 .45 - .52pm .46 - ..50pm, 

2 .5.2 - .60 .5'7 - .63 

3 .6-3 - .69 .64 - .68 

4 .7-4 - .80 .76 - .80 

5 .80 - .91 .. 82 - .87 

6 1.55 -1.75 1.52 -1.73 

7 10.4 - 12..5 10.0 1-1.0+11.0 - 12.0 

8 .74 - .91 .76 - .8.0+.82 - .87 
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in Appendix A. Figure 2.5-1 shows a conceptual illustration of the  
simulated system spatial response. The simulated picture element in  
the scan line direction has a Gaussian point spread function with the  
IFOV specified as the distance between the half amplitude points; the  
Gaussian function is truncated beyond the 10 percent amplitude. In  
the along track direction, the point spread function is square. Using  
this definition of system point spread function, each degraded picture  
element was computed as the weighted average of higher resolution MSDS  
picture elements. Center-to-center spacing of degraded picture elements  
was equal to the width of the IFOV being simulated.  

The aircraft scanner geometric distortion of unequal size and spacing  
of picture elements relative to scan look angle was accounted for. This  
"bow-tie" effect was factored into the computation of the weighting  
coefficients used to compute degraded pixel values.. Since the coefficients  
used to counter the bow-tie effect were different for each simulated  
look angle, new>weighting coefficients were-calculated for each simu-
lated pixel.  

d) Reflectance Scaling  

Calibration of MSDS data was required to allow combinations of  
reflective bands as discussed above and to appropriately scale the data  
according to specified LANDSAT dynamic range parameters, see Table 2.4-31.  
To satisfy these requirements, calibration was achieved by:  

-assuming the scanner black-body calibration source response  
corresponds to zero scene reflectance,  

-assuming the-scanner calibration lamp corresponds to a  
scene reflectance equal to the lamp equivalent reflectance,  

,and using linear interpolation from these two calibration points.  

Lamp equivalent reflectance data was supplied by JSC. It was well  
known that this method is not extremely accurate but it was believed to  
be adequate for purposes of band combination and dynamic range scaling.  

01? GN2 
ioppoQUAryp 
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Table 2.4-3. Thematic Mapper Parameters 

BAND SATURATION NOISE SPATIAL  
(MICROMETERS). SURFACE NEAP  RESOLUTION  

REFLECTANCE NEAT (METERS)  

.42 - .52 20% 005 30 - 40 

.52 - .60 58% .005 30 - 40 

.63 -.69 53% 005 30 - 40 

.74 - .80 75% .005 30 - 40 

.80 - .91 75% .005 30 - 40 
1.55 -1.75 50% .005 30 - 40 

10.4 -12.5 270 - 330K '5K 90 -200  
.74 - .91 75%  .005 30 - 40  
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e) Signal-to-Noise Degradation  

Ideally, the degraded data would have a negligible noise level such  
that the impact of various noise levels on classification accuracy could  
be studied. In this case, however, the input data noise level was  
extremely high and the noise level after spatial degradation was approxi-
mately equal to the level specified for the LANDSAT-D system. To study 
the effect of additional noise, however, specific quantities of noise  
were added.  Noise was added in the form of white Gaussian.random  
numbers with standard deviation scaled to the desired noise equivalent 
reflectance. Additional details on noise considerations and.calibration  
requirements necessitated are given in the section on evaluation of  
simulated data.  

f) Implementation  

The simulation-process was implemented in four computer.processing  
phases. The phases were:  
-selection of spectral bands from the MSDS 24 channel computer 
data tape and reformatting the data into the LARSYS Version.3.1  
data library.  
;scan angle response normalization  
'band combination,spatial degradation,and dynamic range adjustment  
*addition of noise  

Each phase produced separate out-puts designed for analysis and pro-
cessing in subsequent phases. Modularized processing had the advantage of  
providing data for analysis which had been processed in various stages of  
simulation.  Ih addition, the methodreduced processing redundancies.' For  
example, a data set could be processed in phase four several times, each  
time adding a different-level of noise, without the necessity of repeating  
previous processing steps.  

A total of 62 data runs were prepared for analysis.. Four spatial 
resolutions were simulated for-three flights of four dates.  Seven levels  
of noise were added to two flightlines. A list of data sets generated is  
shown in Table 2.4-4.  

Evaluation of the Simulated Data  - Examinations of the 24-channel  
multispectral scanner (MSDS) data revealed the presence of problems which  
resulted in limiting its usefulness. The true impact.of the data problems.  
were not known until simulation data were generated and classification  
results completed. Data quality problems present in the data are banding, 
bit errors, saturation, and inoperative bands.  

Banding is evidenced in the imagery as alternating dark and light 
shading.  The frequency of the banding varied from three to'sixteen scan  
lines per band cycle for the flightlines considered. The banding can be  
seen in all MSDS reflective spectral channels (1-13) and channels 21 and 22  
of the thermal data. Imagery illustrating the banding is shown in Figure 
2.4-2. The banding signal amplitude was 1-15 data counts with larger 
amplitudes noted in spectral bands 1-8.  It has been learned that the  
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Table 2.4-4. Simulation Data Sets Generated for Analysis  

Noise  
Test .Data Flight Simulated Aided  

LARS Run Site Collected Line Resolution* NCAP  

75002730 Williams 6/22/76 3 30 0  
75002740 Williams 6/22/76 3 40 0  
75002750 Williams 6/22/76 3 50 0  
75002760 Williams 6/22/76 3 60 0  

75001730 Williams 8/15/76 1 30 0 
75001740 Williams 8/15/76 1 40 0 
75001750 Williams 8/15/76 1 50 0 
75001760 Williams 8/15/76 1 60 0 

75003730 Finney 7/6/76 3 30 0 
75003740 Finney 7/6/76 3 40 0 
75003750 Finney 7/6/76 3 50 0 
75003760 Finney 7/6/76 3 60 0 

75002430 Williams 6/22/76 1 30 0 
75002440 Williams 6/22/76 1 40 0 
75002450 Williams 6/22/76 1 50 0 
75002460 Williams 6/22/76 1 60 0 

75001930 Williams 8/15/76 3 30 0 
75001940 Williams 8/15/76 3 40 0 
75001950 Williams 8/15/76 3 50 0 
75001960 Williams 8/15/76 3 60 0 

75003830 Finney 7/6/76 1 30 0 
75003840 -Finney 7/6/76 1 40 0 
75003850 Finney 7/6/76 1 50 0 
75003860 Finney 7/6/76 1 60 0 

75001830 'Williams 8/15/76 2 30 0 
75001840 Williams 8/15/76 2 40 0 
75001850 Williams 8/15/76 2 50 0 
75001860 Williams 8/15/76 2 60 0 

75001731 Williams 8/15/76 1 30 .0025, .005, .0075, 
75001737 .01, .015, .02, .03 

75001741 Williams 8/15/76 1 40 .0025, .005, .0075, 
75001747 .01, .015, .02, .03 

75003731 Finney 7/6/76 3 30 .0025, .005, .0075,  
75003737 .01, .015, .02, .03  

75003741 Finney 7/6/76 3 40 .0025, .005, .0075,  
75003747 .01, .015, .02, .03  

*Reflective data only, all thermal data at 120 meterm  

ORIGINAL PAGE IS  
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banding was probably caused by a loose mechanical joint within the detector  
housing and vibration of certain signal cables. The spatial degradation  
process significantly reduced the banding. Imagery illustrating the extent  
of banding noise reduction is shown in Figure 2.4-3.  

System bit errors were noted in all spectral bands. This problem is  
illustrated in Figure 2.4-4. The histogram shows a much higher frequency of  
occurence of odd data counts than even. In addition, various higher order  
bit errors were indicated in various spectral bands. The bit errors tended  
to be masked by the spatial degradation process as illustrated in Figure  
2.4-5; nevertheless, the impact on information content of the data must still  
be present.  

Full scale saturation (data count 255) was noted in several spectral  
bands of several flightlines. Saturation occured not only for roof top  
and highway data, but also for agricultural areas which are of interest for  
analysis purposes. Saturated data points were omitted from all analysis  
since their values do not represent an accurate measure of relative scene  
radiance.  

Sensor spectral bands 4 and 15 were inoperative for all data collection  
missions.  

As discussed in another section, MSDS data were calibrated to reflectances  
using available saturation reflectance data with the assumptions of zero  
electronic offset and no atmospheric effects. This calibration was needed  
for band combination and range adjustments. After initial simulation data  
sets 'were generated and distributed for analysis, a refined calibration pro-
cedure was implemented. (The project time frame did not permit use of the  
refined procedure during the simulation processing.) The primary purpose  
in implementing the refined procedure was to enable an accurate determination  
of signal-to-noise levels and to enable accurate addition of noise for simu-
lation of data with higher noise levels. The procedure followed in this  
refined procedure was as follows.  

Near the time of a low altitude MSDS overflight, reflectivity spectra  
of five canvas calibration gray panels were determined by a truck mounted  
spectroradiometer system referenced to pressed barium sulfate powder. Gray  
panel reflectivities and MSDS response data were related through linear  
regression. The regression equation, transforming low altitude.MSDS data  
to absolute scene reflectivity, was then used to compute mean reflectivities  
of agricultural fields within the low altitude flightline, Being clearly  
distinguishable in the high altitude MSDS data (actual panels were not),  
these large fields were then used as calibration panels were in the low  
altitude case. Field reflectivities were related to MSDS high altitude  
relative response data through linear regression yielding a linear function  
which could then be used to transform high altitude relative data to  
(absolute) reflectance.  
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errors. Figure 2.4-4 Histogram illustrating digitization bit  
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.Figure 2.4-5 Histogram illustrating digitization bit error masked by  
the spatial degradation processing.  
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A least square error regression analysis was used which yielded the  
coefficients to the equation  

y = A + Bx  

1or purposes of noise level computation, only the B term is needed.  
The noise level N is then  

N = Ba  

where B is the reflectance transform term from the regression analysis  
and the standard deviation of data values when scanning a constant  
target. Sigma was derived from the sixteen samples per scan line  
collected as the scanner low black body calibration source was viewed.  
The sixteen samples per scan line of calibration data were treated as  
an image and spectrally degraded in the same way as the ground scene  
data producing one calibration sample per simulated scan line. The  
standard deviation of the simulated calibration samples multiplied by  
B is the measure of noise used. Table 2.4-5 shows noise levels derived  
in this fashion. In addition, the B term was used to determine the  
magnitude of random numbers required in order to add a specified level  
of noise.to the data. The standard deviation, a, of the random numbers  
required to add a NEAp of Na is  

Na 
B  

And finally, to test the functioning of the scan angle response  
normalization algorithm, the 30 meter data from flight line 1, ND,  
Aug. 15, 1975, was analyzed with a procedure intended to find if any  
effects of sun or scanner angle could be seen in the classification.  
The flight line was divided lengthwise into thirds and training fields  
were taken from each third. The three training sets were compared in  
the SEPARABILITY processor and no apparent differences due to location  
across the flightline could be seen. The flight line was also classified  
with the combined training sets and again no differences associated  
with training set locations were found in the classification.  

Analysis Procedures Used  

Each analyst was allowed some freedom in the training set selection  
but the procedures used did not differ greatly. Each analyst selected  
areas from-which training fields were taken. Two analysts elected to  
divide the flightline into one mile wide strips across the full width  
and train on alternating strips. The other individual trained on  
alternating one mile sections. In each case, then, training sets were  
taken from one half of the area and were distributed systematically over  
the entire flightline. These candidate training areas were.clustered  
primarily for image enhancement of the field boundaries so that the  
training fields could be more easily selected. There was, however, an  

http:noise.to


2.4-16  

-Table 2.4-5. Noise Levels of Simulation Data Before Adding Noise  

WILLIAMS COUNTY FINNEY COUNTY 
AUGUST 15, 1975 JULY 6,1975 

FLIGHT 1 FLIGHT 3 

NEAP NEAP NEAP NEAP 
WAVELENGTH 30 METER 40 METER 30 METER 40 METER 

BAND RESOLUTION RESOLUTION RESOLUTION RESOLUTION 

.46 - ,50 ,001 .001 .003 .002 

.57 - .63 .002 .002 3009 ,005 

.64 - ,68 .006 .005 .017 .010 

.76 - .80 .008 .008 .022 .012 

.82 - .87 .006 .005 .004 .003 
1,52 - 1.73 .003 .003 .023 .013 
,76 - .87 .-04 .004 .009 .005 



2.4-17  

additional effect from clustering. This was the definition of spectral  
subclasses within fields and when subclasses were found the analyst  
could adjust the training sets to sample them.  

Color infrared photographic mosaic prints were made from photo-
graphic data collected concurrently with the scanner data. Informational  
class information provided by ground observations was transfered to  
clear plastic overlays on the mosiac print. The analyst could then  
easily locate the corresponding fields in his cluster maps and assign  
the field coordinates to the informational classes.  

Statistics were calculated for each training area and compared  
using the SEPARABILITY processor. Similar classes were combined, where  
indicated, and the data set was used to classify the flightline. Train-
ing areas were included in the test fields but actual field boundaries  
did not necessarily correspond between the training and test fields  
since the test fields had been pre-selected for the entire flightline.  

The entire training set selection procedure was repeated for each  
resolution size so that any effects on training set selection which  
might be caused by data point resolution size would be included in the  
analysis results. An example,is the increasing difficulty and eventual  
impossibility of selecting samples from small, or narrow, fields as the  
resolution size increases.  

The two indices of performance previously mentioned were each  
applied in two ways. Classification (identification) accuracy was  
evaluated using both training and test sample performance while pro-
portion estimation (identification and mensuration) was carried out  
over the flightline as a whole and as an average of portions of the  
flightline. Further details on each of these is as follows.  

The training performance is the overall classification accuracy  
(number of training pixels correctly classified divided by the total  
number of training pixels) of the pixels used to calculate the indivi-
dual class statistics. The test performance is the overall classifica- 

The test fields were selected tion accuracy of the test field pixels.  
in the original six meter data by choosing the largest rectangular block  
of pixels that would fit within the agricultural field so that no  
boundary pixels were included. The test field boundaries were then  
found in the degraded spatial resolution such that no "super" pixels  
(degraded spatial resolutions) containing boundaries were included.  
Some of the original test fields were discarded in this process because  
they became too small, i.e. there were no pure field center "super"  
pixels.  

The RMS error of informational class proportion estimates for the  
flightline was found by calculating the percent of the flightline  
classified as a particular class and comparing it with the ASCS ground  
collected esfimate using equation (I).  

ORIGINAL PAGE IS 
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N 

RMS Error = 2 1 

where N = number of informational classes 

Ci = percent classified as informational class i  

Ct. percent of class i estimated from ASCS ground 
1 collected data 

The fourth criterion stated above was found using equation (1)  
above on a section basis (approximately one square mile) and finding the  
average RMS error of all the sections in the flightline. Each flight-
line analyzed included a two by six mile area; so there were twelve  
sections in each flightline. The informational classes used for the  
three flightlines are given in Table 2.4-6.  

LANDSAT 2 data for two of the flightlines were also analyzed, but  

test fields were not selected for the LANDSAT data.  

Results  

Spatial Resolution Parameter - The results from classification for  
the various IFOV's simulated indicate no significant trend in the train-
ing performance across the four resolutions (Figure 2.4-6 and Table  
2.4-6). The training performances were all hig% above 93%. The most  
change occurred-in the 6/22 flightline which was probably due to the  
difficulty caused by the poor crop calendar date mentioned above.  

The test performance results, however, indicate a general upward  
trend as the IFOV increases from 30 meters to 60 meters for two of the  
flightlines (see Figure 2.4-7 and Table 2.4-6). The third flightline  
shows a downward trend which again is probably caused by the difficulty  
due to the stage of growth of the crops. The upward trend in the test  
performance of the two flightlines is presumed to be caused by the better  
signal to noise ratio in the larger instantaneous field of view (IFOV)  
data. A 60 meter pixel is simulated by averaging approximately 100 six  
meter pixels as compared to approximately 25 for a 30 meter pixel.  

The number of test fields varied in inverse relation to the IFOV,  
since as the IFOV increased, the probability that some test fields  
would not contain any pure pixels increased. To determine if this  
situation rather than improved signal to noise ratio might have caused  
the upward trend in the classification performance for larger IFOV's  
a common set of test fields were selected to test the performance of  
the classifications. The test performance increased slightly, 0 to .7%,  
however, the trend was the same.  
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Table 2.4-6. Informational Classes Used in the Analysis  

Williams County, N. Dakota Finney County, Kansas  

6/22/75 8/15/75 7/6/75  

Bare Soil Harvested Wheat Harvested Wheat  

Grasses/Pasture Unharvested Wheat Corn  

Small Grain Grasses/Pasture Grain Sorghum  

Fallow Grasses/Pasture  

Other (corn-eats) Fallow  
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The decreased percentage of field center pixels as the IFOV  
increases can be noted from the percent of the flightlines used for  
test (see Table 2.4-7). For each of the three data sets the percentage  
of field center pixels used for testing dropped an average of 10 percent  
from 30 to 60 meters.  

Table 2.4-7 also indicates that a significantly higher proportion  
of the Kansas flightline was used for testing than the North Dakota  
flightline. This is due to the larger field size in Kansas (see Table  
2.4-8). The differences between the 6/22 date and 8/15 date over the  
North Dakota flightline are due to the exclusions of anomolies (bare  
spots) in the centers of fields which were present in the 8/15 data and  
not in 6/22 data. The rectangular test fields were reduced so that the  
bare spots would not be included in the test performance.  

The RMS error of the proportion estimates for the flightline and  
the average of twelve sections (see Table 2.4-6 and Figures 2.4-8 and  
2.4-9) indicate that the least error is obtained using a 30 meter spatial  
resolution. The RMS errors increased as the IFOV increased from 30  
meters to 40 meters to 50 meters and then leveled off or dropped slightly  
as the spatial resolution increased from 50 meters to 60 meters. The  
two RMS errors increased again for the Landsat 2 data. The Landsat 1  
and 2 data have an IFOV of approximately 90 meters if the definition of  
spatial resolution being applied for the Thematic Mapper is used; the  
spatial resolution of Landsat 1 and 2 more commonly known as 80 meters.  

The reduced error in the proportion estimates as the IFOV is reduced  
is due to the increased percentage of pure field center pixels to  
boundary pixels. The test performance criterion was based only on the  
pure field center pixels. Many errors occur in delineating boundary  
pixels because very often they aren't similar to either of the classes  
that they represent. For example, a pixel including both bare soil and  
wheat may appear similar to grass.  

The two criteria using RMS errors include the boundary errors,  
however, it should be noted that they aren't a direct measure of boundary  
errors. It is possible for the boundary errors to cancel each other out  
over a given area so that the proportions estimates obtained from the  
classifications are more nearly correct. 'This is the reason that the  
PMS error in the proportion estimates for the entire flight are smaller  
than the average ENS errors of the twelve sections in the flightlines  
for a given resolution. The RMS errors, however, are the better measures  
in comparing the differences of spatial resolutions because these  
criteria are based on all pixels in the flightline. Better area  
estimates are possible with the smaller of the five IFOV's.  

An analysis of variance was run on the RMS errors for the four  
resolutions using the RMS errors for the twelve sections in each of the  
three flightlines to determine if the differences were significant. A  
partially-nested design with equal cell sizes from the BMD Biomedical  
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Table'2.4-7. Percentage of Test Sites-Used for Training and:Test'  

North Dakota-- 6/22 

Performiane Percentage of Test Site for Given Resolution (m) 

Criteria_ 30 40 50 60, 

Train 12 15 17 16 

Test 38 35 31 28, 

"Kansas 7/6  

Train 25 35 36 37  

Test 55 50 46 42  

North Dakota - 8/15 

Train 19 21 20 2-1  

Test 27 24 23' 19  

-QU.  
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Table 2.4-8. Characteristics of the Agricultural Fields by Flightlines  

Field Size  

Location Date Flightline No. Fields Ave. Field Size (acres) Range (acres)  

N. Dakota 6/22/75 #1 250 29.3 1-480  

Kansas 7/6/75 #3 187 39.3 1-161  

N. Dakota 8/15/75 #1 250 29.3 1-480  

Table 2.4-9. Analysis of Variance Results for Spatial Resolution  

Source Sum of Squares Deg. of Freedom Mean Square  

I - resolution 2.16 3 .72  

J - flightline 8.89 2 4.45  

K(J) - sections 32.38 33 .98  

IJ 1.02 6 " .17  

IK(J) 15.24 99 .15  

F value fI/IK(J)) - 4.67 F.95(3,99) 4 276  
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Computer Programs was used (BMD08U)3 . The-differences ini the RMS errors  
for the four resolutions were significant at the .05 significance level  
(see Table 2.4-9).  

Noise.Level Parameter - The analysis technique for the.noise level  
parameter included using the training fields selected in the,no noise  
added case and re-estimating the multivariate Gaussian statistics in.  
each of the seven noise-added data sets for a particularIFOV and flight-
line. Each of the noise added data sets were then classifiedusing  
simulated Thematic Mapper channels 2, 3., 4, 5, 6, and 7. The-evaluation  
criteria-of the noise level.parameter include the overall-training-
performance and the overall test performance. SeeiFigures 2.4-10 thru 
2.4-12 and Table 2.4-10.  

To actually simulate different noise levels in-data, from.satellites,  
the variable of analyst's determination,of field boundaries might have  
been included. This would,have necessitated the time .consuming routine  
of the selection of training areas from each noise added data.set ,  
independently from the other sets. Tests were runwhich illustrated  
that the-data clustered nearly the same for the noise.levels of .0025  
to .015 NEAP added. The field boundaries, however, were difficult to  
distinguish in the cluster maps for the noise levels of .02 and .03 NEAP  
added levels. In light of these results the performances found for the  
.02 and .03 NEAP noise added levels may be optimistic, since the field  
boundary delineation difficulty is not included.  

The original plans were to simulate the .005 NEAP'noise,.level  
planned for the Thematic Mapper-for all channels (also .01 NEAP for  
channel 6) together with .5, 1.3, 1.6, 2 and 3 times that-noise level.  
The noise level present in the original MSDS data, however, was too.  
high for the original plans. After the averaging to simulate .30 to-60  
meters,,the noise level for the channels were of the.same magnitude as  
planned for the Thematic Mapper - the,0 added noise case. To simulate  
higher levels .0025, .005, .0075, .01, .015, .02, and .03 NEAP (xlOO,  
for NEAT) noise levels were added to the 0 added set. The calibration  
for the noise addition was obtained using the grey panels-at the cali-
bration location in the intensive test site and the truckmounted  
spectrome ric data is previously described.  

In each of the four data.sets analyzed-across all eight noise levels,  
once the level of noise added became greater than the noise already in  
the data,. the train and test performances fell off significantly. It  
is difficult, however, to draw any conclusions relative to the Thematic  
Mapper since the noise levels were not constant across all bands.  

Spectral Band Parameter - The first analysis technique for the  
wavelength band set as the parameter consisted of selecting: training  
areas to represent spectral classes from cluster maps obtainedusing  
simulated Thematic Mapper channels - 2, 3, 4, 5, 6 and 7 - the same  
technique as used for the spatial resolution parameter. The simulated  



Noise Parameter 
Overall Train Performance 

Channels: 2,3,4,5,6,7 
Resolution: 30/120 meters 

Noise: for 0 added .002-.008 NEAP, .09 NEAT 8/15-1 
.004-.023 NEAP, NEAT 9/6-3 

100 

0 
u N '-

0 
144 

"N 

p 0"4 
14 

i 80 

0 .01 
Figure 2.4-10 

.02 .03 
Noise added (NEAP o, NEAT) 

(X .lO0)* co 



Noise Parameter 
Overall Test Performance 
Channels: 2,3,4,5,6,7 

Resolution: 30/120 meters 
Noise: for 0 added .002-.008 NEAP, 

.004-.023 NEAP, 
.09 NEAT 

NEAT 
8/15-1 
7/6-3 

100 

4j 

C)p 
0 

0 90 

00 9 
UN 

0 .01 .02 .03 (x 00)*  

Figure 2.4-11 Noise Added (NEAP or *NEAT)  



Noise Parameter 
Overall Train and Test Performance 

Per Point Classifier 
Channels: 2,3,4,5,6,7, 

Resolution: 40/120 meters 

100 

- 8/15-1 

U 0 7/6-3 

0 

S 90 Test N. 

2 'N K Train 

80 

0 .01 .02 .03 (x 100)*  

Figure 2.4-12 Noise Added (NEAP or *NEAT)  



-2'.4-31  

Table 2.4-10  

Results of Noise Level Parameter Study  

Spatial Resolution - 30/120 meters  

Overall train performance (per cent correct)  

Noise level •added to original data (NBAP or *NEAT)  

Site - Date  

0 .0025 .0050 .0075 .-010 .015 .020 .030 

Kansas - 7/6 98.8 98-.5 98.2 97.2 96.0 93.6 '89.7 84.6 

N. Dakota - 8/15 97.5 97.4 96.7 95.6 94. 5 91.9 89.6 :82.5 

Overall test performance (per cent correct) 

Kansas - 7/6 88.8 88.5 87.8 86.6 85.7 83.7 80.9 76.7 

N. Dakota - 8/15 90.7 90.8 9.0.7 90.1 89.5 :87.3 84.5 79.q  

Spatial Resolution - 40/120 meters 

Overall train performance (per cent correct) 

Kansas - 7/8 97-.7 97.0 95.6 94.5 -92.5 88.9 84.0 77.6 

N. Dakota - 8/15 97.3 95.9 98.0 94.5 93.7 90.8 88.3 81.9 

Overall test performance (per,cent correct) 

Kansas - 7/6 - 92.1 91.8 91.0 90.4 88.8 85-.9 82.7 77.2 

N. Dakota - 8/15 89.6 89.3 88.5 86.5 87.5 84.1 82.3 77.7 

NEAT is 100 times value given.  
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30 meter North Dakota - 8/15 and Kansas - 7/6 flightlines were then  
classified using four different feature sets. The results are given  
in Table 2.4-11 and Figures 2.4-13 and 2.4-14.  

The four feature sets selected resulted from discussions at NASA/JSC  
concerning possible ways to reduce the number of proposed channels to  
six and attempts to grossly simulate the present Landsat I and 2 scanners.  
Channels 1, 2, 3, 4, 5, and 7 represent the originally proposed  
Thematic Mapper channels . Channels subsets 2, 3, 4, 5, 6 and 7 and  
1, 2, 3, 6, 7 and 8 represent frequently discussed combinations of six  
channels. Channel 8 is the combination of channels 4 and 5. Feature  
set 2, 3, 4 and 5 grossly approximately the same spectral range as the  
present Landsat 1 and 2 scanners cover.  

The results indicate that slightly higher performances are possible  
for these data sets when Thematic Mapper channel 1 is included. The  
results also indicate little or no change in performance if Thematic  
Mapper channels 4 and 5 are combined into one channel. The differences  
are very small, however. An analysis of variance has not yet been run  
to determine if'the differences were significant. It is possible that  
the previously described unusual noise in the MSDS data is acting to  
minimize any significant differences due to spectral band changes.  

A second analysis technique relative,to spectral band selection is  
to study the correlation of the proposed Thematic Mapper (T.M.) channels.  
This Was done for the agricultural crops in the intensive test sites and  
at the Purdue Agronomy Farm, sampling the growing season using spectro-
meter data. The correlation of the proposed Thematic Mapper band .52-
.60m and the MSDS substituted band .57-.631m was also studied. Concern  
had been raised that the .57-.63pm channel of the MSDS data did not  
represent the .52-.60pm Thematic Mapper channel well. Also included in  
the correlation study were the Skylab S192 scanner bands which cover the  
range between 1.0 and 1.3pm which the proposed Thematic Mapper does not  
at present include. The cross correlation tables thus derived are shown-
in Tables 2.4-12 thru 2.4-17. Specifications for the data sets used  
are given in the Table captions.  

The correlation of T.M. band .52-.60m and MSDS band .57-.63pm for  
the agricultural crops given in the tables ranged between .93 and .99.  
This tends to indicate that the use of the MSDS band .57-.63pm can  
represent the T.M. band reasonably well, even though the MSDS band  
includes part of the slope between the green peak reflectance and the  
chlorophyll absorption band in the red.  

Concern has also been raised that T.M. bands .74-.80pm and .80-.911im  
are highly correlated or more strongly stated - entirely redundant.  
The results of the correlation study support other studies showing that  
the channels are highly correlated. The correlation of the two channels  
ranged between .981 and .998. The plot.shown in Figure 2.4-15 illustrates  
the high degree of correlation in the simulated channels using the MSDS  
data for the entire 8/15 North Dakota flightline.  
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Table 2.4-11  

Results of Classifications Obtained for the Spectral Band  

Parameter Using Simulated 30 Meter Data.  

Ov'arl Train Performance (per cent correct)  

Site - Date Feature Set (Channels)  

________243~45.,,I..l.2,,45~67.  1,2,3,6,,7,,B 2,3,4,5 

Kansas - 7/6 98.8 99.3 99.0- 90.5  

N. Dakota - 8/15 97.5 98.1 97.9 91.4  

Overall Test Performance-(per cent correct)  

Kansas - 7/6 88.8 88.9 88.2- 81.3  

N. Dakota - 8/15 90.7 91.2 91.4 86.8  

RMS Error of Informational Class Proportion  

Estimates of Flightline (per cent).  

