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Characterization and Extraction of Information in Earth
Observational Image Data

D. A. LANDGREBE and P. H. SWAIN

SUMMARY
in the past two decades.
are discussed.

The discussion is divided into two parts:
image data and how information may be extracted from such data.

Use of imaging devices from space for gathering information about the earth has developed greatly
In this paper some fundamentals for information systems based upon such devices

how information is contained in remote sensing
It is concluded that a firm foundation of

fundamental principles exists as a suitable point of departure for extending our understanding of such
systems and for discovering new ways to make practical application of the remote sensing technology.

1 INTRODUCTION

Use of imaging devices from space for gathering
information about the earth has developed greatly
in the past two decades. Yet, the realisation of
the full potential for gathering earth resources
information in this way is in its infancy. Rapidly
developing abilities in a number of nations to
construct imaging sensors, to process large data
volumes and to incorporate machine intelligence
into systems assures a growing capability for such
information-gathering systems.

In this paper we will review some of the fundament-
als upon which such information systems are based.
Frequently such a discussion is given in terms of
the images the system produces. In this paper we
choose to discuss satellite-based earth observation-
al systems in terms of information flow. The
treatment is, therefore, divided into two parts:
(1) how information is represented or coded into
data via the design and operation of the sensors
and other data sources; and (2) how information is
extracted from such data.

In order to treat this subject adequately it is
necessary that we specify the meanings we wish to
associate with such words as data, image data, image,
and picture. The term data will refer to a set
(usually an ordered set) of numbers which contain,
or are hypothesised to contain, information. The
term image data is intended to imply data which, by
associating either gray values or colors with the
numbers, could be displayed as an image. An image,
then, is the result of carrying out this associat-
ion; it is a means for presenting image data to a
human observer for purposes of manual interaction
with the image data or manual analysis of it. The
term picture is used to refer to an image when the
image is primarily to be utilised based upon its
(humanly interpretable) spatially structured
characteristics.

To illustrate the use of these terms, Landsat
multispectral scanner (MSS) data is image data.
Images are frequently created from it either for
the purpose of manual analysis or as an interactive
tool in computer analysis of the data. Some
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Landsat image data (e.g., Landsat data containing
pictorially identifiable features such as coast-
lines, cities, large rivers, major highways with a
contrasting background, major geologic features,
etc.) are pictorial in character and can be success-
fully processed using either manual or computer-
implemented picture processing techniques. However,
Landsat MSS data from many regions of the earth are
often not very pictorial in character (e.g., desert
or rangeland with few spatially structured features,
agricultural land particularly where field size is
small or moderate, etc.); in these cases the data
may need to be processed by image processing tech-
niques using other than pictorial characteristics.

Thus, in order to discuss earth observational data
from an information system standpoint our purposes
are best served by viewing earth observational data
as image data rather than pictures. Though picture
processing techniques, both manual and computer-
implemented, are very valuable, they are only one
family of a larger set of techniques to be con-
sidered. We wish to treat the subject in this
broader context.

Satellite collection of earth observational data
has increased greatly both in volume and in sophis-
tication over the past two decades. Table 1 shows
a list of U.S. satellites of the last twenty years
and their major sensor systems. The history has
been for the early satellites of the series to be
designed primarily to produce pictorial products;
however, there has been a steady evolution toward
the production of image {and some non-image) data.

There has also been a steady evolution towards
operational status for such capabilities. For
example, in the case of low orbit weather satellites
the early TIROS series evolved to the ESSA series
and then to the ITOS/NOAA series and finally to the
currently operational TIROS N design. At geostat-
ionary orbital altitudes the ATS satellites evolved
through SMS to the current GOES (Geostationary
Operational Environmental Satellites). The Nimbus
series has served as an ongoing experimental
platform for developing new capability.