Kansas - 7/6 2.1 2.4 2.2. 3.4  

N. Dakota - 8/15- 1.4 1.0 0.9 3.0  

Average RMS Error of Informational Class Proportion  

Estimates of Twelve Sections (per cent)  

Kansas - 7/6 4.5 4.5 4.4 5.7  

N. Dakota - 8/15 4.7 4.4 4.2 5.6  
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Table 2.4-12  

Correlation of Selected Wavelength Bands Using Spectrometer Data  

Location: Purdue University Agronomy Farm, West Lafayette, Indiana 
Instrument: Exotech 20C 
Dates; July 6 - August 29, 1972; July 6 - October 5, 1973; 

July 16 - August 15, 1974 

Crop No. Observations  

Corn 353  
Soybeans 105  
Bare Soil 66  

CORRELATION MATRIX  

SPECTRAL 0.52 0.57 0.63 0.74 0.80 0.98- 1.09 1.20 1.55 
BAND 1.60 0.63 0.69 0.80 0.91 1.08 1.19 1.30 1.75 

0.52 
0.60 1.000 

0.57 
0.63 0.993 1.000 

0.63 
0.69 0.963 0.987 1.000 

0.74 
0.80 -0.020 -0.064 -0.120 1.000 

0.80 
0.91 -0.038 -0.080 -0.136 0.981 1.000 

0.98 
1.08 0.015 -0.022 -0.069 0.958 0.941 1.000 

1.09 
1.19 0.040 0.010 -0.026 0.923 0.904 0.976 1.000 

1.20 
1.30 0.092 0.084 0.063 0.848 0.841 0.904 0.936 1.000 

1.55 
1.75 0.252 0.301 0.348 0.292 0.481 0.423 -0.511 0.719 1.000 

OIGINALPAGE . 
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Table 2.4-13  

Correlation of Selected Wavelength Bands Using Spectiometer Data  

Location: Agricultural Research Farm, Garden City, Kansas  
Instrument: Exotech 20C  
Dates: October 18 - November 5, 1974  

Crop No. Obse[yations crop No. Obsgai6ns  

Wheat 45 Soybeans 6 
Grain Sorghum 26 Alfalfa 5 
Sugar Beets 14 Barley 3 
Bare Soil 3 Rye 3 
Corn 9 

CORRELATION MATRIX  

SPECTRAL 0.52 0.57 0.63 0.74 0.80 0.98 1.09 1.20 1.55 
BAND 0.60 0.63 0.69 0.80 0.91 1.08 1.19 1.30 1.75 

0.52 
0.60 1.000 

0.57 
0.63 0.947 1.000 

0.63 
0.69 0.807 0.950 1.000 

0.74 
0.80 0.017 -0.182 -0.350 1.000 

0.80 
0.91 -0.000 -0.177 -0.319 0.990 1.000 

0.98 
1.08 0.029 -0.096 -0.194 0.936 0.97-3 1.000 

1.09 
1.19 0.115 0.023 -0.055 0.871 0.920 0.98-2 1.000 

1.20 
1.30 0.311 0.304 0.276 0.641 0.704 0.833 0.918 1.00 

1.55 
1.75 0.567 0.753 0.841 -0.421 -0.392 0.233 -0.061 0.328 1.000 
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Table 2.4-14 

Correlation of Selected Wavelength Bands Using Spectrometer Data 

Location: Intensive Test Site, Pinney County, Kansas 
Instrument: FSS/S191H 
Date: November 5, 1974 

Crop 

Wheat 
Alfalfa 
Corn 

No. Observations 

1073 
76 

248 

Crop No. Observations 

Pasture 10 
Grain Sorghum 102 
Fallow 152 

CORRELATION MATRIX 

SPECTRAL 
BAND 

0.45 
0.52 

0.52 
0.60 

0.57 
0.63 

0.63 
0.69 

0.74 
0.80 

0.80 
0.91 

0.98 
1.08 

1.09 
1.19 

1.20 
1.30 

1.55 
1.75 

0.45 
0.52 1.000 

0.52 
0.60 0.965 1.000 

0.57 
0.63 0.956 0.984 1.000 

0.63 
0.69 0.909 0.946 0.985 1.000 

0.74 
0.80 -0.028 0.155 0.051 0.041 1.000 

0.80 
0.91 -0.078 0.106 0.011 0.014 0.994 1.000 

0.98 
1.08 -0.019 0.166 0.091 0.113 0.962 0.977 1.000 

1.09 
1.19 -0.014 0.142 0.065 0.093 0.920 0.934 0.958 1.000 

1.20 
1.30 0.074 0.209 0.147 0.184 0.840 0.854 0.905 0.949 1.000 

1.55 
1.75 0.782 0.816 0.851 0.878 0.075 0.065 0.171 0.136 0.255 1.000 

-p)O01QUAl ,  
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Table 2.4-15  

Correlation of Selected Wavelength Bands'Using Spectrometer Data  

Location: Agriculture Research Farm, Williston, North Dakota  
Instrument: Exotech 200  
Dates: June 2 - July 9, 1975  

Crop No.- Observations Crop No. Observations  

Oats 4 Fallow 2  
Barley 5 Grass 3  
Purum 4 Wheat 55  

CORRELATION MATRIX  

SPECTRAL 0.52 0.57 0.,63 0.74 0.80 0.98 1.09 1.20 1.55 
BAND 0.60 0.63 0.69 0.80 0.91 1.08 1.19 1.30 1.75 

0.52 
0.60 1.1000 

0.57 
0.63 0.969 1.000 

0.63 
0'69 0.929 0.985 1.000 

0.74 
0.80 -0.707 -0.786 -0.809 1.000 

0.80 
0.91 -0.706 -0.785 -0.804 0.998 1.000 

0.98 
1.08 -0.703 -0.777 -0.799 0.998 0.997 1.000 

1.09 
1.19 -0.655 -0.734 "0.742 0.982 0.988 0.985 1.000 

1.20 
1.30 -0.635 -0.705 -0.723 0.977 0.977 0.985 0;984 1.000 

1.55 
1.75 '0.738 0.817 0.849 -0.670 -0.661 -0.639 -0.564 -0.511 1.000 
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Table 2.4.16  

Correlation of Selected Wavelength Bands Using Spectrometer Data  

Location: Agricultural Research Farm, Garden City, Kansas 
Instrument: FSAS/Interferometer 
Dates: October 19 - November 25, 1974; October 1, 1975 

Crop' No. Observations crop No. Observations  

Wheat 22 Soybeans 3  
Wheat Stubble 1 Alfalfa 3  
Grain Sorghum 8 Surgar Beets 30  
Corn 4 Grass 1  

CORRELATION MATRIX  

SPECTRAL 0.45 0.52 0.57 0.63 0.74 0.80 0.98 1.09 1.20 1.55 
BAND 0.52 0.60 0.63 0.69 0.80 0.91 1.08 1.19 1.30 1.75 

0.45 
0.52 1.000 

0.52 
0.60 0.937 1.000 

0.57 
0.63 0.939 0.974 1.000 

0.63 
0.69 0.912 0;925 0.985 1.000 

0.74 
0.80 -0.708 -0.596 -0.727 -0.79 2 1.000 

0.80 
0.91 -0.710 -0.594 -0.717 -0.775 0.997 1.000 

0.98 
1.08 -0.668 -0.537 -0.652 -0.707 0.975 0.988 1.000 

1.09 
1.19 -0.596 -0.437 -0.556 -0.616 0.934 .0.953 0.984 1.000 

1.20 
1.30 -0.301 -0.109 -0.218 -0.281 0.713 0.748 0.833 0.906 1.000 

1.55 
1.75 0.866 0.877 0.932 0.942 -0.806 -0.788 -0.705 -0.597 -0.212 1.000 
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Table,2.4-17  

Correlation of Selected Wavelength Bands Using Spectrometer Data  

Location: Agricultural.Research Farm, Garden City, Kansas  
Instrument: Exotech 20C  
Dates: October 18 - November 5, 1974  

crop No. Observations crop No. Observations  

Wheat 33 Corn 6  
Grain Sorghum 17 Soybeans 3  
Sugar Beets 11 Alfalfa 1  
Bare Soil 3  

CORRELATION MATRIX  

SPECTRAL 0.52 0.57 0.63 0.74 0.80 0.98 1.09 1.20 1.55 10.40 
BAND 0.60 0.63 0.69 0.80 0.91 1.08 1.19 1.30 1.75 12.50 

0.52 
0.60 1.000 

0.57 
0.63 0.928 "1.000 

0.63 
0.69 0.753 0.940 1.000 

0.74 
0.80 -0.137 -0.371 -0.533 1.000 

0.80 
0.91 -0.190 -0.392 -0.515 0.985 1.000 

0.98 
1.08 -0.185 -0.314 -0.374 0.907 -0.962 1.009 

1.09 
1.19 -0.097 -0.177 -0.207 0.823 0.895 0.978 1.000 

1.20 
1.30 0.156 0.197 0.232 0.504 0.596 0.769 0.881 1.000 

1.55 
1.75 0.575 0.807 0.907 -0.629 -0.610 -0.456 -0.276 0.196 1.000 

10.40 
12.50 0.078 0.207 0.284 -0.207 -0.199 -0.144 -0.082 0.052 0.312 1.000 
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Another item of concern about the proposed Thematic Mapper bands  
is the lack of any bands in the 1.0-1.3pm range. Information in this  
range may not be available in the other bands. The results for the  
observations analysed support the above concern. The channels in the  
1.0-1.3pm range were correlated the most with Thematic Mapper channels  
4 and 5. However, the correlation of the 1.09-1.19im band and Thematic  
Mapper bands 4 and 5 ranges between .87 and .99. More significantly  
the correlation of the 1.2-1.3pm band and Thematic Mapper channels 4  
and 5 ranges between .50 and .98. The results suggest that useful  
information may be available in the 1.0-1.3pm range.  

In general, Tables 2.4-12 thru 2.4-17 indicate that'Thematic Mapper  
channel 6, the middle IR channel, and Thematic Mapper channel 7, the  
thermal channel, arenot very correlated.with any of theother Thematic  
Mapper channels. The visible channels tend to be correlated and  
Thematic Mapper channels 4 and 5 are highly correlated. There may be  
good reasons to move one of the .74-.80 im or .80-.91m'bands into the  
1.0-1.3m range.  

Classifier Parameter - Two different classifiers were compared 
- the standard maximum likelihood pixel classifier.-and a spectral-spatial 
classifier ECHO4 . The simulated data over the North Dakota 8/15 flight-
line and the Kansas 7/6 flightline-were used in the analysis. The  
training statistics for both classifiers were identical and were~obtained  
as described in the spatial resolution parameter ,discussion.  

The classifiers were compared across the four simulated spatial  
resolutions.for the North Dakota flightline and across four.noise levels  
for the Kansas-flightline. The four criteria as described before were  
used to evaluate the classifiers across the spatial resolutions. The  
train and test performances were used across the noise levels.- The  
results are illustrated in Figures 2.4-16 thru 2.4-19.  

There was a slight but consistant increase in the training and test  
performances for the ECHO classifier over the per point classifier at  
the smaller IFOV's (Figure 2.4-16). This is consistent with thetheory  
behind the ECHO classifier. Better classification accuracy should be  
obtainable as the number of pixels per object (field) increases. The  
differences between the classifiers are so small, however, :that they  
may not be significant for this particular case.  

A very noticeable difference was observed,-however, when comparing  
the classifiers across the noise levels (Figures 2.4-18 and 2.4-19).  
The spatial nature of the ECHO classifier was able to provide enough  
information to help compensate for the added noise in the data. The  
difference between the two classifiers became greater as the noise  
level increased.  

http:1.0-1.3m
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Classifier Parameter 
FL #3 Kansas 7/6 

Overall Train and Test Performance 
Channels: 2,3,4,5,6,7 

Resolution: 30/120 meters 
Noise for 0 added set .004-.023 NEAP, NEAT 

100 -X 
Per Point 

- 0 Echo 

N\ 

N 

90 .x------. 

Nx,N NTrain 

Test 

80 N 

0 .01 .02 .03 (x 100)*  

Figure 2.4-18 Noise Added (NEAP or *NEAT)  



Classifier Parameter 
FL #3 Kansas 7/6 

Overall Train and Test Performance 
Channels: 2,3,4,5,6,7 

Resolution: 40/120 meters 

100 

'Per Point 

0 Echo 

o \ Train 

(U 
90 \ Test \ 

00 
4Jx 

' 80 
0 

0 .0 

N0.2 

.0 

\\" 

.0 x0) 



2.4-48  

The results indicate that as spectral-spatial classifier is-an  
improvement over the per point classifier. More research needs to be  
done with the ECHO classifier, however, to determine the affects of the  
many parameters that can be changed in the ECHO classifier. It is  
possible that the optimum classifications using the ECHO classifier was  
not obtained because of the lack of knowledge concerning the ECHO para-
meters.  
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SUMMARY AND CONCLUSIONS  

In the introduction, the five sets of parameters which influence  
the ability to extract information from multispectral data were listed  
and it was pointed out that the problem of properly-selecting scanner  
parameter values amounts to searching the five dimensional parameter  
space thus defined relative to the desired index performance. This  
study was structured, within the constraints imposed 'by the data sets  
available, to search a portion of this five dimensional space. The  
effect of at least some variation in all but the fourth parameter class  
was tested. Significant features of the study were as"follows:  

1.  The index of performance used ehcompassed both identification  

accuracy and mensuration accuracy.  

2.  Data from two times of the year was used.  

3.  Data from two quite different parts of the U.S'. Wheat Belt  
,was used. Even so only a small part of world agriculture  
and world vegetation was sampled.  

4.  The impact of the affect of a human analyst was allowed in  
the study in that three different analysts, usihg slightly  
-different analysis techniques, w4ere used. As would be  

' desired, there is no indication that this affecte'd the  
results.  

Both training sample accutacy and test sample accuracy 'wereused  
to evaluate the various tests, the former because it teiid to minimize  
the impact of variations in the scene. However, in this study it was  
possible .to achieve such high training accuracies that the residual  
variations in performance shown by training sample accuracy tended to  
be random and the test sample accuracy appears to provide the more  
reliable indicator of the impact of the various parameters on identi-
fication accuracy. The two RMS proportion estimation error indicators  
were devised to provide the indication of combined identification and  
mensuration performance. Of these two, the RMS proporation estimation  
error for the entire flightline appears to provide the more sensitive  
indication to the impact of changing the various parameters of interest  
as compared to the tverage RMS error by sections.  

The-major conclusions from the study are as follows:  

1.  There was a very small but consistent increase in identification  
accuracy as the IFOV was enlarged. This is presumed to stem  
primarily from the small increase in signal to noise ratio  
with increase in IFOV.-

2.  There was a more significant decrease in the menurition  
accuracy as the IFOV was enlarged.  

ORIGINAL PAGE IS 
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3.  The noise parameter study proved somewhat inconclusive due  
to the greater amount of noise present in the original MSDS  
data than desired. For example, viewing Figure 2.4-11  
moving from right to left, it is seen that the classification  
performance continues to improve as the amount of noise  
added is decreased until the point is reached where the noise  
added approximately equals that already initially present due  
to the MSDS operation. Thus, it is difficult to say for what  
signal to noise ratio a point of diminishing return would  
have been reached had the initial noise not been present.  

4.  The result of the spectral band classification studies may  
also be clouded by the noise originally present in the MSDS  
data. The relative amount of that change in performance due  
to using different combinations of the .45-.52pm, .74-.80pm,  
.80-.91pm and .74-.91pm bands is slight but there appears to  
be a slight preference for the .45-.52m band. The perfor-
mance improvement of the Thematic Mapper channels over those  
approximating Landsat I/II is clear however.  

5.  Using spectrometer data it was verified that the .74-.80m  
and .80-.91m bands are highly correlated.  

6.  Correlation studies also showed that the range from 1.0-1.3pm  
is likely to be an important area in discriminating between  
earth surface features.  

Although much has been learned in this study about the selection of  
parameters for the Thematic Mapper, it is clear that this problem cannot  
be now regarded as entirely solved. Further studies of this and other  
types are needed to develop a convincing set of facts regarding scanner  
system parameters selection. This study also illustrates very clearly  
the value of.both field gathered and airborne multispectral data in  
continuing research efforts.  

O0p Ym 
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APPENDIX A  

Algorithms Used in Thematic Mapper Simulation Study  

A.  Pixel size in scan line direction (See Figure 1)  
L =A *(tan - tan 0 (eq.)  

where 0 1 .-A* (i-1)  

L. - Pixel length in scan line direction, element i 1 

A - Scanner altitude  

0 - as shown in Figure I  

- maximum scan angle off nadir  

A - scanner instanteous field of view  

B.  Pixel size in down track direction  

A  
cos  G.1 

W.3. 
(eq. 2) 2  H * tan (.) 

W. - Pixel width in  down track direction, element i  
3. 

C.  Weighed averaging of pixels in the down track direction. (See  
Figure 2).  

High resolution pixels are averaged to form each low resolution  
pixel. In the down track direction unweighted averaging is used  
except when a high resolution pixel occurs only partially within the  
low  resolution swath. Response values (R) are computed for each  
high resolution image column (i) corresponding to a low resolution  
swath. The response or count for the ground area L. long (cross  
track-high resolution pixel size) and down track dimension equal to  
one low resolution swath width is the proportion (P) of each input  
pixel of column i falling within the swath multiplied by its response  
and divided by the sum of the proportions.  

J J 
R = ( 1R * P..)/ S P.. (eq. 3) 
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MSDS Scanline Ground Coverage  

A 

A.  

H Cross track  

Figure 1. The MSDS ground coverage for one scan line  
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MSDS Sample Size  

Column i  MSDS Pixels  

Simulate, 

adir - L---------

I PF.. .9 

Figure 2a. MSDS samples overlap for off nadir look angles  

.- 4 R-3 j-2 +l R.+2 R.+3 Simulated 

low-resolution ,,, s w a t h 

Nadir 

Figure 2b.  NSDS samples represent increased ground coverage at off  
nadir look angles  
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R - response from ground scene area L. by simulated swath width 1 

J - high resolution scan lines included in simulated width  

j - high resolution line  

i - high resolution column or sample  

P - proportion included in simulated swath  

Figure 2b illustrated the ground areas corresponding to the R  
values.  

D. Weighted averaging of pixels in the cross track direction.  

For data simulation purposes the cross track simulated sample is  
a Gaussian weighted average of high resolution pixels, with the  
half amplitude point of the Gaussian distribution function a  
distance of one half IFOV from the distribution midpoint. Only R  
values from equation 3 above are considered for the cross track  
weighting.  

The Gaussian distribution function has the form:  

1 

G(pi,a,x) = -727o 

G - weight for averaging 

p - low resolution pixel center 

x - high resolution pixel distance from simulated pixel center 

a - constant for a simulation resolhtion S 

S - simulation resolution 

Sitting v = o and x = one half ground IFOV = S/2 will enable solution  
for the constant a. The .1 amplitude point (x(.1) the distance from  
the mean or low resolution pixel center) can then be calculated.  

Low resolution pixel centers are equally spaced across the input image  
width with spacing S. This assumes all low resolution samples are at  
satellite scanner nadir.  

The data value of each low resolution element for a given simulated  
swath is then  

E(G(p,a,x.)*R.*L.)  
iL PG = I 

ZG(pt,a,x*L.  
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R' - low resolution pixel value or count  

k - simulated pixel number  

The summations are made over columns (i) for which G is greater  
than .1. Figure 3 illustrates the weighting function over the  
high resolution average columns.  

Reflectance Calibration  

E. Clb - Mean over the run of low cal black body  

C1 - Mean over the run of lamp cal  

R8 - Lamp equivalent reflectance 

x. - MSDS count at sample i 1 

R.1 - Reflectance value at sample i 

R. (xi-Clb). 

R  

(Cl-Clb)  

R. =Ax. + B 
1 1 

for A  

Re  
(C -Clb) 

R'C  

CI-Clb  

(eq. 1)  

e and B R Cf-Clb  C -Clb  

Note:  x. is the count of sample i of the degraded resolution image:  
Resolution degradation was handled immediately preceding.  

Simulated Reflectance Range Transformation  

F.  R - Simulated full scale saturation reflectance  
s 

x. - Simulated count at sample i 
R. 

= 255 *__S x i  5S
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Simulation Weighting Function  
and  

High Resolution Pixel Column Averages  

Center of large pixel % Weight 

.1 Amplitude 

$ILI 

Nadir  o 

Figure 3.  -High resolution pixels are averaged in the down track  
direction to form columns and columns are-averaged by  
the weighting function  
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255 * R. 
R :L 
kS 

255 
x (Ax + B)i Rs ( i 

/ 255 ~ x~ + lb-25 C h 

R (Cl-Clb)) lb 

=255 RecC e.2 
Xi R (C±I-C1-t) .kXi-lb} e.2 

To x. noise must be added and we have a "SUPER PIXEL"1 

The program will allow for a noise level addition parameter to be input for  
each run. The value will be a floating point number equal to the noise  
standard deviation.  

G. Addition of thermal channels  

MSDS bands 10.1 - 11.0 micrometers and 11.0 - 12.0 micrometers were  
combined by performing a weighted average. Weights were based on the  
proportion of radiant energy produced by a 300 OK blackbody at the band  
mid-points. This method requires that the raw data points be calibrated  
into radiance units-prior to combination. Radiance calibration is performed  
as follows:  

R 0 + A1 * i 

01 M1 

A0 = - ML* A1 

where:  

R. = radiance of element i 1 

xi = relative response of element i  

= radiance of high blackbody cal.  

= radiance of low blackbody cal. 

= mean relative response of high cal. 

N4 = mean relative response of low cal.  
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Nand N1 are averaged over the full flightline. R and,R are given by  
e Planck blackbody radiance function.  

= P(TH)  

P(T) . A C dA  

lb) -J X5 (C2 /T)-

e I I  

C, = 1.1909104 wa tts-jm 4 /cm2zster  

Z2 = 1.4388'4 m K 

X1 ,A2 = band wavelength limits 

THT L - Thermal temperature of high, low cals. 

Abi = Bandwidth of A1-I2  

Weighting coefficients for computing the radiance of 'the combination band is  
given by the ratio -of-spectral radiant existance for the bands. The  
ratio is:  

MCI  

x 5 (eC2/T_I)  

(0Xj 5 (eC2/-AiT j 
"*Mx i (eC2IAO 0 

10,11 = band wavelength midpoints  

T = average scene temperature  

The combination radiance is then:  
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R aR. + b R.i  

X  MX  

MX  

X  1  
Xa 1  X2+1  

H. Addition of reflective bands.  

MSDS bands .76 - .80 micrometers and .82 - .87 micrometers were  
combined to simulate the .74 - .91 micrometers band. Band addition was  
achieved by unweighted averaging.  

1 0R  
2  

R = reflectance factor for a pixel  

I. White Gaussian independent noise samples were added to the data such  
that the Thematic Mapper noise specifications are approximated. To compute  
the level of noise-to be added, the existing noise level was first estimated.  
To do this, the 16 low blackbody calibration samples of each scene line  
were processed through the system separately as a 16 sample wide image.  
The standard deviation of the calibration samples after processing were used  
to define the data noise level. The appropriate noise level was then added  
to approximate Thematic Mapper noise specifications.  
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APPENDIX B  

2.4 Scanner System Modelling  

A number of facets to the scanner system modelling problem were  
considered early in the contract year. Among these were statistical  
representation of scene classes, spectral window functions, scanner  
aperature effects, sampling noise influences and classification error  
models. Since the majority of resources in the project was spent on  
the thematic mapper simulation only limited consideration was made of  
the generalized system elements. Specifically the classification error  
model was pursued in some detail in an attempt to advance the state of  
the art in the multiclass, multichannel classification error prediction  
problem. The following is a brief review of this work.  

Probability of Misclassification for an Optimum Bayes Classifier Intro-
duction  

The evaluation of the performance of various classifiers through  
calculation of exact probability of misclassification has been under  
study by researchers for some time. Although empirical results have  
been obtained, the precise recognition rate for a Bayes classifier has  
not been evaluated for more than two normal classes with arbitrary  
covariance matrices (AndersonI , Das Gupta 2 , Fukunaga3). In evaluating  
the scanner performance, attention here has been focused on recognition  
rate at the both input and output of the systems. For this purpose,  
the probabilities of misclassifications of a multiple class Bayes  
classifier must be obtained. A Bayes classifier is a quadratic classifi-
cation scheme which is optimum in the sense of providing correct proba-
bility of error. Much simpler mathematics is required for evaluation  
of a sub-optimum-linear classifier.  

Background  

The discrimination problem, as it is known now, was introduced by  
R. A. Fisher as a problem in taxonomy. He used a linear discriminant  
function with coefficients chosen such that a defined cost function was  
minimized. Since then, many extensions to the problem have been proposed  
and solved. Bayes classification, however, has been almost entirely  
limited to two classes with multivariate normal distribution. As men-
tioned before, the source of the problem is the quadratic nature of  
discriminant functions.  

Multiple Class Classification  

For our purposes, error probability for a multiple class Bayes  
classifier is required. The problem is simplified somewhat .by assuming  
that all distributions are multivariate normal and mean vector and  
covariance matrices are known. The absence of the latter assumption  
would immensely complicate the problem by introducing random matrices  
with Wishart distributions.  
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Approach  

The basic approach is based on the following:  

The quadratic discriminant functions are  

= . i=1,2 .....M(X-M)Ai-7(X-M)-C.  

where Mi and Ai are mean vector and covariance matrice of class i, Ci  
is a constant depending on prior probabilities of each class.  

Now, choose class j if Li < Li Vj#i  
We defined the probability of error as:  
Under M1  

Pr(FIMl).= 1 - Pr{CIMlI = I - Pr[all Li ' l/Vi#l]  
1 - [itf(M,.M-'''-2l1)dn...dL2]dll f( .

where  

Pr{e M11 = Conditional probability of error 
Pr{C MI} = Conditional probability of correct classification 
As seen above, the quantities required are, the marginal and joint dis-
tributions of Li.  

Assuming that the ovservation belongs to say, first class, i.e. X-N(M,A l)  
then P1 has a chi-squared distribution with N degrees of-freedom (N=dimen-
sion of the observation vector). k2 and others have a more complicated  
diszribution. Their moment generating function, however, can be found  

- (X-1M)TAI-I(X-M  
E[etZ2] =)et[(X-M2 )TA2 (X-M2)-C 2 ]L 2dX  

-I A-1  
There is a single transformation that diagonalize both A1 & A2  
Carrying out the mathematics  

Kit  
N el-2dit  ItL  

p2(i=l 1-2d.t  2di  

The density function of Z2 is related to its m.g.f. in a known fashion.  
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Joint Distribution  

Various methods have been tried with varying degree of success.  
The basic approach in all of them is based on calculating the m.g.f.  
of conditional random variables and by using the following chain  
formula:  

f(ZMZM-l...ZI)=f(ZMIZMI,ZM_2"--Zj) f(ZM-I ZMz2'Z 1 )  

X f(Z 3 lZ2 ,Z1 ) f(Z 2 jZ l ) f(z 1 ) 
find the joint classify function  

At the moment, we have focused on three classes. A method developed  
for this case will likely be extendable to more general case. It should  
be mentioned that, the limiting factor in this problem is not as much  
the number of classes as it is the dimension of observation vector.  

The .discriminant functions shown before, are -hyperquadrics in M 
dimensions. To obtain f(k2 21), £1 is fixed and any subsequent inte-
gration should bear in mind that the integrand is defined over this 
surface. In a special case, when N=3, the surface is a general ellipsoid. 

The next case, f(k3l 2,9i), both £2 ,and X, are fixed, and the'path  
of integration is on the intersection of these two hyperquadrics. If  
covariance matrices are equal, then each ki is a hypershpere on a sphere  
for N=3. Their intersection would be simple circles.  

Conclusion  

The direction that we are heading in at this point is to obtain  
E[etZ21kIl and EetZ3jZ2 ,i1 ] subject to above surface constraints.  
Beyond this, the inverse FFT would provide the desired conditional and  
joint density functions. It is unlikely that integrals.are easily inte-
grable, so numerical methods will likely be used throughout.  
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2.5 Transfer of Computer Image Analysis Techniques (Remote Terminal)  

Activities under this section of the work statement included con-
tinued support of the JSC-LARS Computer Facility remote terminal and  
the development of technology transfer concepts and materials. Work  
under this task was carried out in accordance with the milestone plan  
submitted during the first month of the contract period. For conven-
ience, the discussion of these activities parallels the milestone plan  
which is summarized below.  

Activity Time Period 

I Task Analysis June-September, 1975 
II Training Program Design July-October, 1975 
III Development of Priority Assignment September-October, 1975 
IV Materials Development October, 1975-May, 1976 
V Interim Training Programs July, 1975-May, 1976 
VI Remote Terminal Support June, 1975-May, 1976 

Task Analysis Activities  

On June 12, Ms. Shirley Davis and Ms. Tina Cary visited JSC and met  
with Mr. Donald Hay. The work statement and preliminary milestones for  
this task were reviewed at that time. On August 19 and 20, Dr. John  
Lindenlaub visited JSC to meet with Mr. Hay to discuss training needs,  
determine typical entry levels of trainees and survey presently available  
training materials (milestone I). A series of meetings between Dr. Lindenlau  
and Building 17 personnel was arranged by Mr. John Sargent. Most of the  
discussions were on a one-to-one basis with personnel working on specific  
projects. The exception was a group discussion organized by Mr. Tom Minter  
which centered around LACTE Analyst Interpreters (AT) andData Processing  
Analyst (DPA) training.  

The following observations were made as a result of the one-to-one  
conversations. The individuals talked to were for the most part working  
within a relatively small group (less than 8 individuals). The individuals  
had a wide diversity of backgrounds reflecting the interdisciplinary nature  
of remote sensing technology. Their formal education in remote sensing  
ranged from none to minimal with most of the people learning through on-the-
job training.  

Perhaps the strongest feeling expressed during the LACIE Al and DPA  
discussion was that there would be considerable mutual benefit derived from  
each group of analysts having a better appreciation of the other group's  
analysis techniques and job function. Although some specific suggestions  
were discussed, they did not differ substantially from those made during  
LACIE reviews and it was assumed these suggestions would be evaluated  
through the normal RID procedure. It was pointed out that LARS would be  
responsive to specific training requests associated with the LACIE or other  
JSC projects.  
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Training Program Design Activities  

At the end of the first quarter of the contract period,.it was recommend-
ed that two activities in the area of training programs and materials  
development be pursued during the remaining portion of the contract year.  
These recommendations were based on results of work carried out under the  
task analysis described above, an assessment of currently available  
training materials and identification of topic areas in .which the develop-
ment of new materials was'needed.  

The first recommendation was that a one to two week.training session 
be held for '8to10 JSC personnel. The training sessionwas to be held 
at LARS using existing slide-tape-study guide minicourses and videotaped 
instructional materials. Anticipating the availability of these materials 
to the remote sensing community, the training session was to emphasize: 
1) the participants learning the 'subjectfmatter and 2) preparing them to 
serve as instructors. It was felt that having training materials and a 
cadre 'of qualified instructorconsultafts on 'site would improve and simplify 
on-the-job training of JSC personnel. 

The ;second activity proposed in the first quarterly pr6gress report  
was the development of additional training materials. Simulation exercises  
centered around the forestry applicatofs project (FAP) and regional  
applications project (RAP) and additional titles in the FOCUS series were  
specifically recommended. Simulation exercises are designfed to lead the  
reader through the professional thought and decision making processes typical  
of those required by a remote sensing analyst. The FOCUS series is a set  
of pamphlets which contains one page of text and one page of s'hpporting  
figures.  

Priority Assignment Activities  

The following priorities were iedommended in the first quarterly progress  
report for the training program and materials development work to be carried  
out during the remainder of the contract period:  

1.  Development of a forestry applications (PAP) simulation exercise.  

2.  Training 8-10 JSC personnel at LARS as desctibed in the previous  
section.  

3.  Produce additional titles in the FOCUS Series.  

4.  Development df a simulation exercise for the regional applications 
project (RAP). 

Work was pursued according to these priorities for the rest of the contract  
period. Results obtained in these areas are reported in the following  
sections.  

OPRo 
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Materials Development  

The forestry applications simulation exercise was completed during the  
third quarter of the contract period and was submitted as an interim  
technical report (LARS Information Note 012376). This report documents  
in detail the analysis of a LANDSAT data set using computer-aided analysis  
techniques. It is .designed to enable the reader to gain an appreciation  
of the decisions and trade-offs made by the experienced analyst. The  
publication describes the sequential process of analyzing a LANDSAT data  
set and emphasizes the interaction between man (analyst) and machine  
(computer). Typical products (results) of each step in the analysis are  
shown in the report.  

The analysis described in the forestry application simulation exercise  
is shown in Figure 2.5-1. A better appreciation of the approach taken in  
the simulation may be obtained from reading the following paragraphs which  
have been adapted from the Overview section of the simulation:  
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State Analysis  
Objectives  

Acquire  
Data  

I Correlate 
Remotely Sensed Data  
with Reference Data  

[ Select Training Areas  

Cluster and-Classify -
Individual Training Areas 

r s 
Interpret  

Spectral Classes  

Pool and/or Delete  
Spectral-Information 

Classes  

Classify Training Areas  
as Single Data Set  

.Evalua te  
Accuracy of  

TNjraining Area  
Clas ifiction  

Classify Entire  
Planning Unit  

Apply Results  

Figure 2.5-iTypical Numerical Analysis  
Flowchart for Forestry Applications  

ORIGINAL PAGE 18  
OF POOR QUALI1y 
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The numerical analysis of remotely sensed data is a dynamic  
process which requires an interaction between man (analyst) and  
machine (computer). The process is both an art and a science,  
relying upon judgements and insights by the analyst as well as  
a documented technology of remote sensing analysis. A typical 
analysis sequence is shown in Figure 2.5-1. Even though it is  
shown here as basically a linear process, all of the steps are  
interconnected. At any step in the analysis, interpretation of  
the results of that step can lead the analyst to conclude,-that  
he should go back to a previous step and revise his procedure. 
For simplicity only the most commonly followed analysis sequence  
is shown.  

Remote sensing techniques allow you to "survey" large areas  
with a minimum amount of time and cost. The computer can be  
"trained" to produce general land use maps as well as general 
forest cover maps. Even finer breakdowns of cover types may be  
achieved, such as timber stand maps, although mapping reliability  
is lower for these relative to general land use maps.  

The first step is to state the analysis objectives. To do  
this, you must determine the geographic area of interest, the  
general cover types and the nature of the application to which  
the results will be applied. An additional component which is  
often included in the analysis objective is the expected class-
ification accuracy for initial estimates of timber resources.  
An example would be to "determine the percentage of Hoosier  
National Forest in each of these cover types: conifers, hard-
woods and other with 85% accuracy".  

Next, the remotely-sensed data are correlated with the  
available reference data. The multispectral-scanner data may  
be from aircraft or satellites, such as LANDSAT. The reference  
data might include USGS topographic maps (quad maps), stand  
compartment type maps and related information, aerial photo-
graphs, U.S. Forest Service land use maps and actual ground  
observations. Each LANDSAT satellite covers the entire earth  
every eighteen days, so the analyst can most generally choose  
the time of the year most suitable for mapping the cover types 
of interest. The analysis sequence described in this simulation  
uses LANDSAT data.  

The training areas are then selected. The training areas  
contain typical examples of each cover type of interest and  
are supplied to the computer in order to "train" it to classify  
unknown data points. There are some general selection criteria  
to aid the analyst in choosing training areas, but successful  
training area selection relies heavily on the analyst's previous  
experience and knowledge of the areas being studied.  
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When training areas have been selected, the next step is  
to use a-computer processor (algorithm) called CLUSTER on each  
of the training areas individually. The CLUSTER processor uses  
information from more than one channel, or wavelength band, to  
produce a single computer-generated image. Since more informa-
tion is used, the boundaries of ground features and cover types  
are usually more distinct on images produced by the clustering  
process than on a single-channel image.  

After clustering, obtaining statistics, and classifying 
each of the training areas, the analyst looks at the output to  
see what each spectral class of the training areas represents. 
The spectral classes are groups of data points with similar  
spectral values (brightness levels). Aerial photographs and other  
reference data aid the analyst in making these associations be-
tween spectral classes and various cover types.  

On the basis of the spectral separabilities and the known  
cover type information, the spectral-information classes may be  
pooled (merged together) or deleted. The spectral classes that  
are informationally and numerically similar (i.e. spectrally  
inseparable) are combined, while the spectral classes that are  
a mixture of two cover types (such as pasture and forest) may  
be deleted. The analyst should go back to his analysis objective(s)  
to help him decide which classes to combine and which to delete.  

To check how well he did in the pooling and deleting of  
spectral classes, the analyst then classifies all the training  
areas together as a single unit. He then looks at the classifi-
cation maps and compares them with other reference data. This  
step along with the output of the computer allows him to predict 
the probable accuracy to expect when he classifies the total  
planning unit.  

With the output from classifying the training areas as a single  
data set, the analyst must predict if the training areas selected  
are going to allow him to meet his objective(s) when he classifies  
the total area under consideration. Will the classification yield  
the stated accuracy? Are all cover types adequately represented?  
If not, he must go back to previous steps as shown by the arrows  
on the right side of the flowchart. If possible, he may merely  
go back to "pool and/or delete" again. In some cases, he might  
go back and reselect the training areas. He may even need to  
go back to the beginning and restate his analysis objectives.  

When he is satisfied with the classification data from the  
combined training areas, the analyst instructs the computer to  
classify the total area. Using pattern recognition algorithms,  
the spectral responses of each data point are "compared" to the  
training sample for each class, and the point is assigned to the  
"most likely" or most similar class. The output after this step  
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can be maps and data tables - showing acres (hectares) for the 
mapped cover types.  

As indicated earlier, numerical analysis of multispectral  
scanner data is a dynamic process with each step providing feed-
back to the previous step. For simplicity, the process is  
shown here as a linear sequence. In reality, the analyst has all  
steps in mind before he actually begins an analysis. He may also  
refer back to previous steps and modify his procedure as the  
analysis continues.  

Following this overview the simulation exercise discuss each step in the  
analysis in detail with specific attention being paid to describe the  
analyst's reasoning and the basis of his decisions.  

Work on a second simulation exercise began during the latter part  
of the third quarter and has continued throughout the fourth quarter of  
the contract period. The data set used for this simulation exercise has  
been drawn from among those analyzed in conjunction with the Regional  
Applications Project task of this contract. A first draft of the  
simulation exercise has been completed and it has undergone internal  
review. Based on the review the document is being revised to place  
greater emphasis on the underlying analysis principles and incorporate  
examples of typical output products into the document. Current status  
is that the revision is approximately 60% complete. After revision the  
document will again be reviewed internally and undergo student tryout  
prior to publication.  

Three titles have been added to the FOCUS series during the con-
tract year. Like other titles in the series these two-page foldouts  
consist of a diagram or photograph and an extended caption of three  
to four hundred words treating a single topic in remote sensing. They  
have been found to be especially useful for general briefings or intro-
ductory treatments of remote sensing topics. The new FOCUS titles along  
with a brief summary are:  

LANDSAT Multispectral Scanner Data - 
LANDSAT data in four spectral bands is available on computer  
compatible tapes and in various image formats. An example of  
an annotated LANDSAT image produce is given.  

Clustering - 
In remote sensing, clustering is used to determine the "natural  
structure" of data. It can be used to decompose complex data  
sets into simpler subsets and to determine data classes based  
on spectral rather than informational variations.  

How the Earth Reflects - 
Energy reflected by materials on the earth's surface -Varies  
according to the structure of the materials themselves and  
their conditions. Spectral differentiation is possible be-
cause vegetation, soil and water reflect energy differently  
from each other and because sub-categories of these materials  
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demonstrate spectral variations as well.  

In addition to these additions to the series three FOCUS issues prepared  
during 1973 were reviewed for currency. They were judged to be satis-
factory and not in need of revision at this time.  

Interim Training Programs  

One of the recommendations resulting from the task analysis conducted  
at the beginning of the contract year was to conduct a training session  
for 8 to 10 JSC personnel. The objectives of the training session were  
1) to give the participants the opportunity to learn and work with the  
fundamental principles of remote sensing, especially those associated  
with the applications of pattern recognition techniques to the analysis  
of multispectral scanner data, and 2) to prepare the participants to serve  
as instructor-consultants for formal training programs or on-the-job  
training of personnel at JSC. Although no request for such an interim  
training program was received to a large extent the first of these  
objectives was met through the mechanism of JSC based personnel attending  
the Remote'Sensing Technology and Applications short course sponsored  
by Purdue's Division of Conferences in cooperation with LARS. Those  
attending the short course from JSC during the past year were:  

Name Affiliation 

Richard Moke NASA September, 1975 
Donald Saile LEC November, 1975 
Milton Bertrand LEC January, 1976 
Donald Hay NASA January, 1976 
Olav Smistad NASA January, 1976 
F. C. Kuo LEC January, 1976 

To better facilitate our ability to respond to requests for training  
programs which might arise in the future, education and training materials  
which have been developed at LARS under NASA and Purdue University support  
have been organized and summarized in LARS Information Note 052576,  
Matrix of Education and Training Materials in Remote Sensing. This docu-
ment, which will be submitted as a separate volume of this final report,  
organizes the remote sensing education and training materials developed  
by LARS in a matrix format. Each row in the matrix represents a subject  
area in remote sensing and the columns represent different types of instruc-
tional materials. This format proves to be useful for showing in a concise  
manner the subject matter content, prerequisite requirements and "technical  
depth" of each instructional module in the matrix.  

Following a general description of the matrix and the instructional  
format of the materials in the matrix there are three examples of training  
programs designed to meet specific training objectives. Content of the  
programs were selected to match both the educational and experiential  
backgrounds of the participants and the constraint imposed by the amount  
of time available for training. The training program examples are followed  



2.5-9  

by a "catalog" of the instructional modules which contains a summary  
paragraph, list of recommended prerequisites and any special equipment  
or instructional aids which may be required to use the modules.  

Availability of this document will facilitate implementation of  
remote sensing training requirements at JSC.  

Remote Terminal Support  

LARS continued its support of the remote terminal at JSC throughout  
fiscal year 76. Only a few problems with the equipment were reported  
(primarily the IBM 2780 Card reader/printer/punch and the Codex modems)  
but these were handled via calls to the appropriate vendor.  

The JSC terminal maintained nine active computer ID's for most of  
the year, with usage displayed in Table 2.2-1. Note that very little  
use was made of the batch system this year.- 

The terminals were used for training new analysts, for general  
research and technology development, and very heavily for LACIE support.  
This latter support primarily made use of CMS capabilities and not LARSYS.  
People on the LACIE project used the terminals to statistically check the  
quality of training fields. This use of the terminals is evident in Table  
2.5-2 where the total CPU time for LARSYS is much lower than the total CPU  
time used. Table 2.5-2 shows totals for CPU time attach time and CPU  
time used for LARSYS functions by JSC remote terminal users.  

Another significant remote terminal activity was publication of the  
Remote TerminalSystem Evaluation reports (LARS Information Note 062775).  
Last year's final report stated that a draft version was being reviewed  
by NASA and early in the contract year the report was released for publica-
tion. The report documents the development of an earth resources data  
processing system which is being used by both LARS personnel and remote  
terminal users. Its value us a system for training, technology transfer,  
and data processing are evaluated in the report.  

SUMMARY  

Work in the area of technology transfer and remote terminal support  
was carried out in accordance with the task analysis, recommendations and  
priorities established during the first quarter of the contract year. In  
the area of training materials one simulation exercise was developed,  
significant progress has been made on a second analysis simulation, and  
three additional FOCUS issues were written. While no training programs  
were requested under the SR&T contract, 6 JSC based personnel attended the  
Purdue sponsored remote sensing short course during the past year. A report  
was prepared which summarizes and catalogs the remote sensing education and  
training materials developed at and available from LARS. This document  
will facilitate the planning and implementation of future training programs.  
The JSC-LARS remote computer terminal continued to be supported throughout  
the contract year.  



Table 2.5-2 JSC Remote Terminal 

CPU Time Usage (June, 1975 
(Hours) 

- May, 1976) 

Computer 
ID June July Aug. 

1975 
Sept Oct. Nov. Dec. Jan. 

1976 
Feb. Mar. Apr. May 

JSC100 I 2.0 2.3 2.0 .9 1 

JSC102 

JSC308 

JSC404 

JSC444 

B 
T 
I 
B 
T 
I 
B 
T 
I 
B 
T 
I 
B 

.0 
2.0 
.8 
-
.8 

1.4 
.0 

1.4 
.0 
-
.0 
-
-

.0 
2.3 
3.1 

-
3.1 
3.9 

.0 
3.9 
.0 
-
.0 
-
. 

.0 
2.0 
1.6 
.0 

1.6 
3.4 

3.4 
2.5 

-
2.5 
-
...... 

.0 

.9 
4.3 
.0 

4.3 
0.5 

0.5 
1.1 

1.1 
.2 

-

.0 

.1 

.35 

.0 

.35 
.8 

.8 

.3 

.3 
1.2 

.1 

.1 

.3 

.3 
1.0 

. 
1.0 
.1 

1.3 
.0 

1.3 
.3 

-
.3 
.3 
. 
.3 
.2 

.6 

.0 

.6 
1.2 

.0 
1.2 
.2 
. 
.2 
.5 

.2 

.2 

.5 
7 
.5 
.0 
.. 
.0 
.2 

-
.1 

.1 
1.2 

.1 
1.3 
-

-
.4 

.1 
-
.1 
.4 
.0 
.4 
-

-
.5 

.1 
-
.1 
.5 
-
.5 
-

-
.9 

JSC500 
T 
I 

-
-

-
.0 

-
.0 

.2 

.0 
1.2 
.0 

.1 

.1 
.2 
.0 

.5 

.0 
.2 
.3 

.4 

.0 
.5 
-

.9 
-

JSC600 

JSC601 

JSC602 

JSC800 

B 
T 
I 
B 
T 
I
B 
T 
I 
B 
T 
I 
B 
T 

-
-

1.8 
. 

1.8 
-
-
-
-
-
-
. 
-
. 

-
.0 

1.7 
. 

1.7 
-
-
-
-
-
-
. 
-
. 

-
.0 

2.6 
..-. 

2.6 
-
-
-
-
-
-
. 

-
. 

.0 
2.1 

2.1 
-
-

. 

. 

.0 

.5 

.5 

.3 
-
.3 
.5 

.5 
.7 
.0 
.7 

.0 

.1 

.7 

.7 

.1 
-
.1 

1.0 
.0 

i.0 
4.6 

-

4.6 

-
.0 

1.7 

1.7 
.0 
-
.0 
.8 
.0 
.8 

6.6 
.0 

6.6 

.-. 

.0 
1.9 

1.9 
.2 
-
.2 
.7 
.0 
.7 
.9 

-
.9 

.3 
1.5 

. 
1.5 
.2 
-
.2 
.4 
-
.4 

1.8 
-

1.8 

.0 
240 

-
2.0 
.1 
-
.1 
.2 
.0 
.2 

6.3 
.0 

6.3 

.9 

.0 

.9 

.6 
-
.6 
.8 
.0 
.8 

2.5 
.0 

2.5 

-
1.8 
-
1.8 
.6 
-
.6 
1.5 
-
1.5 
1.1 

1.1 

I = Interactive Terminal Use 
B = Batch 

In 
H 
0 

T = Total 
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Table 2.5-3 JSC Remote Terminal 

j. Monthly Computer ID Totals 

CPU time June July Aug 

1975 

Sept Oct )qov Dec Jan Feb 

1976 

mar Apr May 

Interactive 

Datch 

Total 

6.G0 

.01 

6.01 

11.00 

.02 

11.02 

12.20 

.01 

12.21 

9..9 

.01 

9.20 

4.72 

.01 

4.72 

7.76 

.00 

7.76 

11.26 

.00 

11.26 

6.10 

.00 

6.10 

5.07 

.00 

5.07 

10.25 

.13 

10.38 

5.72 

.03 

5.74 

7.91 

.01 

7.91 

LARSYS 
CPU time 
(hours) 1.05 2.81 2.86 4.42 .65 .02 1.38 1.19 1.41 1.51 .84 .01 

Attach time 
(hours) 311 382 354 300 192 218 281 274 289 323 280 264 
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RECOMMENDATIONS  

It is recommended that the regional application project simulation  
exercise already started be completed and that it and the forestry applica-
tion simulation be evaluated and tried out by students at both JSC and LARS  
as part of the FY 1977 SR&T technology transfer task. The effectiveness  
of this instructional format should be evaluated and, if appropriate,  
suggestions for additional simulation exercise topics be made.  

It is recommended that JSC based personnel with education and training  
'responsibilities be throughly familiarized with the material described  
in Matrix of Education and Training Materials in Remote Sensing (LARS  
Information Note 052576) and a mechanism be established for evaluating  
the use of this document for the design of-individual training programs.  

A critical examination of the instructional materials matrix in LARS  
Information Note 052576 should be made by JSC and recommendations given  
to LARS concerning those areas in which additional materials are needed to  
meet the training needs of JSC.  

The JSC-LARS remote terminal arrangement should be studied to see if  
any improvements in the terminal facility or its use should be made.  

ACKNOWLEDGEMENTS  

The project director for this task was Dr. John C. Lindenlaub.  
Major contributions to the project were made by: Shirley M. Davis,  
Dr. James D. Russell, Paula A. Pickett, Susan K. Schwingendorf and  
Bruce M. Lube.  
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2.6 Research in Remote Sensing Technology  

INTRODUCTION  

The Research in Remote Sensing Technology task consisted  
of three major activities with an additional image registra-
tion task included. The primary research area identified in  
the Statement of Work was termed "Ancillary Data Registration."  
The interest in this problem arises, for example, from the  
need of crop classification researchers to relate the spectral  
variations observed to causitive factors in the physical  
environment. Factors such as soil properties, land use  
patterns, precipitation, slope, thermal history, etc., are  
desired in digital form in registration with the multispec-
tral data. This task was established to develop the techni-
ques necessary to provide the desired ancillary data channels.  

The second task consisted of further evaluation of an  
image enhancement algorithm developed in CY75 and reprogram-
ming of the algorithm for improved efficiency. The algorithm  
both interpolates and enhances using an optimal instantaneous  
field of view filter1 and shows promise for aiding visual  
interpretation of LACIE segment images. Part of the evalua-
tion of the enhancement algorithm included classification  
accuracy experiments and these results are not yet available.  

The third research task consists of a spectral reflec-
tance study of soils using the EXOTECH field spectrometer.  
The task seeks-to relate the detailed soil reflectance  
.spectrum obtained from this instrument to physical properties  
such as Cation Exchange Capacity, Organic Matter Content, etc.  

An additional task which consists of temporally regis-
tering four passes of LANDSAT data for two LACIE intensive  
study sites is reported herein. This work was done with  
computer resources available under the 2.6 task.  

Although the ancillary data overlay and image enhance-
ment work was not directed to be in support of LACIE the  
results have turned out to be of potential benefit to the  
project. Signature extension research will be aided by the  
availability of registered physical data and segment visual  
interpretation may benefit from the enhancement algorithm.  
The temporal registration task is part of research on the  
effects of misregistration and is in direct support of LACIE.  

Ancillary Data Registration  

An important motivation for ancillary data registration  
derives from the signature extension problem. Physical  

ORIGINAL PAGE ISOF POOR QUAInI 
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factors are assumed to cause variation in spectr-al response  
which invalidates training parameters at observation points  
distant from the training area. Digital registra-tion of  
physical factor data with remote sensing data will enable  
quantitative evaluation of the effect of these factors.  
The  same reasoning applies to many other classification  
problems such as forestry where slope and elevation is  
important and for these reasons an ancillary d:ata registra-
tion task-was pursued.  

The  types of physical data which are'most often encounter-
ed are in the form of maps. The data is sually originally  
obtained in tabular of photograph-ic form and compiad into  
a map. The formats of the data on the map inc:ludes contours,  
lines, polygons and points. Figure 2.6-i graphically describes  
some of these forms. It is assumed that the physical pro-
cedures for transforming the map into a digital image-like  
record registered pixel'wise with tem6te sensing data. The  
basic steps in the map transformation proc&ss are assumed to  
be:  

1.  Digitizti-on of the physical map.  

2.  Conversion of the lines and points to a uniform  
grid of points.  

3.  Registration of the gridded data to a reference data  
set.  

Each st'ep involves a,number of parameters and algorithms.  
Some of the consicerations which must be ma&e are:  

1.  Density of sampies for con-tou-rs and arcs. 

2.  Effect's of position errors-.  

3.  Scheme far defining interiors of polygons.  

4.  General considerations of the information content  
(bandwidth) of a map.  

5.  Interpolation algorithms for gridding contour and  
point data.  

6.  Coordinate systems and warping functions for regis-
tration.  

These factors were considered in the context oif the  
variables -o'f interest for spectral strata d'efinitin,., The  
variables currently under study are:  
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32 

4 
3 

" 3 

POLYGON CONTOUR LINE 
(SOIL MAP) (TOPOGRAPHIC MAP) (AERO MAGNETIC) 

POINT AGGREGATED 
(WELL LOGS) (CENSUS TRACTS) 

Figure 2.6-1. Ancillary Data Format Examples  
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1. Soil Type and Association.  

2. Temperature and Precipitation.  

3. Land Use.  

The study first made some general considerati.ons of the  
map data digitization problem. The polygon format requires  
the sImplest data processing operations since constant '  
values are all that need to be filled, in inside the polygon  
and these values are-specifically defined-. The contour,  
line, and point formats require smo-oth surface interpola-
tion between data points and these cases present the great-
est challenge. The aggregated data case is also, a.relatively  
difficult problem in that the value given in a tract is a  
total of some variable such as population, and dividing the'  
total by the area and assigning the average to tire entire  
tract may give misleading or undesirable weights'to-certain  
points in the tract. Curve fitting techniques may be desir-
able in this case which would be for example match densities  
at the boundaries of tracts. It was the original'intention  
in the study to address each of thes.e data types and research  
techniques for digitizing each form of data. The main  
application of the research was to be the signature ex.ten-
sion or spectral strata task and the project ultimately focus-
ed on the requirements for this task. The data types con-
sidered for the spec'tral strata were all of the p-olygon type  
and the resources required to complete the work on the poly-
gon were such-that other types of data could no-t be considered  
during the year.  

Thus, the ancillary data registration project considered  
four polygonal data sets (soils, land use, temperature, pre-
cipitation), developed procedures, and achieved, registration  
of these four variables with a full frame of LANDSAT data  
in the project period. Data did not become available until  
the middle of the second quarter thus the period the overlays  
were completed in was slightly over two quarters. Each  
polygon data type presented different problems and, each is  
discussed below.  

Soil Map  

The test sites of interest were in Kansas and included  
LACIE intensive study sites. It was d,ecided that since the  
map data was available for the entire s-tate -the total area  
would be overlayed on LANDSAT frames as desired. The soil  
map used.is described in the Spectral Strata Se-c.ton , (2.2)  
and a reproduction is presented in Figure 2.2-4.  

The map was mounted on a coordinate digitizing table  
and each line separating different soil types was digitized  
by punching the coordinates of points along the lines on  
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Figure 2.6-2 CALCONP Boundary flot for Checking Accuracy of Kansas Soil1 Map Digitization. ' 
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cards. The accuracy of the digitized points is nominally  
.01 inch and the point density used varies according to the  
curvature. Points were more widely spaced (nominally .2  
inches) on low curvature areas and as little as .05 inch on  
sharply curving segments.  

A line between two intersections with other lines  
dividing other soil types is called an arc. Each arc is  
digitized Individually and assigned a number. The output  
from the digitizing phase is thus a set of cards with x-y  
coordinates for each arc and an identifying number for that  
are. For the soil map 170 arcs were digitized.  

The next problem was to identify the contents of the  
areas enclosed by the arcs. A procedure was established  
by which code numbers were assigned describing the contents  
of the area to the left and right of the arc wh-ere the for-
ward direction is the direction the arc was digitized.  
The complete list of arcs with the left and right codes is  
then input to a boundary processing software package which  
produces a gridded image like data set for the soil variables.  
In order to check the accuracy of the arcs and their labels  
a CALCOMP plotting routine was assembled which draws the  
arcs and labels at the same scale as the original map. The  
plot can then be overlayed on the map and each arc visually  
checked. Figure 2.6-2 contains the arc plot for the soil  
map.  

Concurrently control points were identified on the map  
and in the LANDSAT imagery to enable registration of the map  
data to the LANDSAT data. Road intersections, corners of  
water bodies, river bends, etc., were chosen and recorded.  
The locations of these points were digitized and punched on  
cards thereby defining the point in the digitized soil data.  
The points were also located in the LANDSAT data and the line  
column number recorded. The steps followed in the procedure  
developed digitizing this data are diagrammed in Figure 2.6-3.  

Once the data and control points were all in digital form  
the gridded data set was generated. Arcs are sorted and code  
numbers assigned to each pixel according to which polygon  
the pixel is in. The result of this step is a digital image  
array having nominally the same scale as the LANDSAT data.  

The final step in the process is registration to the  
LANDSAT data. The control points are used to estimate the  
coefficients of a bi-quadratic function which described the  
geometric transformation of the gridded map data to cause it  
to match the LANDSAT data. This function is then applied  
to the data producing a final output file as indicated in  
the lower right of Figure 2.6-3. The final output data set  
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illustrated in Figure 2.2-5 in a previous section via a  
gray scale image.  

The accuracy of the overlay depends on two aspects.  
The first is the accuracy of the physical maps themselves.  
The second is the accuracy of the registration process.  

The accuracy of these processes thus depend on the  
following:  

1) Uncertainty of digitization. The table digitizer  
has a resolution of 0.01 in. That medns that there is an  
uncertainty of 0.01 times the scale of the topological map.  
For example, if the county map has a scale of 1,000,000,  
then the uncertainty is 0.Olxl,000,000/12 a 833 ft. If the  
pixel is 250 ft. wide, then digitization could cause an  
uncertainty of 3.3 pixels. It should be noted that we may  
reduce such uncertainty by using a more daeailed map.  

2) Uncertainty due to quantization and instability  
of table digitizer. The digitizer has three quantization  
levels: 100, 200 and 400 parts/in. However, since the  
resolution constraint by the moving arms and other mechanical  
parts is 0.10 in., using the high quantization scale does  
not improve accuracy but brings in the problem of s-tability.  
The digitizer drifts from tim'e to time, i.e., such that the  
same values at the same point are not obtained after moving  
across the map, and be experience the drift is estimated to  
be about 2 to-4-units at the 200 pts/in scale. So the un-
certainty contributed by instability is about 0.01 in., the  
same amount as that by digitization.  

3) Uncertainty of location of checkpoints. Checkpoints  
are identified from the physical maps as well as from the  
multispectral image. Usually intersection of highways and  
other landmarks are used as checkpoints because these can  
be easily identified on the multispectral image. Both  
digitization of checkpoints on the map and visual location  
of checkpoints in the multispectral image cause un'certainty.  
Digitization uncertainty, as estimated above, is about 3.3  
pixels; identification of checkpoints is assumed to within  
1-2 pixels. Thus, total uncertainty for this part is about  
5 pixels.  

4) Uncertainty due to image registration. This by  
far has the least uncertainty. According to the way the  
boundary program is structured, the registration error is  
held to be within half a pixel.  

The table digitizer is operated manually, howevet, and  
human error is likely to be more tha .01 inch. It is hardly  
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possible for a human eye to resolve a distance of 0.01 in.,  
in fact, it takes extreme concentration to distinguish a  
distance of 0.03 in. Thus, this is more likely the most  
serious factor degrading the accuracy of the overlay at  
these scales.  

Land Use Map  

A general land use map of the state of Kansas was the  
second physical data map processed. This map is described  
in Section 2.2 and illustrated in Figure 2.2-6 in that  
section.' The same procedure was followed for this map as  
for the soil map and a numerical image data set was generat-
ed with land use codes from one to. twelve. A considerable  
amount of difficulty was encountered due to the fact that  
there were over 1000 arcs in the land use map and the soft-
ware had been set up for less than 1000. The CALCOMP replot 
of the land use map arcs is presented in Figure 2.6-4.  
This data was then registered on the LANDSAT frame in the  
same manner as before.  

Temperature and Precipitation Maps  

The temperature and precipitation data was available  
only on a county basis from World Meteorological Organiza-
tion tapes as described in Section 2.2. Thus a constant  
numerical value was generated to fill in the area inside  
each county. The county boundaries were digitized and pro-
cessed similarly to the previous maps and two different  
sets of numbers input for each county for temperature and  
precipitation. A boundary plot of the digitized county  
boundary is presented in Figure 2.6-5.  

There are many ways the temperature and precipitation  
numbers could be defined. For the initial phase of the  
study the total winter wheat growing season average was  
used comprising the interval October 1973 through June 1974.  
Other combination of periods could be used in a number of  
additional channels for more detailed correlation studies.  

The product of the first years effort in ancillary data  
registration is a set of procedures and a four channel over-
lay data set for one frame of LANDSAT data in Kansas.  

The experience gained by taking one approach to the  
ancillary data registration problem and completing the pro-
cessing of four variables was very valuable. This work can  
lead the way toward further research on this problem and  
hopefully more efficient methods will be developed as a  
result.  
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Figure 2.6-5  CALCOMP Boundary Plot for Checking Accuracy of Kansas County Boundary Digitization.  
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Image Enhancement Evaluation  

The optimum IFOV (Instantaneous Field of V1iew) enhance-
ment filter developed in CYT5 -and discuss&d in previous  
reports was applied to several LACIE segments for further  
evaluation. In addition, a modified program for cubic  
interpolation was generated and applied to the same data.  
Also, an existing blocking expansion pro-gram was applied to  
the data sets. Thus, a comparison of blocking, cubic inter-
polation and IFOV filtering and expansion was obtained.  
The results using the IFOV indicate a signtficatt sharpen-
ing -while maintaining a "smooth" characteris'tic to the image  
as compared to blocking. The cubic causes considerable  
"blurring" and was considered not very desirable.  

Four examples of the enhancement comparisons are pre-
sented in Figure 2.6-6, a-d. The top image is generated  
by duplicating original LANDSAT pixels by a factor of three  
horizontally and four vertically to compensate for the  
unequal sampling rates of the s-c-anner. The typical block-
ing effect is seen here. The middle images are cubic  
interpolations obtained by fitting a bi -cubic polynomial to  
the sixteen points surrounding th-e new point being created  
and evaluating the polynomial at that point. Agaih a 3x by  
4x expansion was created. The pixels at the original LANDSAT  
point locations have their original values. Tfe bottom  
images are IFOV filter outputs obtained by interpolating  
and filtering the original data to produce a 3 by 4 expansion  
and enhancements. Here all original points-have hew values.  
The first site (Hill Co., Montana) covers smaller area  
(approximately 2 by 3 miles) than th-e other three which are  
LACIE segments. It was judged from the relatively low  
quality reproductions that the filtered data had the best  
visual quality of the three but reproduction on a high  
quality image writer should be carried out. LACIE analysts  
should make the comparisons to determine the usefullness of  
the enhancement in an operational environment.  

To facilitate this comparison, six enhancement compari-
sons consisting of eighteen four band data sets were-deliver-
ed to JSC in March 1976 for reproduction on the production  
film converter. Transparencies will be available for evalua-
tion by both LACIE analysts and LARS personnel.  

The IFOV enhancement program was completely reprogrammed  
during CY76 and the new version was used for these examples.  

The program performs a four channel enhancement nominally  
five times faster than the previous Version. The previous  
version did only one channel and required extensive tape and  
disk buffering. The new convolution algorithm uses a multi-
channel cylindrical buffer and computes all points in one  
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Original in Color  

Blocked Enlar ement 

Original in Color  

Cubic Interpolation  

Original in Color 

IFOV Filtering  

Enhancement Comparisons for Run 73124700, 
Figure 2.6-6a Hill County, Montana, July 3, 1973.  
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Original in Color  

Blocked Enlargement  

original in Color  

Cubic Interpolation  

Original in Color  

IFOV Filtering  

Figure 2.6-6c  Enhancement Comparisons for Run 74030600,  
McPherson County, Kansas, May 6, 1974.  
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Original in Color  
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Cubic Interpolation 

Original in Color  

IFOV Filtering 
ORIGINA pAGe 'S 
OF p0F QUAISV' 

Figure 2.6-6b Enhancement Comparisons for Run 74030400, 
Ellsworth County, Kansas, June 12, 1974. 
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Original in Color  

Blocked Enlargement  

original in Color  

Cubic Interpolation  

original in color  

IFOV Filtering  

Figure 2.6-6d Enhancement Comparisons for Run 74030200,  
Barton County, Kansas, June 12, 1974.  
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output data line in one pass rather than two.  

The basic process of convolution as implemented in  
the current IFOV algorithm is to map each point of the input  
image to a four by three block of points in the output image.  
The points in the output are a weighted sum of the original  
point and four points to either side and above and below it.  

Let P be the original point; a P array will be gener-
ated as fohlows:  

(POlo)d p0 ,0 po. 1 P 0 , 2 

SP,0 PIll P1,2  

P2,0 P2,1  P2,2  

p pA 

P3,0 P3,1  P3,2  

4 4  
P E Ec(v ) E (h) e, k. n, j=-4 n,i k=-4 l,k j,k 

The two matrices C(v) and C(h), represent the weights of 
input points in calculating the new point. c h) represents 
the weightBof P in calculating an intermedlge point 

il,' c1k rep sents the weight of Pkj in P ..  
The two dimensional nature of convolution facilitates  

its partitioning into horizontal and vertical components.  
This horizontal process is repeated until sufficient P lines  
have accumulated to allow the calculation of a set of P lines.  
The P lines are kept in a cylindrical buffer. After each P  
calculation, the oldest line in the buffei is discarded and  
a new P line is read in. The buffer, therefore, moves like  
a rolling cylinder through the input image.  

Each P can be calculated by the following:  

P ~k E C pl,k j=-4 lIj j,k 

Each P can, in turn be calculated by:  

4 
Pl,k J=E4Cllj jp 
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In the flDw chart in Figure 2.6:7"INL1NE is -t1re P line2  
CYLINDER represents the F lines and OUTLINE represents the P  
lines. NSAMPLES is the number of'poirits per P'14ne.  

Directly computing P and P would require the'following  
time (ignoring stares and loads):  

TD = 9-(t a + tm)'9hlines  

ncolumns 12  

- 972(t a + tm ) nlines 'nco1 

where t is CPU time for addition,  
a 

tm is CPU time for multiplication,  

nlines is number of input -lines,  

and ncolumn s is number of itpit columns.  

Partitioning the process *into components :gives the  
following time:  

Tp = 3nlines' neols 9(t a + tm) +  

lines  cols  ta  m  

where the terms represent hor-izontal and ve'rtical times  
respectively.  

Tp = 135(ta +  tm) nlines ncol  

Computing the percentage improvement gives tire following  
conclusions:  

T  
I = 100% - -J2 * 100% = 100% -- 13.7% TD  

D 86.3%  

In summary, the convolution 'ilgoritltm gendrt'es for each  
input point a 4 by 3 block o'f output points. Each output  
point is a weighted sum of some group of input poinits. By  
calculatig 'an intermediate group of horizontally compted  
points a new savings of 86.3% over directly computing each  
output point can be recognized in computer time. The 86.3%  
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start 

DO 1=5, NSAPLES 

DO 1,N9NE 

L= K 
DO K=1, 4 

OULINER h 

DO -- , j-NS= sY 

L3J= IL . C v INDEETJJI  

WRITE ALL  
POUR OUTLINES  

ROTATE CYLINDER UP,  
DESTROYING  
FIRST LINE  

SREAD LINE 

DO 1=5, NSAMPLE 

.DO N=1, 3 

CYLINDERh  
CYLIND1, 3(I-5)+N = Cc h) iTNLINE 1-5+L 

I =11, L 151 

halt 

Figure 2.6-7 Flow diagram for IFOV enhancement algorithm. 

OPP00oL PA  
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improvement is in tbse actual mainframe or CPU time (e.g.,  
if the original algorithm took 100 sec. CPU time the new  
one would take 13.7 sec.).  

A cost comparison was made while computing the enhance-
ments although the programs are not optimized to the extent  
they could be. Significant improvements are expected with  
the specialized programming approaches. For a 192x192 point  
area expanded 3x4 to a 576x768 point area in 4 channels by  
each of the three algorithms the CPU computing time on an  
IBM 360 Model 67 computer was 15 sea. for blacking, 338  
sec. for cubic and 965 sec. for IFOV filtering. The high  
cost of IFOV is due to the fact that 81 original points are  
used to compute each of the new points where with cubic  
only 16 are used.  

The complete IFOV enhancement program in source listing  
form is reproduced in Appendix C for purposes of documenting  
the final result of the IFOV filtering research program.  
Further comparison enhancements for blocking, cub.i-c, and  
IFOV filtering can be run at LARS until such time that JSC  
chooses to execute the prnogram on their system.  

Temporal Registration of LACIE Sites  

JSC requested that LACdE da.ta for two sites and four  
dates be registered by the LARS system as an additional  
task. LARS agreed to do this and the registrations were  
carried out by the end of the CI. Both nearest neighbor  
and cubic interpolation resampling was used as requested.  

Spectral Reflectance Properties of Soils  

Remote sensing of both terr-estrial and extraterrestrial  
environments has become a common scientific activity (Hunt  
and Salisbury, 1970). In this effort, spectroscopic tech-
niques are often used to determine the composition and nature  
of the target material, whether the target is a pine forest  
or the surface of the moon.. In most cases, the spectral  
behavior of rocks or the s.oils derived from them is of  
interest, either as the target spectral response itself, or  
as a background that must be understood in order to define  
its effects or to be eliminated.  

Despite widespread use of spectroscopic techniques in  
remote sensing, the spectral behavior of soils is not well  
understood. Too often an empirical approach to a specific  
remote sensing problem has been used; detailed s.tudi.es of  
spectral behavior have been done in a context inappropriate  
for remote sensing use; or the spectral data obtained in  

http:s.tudi.es
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a study have been too voluminous and difficult to organize  
for publication.  

This research is a continuation of work devoted to a  
study of the relationships between the physico-chemical  
properties of soils and their spectral reflectance in the  
visible and infrared portions of the electromagnetic spectrum.  
The interpretations of these relationships are presented in  
such a way as to be useful to those engaged in spectroscopic  
remote sensing.  

Using the BRF/Spectroradiometer (Exotech Model 20C),  
spectral reflectance values in the wavelength region 0.48  
to 2.38pm were generated for the 56 samples of benchmark  
soils representing the different climatic regions of the  
United States (Koppens Classification). These soils also  
represented eight of the soil orders as defined by the Soil  
Taxonomy.  

Data for 9 measured and 5 calculated properties of  
these samples were analyzed by stepwise multiple regression  
analysis. Twenty-one biochemical measurements were made on  
27 of the 56 samples in order to study the relationships  
between organic constituents and spectral reflectance.  

Spectral reflectance values at selected wavelength inter-
vals were designated as the dependent variables and the  
physicochemical properties were the independent variables.  
The physicochemical properties of the soil having the highest  
correlation with spectral response are: cation exchange  
capacity, and the contents of silt, clay, iron and organic  
matter. Silt content was the single most significant para-
meter of those being studied in explaining the spectral  
variations of soils having r-values ranging from 0.41 to 0.62  
and 0.63 to 0.70 in the visible and infrared regions, respec-
tively. Organic matter content contributed significantly  
(r = .30-.53) to the explanation of the variation in spectral  
response in the visible region.  

Organic matter content is inversely proportional to  
spectral reflectance. Although the organic matter content  
of the samples studied ranged from 0.09-9.0%, this  
parameter does not appear to mask out the contributions of  
other soil parameters to spectral variation. The iron con-
tent of the soil was significant in both visible and  
infrared regions. Its significance appeared to be unaffected  
by the presence of organic matter. The significance of iron  
increased with increasing wavelengths, possibly due to the  

. vibrations and overtones of iron compounds in the middle and  
far infrared. Clay content was significant in the 0.50 to  

ORIGUApAGE  
oF pooR QUALM  
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Table 2.6-1  Physicochemical Properties of Sbils-Which  
Make a Significant Contribution in Explaining 
Variations-in Visible and Infrared Reflectance.:'  

Spectral Variables** r-vallie 
Interval(Qm) Entered 

0.50-0.53 3,1,2 0.458 
0.53-0.56 3,1,2 0.563 
0.56-0.59 3,1 0.567 
0.59-0.61 3,1 0.571 
0.61-0.64 3,1,5 0.575 
0.64-0.67 3,1,5 0.580 
0.67-0.70 3,1,4 0.584 
0.79-0.84 3,13,2 0.592 
0.85-0.90 3,13,2 0.597 
0.91-0.96' 3,13,2 0.610 
0.97-1".02 3,13,2 0.619 
1.03-1.08 3,13,2 0.627 
1.09-1.14 3,13,2 0.659 
1.15-1.20 3,13,2 -0.664 
1.29-1.31 3,13,2 0.672 
1.39-1.41 3,13,2 0.693 
1.49-1.51 3,2,13 0.694 
1.79-1.81 3,2,13 0.693 
1.89-1.91 3,2,4 0.701 
2.19-2.21 3,13,2 0.743 
2.29-2.31 3,13,2 0.735 
2.36-2.38 3,13,2 0.740 

*Significant at 5% level 

**Key to variables: 1 - Organic-Matter, 2 - Iron, 
3 - Silt, 4 - Clay, 5 - Color, 13 - CEC 
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Figure 2.6-8 Climate effects on the correlation between  

infrared reflectance and some physico-
chemical properites of soils.  
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0. 7 01im region and around the absorption bands at 1.4, 1.9  
and 2.2pm. Increased clay content results in the attraction  
of larger quantities of atmospheric water to the soil sur-
face, resulting in stronger absorption bands. The cation  
exchange capacity (CEC) was highly correlated (r=0.60)  
with spectral reflectance. CEC appears to be acting as an  
indicator for some of the natural interactions occurring  
between the soil properties. Organic matter/clay, organic  
matter/iron, and iron/silt interactions were significantly  
correlated with reflectance (r=0.65). In some instances  
these interactions were more significant in explaining  
spectral variation than the individual parameters. The  
mineralogy of the soils, to a large degree, determine the  
significance of several of the soil parameters (i.e., CEC)  
in explaining spectral variations in the visible and infrared  
regions. Cognizance of the dominant mineralogical composition  
of an area allows for the prediction of the relationship  
between spectral reflectance and soil properties.  

The results of the statistical analysis of the relation-
ship between biochemical prope-rties and spectral reflectance  
suggests that there is a significant correlation between the  
two. Additional research is required before these relation-
ships can be expressed quantitatively.  

Results have shown that the grouping of soils from  
different climatic zones results in a lowering of the corre-
lation between reflectance and the physicochemical properties  
of the soil. The effect of climate on the physicochemical  
nature of soils is at present a qualitative expression. The  
climatic factor cannot be satisfactorily quantified for use  
in these types of analysis. The best results were obtained  
when studying soils from within climatic regions (Figure 2.6-8).  

The near and middle infrared regions offer excellent  
possibilities, in many respects superior to visible reflec-
tance, for quantifying and defining the relationships between  
physicochemical properties of soils and spectral response  
(Table 2.6-1).  

Although the effect of the physicochemical properties  
of soils on spectral reflectance is fully understood, the  
results presented here demonstrate the potential for develop-
ing methods of quantifying these relationships and sets the  
stage for continuing investigations in this area.  
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FILE. - . CCNMAM11 FORTRAN V1  
105 FORMAT(5X,2.04)  

WRITE(lb 110)  , 
110 FORMAT(/ERRft I') OrSULtS CARD. REEN I'. } 

GO O 15  
200 IT = 1  

CALL IVAL(CARD, C(Iis 'dRIM, II £100) 
FLAG(6) = F UE.  

300  TO TO;5 I = ICON03?  
CALL IVALCCAI.CL'L, TAPF'If. 1I1 &100) 
FLAG7)? = .TiU.  
GO TO 5  

400 I = I - 
CALL IVALICAQO. COL. FILEN0. I1. £1OO) 
GO [o 5  
END  
SUBKOUTIat SLKSUB(CARU, CIL, FLA", RUN, "FRO, %LR0WIFCIL. I NLCOL. *1 

C  
C ***** INTERPRLTS BLOCK CARO  
C 

IPFLICIT INTYbil IA-/)  
LOGICAL * I FLAG[I) 
DIPENSION PARLST(3), -AIM?) I C.AsRU,))DATA  PARLST/4IRN .iHL IF .,ItClLS1 

1  FLAG)I) = TRUE.  
FICOL .EC. 1,) (.1 to I)n  
IF(CGLC.J. M71) GII ,TO 10) CALL CTLIO (CAR ) COL, aRLST. 301.1FF, It.1j GO TO 12dO 00, 401). CUI)  

10 IFIFLAG)L) L Ik'O I5 COL = O  
ERR = *- 
CALL CTL,471)tCA10. CI"L. 'IHIIL(IC, I. C OE.. 'I. CRR) IF(ERR .EL. 4) SlOP  
GO TO 5  

100 WRITE(Io.05) CARD  
105 FCR.AT(5X42A4) 

WRITE( l6,IO )C1,3391) 
110 FORMAT')/LRRCR 1., BLOCK Alit). RELNTLR-t}  

GO TO 15  
709  1 = I 

CALL IVALiCA,CIL,UItI, II .100) 
FLAG(2) .TRUL.  
GO TO 5 

300 12 = 2  
CALL IVAL(CARI, LIL, HJJ, [I. 01J3)  
NFROW NUIll) 
NLROW = N1M412I  
FLAG() = TRUL.  
GO To 5 

400 12 = 2  
CALL [VAL IC 44, COL, 11",*I?, 1.101) 
NFCOL = N UIACI) NLCOL = ILPI't  
FLAGI4) = .TIUC.  
GO TO 5  
END  
SURROUTIGI, CHISUR(CARn, CUt, FLAN, ICIiAN dCIOAI, *) 

C ***** INTERpIOTS CIIATIFIL A10)S 
C 

IMPLICIT I' JICGC (A-11 
LOGICAL I ) FLA,(I) 
INTEGER * 2 CHANI NE(HI). (IAN)3))  
REAL CsES1o)  
O)I'ENSIO, I011I4)30,), CAvIC/  
DATA TOPSl/, CSGL2IO3c, CM Tru-6000). 3oj 

5  CALL CHATEL CARD, COL, NII., ('5L, L CSfT, C114%, Kiel) 
DO 10 1 = TOP, 1NCR  
K = CHAII)  
IF)ICHANIK) .Q(. I I (Al Io 10  
ICHANII) = 1  
NCHAN = NCHAN + I  

to  CCIT)NUC  
TOP = NCR . I  
FLAGIBI = .TRUE. 
RETURN I 

FILE. . . LLNMAl)7 FTKFNARA Pl 
100 WRITE16, lo0') C'10 
105 FCRNAT(5AO,14)WMiSI16.110)  
In' FORRATI/' ERRIR B, CFIATJNNI S CA"),. PEEF7JTC . I  

COL 0  
ERR = I 
CALL C-L.40(CAT)).COL, 4h0IA., It COUP,3 , .k) 
IFCbRR .L,. 4) SrIP GO 10 8-
END 

CON0313  
C0N03140  
CONJ3L50  
C0103160  
CONL3170  
CONO3SCO  
C1N3190 
CONO2OO IO  
CON032?0  
(0N03230  
CONU3240  
C033250  
CON1O26O  
C".'327  
CONO280  
CON33290  
CfN033OO 
CO.O311  
CIINj33'0  
(rON333 )C0?:033o40  
COJi,351
CIB1Us360 
C0I1347c 
CON03380  
CAN03493 
CII03400  
C710 34 L 
CONOi420 
CINO i'.CIINU3440 
C011)3451  
CnIN'. t14,
CI1.1347) 
CIN03410 
CrlNJf 14nO 
C0Nr1 0l)lN  

LrIJOJSO 
CFlRfl1f 
C0NO3540  
CON,)3i
CNIU3SF.r-
C(101th7l 
C0N035110  
COj)IS30 
Cf-'03600 
Ci'.060 
C.403to/0  

Cr~, 3630C 
CRfNlBJ 10 
c06s3650 
C0)N03660 
CJIL 1673  
CO0103686  
CrIN) I6"  
CON03'00  
Cih._37IT 
ClN)057
C(N)33741 
C'T1i377', 
LI) JOTs71,
CGT'3'770 
CZOTJO7T0  
CON1370 
.ulIAlI (0'Jh51INjO

0I'l0l1 
C110I I C 
C11030103 
C'JUJU'183 
C61)3150 
C0NO38560  
cN01,337  
CI, 3R8O 
CCh, 3980 
C0l1, T990O  

CIlN14)11 
t'.03q0C.71-363,  
CGHU03)40  
CI)tiOsl.)  
C01103N60 
C'W. 1" 
CT))I) 091tG(, 399n 
C1II,40O0 
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C"3  

FILE. . . COUP. FORMO PI  
08NF;,1.11.1 4: NLOng NFCOL: 101n  
U,. OIjNNICOLAAIN N, LTC . IA." A,2F RsQ gnt,"ANSVI", "Pl6cy"!4w, 11120JO  

"NA'ANNI, IOU 11AIL.) FILE. 'LANAI. P, 
N JAL-1 YL Alil DRUF Ilf TALI 1 1, 11111. 471?1@I,N Is  ANT L" ,INItMtAwo/j SEN." IM"I"CE, 111.12,  GO ;1111 

'id R In 1-1110 on AT" U  WT.. V I w I.-M M.  
0* SIT UP CGISIANIS INIE - At 11 - 11 O.v 
NAT C., Go !A 

AID"  
A; 1N.LV .21 

RIRDP 11 - It - 0 
3'r N vP, cfV-1"V" IT. Igl..'-1. NC.1K) IN 1 1 
gL-N I'L PP"Ruhk 11 MGM 11 V At I.Nv IYLI. - ACH.1 ADIEf. SA-CMC.". ,, TO AtCnM4.11 11 ILLEIAL C..1-UC 
,EA.AM: !P; Ann, C.44 A 'n AK.,. . 2:0 

GOAIR RIGHT - N.. cnl,11 , 0 
I  :!N 

I D .1111, 1 0 Co., ADUE  C, 11 
LNIT.11. I  1CM501I ..... TIFE nut P..A FTF- I I In 

lobSE I no','!w 
100 WA I 150 Ar Ur , I 10 1 AU-1 Nr I dL *LI U1 4, P4, NLRUW UK I AP, 'In C: 1,co, I'. I 

CIP.vil",0 MAR..  Fit 
il.MIIIIII ... I RUT, IRS, I 

AD A LIKE 'A. IMAIL SLLLCttO C.Itftflets  I'LA ICLLIII*I.C .I I-I. l 'L RE 
Put. .;, In. APNR.N ill-I.ft In.d.. L. 11D I, T. 

CALL TUPKUIINTAFEh LACC, [IRK, IOPUFI  In .n,'U IUI EK 1 -1 At 
I S F I N  

IT P M74,10,012'i SEW5 1 ..All/'EK91, :1 111 1 'If 'In CA20 1A  .,-,A,,12 FAU.'I C."..",  117 FOR-AIC/11""'ALL' I-NRJT CNANJtk. SkL CTLI ..../I
IE41L, 1 141  Go 114 L , A4 
EIU' N  GUU Allo 114 KMnICAAC.I. III, 

11 JFU(TLLCHNItC IN 71  Al nl 411 1. CRA-11urt. ""I' IN .. 1-11 I ",I'D.AMAIT[// '116C"N  

IT L ItFIVIIUI,3121  
ON IA To I, I  C111V 112 WAFIII.) 0 

o, .  C."n,", U;
MIZA.'NVA.  Col ;11 In11 B, 
jFNIC- 1KA1 CJR: G142 313  ACOZrf.nE' 12 1,4
.A1 11 A AR I .. .....IWII 41 10 11  1 N. z I I ..... F.U t .1TP.1 IA l AID RIIr W In 

I N 1 118  01N,
,I CALL uy'IIUTJOF, IIASA, 1, lonut, Jj, 1. W I I It II G,  r 

?I 1111C" C.U.I 1. '1 11  rno Y. 1, 1 1 1 "1TIN I I  'Ill 61In  C.LL I.TIMI) 1),,1.4 I A  ... IN  I 
1 -9- INIIERTILA% HU111114TILLY FMN THE MUFP-k I(, InE CnlDtR M. T . C.". 10.  

C811.61N I'LL In) 1 .7 11 1L l NC A1  4 ED,WD  LCIC.11.  
I. IC11 nl nt-,ILCIL  KR IEICC.'N  

AlCI On. ';ICOLJ 9 (%NCTTLI  n. nE1 11. 11 M-P.A." CrILIM Mo11. IC  C.A-ARMAUA LL RPCUL INIISC Go '"to'z 
I 11-11A. I ..... IF], 11 FIKII LI IC .F 11P-11 CNIM,,1 

1;1 4  CTI. J - AF D. I, cl" g,
IC "011VC.*IjI  C.,,1 21FtJ Lo. I IIF I 

11 jC;TINUE"  WIL -1173D  
I - M.M19CILMJJT 110 WFN.WC';-TZt'1 '%:4 C. I? I 

DO 14K 11-1125L 
GO to 11.1  .4. 0.1  

DO p" INPLOL  GFNA A.  
In _2141 

'3s, NO 3,0 1 - I. 
370 "1,4A 1.11 1 NIIKI - P1111101 

I TINUE CA, 11 
i1% 

r "  ITM -11i OM.....CILINTF M 1111. 400 It's - 11 C-1,71"Iq 
)TO C"FINUL 111.)

131,
C.eFUIJj"R ' '*1.!: 4111.1-11. 11 + 11 C11,111o 

310 co tme IV, 21,1, 

FILE. . .  

1.  CC" 1z U  'M AI "'Ma
I ....I All CAIIA .111111  TILE. . . LWA.1 .11TRA. PI 

IK..S1 . .11.11  .0 .. L - 1. 1 C11 I'll, 
C.EINIT, -I . 1. 

C Z. 1110 - 1, . - [C-1 11  1CNI u."oAL KL 11'. 1Nn.. 111 ISE I I 
Ul"All ... 1 11 UC j  A 

1 CC n,, 3, CCMj- A 1, 

A A' A. CN11,11.1 
.on ,IC.AM.;", ln 'IILLI IA" IAMA G. IAOA 400 ACCTINUE  n 

N CV 4'j A ' "I  IN 1. 141 
100 CCAIA u,  Mu"', , COIFP.J. 11 11 IT 4 

ITC, I CM1. 111 410  CCNTINUL _C4.1.3 11; 
PIG APRc.  I K " ' I - 1". 

Ci 1141. . 1. 1 - 1. 4 1 A",.,,
Mf 1,F... W11 COFFP11, It . R.1  

UF IILIIPI Fojll, S O.E4 t.,Cr ..... ITT  CC 10 -. 1,1 1 
V Is! 421 CCNTJAVE  

C:!1- 430 CC;IIAW  CC 1211 i 
D  IU 
P.p. .! , 1,*4V ...R  o"IMPEATIP"COIPCICTI., IPAI- . ICI-,11  CN W 

no CCNIZt 
I CALL CGIVL(CVLI I bUF. IICGLi LCGL,PUT IALInIAII-TR Al. LINE I..BkAS In WILT IWIIEEK 11.....  CM1-11111 21 COEF., II-Ml. NCRA At L 

CAL, KCUI, IkRtLGI  

To 2 1 -1. ITT CO I I **6-CHECK CP LA4U tS  I;....A., 
-Q-, 1.11G.DA. I E-1 

It - Lin!"All 11 KC.".."111) 6 CC,.", GO111' 1 I.Q Lt'. II AIR 
Co  II A'3 4201 IFL.AOT.It ) GO M470 
IUPUIII 111 11 -MII CON I I114  1 **'0* WKITE ELF HECKID  

IT R".  VIRG 4 I 
1 ?%u a-K0 2.,11.1 

1,.,r!,34 ... 11121  .10TAM cp ,,4.el. 1 !11 NCCY1  101II . Fit a *,, colliM TO EAU  As  
21 1. [1 

GatiFilCeS- GAMIN IKI  I nt In 48KI  .0,,,Ojj. 1, IJ C.1,111. 
TIT,  

ri.  'D'jPSICTLLNCal 1  I.N 1, 1 4:: CCAIWCU ZN4 , TI.C. I s  In TO ARO j 31, 261 MMo  
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2.7 Forestry Applications of Computer Aided Analysis Techniques  

INTRODUCTION  

Background  

The involvement of LARS staff in the Forestry Applications Project  
has been directed toward development and documentation of computer-aided  
analysis procedures for forest mapping. The principal activity during  
this year has been in documenting an approach to the selection of train-
ing areas. Advances have also been made in defining a statistical approach  
to the evaluation of classification accuracy. Additional activity occurred  
in the areas fo wavelength band selection, multitemporal analysis and  
change detection. Lastly, an opportunity arose to modify the computer  
classification output so that it would closely resemble a map product.  
As in the past, the primary test site for this activity has remained  
the Sam Houston National Forest. Results will also be reported for data  
collected over the San Juan National Forest in Colorado and the Hoosier  
National Forest in Indiana.  

The material presented in this report summarizes the significant  
findings to date. However, there are still areas of study where more  
work is required. These are identified in Table 2.7-1, the Research  
Task Matrix.  
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Table 2.7-1 RESEARCH TASK MATRIX  

TASKS 

1. Training Area Selection  

"Modified Cluster  

2. Statistical Evaluation  

3. Wavelength Band Selection  

4. Multi-Date Analysis Procedures  

5. Change Detection  

6. Line maps  

Current Research Status  

0 
(V 

CO 

Q4 00 
o oo 

0.no 4< H 04f 

x  

To develop and document procedures  
for selecting from MSS data training  
areas for performing forest cover  
classifications  

To develop and document a suggested  
set of procedures to follow for  
evaluating computer classifications  
of forest sites.  

To select and evaluate which wave-
length bands or regions are most  
suitable for classfying forest cover  
with MSS data.  

.. 5I1× I 
Develop a set of procedures which are  
best adapted for using multitemporal  
data for classification of MSS data  
over forested test sites.  

x I ,- i 
Investigate the various approaches to  
performing change detection with  
LANDSAT data.  

)CXJxJxI I 
Develop techniques to produce line  
rather than grayscale maps.  
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OBJECTIVE  

The overall objective of this research task was: "To work toward  
refining and documenting procedures on how to use various computer-aided  
analysis techniques in an operational forestry mapping application.  

MATERIALS AND METHODS  

LARSYS  

Cognizant of FAP's desire to transfer new technology to the U.S.  
Forest Service, LARS staff working on this project refrained from  
developing new computer programs whenever possible. However, new  
capabilities often require new programming. The capability to utilize  
a CalComp Plotter to produce line maps is an example of an area where  
new programming was required. Programming activities were kept to a  
minimum and standard programs which appear in the LARSYS 3.1 DOCUMENTA- 
TION or are available on the LARSYS Experimental Library were utilized.  

Data Availability  

The  following data sets were utilized for analysis:  

1.  LANDSAT-l data, multiple dates, for both the Sam Houston  
National Forest and the Hoosier National Forest.  

2.  NC-130 aircraft data, MSDS 24 channel scanner, collected  
over part of the San Juan National Forest during NASA Aircraft  
Mission-247.  

Test Sites  

1.  Sam Houston National Forest is located approximately 50 miles north  
of Houston on the East Texas Coastal Plain. Predominantly a southern  
pine mono type.  

2.  Hoosier National Forest is located in south central Indiana on un-
dulating Illinoian aged flacial deposits. The oak-hickory cover pre-
dominates to the extent that the site is almost a hardwood mono type.  

3.  The San Juan National Forest is located in south west Colorado on  
uplifted volcanic material that has been extensively altered by glacia-
tion. Conifer, both pines and spruces and aspen are the predominant  
cover type.  
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PROCEDURES  

The material presented in this section-ddalt with'-the%'t&sk state-
ments defined within the-overall research objective These-tasks can  
be-briefly stated as:  

1. Selection of training'sets-

2. Statistical evaluation of cassifidation accuracy:  

3. Wavelength-band-selection-

4.- Wavelength band selectionrfor.multitemporal' ddta sets  

5. Change detection  

Selection of Training Sets  

The publication '"A.,FrestryApplicatio- Simulatin of:Man-Machine Techniquesfor Analyzing Remotely.Sensed..ata'," was-l prepared2specifically.  

for this task. Personnel fromrthe,FAP andTechnology;-Transfr. activity  
worked together to produce this trainingsimulation. IA addition to  
addressing the question of training-set.selhctionfor,,computeraided  
analysis, the.authors go into more detail 'regarding,the entire-concept  
of machine-assisted analysis.  

This document is aimed.-at an: audience- that-has -not%beenextensively 
involved in remote sensing-activities. The concepts.described~are aimed  
at giving the reader a new.perspectivei. This:publication-ncould be con-
sidered the first ifi a .series of successive volumes each more-.detailed.  
Such detail could include in-depth studies -of certain-analysis-procedures  
or- specificapplications examples, such:as -range; water-or timber manage-
ment,.  

Evaluation of Classification Accuracy- 

Discussion  

The objective of this task .was to develop procedures-to 'statistically  
evaluate the accuracy of computer-assistedLANDSAT,classifications. 
Results reported in "Analysis of Aircraft:MSS Data for Timber-Evaluation'" 
(Mtoczynski, et.al. 1976), and4inthe.FAP'final report fdr"CY75 indicate 
the suitability-of statistical evaluation-of classificati6ns-ccuracy fors 
large geographic areas. A necessary requirement for performing this 
evaluation is that the analyst.have good.ground reference-dataavailable.  
Without current ground reference data, either aerial photograph -and/or  
detailed ground cover maps, the evaluation -cannot be-as meanifigful.  

Unfortunately, our experience has been that accurate ground informa-
tion is not-zalways available for forested..test'sites; Forestttype-maps 
generally-indicate- the age, size-and merchantable status of..azfdrest stand.. 
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These qualities may not relate to the stands spectral characteristics  
which are the basis for the statistical evaluation, so therefore may  
or may not be meaningful ground reference information.  

Providing suitable ground reference information is available, a  
systematic sample grid can be aligned with the classification. The  
analyst then interprets these fields with the aid of the ground reference  
information. When the fields have been interpreted, various statistical  
tests can be applied to the results and inferences can be drawn about  
the classification accuracy for the entire site. This 'sectionwill  
emphasize the statistical test procedures.  

Figure 2.7-1 outlines the steps in the statistical evaluation  
procedure. An underlying assumption in this figure is that there  
exists a well-defined analysis objective. After obtaining the prelim-
inary classification, the analysis should question how well it meets the  
analysis objectives. If the analysis is confident in his results there  
may be no need for further evaluation. Undoubtedly, the data analyst  
is not the ultimate user of the-classification information. The statis-
tical evaluation may be used to capture the user confidence and therefore  
may be performed even if the analyst was confident in his results.  

The'essential steps in the evaluation are:  

- List the cover types to be tested  

- locate potential test fields by systematic sampling with random  
start  

- interpret and label the acceptable test fields  

- perform the analysis of variance (including investigation of  
interaction for 2-factor Analysis of Variance) and range test  
calculations.  

The tables which follow illustrate the Analysis of Variance proce-
dures and are set up in the general form of 1) verbal description of  
step, and 2) numerical example. These tables are applicable in any  
situation by substituting values and performing the new evaluations  
based on the new values.  

Analysis of Variance Tests  

Remote sensing MSS data are fundamentally binomial in nature.  
Pixels in computer classifications are either identified correctly or  
incorrectly, hence their binomial distribution. As a result, the arcsin  
-Vp transformation should be applied since, according to Steele and Torrie  
(1960);  

"The data, can be transformed or measured on a new scale of  
measurement so that the transformed data are approximately  
normally distributed. Such transformations-are also intended  

ORT''QU, Aj  
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LANDSAT Computer-Aided  
CCT Analysis  

Analysis Goals4  

) PreliminaryClassification  

How Well Does  
It Meet Goals?  

Generate Field 
Grid Select Sample Sire 

I --Type Maps 

Interpret Fields -- *--Aerial Photos 

SReclassify 
R f-Topographic Maps 

Produce Accuracy  
Tables forGridded  

Fields  

I  
Analysis of Variance-- Attach Confidence  

Unacceptable Acceptable - Interval on Clas-
Classification Classification sification. 

Performance  
Test Best of Sev-
erdl Classifications.  

Test Which Classes  
are Best Classified.  

Figure 2.7-1 Steps in Implementing the Stage II Statistical Evaluation  
Technique  
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to make the means and variances independent, with the resulting  
variances homogeneous. This result is not always attained."  

The importance of making the means and variances independent and the  
variances homogeneous is tied into the fact that these basic assumptions  
are made when performing an analysis of variance.  

Regarding the effect of sample size upon homogeneity of variances,  
we recommend that at least 50 to 100 observations (one pixel = one obser-
vation) be obtained for each cover type to be tested. This removes  
the need for application of corrections to small sample sizes ( 50) as  
recommended by Snedecor and -Cochran (1967). For sample sizes ranging  
from 50 to 1000, the comparisons among the percentage accuracy of cover 
type identification may be somewhat influenced by unequal variances.  
But for most studies an adjustment or weighting by the actual sample  
size is very seldom needed to obtain reasonably good comparisons.  
Especially if the range is from 100 to 500 samples, the assumption of  
homogeneity of variances is not usually violated enough to warrant a  
weighted transformation before running an ANOVA.  

The main advantages of the angular (arcsin-V) transformation are  
that the error variance of the resulting observations (in degrees) is  
approximately constant, has infinity degrees of freedom (oo df), and is  
equal to 821/n ("n"; sample size). The transformation is used as the  
unbiased estimator of the mean square error. Since sample sizes will  
vary among cover types, the harmonic mean (Table 2.7-7, which averages  
the different numbers of observations per accuracy mean, should be used  
according to Steele and Torrie3 .  

Two analyses of variance which will be encountered most often in  
LANDSAT applications are: 1) one-factor ANOVA, and 2) two-factor ANOVA.  
The one-factor ANOVA would be used to test for significant differences  
among cover types of a single classification or among overall accuracies  
of different classifications of the same data (e.g., wavelength band  
studies). The model for the one-way ANOVA (assuming transformed accuracy  
means) is:  

Yi = + Ci + E(i) 

where  
Yi = the overall accuracy (in degrees) of the i-th classification  

or cover type  

= true overall accuracy mean  

C1 = effect of the i-th classification or cover type  

E(i) = random error of the i-th classification or cover type  

The best estimator of E(i) £s assumed to be 821/n (n= harmonic mean of  
sample sizes). This estimator is used as the mean square-error  

ORIGINAL PAGE IS  
Or POOR QUALITY  
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(denominator, with infinity degrees of freedom) in the F test for signi-
ficant variation (Tables 2.7-2 and 2.7-3.)  

A -two-factoranalysis of varrance would entail testing for signifi-
cant differences among different classifications of the samedata set  
(e.g., wavelength band studies) and, at the same time, among cover types  
in the same data set. Thus, both factors (classificatimn 'and'cbver type)  
are  tested simultaneously. The model for a two-factor ANOVA is:  

Yij  = p + Ci + Tj + CTij + E(ij) 

where  
= Yij classification accura'cy (in degrees) of the i-th dlassifica-tion for the j-th cover type  

= true overall accuracy mean  

Ci  = effect of the i-th classification  

Tj  = effect of the j-th cover type  

CTij = effect of the interaction between the i-th classification and  
the j-th cover type  

E(ij) = random error, which is normally and independently distributed  
with mean = 0 and variance - uz  

If the interaction effect, CTi., is found to be nonsignificant, E(ij)  
(which equals 821/n) provides ihe error mean square for the denominator  
of the F test. Again, it has infinity degrees freedom, thereby enabling  
a powerful F test.  

Since interaction can occur between classifications and cover types,  
the interaction must be investigated to determine whether it is a 
"significant" source of variation. Essentially, an attempt is being made  
to find the best estimator of the error mean square for the F test. The  
interaction investigation proceeds as follows (and, Table 2.7-6):  

A)  If (CTi/df)/821/n) is not significant at a = .25 (F test),  
conclude there is no significant interaction and ue 821/n  
for all F tests.  

B)  If it is significant at the .25 level, this may bedue to the  
821/n being too small because error other than binomial to normal  
is not included in 821/n. Hence, obtain the mean square for  
non-additivity with one degree of freedom from Anderson and  
McLean4 .  

1)  If the residual mean square is not significantly different at  
a = .25, using 8 21/n as-the denominator in the F, then use  
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821/n with infinity df for all tests.  

2) If the residual mean square is significant at a = .25,  
use the residual mean square for all tests. This mean square  
has finite degrees freedom and provides a less powerful test  
than 821/n with infinity df.  

The Newman-Keuls Range Test is an appropriate test for discerning  
which accuracy means are significantly different (Table 2.7-7). For  
this and preceding ANOVA's, we recommend that the level of significance  
be set at 90% (0.1 alpha). Thus, the tests will be quite "liberal" in  
the sense that if any significant differences exist, they will probably  
be detected. Theoretically, this means that the beta (B) error is made  
low (error of not detecting a significant difference when it truly exists)  
at the expense of raising the alpha error (error of denoting significant  
differences when not truly present).  

Test  

The one-factor analysis of variance test was applied to results  
obtained for the Sam Houston National Forest. Table 2.7-8 shows the  
calculations and the Newman Keuls Range Test for five differenc cover  
types. The conclusions drawn from this test is that at the 90% level  
there is no significant differencA between classes one and four, or non-
forest and pine. In other words, these classes would be difficult to  
separate whereas the remaining classes would be more easily separable.  
However, the percent of the pixels correctly identified in each class is  
not high. One would expect better accuracy results considering the species  
compostion of the area.  

What this example typifies is a situation where sufficient ground  
reference data were not available for the analyst's evaluation. Given  
the information that was available only a limited number of systematic  
fields could be evaluated as indicated by the small number of pixels in  
each class. If a complete set of aerial photographs were available for  
the entire Sam Houston Test Site, the results of the statistical evalua-
tion might be different.  

Wavelength Band Evaluation Studies  

Discussion  

One  important consideration prior to undertaking an analysis task  
relates to the type of data available. The timeliness, quality, and  
data channels available for analysis are factors that must be considered.  
For this particular task we attempted to identify data channels best suit-
ed for forest mapping purposes. We were concerned with two situations:  

1.  A wide range of channels (MSDS 24 channel scanner of SKYLAB S-192  
data) available for a single data collection date, and  

ORIGINAL PAGE IS 
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Table 2.7-2  one-factor analysis of variance and Newman-Keuwls Range Test,  
three different cover types- from the-same computer classifi-
cation.  

PROCEDURE  EXAMPLE  

Apply arcsin1p COVER TYPE NUMBER OF PIXELS ACCURACY (7) TRANSFORMATION 
transformation to - Agricultural (A) 1-50 88.7' 70.3 
cover type classifi-- Forest (F) 70 81.4' 64.5 
cation accuracies Water.(W). 80 98,8 83.6. 

alcuJate cover type SST  C70.3) 2 +. (64,)2 + 836)2,1 --

sum of squares  [(.70.3 + 64.5 + 83.6). /0]' 
191.9 

Determine cover  Mean Square- (i.e., 14ST =SS! (Number of means -1)  
type mean square  MS = 191.9/2 = 96.0,

Tw  

Calculate F test  A) F = 96;Oi [82111,89.1". =%lO ,(significant) 
and determnine.  
whether significant  B) Tabular. Ft+ = 2.30 

(90Z level, o =,0 i) 

Arrange transformed' (W) (A)- (F) 
means in descending 83.6 70.3, 64.5 .  
order  

Calculate standard Sy -'error mean suare/number obs. per mean, 
error of mean = [821/89.7 11.' 

= 3.03' 

Determine tabular Number-of-means range.= (Studentied.Range ) ) 22df 3(S 
ranges (Newman- 05F2. 7 2   Keuls Range Test) R3 =  (2.902)(3.03) -88 -0.1 . 3.314 

(2.326)(3.03).= 7.0,R2  

Draw bars between (W) (A) (-F)  
means,with ranges, 83.6 70'3. 64.5-
less than the (Hence; classification- accuracy of, water is.  
corresponding sinificantly: better-than that for agriculture-
tabular ranges  and forest),  

*These values can be found in the Appendices of most statistics texts;.  
+Observations per accuracy mean = 1. 
@Number of accuracy means.  
**Hamonic mean = number- of means/(l/obsevatons pen mean) 3/(l/150'+ 1/70-1/80)-89-7. 
4+Number of accuracymeans -1 = degrees,freedbm.  

http:2.326)(3.03
http:2.902)(3.03
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Table 2.7-3 One-factor analysis of variance and Newman-Keuls Range Test,  
three different classifications of same data set.  

PROCEDURE EXAMPLE  

Apply arcsin-T CLASSIFICATION OVERALL ACCURACY (%) TRANSFORMATION (DEGREES)  
transformation to 1 88.3 70.0  
overall classlfi- 2 80.7 63.9  
cation accuracies 3 89.7 76.3  

Calculate SS, = R70.0)2 + (63.9)2 + (71.3)91-classification R70.0 + 63.9 + 71.3)2/t]  

sum of square = 31.2 

Determine Mean Square (i.e., MS,) Z Sum square (i.e., SS,)/(Number of 
classification means -1) 
mean square MSc = 31.2/2 = 15.6 

Calculate F test and A) F = 15.6/ C821/300] = 5.7 (significant) 
determine whether B) TABULAR F += 2.30 

2 m significant  
(90%)  

Arrange transformed (3) (1) (2)  
means in descending 71.3 70.0 63.9  
order  

Calculate standard S = error mean square/number observations per mean 
error of mean = V821/300 J /I 

= 1.65 

Determine tabular Number-of-means range = (Studentized range (df= )(SY) 
ranges (90%) = (2.902)(1.65) = 4.8R3  

= (2.326)(1.65)= 3.8 2  

Draw bars between (3) (1) (2)  
means with ranges 71.3 70.0 63.9  
less than the corre- (Hence, the second classification is significantly  
sponding tabular different from the first and third.)  
ranges  

*Observations per accuracy mean = i.  
+Number of accuracy means.  
@There are 300 test pixels (observations).  
++Number of accuracy means -1 = degrees freedom.  

ORIGINAL PAGE 1-
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Table 2.7-4 Arcsin-vj transformation of classification results. This  
transformation changes the binomial nature of these values  
(pixels are correctly or incorrectly identified) to a new  
scale of measurement so that the assumptions.necessary for  
analysis of variance can be made. The transiformed data  
should be approximately normally distributed, means and  
variances independent, and the resulting variances homoge-
neous (4).  

CLASSIFICATION COVER TYPE 
ENUMBER OF 
OBSERVATIONS 

PERCENTAGE COR-
RECT CLASSIFICA-

ARCSIN-F(degrees) 
TION. 

1 
Agriculture (A) 
Forest (F) 

150 
70 

867 
85.7 

-

8 
Water (W) 80 93.7 75.5 
Agriculture 150 80.O 63., 

2 ,Forest 70 74.2 59;5 
Water 8o. 87.51 69.-

Agriculture 150 88; , 70.3 
3 Forest M0 81. 64.5 

Water So 98.8- 83.6 , 
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Table 2.7-5 Calculation of sums of squares.  

CALCULATION 
CATEGORY CALCULATION 

Correction CT = (68.6 + 67.8 +...+83.6) 2/9*-
term, C.T. = 43,056.3  

Classification SS [(68.6 + 67.8 + 75.5)2 + (63.4 + 59.5 + 69.3)2 + c  
(70.3 + 64.5 + 83.6)33+ - C.T. 

= 124.0 

Cover type SST = [(68.6 + 63.4 + 70.3)2 + (67.8 + 59.5 + 64.5)2 + 
(75.5 + 69.3 + 83.6) - C.T. 

= 236.7  

Total SSTOT (68.6)2 + (67.8)2 ±..± (83.6)2] -C.T. 
= 43,456.9 - 43,056.3 
= 400.6 

Interaction SSINT/ER = SSTOT - ( SST + SS) 
and/or = 400.6 - (236.7 + 124.0)  
error = 39.9  

Set up ANOVA source of -degrees of sum of mean 
table variation freedom (df) squares (SS) square (SS/df) 

Classifi- (Classifications 124.0 62.0  
cation -1) = 2  

Cover type (Cover types -1) 236.7 118.4  
=2 

Interation 8-(2+2)  

and/or error 4 39.9 10.0  

TOTAL Accuracy means-i 
= 8 400.6 

* Number of means (cells). 
+ Number of cover types.  
@ Number of classifications.  

ORIINAL. PAGE IS  
OF POOR QUALITY  



2.7-14  

Table 2.7-6 Investigation of Interaction-.  

PROCEDURE  EXAMPLE 

A)  Test for significance (75% -level," F = Interaction and/or error-mean ,square/1821/n*J 
of interaction- .25) = 39.9/[821/897] 
STOP HERE if not = 4.3 (significant) 
significant-use 
821/n for all tests tabular P4 =1w 

B)  Obtain the meansquare 1) Produce following table: 
O 

with I degree of CATEGORY COVER TYPES EAO VERAL N- (RI'O MEAN- 2 
for Non-additivity  

fredomAG  FOR ,VIAT 4EANS OVERALL JO EWL FffAN)freedom  
Ci. 1 68.6 67.8 75.5 T0.63 1.46 2.13  
Cl. 2 63.4 59.5 69.3 54.07 -5.10 2601  
Cl. 3 70.3 64.5 83.6 72.80 3.63 13!18 
Col, R '7.43 63.93 (6.1 R Z= 41.32 
Col. C- 4 =69.11
ovegrall Y-.1.74 "-5.24 6.6 

(,.)2 3.03 27-.46 48.41 , 78;93 

2)  Calculate mean ,square (i.e., sum of squares/1 )=E(68.6)(I .46)(-i .74)+(67.8)(I .46)(-5.24)+(75.5)(1 .46)(6.96)+ 
(63.4)(-5.1)(-I .74)+(59.5)(-5.1 )(-5.24) (69.3)(-5.1 )'(6.96)+  

(70.3)(3.63)(-1.74)+(64.5)(3.63)(-5.24)+(83.6)(363)(6.96)J] 2/ 
(41.32)(78.93) = 13.81  

BI) Test residual mean 1) Msre = Interaction and/or Error SS - .Ndn-additivity MS/s  
square for signif- residual degrees freedom  
icance- STOP HERE =C39.9- 13.81] /#'  
if not significant- =8.7  
use 21/n for all -2) F = 8.7/[821/n*] (75% level)  
tests = 8.7/9.2  

= 0.94 (not significant) 
tabular P3@ = 13o7 

Use residual mean 
B2) 

square for all tests = df = 3 
*Harnonic mean number of= accuracy means/($1/observations per mean) = 9/(1/150 + 1/150 

+ . . . + 1/80) = 89.7. 
+Degrees of freedom for interaction and/or error mean square.  
@Degrees of freedom for residual sum of squares = degrees freedom for interaction and/or  

error SS - 1.  

http:41.32)(78.93
http:70.3)(3.63
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Table 2.7-7 Tests for significance using best estimator of error  
mean square, as determined by investigation of inter-
action.  

SOURCE OF DEGREES OF SUM OF 1EAN TABULAR F  
VARIATION RE OM SQUARES SQUARE TEST 0%)  

Classification (Classifica-
tions- 1)= (signif.)  
2 124.0 62.0 6.7 F2, = 2.30  

Cover Type (Cover types-
1))= (signif.)  

2 236.7 118.4 12.9 PF20, -- 2.30 

Error - 827/89.1 

The residual mean square was found to be nonsignificant. If significant, the  
residual mean square would be used in place of 8 21/n for all tests.  

+Harmonic mean.  

0x 
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Table 2.7-8 Newman-Keuls Range Test for classifications and cover types.  

Even if only one of two main factors is'stgnificant, the means  
may be kept separate for ehe range tests.  

EXhaPLEPROCEDURE  

Arrange transformed (340* (1-W) (3-A) (2-W) (l-A) (1-F) (3-F) (2-A) (2-F)  
means in descending 83.6 75.5 70.3 -69.3 68.6 67.8 64.5 63.4 59.5  
order  

Calculate standard Sy' Verror mean square/observtions per cell  
error of-mean = -V9.2/ 1 = 3.03, 

Determine tabular Number-of-means range = (Studentized range)(df+- )(SY) 
ranges (90% = (4.037)(3.03) = 12.'2 R9  

level, = (3.931)(3.03) = 11.9 R9  
0.1) = (3.808)(3.03) = 11.5 R7  

R6 = (3.661)(3.03) = 11.1 
RS = (3.478)(3.03) - 10.5 
Rq = (3.240)(3.03) = 9.8 

= (2.902)(3.03) = 8.8  
R2  
R3  

= (2.326)(3.03) = 7.0  

Draw bars between  
68.6 67.8 64.5 63.4 59.5 means with ranges 83.6, 75.5 70.3 69.3  

less than appropriate  
tabular ranges,  

Accuracy mean for water of third classification. 
+Same degrees freedom as the error (residual) M3. If the residual MS in Table 5 had been 

significant, the df for Studentized range woujd'be"3. 

http:2.326)(3.03
http:2.902)(3.03
http:3.240)(3.03
http:3.478)(3.03
http:3.661)(3.03
http:3.808)(3.03
http:3.931)(3.03
http:4.037)(3.03
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Table 2.7-9 

PROCEDURE EXAMPLE 

apply arcsin-V- COVER TYPE NUMBER OF PIXELS ACCURACY (%) DEGREES 
1 non-forest 144 69.4 56.42 
2 hardwood 56 82.1 64.97 
3 mix 72 34.7 36.09 
4 pine 348 59.2 50.30 
5 dense pine 180 22.2 28.11 

- SS SS = E(56.42)2 + (64.97)2 + (36.09)2 + (50.30)2 + (28.11)23/1 
E(56.42 +...+ 28.11)/53 

= [3.83.2 + 4221.1 + 1302.5 + 2530.1 + 790.21/1 - 11,128.8 
=-12,027.1 - 11,128.8 898.3 

MS 898.3/(5-1) = 224.6  

P Test F = 224.6/[821/(5/(1/144 + 1/56 + 1/72 + 1/348 + 1/180))] 
= 224.6/[821/106.0] 
- 29.0 (significant) 

tablar F4 , - 1.94 (90% level, a - 0.1)0 0  

=2.78  

tabular ranges  
(N-K) = (3.478)(2.78) = 9.67 R5 

= (3.240)(2.78) 9.01R4 R3 = (2.902)(2.76) = 8.07 
R2 = (2.326)(2.78) = 6.47 

(2) (1) (4) (3) (5)  
6 .97 56.42 50.30 36.09 28.11 (0.1 90%)  

82.1X 69.4% 59.2% 34.7% 22.2% 
hardwood ncn-mfinst pxue mt: dense pine 

£GINAL PAGE IS 
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2.  A narrow range of channel (LANDSAT) but availdble for multiple  
points in time.  

There are unique problems associated with each case. In the first  
the analyst is concerned with selecting a meaningful channel set that will  
yield a good classification without using an excessive amount of computer  
time. The time factor is critical in areas where large amounts of data  
must be processed. Generally fewer channels require less processing time.  

The second situation requires -selecting the best channel of.combina-
tion of channels from data sets collected at different times. The inter-
actions that must be considered are both occurring within -andbetween data  
sets. This situation generally 'occurs with satellite col-ected data which 
are easily overlayed in registration, as in the case of LANDSAT data.  

Single Data Analysis  

The single data analysis is probably the mostcommon data classifi-
cation situation attempted. If LANDSAT data is involved, there is not  
much concern about selection of channels, since only four ane available.  
However, with aircraft and future satellite systems, the concern for  
selecting the "best" channel from a larger mumber of channels is'under-
standable.  

For this study MSDS 24-channel scanner data collected over the  
San Juan National Eorest as part of NASA Mission 247 was utilized.  
Figure 2.7-1 indicates the general location of the study site and the  
composition of the ground cover.. 'These data were collected-August 4.,  
1973.  

COLORADO  

X 

.Figure 2.7-1 Approximate test site location in Southwestern Colorado.  

Cover type composition and caption is shown in Migure 2.7-2.  
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AA  

p 2NF  

The classes have been Figure 2.7- 2  Generalized forest type map of the test site.  

simplified from a Forest Service map to indicate the species composi-

tion of the site. The cover types are:  

A - Aspen
SF - Spruce-Fir 
NF - Non-forest, including non-commercial tree species, shrub lat 

bare soil and rock 

The map includes a nine section area around the Rio Grande Reservoir.  
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Our objective was to select the channel combinations that would  
yield the best classification for general forest cover types. Realiz-
ing the future significance of the Thematic Mapper (TM) we limited our  
investigation to a subset of the 24 channels that closely resembled the  
TM channels. Table 2.7-10 indicates the proposed TM channels and the MSDS  
channels. The boxes aroung the MSDS channels indicate which were used  
for this study.  

Training sets were picked within the study area that we felt were  
representative of the cover types. -These estimations were,based on-
coincident aerial photography collected during Mission 247 ,'and Forest  
Service cover type maps. The scanner data were processed with the  
*SEPARABILITY function of LARSYS. Table 2..7-11 gives the channel combin-
ations for the best 2 through 7 channels. Similar results over the same  
test site were obtained from SKYLAB S-191 data and reported by Hoffer  
et al: 5.  

All seven channels were used,'to classify a small poriton of the  
study area surrounding the Rio Gradne Reservoir,. Figure 2.7-3 shows a  
CalComp map of the results of that,classification and a,blackand-white  
copy of a color infrared aerial photo from Mission 247. This'classifi-
cation can also be compared to Figure 2.7-2 which is the forest service  
type map of the same area. The classification has good visual agreement 
when compared with the aerial photo. A certain amount of disagreement 
can be expected between the classification,and.type map because of the 
different criterion used to develop each map. The classification is 
based on spectral criteria while the type map is,based on timber,manage-
ment requirements. 

Once a satisfactory classification for the ten classes of material  
had been developed successive classifications-, each ddleating channel and  
using the next "best" selection of channels were produced'. This proce-
dure was followed to determine the point, at which the classification  
accuracy for forest falls below the point of being acceptable. Since we  
had no absolute measure of classificatiov accuracy and we were well  
satisfied with the visual correspondence of the seven channel classifica-
tion and the air photo, we assumed this.classification to be the best.  

For an actual mapping situation, the analyst would attempt to  
minimize the number of'channels used to save processing,costs. Previous  
studies at LARS (Coggeshall and Hoffer, 19736) indicate that past five  
channels the increase in classification accuracy-is not enough to warrant  
the increased processing cost.  

The area estimates for each class of the five classifications were  
compared against the estimated area'of'those cover types as mapped on the  
seven channel classification. Table 2'.7-12 gives the percent area for  
each cover type for the various classifications. A review of the table  
indicates that there were no drastic changes,as the numbers, of channels  
were decreased. If this rela'tionship is valid for other'data sets in  
other geographic areas it would provide for useful guidance for appling  
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rable 2.7-10 Proposed Thematic Mapper Channels  

Bendix 24-channel Proposed Thematic  
Data From Mx 247 Mapper Channels  
San Juan Test Site LANDSAT-D  

ch. no. Bandwidth ch. no. Bandwidth 

24 .38-.40 

12 .40-.44 

1 .47-.49 1 .45-.52 

13 .53-.58 2 .52-.60 

2 .59-.64 

14 .65-.69 3 .63-.69  

3 .72-.76  
4 .74-.80 

15 .77-.81 

4 .82-.88 5 .80-.91 

16 .98-1.04 

23 1.06-1.09  

11 1.13-1.17 

5 1.20-1.30 
17 1.53-1.62 

6 1.55-1.75 
6 2.30-2.43 

18 3.78-4.04  

7 4.05-4.46  

19 6.00-7.00  

8 8.27-8.70  

20 8.80-9.30  

9 9.38-9.88 

121 10.10-11.0 7 10.4-12.5 

11.00-12.0 10  

22 12.00-13.4 
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Table 2.7-11 

CHANNEL SELECTION * 

GRANDE RESERVOIR TEST SITE 

Channels Channel Combinations 
and 

Wavelengths 2 channels 3 channels 4,channels 5 channels 6 channels 7 channels 

Channel 1  
0.47-0.49 x x x x x  

Channel 3  
0.72-0.76 x x x  

Channel 4  
0.82-0.88 x x x x  

Channel 13  
0.82-0.88 x x  

Channel 14  
0.65-0.69 x x x x  

Channel 15 
0.77-0.81 x x x x 

Channel 21  
10.1-11.0 x x x x x 

• Results obtained from utilization of LARSYS (Version 3.2) function *SEPARABILITY  
The channels listed are a selected subset of 24 channels collected during NASA  
Mission 247 flown August 4, 1973.  

http:0.77-0.81
http:0.65-0.69
http:0.82-0.88
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l c sif n of te t t  
Figures 2.7-3 and 27 The  

C- Coifr sprcefi 

A - Aspen 
S - qO~QJWOF~~Bare sail 
Y - Grass and soil mixture 
C - Grass 
H - Shrub areas 
Rt- Bars rock 
W - Water 
D - Dense conifer 
N - Topographic shadow 

this map has been generated from classification of aircraftBecausedata the scale of the map varies across the map. 

Aerial photo in Figure 2.7-4 corresponds to area in map. 
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Rio Grn  

Figure 2.7-4 Black-and-white copy of a color infrared transparency from NASA  
Mission 247. Representative classes of Aspen (A), Spruce-Fir (SF)  
and Non-Forest (NF) have been marked which correspond to similar  
areas on the classification.  

CrAZ p 



Table 2.7-12 Channel Selection Study 

COVER TYPES 

O 

.4 

w 

z 

7 
CHANNELS 

6 

5 

4 

3 

2 

DENSE 
CONIFEROUS 

TREES 

11.1 

11.8 

12.1 

13.7 

14.1 

13.1 

NON DENSE 
CONIFEROUS 
TREES 

26.4 

25.4 

26.1 

24.9 

23.8 

27.6 

ASPEN 

7.9 

8.2 

7.3 

8.1 

8.7 

5.1 

CHAPARREL 

8.8 

8.9 

9.0 

8.9 

9.0 

8.4 

GRASS 

1.3 

1.4 

1.5 

1.3 

1.4 

1.4 

GRASSY 
SOIL 

4.6 

4.6 

4.5 

4.5 

4.7 

4.3 

BARE 
SOIL 

1.5 

1.5 

1.4 

1.1 

0.9 

3.5 

ROCK 

24°2 

24.1 

24.0 

23.5 

23.3 

22.2 

WATER 

11.5 

11.5 

11.6 

11.5 

11.6 

11.6 

SHADOW 

2.7 

2.7 

2.6 

2.5 

2.6 

2.8 

CHART SUIMARIZING CLASSIFICATION RESULTS 

RIO GRANDE RESERVOIR SUBSET 

*Numbers are in percent of the total data points of the area classified. 

Ln 
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satellite data to attempting parge area analysis. This would be especially  
true if the analysis objects required specific information on.general  
forest cover, an area not drastically affected by a reduction in the num-
ber of channels.  

Additional work along with simulated Thematic Mapper scanner data  
should be pursued, especially in different geographic locations with  
differing mixes of forest cover types.  

Multi-date Analysis  

The LANDSAT satellites provide the opportunity to acquire, register  
and analyze multi-date data sets. This capability allows for analysis of  
data in which the identification of certain cover type categories is  
maximized (e.g., such as separating mixed stands of conifers and hard-
woods). Once a multi-date data set has been created the analyst is faced  
with the problem of selecting channels from the data available for analysis.  

The channel set selection process would seem identical to the single  
date situation. Indeed, the same *SEPARABILITY processor is used in either  
situation. The problem with multi-date data rests with the selection of  
the appropriate data sets to use for analysis, then further selection of  
channels within those data.  

We had a -seven date LANDSAT data set available over a portion of  
the Hoosier National Forest in central Indiana. Our approach was to first  
visually rank the data over the test site. We felt that if the data were  
ranked we-could eliminate certain dates based on the appearance of the  
data at that time of year. Our ranking was based on color infrared  
composites produced on the digital display. Ten categories were ranked  
on a scale of 0-3, based on how distinguishable that class was at a given  
date.  

Table 2.7-13 gives the visual rating for the ten classes. The higher  
the number, the more distinctive the class. Based on this ranking the May  
data set should have been the best for all cover types while the June  
data set the worst.  

Our next step was to use the *SEPARABILITY processor to see if these  
results would be comparable. *SEPARABILITY was run independently for each  
of the seven dates to determine the channel ranking within the data sets.  
The best two channels for each date were then run through *SEPARABILITY to  
determine the best channels between data sets. This procedure was repeated  
for the next best two channels so that eventually all 28 channels were  
run through *SEPARABILITY. The data were processed as two groups of 14  
rather than one group of 28 for efficiency's sake. There are many more  
combinations of 28 than of 14, therefore, consuming more time to produce  
the required information. The results of these efforts are shown in  
Table 2.7-14. The channel ranking appears next to the bandwidth which  
appears in parenthesis. The last column in the table gives the results of  

ORIGINAL PAGE IS  
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Table 2.7-13  Visual Distinctiveness Matrix. Each cover type/date combin-
ation was assigned a number from low (0), to high (3) distinctive-
ness depending upon how easily the cover type could be identi-
fied in simulated color-infrared imagery from the LARS digital  
display. Three foresters assigned these numbers by group con-
census.  

LOCATION DATE COVER TYPE SUMMATION  LANDSAT 
SCENE ID 

CU  03 

a, 0 $4 ,- . P 

H- CU 30 P00 
o~o 4 W 

P 0- 3 
P8 0 0 0 0 0 i-4 C00 cd 06 -
0) 0 0 0 ca P- P t44 

Ma ,7 HFCnrl' 3 i 3 - 3 11 125160.-'d~2 3 'J Q.4 2i) Q)03 2 4J- r2 c -7 
$ P P- o- 0 (43 41 4-1 W 4U 

U W W W 0 04 3: 3 0 z 3 r 
Au.1,7 0- 3- - 4 $ 123 3 2 1 2$64  132153 

BNF-Central May 4, 73 1 2 3 3 2 2 1 3 2 2 2 21 1 17 1285-16001 
Indiana June 8, 73- -1 2 2 0 0 0 1 2 0 0 1 8 5 6 1320-15541 

Aug. 19, 73 0 1 1 0 3 3 3 2 1 2 2 16 4 12 1392-15531 
Sept. 7, 73 0 3 1 0 2 3 3 3 3 1 3 19 2 13 1411-15584 
Nov. 17, 73 3 0 0 0 3 3 3 3 3 1 3 19 2 13 1482-15514 
Feb. 15, 74 3 1 0 1 1 1 3 3 3 1 3 17 3 11 1572-15493 
Mar. 8, 74 3 1 0 1 3 2 3 3 3 0 3 19 2 13 1591-15550 
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Table 2.7-14 RANKING OF MULTITEMPORAL DATA SET 

Date Rank 
Best 2 of 4 channels Other 2 of 4 channels 

per date per date 
Ist 14 2nd 14 

May 4, 1973 7 (VIS 2) 7 
11 (IR 2) 10 

June 8, 1973 1 (VIS 2) 2 
2 (IR 1) 1 

August 19, 1973 3 (VIS 2) 
13 (IR 2) 1 

September 7, 1973 10 (VIS 2)
5 (IR 1) 

6 
5 

November 17, 1973 12 (VlS 2) 13 

14 (IR 1) 12 

February 15, 1974- 4 (VIS 2)
9 (IR 2) 

14 
4 

March 6, 1974 8 (VIS 2) 8 
6 (IR2) 9 
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the second set of 14 channels.  

A comparison of the visual and numerical ranking shows that the  
order of the ranking has been changed considerably. June, the lowest  
ranking in the visual is the best in the numerical ranking. And, in  
fact, subsequent analyses has indicated that June is probably a better  
data set for overall analysis than May.  

The May data was collected early in the month before the hardwoods  
were completely leaked out. The variation in leaf cover combined with the  
varied response of the understory made the May data difficult to analyze.  
The understory, especially the dogwood's (Cornus florida) above the ridge  
top - which leaf early - inflated the visual rating, causing May to be  
ranked first.  

On the June data the hardwoods are in their peak growth. 'Spectral  
variability is therefore minimized, and the separability of the hardwoods  
from the other cover types is maximized. June, however, was an excessibly  
wet month. Many of the agricultural and pasture land were saturatedithrain  
water. This fact altered the colors in the composit therefore affecting the  
visual analysis.  

The purpose of this comparison is to point out some items worthy of  
consideration. Namely, that once the decision has been made to proceed  
with a multitemporal analysis, it is not an easy matter to select the  
appropriate data. Creating a three or more date overlay is neither exped-
ient or cost-effective. Visual interpretation of the data is subject to  
human bias and errok. Additionally, the study site might not warrant a  
multitemporal analysis.  

In the case of the Hoosier data classification accuracy was acquired  
for seven supervised training classes. The classes included deciduous  
and coniferous forest, cropland, pasture, residential, and clear and  
turbid water. These results are presented in Table 2.7-15. Accuracy  
remains relatively constant from 14 to 2 channels. The 95.5% accuracy  
for the best two channels represent the June data set. This would tend  
to indicate that for the Hoosier test site the multi temporal analysis  
was not necessary since a single date data set yields quite reasonable  
results.  

Change Detection  

The ability to detect and identify changes in the forest scene are  
important information to resource managers. The Regional Applications  
Project (RAP) is working on developing change detection procedures for  
the Texas Coastal Zone. The FAP staff at LARS-have watched the develop-
ment of these procedures, with the intent of testing which ever procedure(s)  
looking favorable for forestry purposes.  

Both time and the appropriate data sets did not permit testing any  
of these procedures. A detailed description of the change detection work  
will be found in the RAP section of this report.  



2.7-30  

Table 2.7-15 RANKING OF MULTITEMPORAL DATA SET 

Training Classification Accuracy (%) 
Best N Channels 

Best 2 of 4 channels Other 2 of 4 channels 
per date* Per date 

14 99.0 99.4  
13 98.8 99.4 
12 99.0 98.9 
11 98.8 98.8 
10 98.8 98.8  
9 98.4 98.6  
8 98.4 98.9 
7 98.5 98.1 
6 98.0 98.0 
5 98.2 97.7 
4 98.0 97.1  
3 97.7 96.7  
2 95.5 94.6  
1 70.4 74.5  

* The highest average transformed divergence of the Separability 
processor was used to determine the "best" channel subsets'. The 
seven supervised training classes included: deciduous forest,  
coniferous forest, cropland, pasture, residential, clear water,  
and turbid water.  
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CalComp Capabilities  

Computer-aided analysis of MSS data can be a powerful tool for  
resource managers if results from such analysis are in a user compatibl-q:  
format. Previously, classification results have been available as photo-
graphs, either color or black-and-white or as alphanumeric printouts.  
Although attractive, photographs tend to be costly and difficult to field  
annotate. Printouts are cumbersome to handle in the field and difficult  
to use if minor class changes are required. Both photos and printouts  
require reclassification if class changes or modifications are required.  

Clearly, an improved map display was warranted. Maplike quality and  
ease of annotating or making minor class changes were important factors  
for consideration. An opportunity to pursue this activity occurred  
during the early part of the contract year. The resultant product  
(example Figure 2.7-3) is a line map produced by a CalComp Plotter. A  
series of subroutines have been written to convert the information on  
a LARSYS results tape to a format acceptable to the CalComp drum plotter  
located at Purdue University's Computer Center.  

The CalComp will produce maps at different scales and also with  
different color codings and boundary symbols. However, the most impressive  
feature, from a user's point of view, is the familiarity of the classifi-
cation to a map. Field annotations or changes can be easily added.  
Erroneously classified areas readily changes by drafting the correction  
provided the change is a minor one or one that reflects human influence  
rather than spectral class. For example, young regenerated pine will be  
classified as brushland because spectrally the classes are similar. To  
change the classification would be difficult, if not impossible, and a  
costly proposition. Forest managers have information about regenerated  
areas, so can easily alter the map to reflect the true nature of the land.  
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CONCLUSIONS AND RECOMMENDATIONS  

Conclusions  

Results from this contract year's activities lead to the following  
conclusions:  

1.  In order to attain user acceptance of LANDSAT or other remote  
sensor data, more training,and demonstration material high-
lighting specific applications will have to be developed.  

2.  Evaluation of classification accuracy is still a difficult task.  
Users will be slow to accept computer-aided classifications until  
they can be convinced of the accuracy of the results.  

3. The aircraft wavelength bands which simulate the thematic mapper  
channel configuration yield reasonable classification results  
for a forest test site in southwestern Colorado.  

4. Results for the multitemporal analysis task are hot detailed  
enough to draw extensive conclusions. More work should be  
pursued in defining the interactions in the data sets. Current-
ly, these analyses are more art than science.  

5. No.definite conclusions can be made about the effectiveness of  

change detection activities for forestry purposes.  

Recommendations  

1. Applications case studies should continue to be developed. These  
should highlight activities in timber, range or other areas of  
resource management.  

2.  Support should be continued in the area of determining classifi-
cation accuracy from computer assisted analysis. Support should  
also be available for work in assigning mapping accuracies= to  
computer classified data. Both these areas are important is  
user acceptance of the technology is expected to increase.  

3.  Work should be continued with Thematic Mapper simulated data for  
other major ecosystems in the country. Specific emphasis of  
these studies should be directed at defining the type of infor-
mation that can be expected over various forest conditions given  
the increased spectral rnage and resolution of the Thematic Mapper.  

4.  An understanding of the interactions between data sets is an  
important aspect of multi temporal analysis. More work is  
necessary in describing and understanding these interactions  
before repeatable analysis techniques can be developed.  
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5.  Change detection techniques can provide valuable information  
to resource managers. Support for these activities should be  
continued. Once procedures are developed, they should be tested  
over well-documented forest sites.  
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2.8 Analysis of Texas Coastal Zone Environments  

INTRODUCTION  

Inventorying and monitoring land resources is fundamental to the  
interests of national, state, and local government. In response to  
Federal legislation designed to give impetus to programs in land resource  
management at the state level, NASA/JSC conceived the Regional Applications  
Project (RAP). The primary RAP objective is: 

"To define, design and develop, and demonstrate a Regional  
Land Resources Inventory System(s), which utilizes in part 
information extracted from remotely sensed data for the  
inventory and monitoring of regional land resources in  
support of resource development and use management." I  

With the present State of Texas emphasis on the development of a  
coastal zone management program, an obvious and immediate requirement  
arises for coastal zone remote sensing applications. For this reason,  
and for technical reasons associated with the natural diversity of  
coastal environments and socio-economic dynamics, the Texas Coastal Zone  
was  the first problem area to be addressed in the RAP.- 

In concert with other efforts to reach the RAP objective, a  
Supporting Research and Technology (SR&T) program with the Laboratory for  
Applications of Remote Sensing (LARS) was initiated as part of RAP. Two  
general technical objectives were proposed in the LARS/SR&T effort to  
initiate a remote sensing inventorying and monitoring capability in  
Texas. These-were:  

1.  Determining the feasibility of replicating the Bureau of  
Economic Geology (BEG) environmental planning units using  
computer-aided classification of LANDSAT data, and  

2.  Development of a change detection procedure.  

The  first objective was addressed during "175. CY76 was a continu-
ation of the LARS investigation for RAP. The main thrust of the CY76  
effort was the implementation and comparison of change detection techniques  
for identifying and monitoring changes of interest occurring in the Texas  
Coastal Zone.  

The test area for this effort was located in the Matagorda Bay,  
Texas estuarine system. A detailed description of this coastal zone  
area is contained in references 2 and 3. Specific test sites were those  
areas covered by the Austwell; Port Lavaca, E.; Port O'Connor; and  
Pass Cavallo, SW USGS 7 minute Topographic Quadrangles.  
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APPROACH  

LANDSAT data were used as the data input for all computer analysis  
during this effort. The following data were utilized:  

Scene ID Date of Collection Collection Platform 

1127-16260 November 27, 1972 LANDSAT-l 
1289-16261 May 8, 1973 LANDSAT-l 
1505-16230 December 10, 1973 LANDSAT-l 
2034-16200 February 25, 1975 LANDSAT-2 

The applicable portions of each of these data sets were overlayed  
and registered to ground control points to produce a four date temporal  
data set for each of the 4 quadrangle areas included in the study. These  
data sets were prepared such as to produce line printer output at a  
scale of 1:24,000. A non-supervised approach was used to produce a  
single date classification for each date for each quadrangle area.  
These classifications were used as base line data. Various change  
detection techniques were applied to these data sets to test the  
performance of the individual techniques.  

Reference data utilized to support the analysis of the LANDSAT data  
included 1970, 1971 and 1975 color and color infrared aerial photography,  
the Geologic Atlases compiled by the Texas Bureau of Economic Geology,  
and Spectral Environmental Classification overlays produced by Lockheed  
Electronics Corp./JSC.  
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PROCEDURES  

Preprocessing  

The four frames previously described were geometrically corrected  
and spatially registered to produce an individual four date multitemporal  
data set for each of the four quadrangle areas.  

The registration process was accomplished using the following  
procedure. First, an area which was covered by the eleven original USGS  
quadrangles of interest was registered utilizing a biquadratic fit and  
nearest neighbor interpolation. Second, a coarse geometric correction  
was applied to this scene. Third, the four original individual  
quadrangles were precision registered to ground control points.  

A more detailed description of the registration process follows.  
Initially, a base or reference run is chosen. The reference scene  
identifier*to which all other scenes are registered and the three  
additional scene identifiers are shown below:  

NASA ID LARSYS ID DATE  

1127-16260 72072100 November 27, 1972  
*1289-16261 73126200 May 8, 1973  
1505-16230 73126501 December 10, 1973  
2034-16200 75000200 February 25, 1975  

The automatic numerical integration correlation algorithm of the  
LARS Image Registration System was utilized to acquire checkpoints.  
Locations were determined to be the areas of peak correlation in each  
area (4096 pixels) checked. After the checkpoints between the reference  
and each of the overlaying scenes were acquired, a least squares  
regression was conducted to produce a six coefficient biquadratic fit.  
The resultant fit had an RMS error of less than .500 for the accepted  
input checkpoints. The checkpoints were selected for land areas only  
and were well distributed throughout these areas. The three additional  
scenes were then registered to the reference scene. In the reference  
scene the area of interest had the following line and column coordinates:  

LINE COLUMN  

First Line 1000 First Column 1  
Last Line 2330 Last Column 1634  
Line Interval 1 Column Interval 1  

Next, a coarse geometric correction was performed on the 16-channel  
registered data set. Utilizing the latitude of the area to be corrected,  
this process accomplished three tasks: (a) the image was adjusted in  
aspect ratio and rotated to true north, (b) the data were deskewed and  
adjusted for approximately 1:24,000 scale output from the line printer;  
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nearest neighbor interpolation is utilized in the output pixel deter-
mination and Cc) a precision registration or "fine correction" was  
performed.  

Checkpoints of land features found in the reference scene image as  
well as the appropriate USGS quadrangle were identified. A minimum of  
20 well distributed checkpoints per quadrangle was required. The  
quadrangle maps were then individually digitized and the associated  
measurements translated into lines and columns of the line printer  
(the line printer is rated at eight lines and ten columns per inch).  
The checkpoints were then subjected to a least squares regression  
analysis producing the coefficients (six each per line and column) of  
the biquadratic fit. The biquadratic fit was utilized to produce the  
final output image. A 0.500 RMS error was the threshold for checkpoints  
used in the nearest neighbor interpolation. The upper lefthand corner  
of the line printer output matches the upper lefthand corner of the  
quadrangle map. This procedure was completed for the Austwell; Port  
Lavaca, E.; Pass Cavallo, SW; and Port O'Connor quadrangle areas.  

Change Detection  

Four techniques for detecting change were selected for evaluation.  
All four techniques require temporal data which have been spatially  
registered prior to analysis. Due to a lack of data, the Austwell  
quadrangle overlay does not include complete coverage for the November 27,  
1972 and December 10, 1973 data.  

A brief description of the four change detection methods follows:  

(a) Post Classification Detection - Remote sensor data are independently  
classified at both times tI and t2 using whatever analysis techniques are  
appropriate. A direct change comparator is then used to code changes  
in a resulting change classification for each pixel. For example, if a  
two class classification is obtained, e.g., (1) land, and (2)water, then  
four change comparator results are possible: (1) land to land, (2) land  
to water, (3)water to water, (4)water to land. An output product is  
made showing the subset of changes which is of interest to the user.  

(b) Delta Data Change Detection - This method is based on differencing  
(subtracting) remote sensor data from one time and another creating a  
new difference (called Delta) data set. Multispectral classification  
techniques are used to analyze and classify change in the Delta data.  
It is assumed that no-change conditions will result in nominally zero  
values and these will be combined into one general class. Only one  
classification is required with this technique rather than two for  
direct change detection.  

(c) Spectral/Temporal Change Classification - The aggregate of all  
spectral channels from the two dates is used in a change-no change  
classification in which the classifier is trained to separate out the  
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different categories. Certain of the spectral/temporal classes would be  
due to all objects in the scene which did not change and others would  
be related to those which did change. This technique requires only  
one classification but it could be an eight-channel classification.  

(d) Layered Spectral/Temporal Change Classification - This method is  
similar to (c) except that the layered classifier is used to perform a  
hierarchical classification from general classes down to specific  
classes. For example, change and no-change would be separated in one  
decision then further classifications would be performed to identify  
specific change.  

Evaluation of the change detection techniques consisted of comparing  
techniques b, c, and d to the post classification change detection  
output. This approach was taken since adequate reference data did not  
exist to allow for a direct visual (photo interpretative) analysis of  
change which had occurred between the various dates.  

Initially, it had been planned to conduct the change detection  
development effort utilizing the November 1972 and December 1973 data  
sets. Since these two data sets lack only 13 days of being a year  
apart, the assumption of little or no seasonal changes nor sun angle  
effects would have been reasonable. This would have greatly simplified  
the development of procedures to detect permanent change. However, since  
neither data set had supporting ground truth, this approach was not  
feasible. Thus, the approach was modified to include the February 1975  
data set, which includes supportive ground truth, in place of the  
December 1973 data. This introduced the problem of working with data  
sets containing large amounts of seasonal change and sun angle effects  
in addition to the permanent change of interest. Progress to date has  
been limited to detecting change within the Port O'Connor quadrangle  
area using only two dates of coverage:  

Date Scene ID  

November 27, 1972 1127-16260  
February 25, 1975 2034-16200  

Each of the four change detection techniques is discussed in more  
detail in the following portions of the report.  

Post Classification Change Detection  

Post classification change detection is based on the post-classifi-
cation comparison of independently produced classifications of an area.  
The comparator, as the name suggests, is simply a processor that  
"compares" two separate standard LARSYS classifications made of each  
date and generates a results tape in standard LARSYS format. The  
comparisons are based on a logical array initialized by the user-
specified (change) classes. Thus, the change classes derived from this  
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method are defined rather than,identified and:the.processing is  
logical rather than spectral4 .  

By properly coding the'classification results for times t, and t2 ,  
the analyst can produce change maps which show a complete matrix of  
change. In addition, groupingof classification results allows the  
analysts to observe any subset of changes which,may-eof interest.  
Grouping of the spectral,classes is usually necessary when defining 
change classes as the possible class- combinations MX)' can be a 
prohibitivenumber depending on the number-of classes (M, N) in each 
classification 

Initial testing of the post classification changedetection.tech-
nique was directed toward the Port Lavaca, E. quadrangle area using the  
registered data from November 1,972 and February 1975. The technique  
did indicate change was- occurring within the Port Lavaca quadrangle area.  
However, the area being categorized as- change was due primarily to  
seasonal changes and tidal variations,. Comparison of-simulated false  
color images of this area supported this inference. Since this quadrangle  
appeared-to contain little permanent change, future work was directed  
toward the Port O'Connor area.  

Simulated false color images of the .Port O'Connor area indicated  
that major changes of a permanent nature.had occurred between November  
1972 and February 1975. These changes .appeared as ranchland burns,  
spoil areas, coastal changes, and urban,development.  

Single date-unsupervised classifications of the Port O'Connor area 
using the registered data from November 1972 and February 1975 were 
produced for comparison to each other. 'There are several methods 
utilized by analysts at LARS for obtaining reference spectral classes. 
In this analysis false color images, produced from a.CRT digital 
display unit, were used to.obtain.an overview of the Port O'Connor area 
and to locate, areas of interest. Some-detailed information about the 
-surfacefeatures of the coastal zone were also obtained from these images. 

After the false color images were studied, individual data channels  
-were displayed on the CRT to select training sites of land and water  
areas. Three training sites were chosen to represent the land areas  
and an additional three were chosen to represent the water "areas.- The  
description of these areas is shown below:  

Port O'Connor  

LARS Run Number Site Lines Columns 

72072105 Land 1 
Land 2 
Land 3 

96 to 130 x 1 
36 to 90x 1 
69 to 81x 1 

4 to '24x 1 
30 to 88 x 1 

136 to 158 x 1 

http:obtain.an
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LARS Run Number Site Lines  Columns  

72072105  Water 1 152 to 183 m 1 11 to 52 x 1  
Water 2 110 to 150x 1 08 to 143x 1  
Water 3 19 to 48 x 1 170 to 194-x 1  

Two cluster analyses were conducted, one combining the three  
training sites for the land area and one combining the three training  
sites for the water areas. Because of storage limitations, each cluster  
analysis was conducted on 10,000 or fewer data points. The number of  
classes specified during clustering was 13 and 8 for the land and water  
areas respectively. These numbers were chosen because they appeared to  
represent the maximum number of spectrally separable classes that  
existed within the scene. During clustering, a 99.5% convergence value  
was used to decrease the amount of computer time required if 100%  
convergence was selected.  

The cluster output included a cluster map showing the location of  
the spectral classes and a punched output of field description cards  
for each of the cluster classes. The field description cards were  
obtained using a "minpoint" option of 3. This requires that 3  
spectrally similar points must occur together before they can be  
described as a field. The number 3 was selected since fewer points  
introduce a large variance within the classes and since most areas of  
interest are contained within the 180 meter size of 3 data points.  

The field description cards obtained from the cluster analysis were 
input into a statistics processor to obtain the mean spectral response 
of each cluster class in all four channels and their covariance matrix. 
These mean values are used to calculate a ratio A = V where V is the 

IR  
relative intensity of the visible wavelengths [(0.5 to 0.6m) +  
(0.6 to 0.7pm)] and IR is the relative intensity of the reflective  
infrared wavelengths [(0.7 to 0.8im) + (0.8 to l.lim)].  

By summing the relative intensity values of all four bands the  
magnitude of relative spectral responses can be obtained as shown in the  
following equation:  

Summed response  = (0.50 to 0.60pm) + (0.60 to 0.70pm) +  
(0.70 to 0.80um) + (0.80 to 1.10um).  

By observing the ratio A and the summed response, the analyst tentatively  
identified the cluster classes. These classes were then maintained,  
pooled or deleted based upon their separability as determined by their  
ratios.  

Covariance matrix and mean vector statistics of these classes were  
used to classify the quadrangle area. The classification was output  
using the PRINTRESULTS processor with a threshold value of 0.5. Often  
in a classification, there are points which in reality are not  
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represented by any of the training classes. The dladifier'necessarily  
assigns all points to one of the training classes. Thresholding  
delineates these points and rejects them from the printed results. New  
training fields were hand-picked from the thresholded areas and their  
covariance matrix, mean vector statistics and ratids calculated.  

The statistics of these new classes were merged with the previously  
calculated statistics and the quadrangle-area reclassified.  

'The Port O'Connor quadrangle was classified into 25 and 22  
spectrally separable classes for the November 1972 and February 1975  
dates, respectively.  

Prior to conducting the post 61ssffication change comparison  
between these two classifications, it was decided to group the spectral  
classes into information classes to reduce the number of "changes"  
observed. This was accomplished with the addition of the reference  
data which consisted of color infrared (CIR) photography (1971, 1975)  
and "Spectral Environmental Classification" overlays at a scale of  
approximately 1:24,000. These environmental classifications furnished  
by LEC/JSC were prepared using CIR photography and ground observations.  
The '71 photography was augmented by an overlay prepared by LEC/JSC  
outlining 34 photointerpreted (training) areas.  

The initial step correlated the 18 spectral classes (land areas  
only) of the computer classifications produced from the February £975  
data with the photointerpreted informational classes contained in the  
Spectral Environmental Classification. These infdrmational classes  
were vegetated and non-vegetated classes d'ifferentiated into subclasses  
by ground condition; WET/DRY and surface cover. To accomplish this,  
the environmental classification was overlaid on the computer classifi-
cation (Feb '7 5 data only) and the frequency distributions 6f the 
spectral classes versus the informational classes were drawn up  
(Table 2.8-1). Due to the approximate-scale of the overlays and some  
minor discrepancies in the image registrat±on of the data sets the  
overlay could not be perfectly aligned with the classification. This  
implied that the distributions would'change depending on how the two  
were aligned. However, this change was regarded as negligible. As  
shown in Table 2.8-1 only 24 of-the total 55 photointerpreted informational  
classes -wererelevant to the Port O'Connor area.  

The percent distribution of each spectral class in the informational  
classes was calculated (Table 2.8-2) from which the rdlatioidhip of only 4  
spectral classes (Feb 1, Feb 12, Feb 13 and Feb A) became evident on a  
one-to-one correspondence. The classes from the environmental classifi-
cation were then generalized into broad classes on the basis of their  
ground condition and surface cover.  
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Table 2.8-1  Point frequency distribution of February '75 spectral classes  
versus the spectral environmental classes.  
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Table 2.8-2. Percentage frequency distribution of Feb 75 
spectral classes versus the spectral environmental 
classes. 
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The aggregated percentages of the spectral classes according to  
these groupings helped identify most of the remaining classes. However,  
for 6 of the spectral classes the percentage totals did not exceed 50%  
(the criterion used to assign a spectral class to an informational class).  
It was observed that these classes mainly occurred in the vegetated and  
non-vegetated classes that were inundated (covered with water).  
Addition of their percent distributions regardless of surface cover  
yielded totals exceeding 50. The classes were then identified as  
inundated or submerged grass and tidal flats. Spectral class Feb C could  
not be assigned to any informational group because of its widespread  
distribution in all the informational classes. It was labeled as a  
confusion class. The final spectral class definition and groupings are  
shown in Table 2.8-3.  

The reference data for the November 1972 classification consisted of  
CIR photography bbtained in 1971 and a photointerpreted overlay contain-
ing 34 training areas.  

These interpreted areas were approximately located on both the  
"Spectral Environmental Classification' and the computer classification.  
Since the two photointerpretative overlays were prepared using different  
classification schemes, the environmental classification was used to  
update the names of some of the interpreted areas, e.g., some of them  
interpreted as transitional areas were renamed grazed woody/herbaceous.  
Fiom the frequency of occurrence of the spectral classes within these  
training areas, the spectral classes were identified and grouped  
(Table 2.8-4).  

This aggregation allowed for a more manageable number of classes in  
the initial change detection technique development. If the spectral  
classes were not grouped, a classification containing 22 spectral classes  
could yield 462 possible change classes. Grouping to 6-8 classes  
reduces to 30-56 the number of change classes. The spectral classes  
were grouped into 5 and 6 informational groups (Table 2.8-5) for the  
November 1972 and February 1975 classifications, respectively.  

This exercise allowed the analyst to have a good representation of  
the February classification with regard to the relationships between  
spectral and information classes. However, since there was no concurrent  
ground truth for the 1972 data, only inferences could be made concerning  
the combination of these spectral and informational classes.  

The November 1972 and February 1975 classifications which had been  
grouped into 5 and 6 groups, respectively, allowed for a possible matrix  
of 25 change classes. Further grouping of the land classes (woody/  
herbaceous, urban) and the water classes (water, spoil and submerged)  
in date 1 reduced the number of possible "change" classes to 11. From  
Table 2.8-6 it is evident that the first 5 classes are actually "no change"  
classes (i.e., they remain constant in both dates) and the remaining  
6 classes define the changes.  

QJIoJ79  
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Table 2.8-3 Port O'Connor, February 1975 

Class-Definitions and- Grouping  

Group  Classes  

1.  Urban Feb I -Tdu - 61%; Nma - 2% 

2.  Mixed Woody/ Feb 2 - Md - 14%; dg - 36%; WF - 3% 
Herb. Dry & Feb 3 - Md'- 15%; Mdg - 43%; WF - 1% 
Wet Feb 4 - Md - 34%; Mdg 44%; WF - 2% 

Feb 6 - Md - 24%;- Mdg - 40%  
'Feb 7 - Md - 34%; fdg - 27%  
Feb 9 - Mw & Mwg - 20% HEg - 17% HEi - 9%;  

Md, Mdg & WF - 27% 
Feb 10"- Nd'- 34%; Mdg - 21%; WF - 1% 
Feb 14 - Md -*19%; Mdg - 41%; WF - 1% 
Feb  15 - HE, HEg (wet)- - 12%; HEi-- 21%; 

'  Mw;  Mwg - 14%; Md-, Mdg - 23%  

3.  Burned - Feb 11 - Mdb - 44%; HEb - 5%; Mwb - 1% 
Mixed woody/ Feb 12 - Mdb - 85%;' HEb - 3%; Mwb - 1%  
-herb.  

4.  Spoil Banks Feb 13 - BSb -'58%; BS - 15%  

5.  Submetgdd grass Feb'5 - W - 237; WS--- 6%; TFi - 14%; HV-1 - 34% 
and tidal flats Feb 16 - W - 26%; WS - 4%; TFi - 24%; HEi - 19% 

Feb'17 - W - 25%; WS - 3%; TFi - 16%; HEi - 45% 

6.  Confusion class Feb C 

7.  Water Feb 1  
Feb 19 
Feb 20 
Feb A 
Feb B 

Q~  
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Table 2.8-4 Port O'Connor, November 1972 

Class Groupings  

Group  Classes  

1.  Urban 1A, 1  

2.  Grassy areas and chapparal 2  
(woody/herb.) 3  

4 
5 
7 
8 
9 
10  
12  
13  

3.  Spoil B  
C 

4.  Submerged grass and tidal flats 15  
16  

5.  Water 11  
14  
17  
18  
19  
20  
21  
A 
D 
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Table 2.8-5 Class Groupings  

November 72 February 75  

Urban 1. Urban  

2. Woody/herb. Woody/herb.  

Water 3. Water  

4. Submerged Submerged  

5. Spoil Spoil  

6. Burn  
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Table 2.8-6 Classes used in Direct Change  

November 72 February 75  

1. Urban Urban  

2. Woody/herb. Woody/herb,  

3. Water Water  

4. Submerged Submerged  

5. Spoil Spoil  

6. Else (All Land classes) Urban  

7. Else (All Land classes) Woody/herb.  

8. Else (All water, submg, spoil) Submerged  

9. Else (All water, submg, spoil) Spoil  

10. Else (All Water, submg, spoil) Water  

11. Else (All land classes) Burn  



2.8-16  

The post classification comparator was utilized with the 11  
classes in Table 2.8-6. The results are displayed in Figure 2.8-1.  

Visual inspection of the classification map and its accompanying 
spectral environmental overlay in Figure 2.8-1 shows a. good correlation 
between the two. The burned areas (represented by symbol B) and the  
spoil banks (symbol S) along the intracoastal waterway are well  
delineated. New urban construction denoted by symbol "U" seems in  
good agreement with areas marked Mmu (Man-made urban) on the overlay.  
The '+' symbol representing the change class of land-submerge occurs  
mainly along the shoreline delineating the tidal flats (TFi on the  
overlay). The no change classes of woody/herbaceous, water, spoil,  
urban and submerged are shown by the symbols "., (blank), S, A and I"  
respectively. The blank areas also represent the confusion class of  
date 2 (Feb 1975) which was ignored in the change matrix.  

The computer time involved in executing the post classification  
change comparator was minimal; this effort required approximately 7  
seconds CPU. However, the fact that two separate classifications  
must be performed before the comparator can be used should not be  
overlooked.  

Delta Change Detection  

The change detection method referred to as the delta method is  
based on multispectral difference image classification. Whereas the  
other three methods studied use classifications of the original multi-
spectral data, the delta method requires that the spectral values from  
two times for each pixel first be subtracted, producing a "differential  
image" form of the data. The principle behind this approach is simply  
that changes from one time-to another will produce a non-zero result  
which can be detected by a variety of methods. The points which do not  
change would remain nominally at zero. Sun angle and atmospheric  
differences are expected to cause non-zero deltas for no-change con-
ditions; however, the no change classes would in this case have some  
positive or negative value which can be biased out leaving the change  
values equally detectable.  

The difference or delta transformation combines two n channel  
•multispectral images obtained at different times and produces a multi-
spectral delta image having n channels. Change can then bedetected  
either by examining the images directly or by first classifying the  
delta data, then examining the results displayed in image form.  

Most image processing systems assume all image samples are non-
-negative and this is true for the LARSYS system used in this study. To  
handle negative differences a bias is added to each difference so that  
the resulting delta image is non-negative. Thus, the complete trans-
formation is simply:  
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k k k  
6X.. = X.. (t) -X.. (t) + b 13 j 2 1 

Where:  
k  " 

X° . Multispectral value for i,j 1,...N Assuming an  
13  channel k NxN image  

i Row  

j Column  

k Channel  

bk  Bias for Channel k 

First date  

t Second date  

tI  

The method proposed here for detection of change follows a proce-
dure similar to that for, classification of multispectral data. The  
method emphasizes multispectral change classification rather than changes  
in multispectral classification. Implementation of an automatic scheme  
in either case requires image registration. A comparison of steps for  
the two approaches is:  

Change Detection by Observation of Change  
Classification of Delta Images in Classifications  

1.  Temporal Image Registration 1. Cluster Analysis at time t1  

2.  Delta Transformation 2. Train Classifier-for time t1  

3.  Cluster Analysis 3. Classify time t1  

4.  Train Classifier 4. Cluster Analysis at time t  

5.  Classify Delta Imagery 5. Train Classifier at time t2  

6.  Classify time t2  

7.  Register Classifications  

8.  Process Classifications to  
Determine Changes  

In addition to requiring fewer steps the Delta Image method may  
require less training activity since all features that do not change do  
not have to be isolated and described. The method proposed here uses  
non-supervised classification (clustering) to identify samples charac-
terizing various change conditions. These samples are used to train a  
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supervised classifier to classify each delta image point over an arbi-
trarily large area. The results can then be displayed in map form and  
tabular form the same as for the spectral classification case.  

The delta method was tested on.the Port O'Connor quadrangle as were  
the other methods. The registered data from November 27, 1972 and  
February 25, 1975 was subtracted and a bias of 128 added producing a four  
channel delta data set. Figure 2.8-2 contains a gray scale image of the  
delta data. Bright areas represent pixels which have increased in value  
and dark areas have decreased in value. Medium gray areas are a mix of  
no-change and small change conditions. The solar elevation angles were  
very similar for the two dates (340 in November, 380 in February).  

The analysis process used was to cluster the delta data to find  
separable groups of points in the four dimensional delta image data.  
Several cluster runs were attempted and the thirteen cluster case  
appeared to give the best separability; thirteen was a reasonable number  
of change classes. Figure 2,8-3 contains the cluster map created by- the  
LARSYS *CLUSTER progtam. The mean and variance values for each cluster  
and the number of- points in each cluster are presented in Table 2.8-7  
Since the solar elevation angle was essentially the same for both dates  
it was expected that the no-change classes would be grouped around the  
data value of 128. This appeared to be the case for in Table 2.8-7 it can 
be seen that cluster 9 with the largest number of points had mean values  
of from 122 to 127. Considering only channel 2 clusters 5 thru 9 have  
means from 131.5 thru 125.4 which is a strong indication that these are  
no-change clusters.  

The next problem was to identify the meaning of each cluster in some  
quantitative manner. To do this a program was written which compares  
two classification files and counts the number of occurrences of classes  
in one file with respect to the other file. Also, an existing linear  
classifier program was used to extend the cluster results from every  
other line and column to every line and column for the Port O'Conner quad.  
The direct change detection results file was then compared to the delta  
change detection file and counts were computed for each of the twelve  
direct change classes defined. The results of that count are presented  
in Table 2.8-8.. The table provides-a method of quantitatively evaluating  
the delta classes and enables the clusters to be assigned to specific  
change or no-change classes.  

The majority of points in the quadrangle are no change or no change  
of interest cases and these were defined first. Clusters six, seven  
and eight have large counts in the woody to woody and water'to water  
classes and thus were assigned a land no-change class.. Clusters nine,  
ten, eleven and thirteen have large counts in the water-to-water class  
and were assigned to a water no-change class. Next the change classes  
were examined and clusters one and two clearly coincided with the  
else-to-spoil direct change class. Clusters three, four and five were  
very mixed; however, three had somewhat of a majority of points in else  
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ORIGINAL IN COLOR  

Figure 2 .8-2 .Gray Scale Image of the Delta Channels Obtained  
by Differencing February 25, 1975 and November 2,  
1972 LANDSAT Data for Port O'Connor Quadrangle. 
Grassy Woody Areas Burned are Black, New Spoil 
Along the Waterway is White.  
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Table 2.8-7  Means and Variances for Delta Data Clusters for  
Port O'Connor Quadrangle.  

CLUSTER POINTS MEANS  
CH( 1) CH( z) CH( 3) CHC 4) 

1 61 163.80 181.49 176.18 143.C2  
2 71 146.06 160.42 161.15 139.27  
3 178 134.29 144.62 149.72 136.76  
4 454 129.83 137.72 139.51 132.29  
5 644 125.04 131.51 136.20 131.55  
6 919 125.88 131.6t 130.53 128.42  
7 1907 124.19 129.14 125.99 127.06 8 1264 122.17 127.65 130.00 128.31 
9 2-153 - 122.29 125.36 123.81 127.13 
10 1326 120.76 121.63 121.80 127.14 
II 536- 120.28 116.07 116.17 125.S3  
12 386 119.62 123.49 113.12 119.67  
13 456 118.17 111.71 108.72 123.24  

CLUSTER VARIANCES  

CH( i) ClI( 2) CH( 3) CH( 4)
1 33.47  43.00 37.03 5.43 
2 23.57  39.46 23.14 7.90  
3 10.46  17.58 16.85 6.60  
4 5.29 - 6.94 10.55 6.47
5 4.13 4.20 5.57 3.83  
6 3.75 4.26 2.92 1.)8 
7 2.91 2.21 2.29 1.51 
8 2.32 3.17 3.05 2.04 
9 2.51 1.87 2.55 1.57 

10 2.80 3.06 2.21 1.17 
11 4.50- 3.56 7.12 1.54  
12 3.36 4.78 10.04 4.37  
13 12.51 12.79 12.48 3.15  
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Table 2.8-8.  Counts of the Thirteen Delta Cluster Class Occurrences  
in the Twelve Direct Change Classes. I 

NS- 1/ NS- 2/ NS- 3/ NS- 4/ NS- 5/ NS- 6/ NS-'7/  NS- 8/, 1iS- 9/ Ns-101 NS-111 "NS-12/ NS-13/ 

URB-URB I 0 0 0- 3 78 46 f 1  8 0 '0 0WDY-WDY I 0 0 4  0 059 604 2 60 2853 2288 1494 295 SPL-SPL I 49 67 18 1  6 86 0 0 0 0 0 , 0  0 0 0 0 SMBG-SMB I  0 15 164 258 226 387 134 638 ELSE-BRN I 0 0  294 .'205 8 1 0 0 0  
I 0  

0 10 29, 36 1138 123 5 1191 0 WAT-WAT  0 9  380 87 529 2822 305 458i 4833 1685 72 ELSE-SPL I  177 100 38, 3 .22 1325 4 0 3 0  0 0 0 0 ELSE-WDY I 0 0  0 0 21 40 '15, 97 26 17 3 ELSE-WAT I 0 0  2 0 0 59  .31 68 40 '6' 21 16 19 16 94 ELSE-SBM I 0  42 337 391 426 388 ill 212 89 83  22 97 5 ELSE-UR 1 0  0 2 42 47 14 0 2 0  0 0 0 0 *CHANGE* I 7  76 195 245 349, 426 171 700 220 118  20 54 5  

00 
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to submerged so-was assigned to that class. Cluster four was badly mixed  
but contained half of the else-to-urban points so was assigned that class.  
Cluster five was mixed including woody-to-woody, else-to-submerged and  
else-to-urban. This was assigned a mixed category. Finally, cluster  
twelve was clearly related to the else-to-burn change and was assigned  
thus. In this manner an empirical change class assignment was made for  
the delta cluster classification. Each class was assigned a symbol and  
the delta classification file was printed out. Figure 2.8-4 contains  
this printout; blank was used for all water to water classes.  

Visual inspection of Figure 2.8-4 shows that a good general agreement  
exists between the post classification change result and the delta  
result in that no-change water land interfaces are relatively similar  
and the burn areas are in very close agreement. Pixels classified into  
the mixture and urban change classes are very widely dispersed through-
out the land and marsh area of the quadrangle. This may be related to  
the inherent difficulty of reliably discriminating between certain urban  
and non urban classes with only the four bands of LANDSAT 2, i.e., it  
may be the result of a limitation of LANDSAT rather than the change  
detection method. A quantitative evaluation of performance was computed  
from Table 2.8-8 using the class groupings discussed above. Table 2.8-9  
contains the grouped results. The agreement is seen to be in the 50 to  
60% range except that the no change classes do somewhat better.  

Although the quantitative agreement with post classification change  
detection is only fair the delta method may have application as a rapid,  
simple and low cost method of preliminary change detection. The image  
of the delta channels in Figure 2.8-2 reveals all the change that is in  
the scene and proper interpretation could possibly allow the desired  
change information to be extracted. The burn and spoil changes are clearly  
seen as very dark or bright areas. Construction changes can be picked  
out since they are usually single bright pixels. Confusion with bright  
pixels due to spoil bank expansion or exposure of submerged bright sand  
can usually be differentiated by knowledge of the context of the scene.  
A color rendition of the delta image can be provided which should enhance  
the information content of the image.  

Timing measurements were made for delta classification of the Port  
O'Connor quadrangle. The quad contains 36,764 pixels. Computations  
were done on an IBM 360 Model 67 system. 

Time (sec. total CPU) 

Delta Transformation 11 

Clustering (13 clusters, every other 
line and cblumn) 2957 

Linear Classification (every line 
and column) 112 

3080 
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P7 Table 2.8-9. Performance of Delta Change Detection Method 
Referenced to Direct Change Results. 

Delta Change Class 

Direct Change Class Else-Spoil Else-Submerged Else-Urban Mixed Land No-Change Water No-Change Else to Burn 

Urban-Urban 
Woody-Woody 
Spoil-Spoil 
Submerged-Submerged 
Else-Burn 
Water-Water 
Else-Spoil 
Else-Woody 
Else-Water 
Else-Submerged 
Else-Urban 
All other Change 

0 
0 

116 
15 
0 
0 

277 
0 
0 

42 
0 

83 

0 
4 

18 
164 

0 
9 

38 
0 
0 

337 
2 

195 

3 
59 
1 

258 
0 

380 
3 
0 

59 
391 
43 
245 

78 
604 

0 
226 

0 
87 
22 
21 
31 

426 
47 

349 

55 
7593 

0 
1159 

75 
3656 

7 
152 
134 
711 
16 

1297 

0 
1795 

0 
507 
266 

12424 
3 

43 
150 
199 

0 
363 

0 
86 
0 
1 

1191 
72 
0 
2 
16 
97 
0 

54 

Total 533 767 1442 1891 14855 15750' 1519 

Percent Class Correc 52% 44% 3% - 51% 82% 78% 

Total Points 36755 

Overall Correct 23079 

Pat. Overall Correct 63% 

Average Class Correct 51.7% 
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Other minor costs are involved for results display printout but the  
figure above-should be an approximate cost for delta on a per quad basis  
once the number of clusters is given. The cost is clearly mostly for  
clustering and if several cluster runs are needed the cost would increase  
by around 3000 see. per run.  

Spectral/Temporal Change Classification  

This change detectioh technique uses an aggregation of all spectral  
channels from two dates to produce statistics from an eight channel 
cluster analysis to identify change. The approach used in this effort 
made the following assumptions: 1) the areas clustered contained areas 
that are representative of sites where permanent change had occurred and 
2) permanent change can te separated from seasonal change utiljzing 
statistics developed from the spectral data.  

In the Pdrt O'Connor quadrangle, five areas were selected for  
clustering. -Theseareas were chosen as representative samples of the  
major land -se -areas. Two areas were delineated in the agriculture  
•regionsone for :urban, one along the intercoastal waterway and one on  
the barrier island. Each area contained 900 points (30 lines by 30  
columns). Smaller areas were chosen for clustering so that the number  
of classes derived from the cluster processor would be manageable. The  
number of spectral classes requested during clustering is imp6rtant in  
determining change classes. As a "rule of thumb," 2n (where n = the  
total number of expected cover types in both dates) was used in spe'4fyifg  
the number of cluster classes requested. Since approximately 5 cover  
types were expected for each date, a minimum of 20 cluster classes was  
established.-If the resulting cluster classes were found to have large  
variances (i.e., variance in three or more channels greater than 3.00),  
the areas were reclustered using 25 classes. Punched statistics  
containing the means and covariances for each of the cluster tlasses  
were obtained as output.  

Initial clustering indicated that the potential number of training  
classes possible from 5 sites would exceed the limitations of the soft-
ware system. Thus, only 3 of the 5 candidate areas were clustered in  
the analysis of the Port O'Connor quadrangle.  

The three areas used for clustering were:  

1. Lines 11-40, Columns 6-35.  

2. Lines 63-92, Columns 94-123.  

3. Lines 147-176, Columns 112-141.  

Area 1 is located in the northwest portion of the quadrangle and  
contains mostly agriculture and rangelands. Area 2 is located in the  
vicinity of the town of Port O'Connor. Area 3 is located in the upper  
area of the barrier island.  
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Each of these areas was clustered individually, with 20 cluster  
classes requested. Eight channels, four from each date, were used and  
the convergence level for clustering was set at 98 percent.  

Potential "change" classes were identified using one of three  
criteria:  

V  
1. The ratio (A = - ) of the mean values for each of the two 

dates differed £Re than 0.30. 

2. The magnitude (sum of relative spectral response for each  
of the four channels) for each of the two dates differed  
more than 25.0.  

3. Both the ratios and magnitudes varied greatly.  

Tables 2.8-10 and 2.8-11 list the means and variances and the magni-
tudes and ratios calculated for area 1, respectively. Six potential  
"change" classes were identified in area 1. These were cluster class  
numbers 11, 13, 16, 17, 18 and 20 shown in Table 2.8-11.  

A similar procedure was followed for identifying potential tchange"  
classes in areas 2 and 3. For area 3, however, it was necessary to  
request 25 cluster classes in order to reduce the variances to more  
acceptable levels. Two classes in area 3 still retained high variances,  
but a request for more cluster classes resulted in some classes having  
fewer than 10 points in the class, a poor statistical representation.  

The separability processor was used to determine what cluster  
classes would be maintained. Separability was run on each of the areas  
individually and the classes maintained, pooled or deleted as required.  

For area 1, classes 4 and 5 were combined and class 7 deleted  
resulting in 18 classes. In area 2, classes 2 and 3; 8, 9 and 10; and  
11 and 16 were combined, respectively. Class 14 was deleted, resulting  
in 15 spectral classes. For area 3, only class 8 was deleted.  

The statistics for each of the 3 areas were then merged into a  
single statistics deck, resulting in a statistics deck containing 57  
spectral classes. These statistics were input into the separability  
processor and the results used to select the final combination of  
classes for classification and the best subset of 4 channels for classi-
fication.  

Based on separability results class 25 (pooled classes 8, 9, and  
10 from area 2) was deleted since it overlapped 4 other classes. Class 5  
(6 from area 1) was combined with class 28 (class 13 from area 2). Class  
12 (14 from area 1) was combined with class 30 (class 17 from area 2).  
Classes 45 and 46 (13 and 14 from area 3) were also combined. The Port  
O'Connor quadrangle was classified using 52 classes and channels 2, 3,  

44 
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Table 2,8-10 Means and Variances for Area I 

CLUSTER POINTS MEANS 
CH( 1) CH( 2) CH( 3) CH( 4) CH(1-3) CH(14) CH(15) CH(16)

1 39 23.1S 18.26 28.79 16.44 19'.05 ,.9.79 32.44 15.922 65 23.14 .8.22 30.77- 16.85 18.40, 19.35 29.60 15.40
3 61 21.67 16.20 27.97 15.95 17.74 18.11 30.13 15.36 4 50 22.26. 16.36 29.06. '16.52 17.'62 18.50 27.RP -14.F05 70 23.27 18.16 28.01, 15.51 17.96 18.60 27.23 14.216 37 22.11 16.89 28.68 16.41 16.97 15.00 26.19 13.577 49 21.71 16.22 27.04, 14.90 16.94 '18.20 25.80 13.208 55 21.78 16.00 24.15- 12.44 17.91 18.51 28.38 14.45 
9 34 23.47 .18.21 29.74 -16.50 17.56. 18.06 24.06 12.21110 19 22.16 16.95 25.26 13.89 16.00 14.79 24.84 22.5811 42 19.74 14.45 18.21 8.60 37.52 17.83 27.02 33.83 

12 26 21.85 :16.27 25.62 13.31 17.00: 17.77 21 .69- 31.5413 42 22.48 17.67 29.31- 16.17 15.57 15.40 20.10- 10.7614 26 21.46A 16.00 25.23 14.08 15.27- ]4.27 20.65 10.8R15 19 20.84 115.05 20.47 9.68 36.05 15.74 17.63 ,9.6316 44 20.07 114.50 18.34 .8.25 16.59 15.98 21.98' 11.07 
17 52 22.04. 17.00 26.10 -4.02 14.15 13.00 15.63 :7.8818 54 23.59 19.19 28.93 .16.09 15.22 14.76 15.61 8.2819 22 19.95 14.36 18.23 '8.09 13-18 12.50 13.45 6.59 20 94 22.88 18.10 28.90 a6.27 13.77 12.32 10.85 5.22  

CLUSTER VARIANCES  
CH( 1) CH( 2) CH( 3) CH( 4) CH(13) CH(14) CH(15)"C.H(16) 

1 1.20 2.14 1.48 0.52 1.16 1.27 2.67 0.81 
2 .15 ' 1.55 -1.56 0.51 0.71 0.73 1.09 0.563 1.59 0.83 3.23 1.05 1.26 1.84 0.98 0.63
4 1.05 0.93 1.20 0.74 1.14 0.46 0.80 0.535 Ooti 0.92 1.20 0.95 1.06 0.53 0.90 0.63 
6 0.93 1.10 1.61 0.69 1.64 0.33 2.05 1.70 
7 0.75 0.97 1.92 0.89 1.02 0.33 0.o? 0.50 R I158 1.19 1.98 1.58 1.20 1.44 3.17 0.96  
9 1.23 2.96. 2.63 1.11 0.80 1.33 2.54 1.03 
10 1.25 1.72 1.20 1.65 1.89 0.18 0.92 0.9211 1.42 1.86 7.88 3.52 1.33 1.95 2.27 0.87  
12 2.14 1.16 1.61 1.50 1.60 0.34 2-86 1.06  
13 1.23 1.79 1.88 0.83 2.25 2.88 2.14 0.77  
14 1.-4 1.20 2.18 2.63 1.96 0.60 1.R4 0.91 15 0.70 0083 2.82 2.12 2.72 3.09 1.80 0.47 
16 1.23 1.51 5.25 2.80 1.50 2.67 2.07 0.62  
17 l.A5 2.08 2.36 2.02 1.90. 1.22 2.39 1.52  
18 1.42 1.59 2.18 1.03 2.48 2.68 1.26 1.15  
19 1.57 1.39 6.37 3.71 1.97 2.36 P.55 3.30  
20 1.33 2.35 2.80 1.51 1.67 1.85 2.24 1.01  
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Table 2.8-11 Ratios and Magnitudes for Area I  

FEBRUARY 1975 NOVEMBER 1972  

4AGNITUDE RATIO CLUSTER MAGNITUDE RATIO  

.80 1) 86.67  .92 87.2  

82.75 .84 2) 88.98  .87  

.86 81.3 .79 3) 81.79  

.85 78.6 .85 4) 84.20  

5) 84.95 .95 78.0 .88  

6) 84.09 .86 71.73 .80  

7) 79.87 .90 74.14 .90  

8) 74.37 1.03 79.25 .85  

.90 71.92 .98 9) 87.92  

.82 10) 78.26 1.00 68.21  

11) 61.0 1.28 76.2 .87  

12) 77.05 .98 68.0 1.05  

13) 85.63 .88 61.8 1.00  

61.07 .94 
14) 76.77 .95  

15) 66.04 1.19 59.05 1.17  

16) 61.16 1.30 65.62 .99  

17) 79.16 .97 50.66 1.15  

18) 87.8 .95 53.87 1.25  

19) 60.63 1.30 45.72 1.28  

20) 86.15 .91 42.16 1.62  
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14, 15 (bands 5 and 6 for each November 1972 and February 1975).  
Results of this classification are shown in Figure 2.8-5. Table 2.8-12  
lists the 52 classes and their assigned change classes.  

Four areas of changes were identified from the statistics:  

1. Vegetation to Soil  

2. Vegetation to Burn  

3. Soil to Vegetation  

4. Water to Land  

Table 2.8-13 lists these change classes and the number of points in each  
class. Further evaluation of the statistics may reveal additional more  
subtle changes.  

The class counting program was applied to the eight-channel, fifty-
two class classification and occurrences with respect to each of the  
,twelvepost classification change classes were tabulated. The resulting  
12 by 52 matrix is not reproduced here; however, Table 2.8-14 shows for  
the 52 spectral/temporal classes which of the 12 post classification  
comparison change classes contained the majority of occurrences. It is  
seen that the vegetation-to-soil and soil-to-vegetation groups in  
Table 2.8-13 fall into the woody-to-woody class and the water-to-soil  
group falls in the submerged-submerged, else-submerged and water-to-water  
classes. Only the burn change group agrees well with the post classi-
fication change-results which are being taken as the reference for  
change detection evaluation.  
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Table 2.8-12. Classification Identifiers and Their  
Respective Change Classes 

Class Classifi- Change Class 'Classifi- Change 
Number cation ID Class Number cation ID Class 

1 1A NC* 27 9B NC 

2 2A NC 28 10B NC 

3 3A NC 29 11B NC 

4 4A NC 30 IC NC 

5 5A NC 31 2C NC 

6 6A NC 32 3C NC 

7 7A NC 33 4C NC 

8 8A NC 34 5C Water-Soil 

9 9A Soil-Vegetation 35 6C NC 

10 10A NC 36 7C NC 

11 13A Vegetation-Soil 37 8C NC 

12 12A NC 38 9C Water-Soil 

13 13A NC 39 10C Water-Soil 

14 14A Soil-Vegetation 40 11C NC 

15 15A Vegetation-Burn 41 -12C NC 

16 16A Vegetation-Burn 42 13C NC 

17 17A NC 43 14C NC 

18 18A Vegetation-Burn 44 15C NC 

19 1B NC 45 16C NC 

20 2B NC 46 17C NC 

21 3B Soil-Vegetation 47 18C NC 

22 4B NC 48 19C NC 

23 5B NC 49 20C NC 

24 6B NC 50 21C Water-Soil 

25 7B NC 51 22C NC 

26 8B NC 52 23C NC 

*No Change  
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Table 2.8-13. Number of Points Per Change Class  

Class Number  
Change Grou Identifier of Points  

Vegetation to Soil 11A  314  

TOTAL: 34  

Vegetation to Burn 15A 292  

16A 374  

( (18A) 6S5  

TOTAL: 1321  

Soil to Vegetation 9A 298  

14A 199  

3B 46  

TOTAL: 543  

Water to Soil 5C 227  

9C 339  

10C 131  

21C 4f0  

TOTAL: 1107  
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Table 2.8-14.  

Post-Classification  
Class Change  

Urban-Urban  

Woody-Woody  

Spoil-Spoil  

Submerged-Submerged  

Else-Burn  

Water-Water  

Else-Spoil  

Else-Woody  

Else-Water  

Else-Submerged  

Else-Urban  

*CG*  

Maximum likelihood assignment of 52  
spectral/temporal classes to the 12  
post classification change classes.  

Spectral/Temporal Classes  

4A, 6A, 3A, IA, 2A, 7A, 8A, 9A, 10A, 11A,  
12A, 14A, I, 2B, 3B, 4B, 5B, 6B, 7B, 8B  

11B, 5C, 6C, 8C, lOC, 12C, 14C, 15C, 16C,  
17C, 20C  

13A, lOB, 15A, 16A, 17A;  

1C, IC, 18C, 22C, 23C, 19C  

2C, 3C, 4C, 7C, 9C, 21C  

5A, 9B, 13C  
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Layered Classifier Approach  

INTRODUCTION  

The layered or decision tree classifier is essentially a maximum  
likelihood classifier using multi-stage decision logic. It is charac-
terized by the fact that an unknown sample can be classified into a  
class using one or more decision functions in a successive manner. This  
classification strategy can be most easily illustrated by a tree diagram  
(Figure 2.8-6). A tree generally consists of a root node, a number of  
nonterminal nodes or decision stages (layers) and terminal nodes. The  
terminal node corresponds to a terminal decision, i.e. the decision-
making procedure terminates, the unknown sample being assigned to the  
class at that node. However, a nonterminal node is'an intermtdiate  
decision, its immediate descendent nodes representing the'possible  
outcomes of that decision.  

To specify a decision tree uniquely two sets of information are  
necessary; one set tells how the terminal and nonterminal nodes are  
linked while.th, other specifies the decision functions of all the  
nonterminal nodes. The decision tree can be constructed manually-or  
by an optimized logic tree design procedure.  

For the purpose of change detection a hybrid of these two pro-
cedures was utilized. Decision trees for each of the two dates were,  
obtained automatically and then manually linked together (with some  
modifications), thus introducing within the tree a logic for detecting  
the desired changes.  

The flowchart in Figure 2.8-7 illustrates the basic procedure for  
the layered classifier using the optimized logic tree design processor.  
The *DISTANCE processor computes the interclass separability (trans-
formed divergence OR the transformed Bhattacharya dis.tance) for sel-
ected feature subsets using the statistics as input. All 15 feature  
subsets of the four channels were used in this case.  

The distances were then fed into the *DESIGN processor which uses  
the "guided search and forward pruning" method5 and a decision tree  
tI (Figure 2.8-8) was obtained for the November 1972 date.  

The February 1975 statistics were split into two decks using the  
*NERGESTATISTICS processor; one deck contained the burn, urban and  
vegetation classes and the other water, spoil, confusion and inundated  
classes. Since changes being investigated occurred only within these  
two groups of classes, this would cut down on unnecessary nodes in  
the tree.- 

The same procedure was used to obtain decision trees t2al t2b for  
these two decks. The two trees are illustrated in Figure 2.8-9. The  
classes contained in the terminal nodes were assigned their informational  
names which had been derived earlier.  

http:while.th
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TerminalMode 

iI 

* 

'-J 
S 

IntermedleM.J(-ode 

Layer 

Figure 2.8-6 (above). A simple tree structure. Decision 
Nodes are drawn as ellipses. The 
nodes inside the dashed line repre-
sent a stage. Nodes along- the dot-
dashed line represent a layer.5 
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*Distance Processor 

' Interclass 

Separabilities 

*Design Processor 

Decision Tree 
•Structure 

' [Data 

*Layer Classifier Processor 

Results 
0  

Figure 2.8-7.  Input/Output Set up of Decision Tree  
Procedure with Optimized Logic Approach [Wu]  



g~II 

2S 1,17 21 1  8 13.16 

C  Channel 3 Channels 1,2,3,4 

22 15 109 46 1 3 124 
* 4 Z!C Sol0 4 17 5 24,1,A,2 iS1 9Z 10 4. 2 ..... ..... ..... ......../...  Watr Wa i Wo~ody . .  

Cban ks 1,2,3,4 Channals 1,2,3.4 Charwmel4 Channls 2.4 Channls 1,2,3,4 Channels 1,2,3,4 Channels 1,2,3,4 ChaO Is 2,4 Channels 1,2,3,4 Chanols 1,2,3,4 

i . t.. .14.t .. ..  .. .. .. .. 2 E 4 

--_-_-.--. ---------- * nWa !Sail! vtw  . .... - --- tS --- ',-woody- --P -- Woody ..---.. .. .. ... - &b-i~g -Wood --Isa - I --- " ! -- ---- qkba ------- ---... 

Chalnwla 1.2,3.4 - Chnels 1,2,3,4 Chamel. 1,2,3,4 

o6sI 1 s6 t ,! :aTur i ".1, 

Figure 2.8-8.  Decision Tree t Designed from Date 1 Statistics  
Using OptfmizedLogic Tree Design. Dotted Lines  
Indicate Nodes that were Pooled or Deleted in  
"Pruning" the Tree. 



--

Channels 13,14,15,16 Channels 13,14,15,16 Channel 14 

Ok 42 C[603 4114,6 
Confusion Spoil Water Confusion ! . Submerge 

Channels 13,14,15 Channels 13,14,15,16 

Water Water --. -. . . --- L-.- . . . . . . j  

Channel 15 

|" Burn• 

Channels 13,14,15,16 13,14,15,16 Channels 13,14,15,16 Chonnels 13,14,15,16 N 

44 

Woody Woody, Woody Urban Woody 

Figure 2.8-9. Trees t and't Designed from Date 2 Statistics 1 1 2 . 

Using Opimzed2 ogic Tree Design. Dotted Lines  
Indicate Nodes that were Reduced to Singular Nodes  
nZ-De1gted in "Pruning" the Trees.  



2.8-41  

Tree t2a was linked to all the terminal nodes of tree t1 which  
contained the classes water, spoil or submerged grass/tidal flats.  
Similarly, tree t2b was connected to terminal nodes of t which con-
tained woody/herbaceous, burn or urban classes. The new3 tree thus  
constructed manually was now set up to classify the unknown sample into  
an informational class (e.g. water) using date 1 (November 1972)  
statistics and then continue on to see whether that pixel changed to  
another class (e.g. whether it changed to spoil or submerged grass/  
tidal flats) or remained the same based on date 2 (February 1975)  
statistics.  

The changes investigated by the tree are listed in Table 2.8-15.  

A special fortran program (MOVSTAT)* was used to make the two  
statistics decks (11/72 and 2/75) compatible for the *MERGESTATISTICS  
processor, which was then utilized to obtain the eight channel statis-
tics deck required for classification. The experimental *XLAYER  
classifier was used for classification.  

The first classification attempt was unsuccessful as the tree was  
too large (1221 nodes) to store in the core. In an effort to reduce  
the size of the tree the various subclasses in the terminal nodes of  
tree t, were grouped at each stage into their major informational class.  
(These groupings are illustrated in Figure 2.8-8 by the dotted lines.)  
In some cases if the descending terminal nodes of an intermediate  
decision node contained only the subclasses of one inforiational class,  
all those terminal nodes were deleted. This was justified by the fact  
that only changes of the major informational classes were being investi-
gated and the decision to classify the unknown sample in that major  
cover type had already been reached at the intermediate node. After  
trees t2a t2b had been trimmed in a similar manner, they were relinked ,  
to tI to form the new "change decision tree." By this time the number  
of nodes had been reduced to approximately 700 nodes. The data over Port  
O'Connor were classified using the 8 channel statistics and the change  
trees. The classification results are shown in Figure 2.8-10.  

*Practical difficulties arise in LARSYS when statistics from different  
dates and locations are to be merged to a physical deck. These diffi-
culties were circumvented by using MOVSTAT which (a) increases the  
number of spaces for means and covariances to the number necessary for  
a prespecified number of features; (b) moves the values for means and  
covariances for date 2 into the correct places in a matrix representing  
double as many features and (c) adds a set of prespecified constants to  
the class means.  

Qtr Z 
44;/,A 
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Table 2.8-15. Changes investigated by Decision Tree.  

Class in Date I  

1. Water  

2. Spoil  

3. Submerged grass/tidal flats  

4. Woody/herbaceous  

5. Urban  

Expected change class (Es)  
in Date 2  

Spoil, submerged grass/tidal  
flats, water  

Water, submerged grass/tidal  
flats, spoil  

Spoil, water, submerged grass/  
tidal flats  

Burn, urban, woody/herb.  

Burn, woody/herb., urban  



chE-

IL. 

o M~S l 

kF~tQ ~ 

4JES~V~7 ~ Mt 

~ 

MtIG 

IE 

M 6 

~-~ 

iii 

wrw 

'aEll II 

0IIIE 

Ipt- 1'LLx 

L.~ N;-

M. 

-

IiI 111 1 

I 

41m1w 
rghr V 

IL, 

IL-f HL. ILL 

- --

A 
I t 

IT 

' 

-- -. 



;.. *.  .... .. l......  ...... I..I. F,.... l0 .0*  0... 0 ... 0F01.1.1 2 8. I  .... u 

* 5 0.20 05( 0 .0;00  

M,  Man.U... 
* 10020 I FIT. 0TF .02 ILBFOOO T l* 1.00l 1 000010  

*. 0.0*0 11TTE.0 *0. 0 IROaINO0*2 .. 1u1 1 1E,0  

.......... ...................... . iil...  : :LFFIPLIJ. I'l I.. WIUT -111I' a  

...IF. I': . ... ..  I.a l...la.l. .... H Tolt 

IF. I  
..... S0.I....... .... ........  

m I'  o 03 ....... ......B~oL0000 0.0 .0T .0000100 010T7 0E*0 0..jf 
0.. .........0 ..... 990000 A00 .....011-0*0.0.... 0000 0.. 0 ooOO 0 l 5... . ... .. 00 ... .. .O  

0.020~~~~ .00 0.* .... 00 0 00 01 .ONOO:00.000  0 . 0 0..0 OITIBOES C00000 0 0. . 
zo l .. ... .... ... . 11 ...GI . . ... ZM ...  . 

0.0..... 0 000 ... IT 
.. .. . .. . .,I ... 1 1 2 u..Z . 

.... ., 11 J,I . ' . .1, ) ... . I ITTlu 

lii ~~~ ~ ~ ~I I ~1~ ~ ~ ~ ~ 1 .. 10*000010IF000000.....010000000000....0000000 

.. :: . :- - - - .. I.FI. . - I ..ITl- - . - . .-. ... . 
EVI--

.:-: :::- . 0Al0t ..... .... %  
.. ...... .00... ..... 

U: 

.I. ............... .... .................... . ,ITT , u^ u  

.... . ... .... .... .... 1, ~...ITT .. ..... ......... - .. .. .. ... .. ........... ..... .. . .. .......... ........ .  1" "  1Il0ww..--------------..  gg 0.0 gure Layere l , . e s P OCono r . 0an0 *SIT0 
0l . SO... . .. ... *......000. 00  ..S°  ..... .............. ...................  h 0 0N 2.00Sp ..... .. 0.0... ... 0 .0 .... .. 6..... ..... .........-tr ... ........ ..o.....................00ov0Lded0...... :*. TO.. .0 :fl Il ,L'~ _ 0.0 z 0  .. .000.0:..? 

0...0 .. . . II.... . . ... ...  

.... . .... ... ........ ....... .... :::....:U..  * .. % 

....... 
b........, ... 

.N 
... .. 

I.. 
I ~ Iu 

Ca  
. . . . . . . . . . . . . . 

...... .....  . . Iif0....... .. 01 ...... ...... .......0J'W .. .. .... ... 
.  

........ ........  
.... .. ... .. .... i , J  

. . ::. . . . . . ......... . . . . ...........  1 1.  
. .....  . ..... 111  'U I::: 100TMM1 .. Il 1 ... ........ .... , ......... 

.................. ......  ... ... I ........ ...  
] .............................  U. ig w.I00001 000 it%: iJ l k 4  ...- i ] 

3~ , tF I "  hjt  

[ili~. IT I Iar-,.. :.. .....IHIT 
.. .. . ....o........... ....... 0 . . O0O*0..OUuyrIOII ...............  *2 t"ITTlI .. 1!Fl VITT:'-I.,MLx:: Iioo1I :....... .............  i  

IJIitOaI II .... ........ .......  

tl Il W ,illnn 100*00010.N.:Il 00v  l ... ... .., I  ,, .... . ... IM IT0I  I oMll. II ...... t _7.a I :! .0000ltI l'MIo 
w.  IT I ,  

ll::: 111.0 0  I01001I001l0000 ..... .iit P0.. .. :,!i 1 ::- :: ! I FIT 00 

.... i. [:1I  'IsIFtz II  IF. T 11. 0.... -Y Ill -UU  

U N ITt T I 0000 IT 1  'T1.1I  ]!fill11111.1 10110 0  ~ 
0  000 I II ITT~i11~i 

NTR.......... .. .i 4soouI,  II  

IT " 111 0 0011110111  11 0 11 

II 11 I F -a2IU~Thuo 0000... 011I  1111101. 

I3~lllI~1, T 103.11~ i  I 
FIT1 i "!oilf l fiiol 101I11 1.1 l 

1 ~ i 
II~~ 110 I011 ~ 0111001 

f l oil Oil 0 INI11. 113:~''s; 
M f:I  IF I0lfl1II 0:: 000: H Will I 1jIi  ,ft, dil 11 00 IOl 01111j111 I1IIo..I110 1 ' 1 0 0 i Ij -. Hl 111 ll o  11  

'I1 HIT 1011110 0.11 10  

*111ifI III'l IT~ .... 1100 1101 11 11III 
rIo I F I I I~! 

001 I I J1 00100! 0 I111 

if 000 f1 1:111: 111011  

Figure 10.  Layered classifier results, Fort O'Connor quadrangle 000.010 

Spectral environmental overlay provided by LBC/JSC. 
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RESULTS AND DISCUSSION  

A qualitative comparison of the "layered" classification results  
(Figure 2.8-10) with the direct change results (Figure 2.8-1) shows  
the two maps in good general agreement. The burn areas (B) and the  
no change land water interfaces are very similar. The urban areas (U)  
are well identified; but there is some misclassification of the dredged  
spoil banks along the intracoastal waterway as urban areas due to the  
similarities in the high spectral response of both the classes. (This  
problem can be eliminated to some extent by using weights in the classi-
fier and in the tree design processor. However, as yet the weights  
option has not been programmed into the *XLAYER classifier.) Some small  
ponds with some submerged vegetation are also misclassified as burn  
areas because of the spectral similarities of the two classes (both  
reflect low in the IR).  

A quantitative comparison of the Decision tree results and the  
Post Classification Change results, Table 2.8-16, shows that on a per  
point basis the two are in agreement, 89% overall, and 77% by class.  
Some of the misclassification can be attributed to the trimming of the  
decision trees (which was necessary to accommodate the tree in computer  
memory). In the case of trees t2 and t2b, when the terminal nodes  
were deleted, the immediate ascenaing nodes then became terminal nodes.  
By definition terminal nodes contain only one class, so all but one of  
the classes (belonging to the same informational group) were dropped  
from those nodes. As a result, 5 of the 11 classes of woody/herbaceous  
and 2 of the 5 classes of water were not used in classification (they  
were deleted from the tree structure) causing some of the misclassifi-
cation, especially that of the small ponds, as burn areas.  

Table 2.8-17 gives the figures for the CPU time involved in  
Decision Tree Approach.  

?% 4Q 



Performance of the Layered Classifier Approach as Compared to the Post-Classification  o 0 Table 2.8-16 
Comparison Results.  

d 

Cls osW°d~uba W°dwodyW°dBurnDirect Change Woody Urban WWodd Classes d  

Grouped Urban) Urban) Urban 

1. urban-urban 229 4 0  
+ else - urban  

2. woody-woody  
+ else - woody 0 10326 13  

3. spoil-spoil  
+ else - spoil 245 0 0  

4. water-water  
+ else - water 0 13 4  

5. submerged -
submerged +  
else - submerged 89 1520 178  

6. else-burn 0 21 1496  

7. all other  
change & con-
fusion class 181 1076 83  

Percent correct 94% 99.57% 97.65%  

Total NO. of Points 36764  

Overall Percent Correct - 89.7%  

By Class - 77%  

Layered Classifier Classes  

SpoilWater 
Water 
Subm) 

0  

0  

0  

16855  

4  

0  

35  

99%  

Wate pol 

WatSpoiSpoil  
Pubmg)  

0  

0  

222  

0  

0  

0  

0  

46.1%  

po  
Watel' SpoiWdSubmg  
Submg  

0  

4  

3  

70  

2740  

1  

101  

60%  

Spoil Confusion water.1  
Submg)  

10  

27  

12  

76  

2  

14  

1110  

42.9%  

Total  

243  

10370  

482  

17018  

4533  

1532  

2586  
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Table 2.8-17. CPU time usage for the decision tree approach.  

Processor Used Time (Sec. Total CPU)  

*DISTANCE - Nov. Statistics 29  

*DISTANCE - Feb. Statistics (2 decks) 30  

*DESIGN - Nov. and Feb. 105  

MOVSTAT and *MERGESTATISTICS 150  

*XLAYER 192  

TOTAL: 506 sec.  
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SUMMARY AND DISCUSSION  

This report discusses the implementation and Comparison of four change  
detection techniques for identifying and monitoring changes of interest  
occurring in the Texas Coastal Zone. The four'methods investigated are:  
delta change detection, post-classification comparison, spectral/temporal  
change classification, and layered spectral/temporal change classification.  

Since adequate reference data for a thorough evaluation was not  
available, the post-classification comparison change detection results  
were used as the standard for evaluating the results from the other three  
procedures. This choice was based on the assumption before tests were  
run that this method would provide good results and this assumption was  
later verified as correct.  

In change detection analysis, three kinds of errors can arise: error  
at time one, error at time two, and error at both times. To .precisely  
evaluate the results of various change detection procedures, adequate  
ground information must be available to identify any error condition. In 
the absence of such information, accuracy can be, estimated as follows:  
If P and P2 are-the overall probabilities of correct classification  
at times tl1 and t2 , if the classifications at different times -are indepen-
dent, and the classes are equally likely, then the change detection  
accuracy is at least Pc = PIP 2. This expression is a conservative  
,estimate of the accuracy because it counts a no-change situation classi-
fied as no-change as correct only when -he class is also correctly identified.  

Note that for example, if P1 = P2 = .9 then Pc = .81, i.e., at least  
dn 81% correct change classification is achieved if the two spectral  
classifications are 90% correct. Also note that Pc < Pi and p2; thus  
the evaluation of a change detection algorithm must be based not only on  
,C but P1 and P2 as well.  

In devising a change detection procedure one properpy to consider  
is the relative complexity of the method; all other things being ,equal,  
a simpler approach would be more desirable for implementation reasons.  
On the other hand more complex methods may have more performance potential  
in the long run. On a scale of increasing complexity the four methods  
arrange themselves as follows:  

1.  Delta method. This method requires only a simple subtraction  
followed by a single classification.  

2.  Post classification comparison. This method requires two separate  
classifications followed by a logical comparison.  

3.  Spectral/Temporal classification. While this method requires  
only a single classification, it is a vastly more complex one,:  
requiring more classesand probably more features.  

4.  Layered Spectral/Temporal classification. This method involves  
not only a complex classification but also a priori knowledge of  
the logical interrelationship of the classes as well.  
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During this year, programming for all four of these approaches  
was implemented and all procedures were executed once on the same data  
set. The results to this point suggest the following conclusions:  

- The delta method may be too simple to adequately deal with all the 
factors involved in change detection in a natural scene. It may 
be that too much information is discarded from the data in the 
subtraction process whereby only the four band difference data 
remains from the two sets of original four bands. Images created 
from the delta data may be quite useful, however, in qualitatively 
assessing change by image interpretation. 

- The best results were obtained in this test using the post classifi-
cation comparison method. This is due in part to the fact that 
the training procedures required are already routine and quite 
well understood. 

- The latter two methods cannot be ruled out at this point as having 
great ultimate potential. The layered spectral/temporal change 
in particular showed best agreement with the post classification 
comparison results. More complex methods usually require more 
carefully drawn data inputs together with greater user understanding 
to achieve their potential. 

In summary this effort has provided a good start on the development  
of practical change detection methods for the Regional Applications Program.  
However, because of limitations previously pointed out, conclusions must  
still be considered tentative.  
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2.9 Earth Resource Data Processing Remote Terminal  

The Earth Resources Data Processing Remote Temrinal located at the  
EROS Data Center, Sioux Falls, South Dakota, was in active operation  
the entire 75-76 fiscal year. Two LARS personnel were assigned to  
provide the necessary interface with the EDC terminal users. These  
were Susan Schwingendorf in the area of system support and Barb Davis  
as analysis techniques specialist. Administrative support was provided  
by Terry Phillips. By December, 1975, it became apparent that the  
requested funds would be expended shortly, and a proposal requesting  
funds for additional computer services was written. As the year closed,  
further funds were required to allow completion of EDC's projects for  
the year.  

No major problems were reported in operating the terminal. Con-
tinued use of the terminal over the nine month contract period was  
evidenced by the monthly CPU usage, averaging 5.5 CPU hours a month  
with a high of 15.6 CPU hours in December. Active use was also made  
of LARS reformatting services, with 20 LANDSAT frames reformatted, 10  
areas geometrically corrected, and 4 image registrations performed.  

In addition to the above computer facility services, LARS also  
provided a one week training exercise to two EDC personnel - Michelle  
Engel and Dale Gehring. Under the direction of Barb Davis, they proceed-
ed through an entire analysis sequence on a LANDSAT data set and learned  
how to access and use the experimental programs available on LARS'  
system. These are programs developed in conjunction with various  
research efforts in the laboratory which have not yet been made part of  
the LARSYS-system.  

The EDC terminal is expected to remain in operation through the  
first half of FY77. EDC has indicated they will be discohatinuing tse  
of the LARS terminal as they increase use of their in-house systems.  
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