As compared to weather/atmospheric observations for
the U.S. alone for which more than 40 satellites
have been launched in 20 years, only four satellites
have been launched in the past eight years which are
specifically intended to observe the solid earth
surface. The Landsat satellites were the first
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TABLE 1

A SUMMARY OF U.S. EARTH OBSERVATIONAL SATELLITES OF THE 1960'S AND 1970'S

Satellite(s) Launch Dates Major Sensors

TIROS I-X 1960-65 Television, IR, auto picture transmission

Nimbus 1-7 1966-78 Television, IR scanner, image dissector, UV, data
relay system, IR, temperature profile, humidity
and pressure modulated radiometer, microwave
radiometers

ESSA 1-9 1966-69 Television, radiometers

ATS 1, III 1966-67 Spin-scan radiometer

ITOS 1 1970 Television, radiometers

NOAA 1-6 1970-79 Television, radiometers, proton monitor, temperature
profiling radiometer

Landsat 1-3 1972-78 Television, multispectral scanner, data relay

SMS 1-2 1974-75 Spin-scan radiometer, data relay

GOES 1-3 1975-78 Spin-scan radiometer, data relay

HCMM 1978 Radiometers

Seasat 1978 Visible, IR, microwave radiometer, radar altimeter

TIROS-N 1978 Radiometer, vertical sounder

Magsat 1979 Magnetometers

designed for that purpose. In this case operat-
ional status is expected to be achieved within the
next two years, with the multispectral scanner to
be launched in 1982 aboard Landsat-D. Landsat-D
is also expected to carry a more advanced experi-
mental multispectral scanner known as Thematic
Mapper.

Although both weather and land observation satell-
ites have been used to some degree for ocean
observation, Seasat was the first designed specif-
ically for this purpose.

In addition there were the valuable collection of
photographs from the manned programs of Mercury,
Gemini and Apollo and the photographs and data
from Skylab,

For our purposes it is helpful to visualise such
earth observational systems, not in terms of space
hardware as implied in table 1, but rather by
concentrating upon the information flow in the
entire process of collecting and disseminating
information about earth surface variables.
focus specifically upon land observation systems.

2 HOW INFORMATION IS CONTAINED IN EARTH
OBSERVATIONAL DATA

The hypothesis that spaceborne sensors can be
useful implies, of course, that information is,

in fact, flowing from earth to satellite altitudes
by some means and may be captured by the proper
kind of satellite sensor system. The key to
devising effective sensor systems, and indeed to
assessing the ultimate potential of such technology,
is in understanding the form in which this inform-
ation exists.

A fundamental principle of remote sensing is that
information is conveyed in the force field and
electromagnetic fields emanating from the earth's
surface and, in particular, in the spatial,
spectral and temporal variations of those fields
(see reference 1, Ch. 1). It is necessary to be
specific about this information flow in some
fashion, devising a suitable engineering model of
it to serve as the basis for engineering decisions

We shall

and system designs. It might be possible to do
this based on the information theory principles
attributed originally to Shannon [2]; however,

this has not been the favored approach in the field.
Rather the use of intrinsic dimensionality concepts,
the origins of which are found in the work of

Gabor [3], have more frequently been used. The
works of the 1960's and 1970's to create quantit-
atively based systems were centred on use of
spectral variations, and the use of dimensionality
as a basis for information measure arose quite
naturally from the originally presumed correspond-
ence of dimensionality with spectral bands.

Considering the entire system, consisting of the
earth's surface and the atmosphere, the sensor
system, the processing and information extraction
system and the means for information dissemination,
it is possible to classify the variables signifi-
cant to information content in the system into the
following five categories:

(1) Spectral sampling scheme

(2) Spatial sampling scheme

(3) Signal-to-noise ratio

(4) Ancillary data

(5) Information desired at the output

Use of the sensor system at more than one time adds
a sixth category to this list:

(6) Temporal sampling scheme.

The first, second and sixth of these categories
include directly the attempt to sample and represent
the spectral, spatial and temporal variations of
the force and electromagnetic fields from the
earth's surface. Based upon the fundamentals
stated above, if one could devise a sampling and
representation scheme such that from the data
produced by the sensor one could completely and
precisely reconstruct the signals entering the
sensor, then one could be assured that one has an
ideal sensor in that all information is retained
in passing through it. To approximate this ideal
sampling and representation operation as closely
as possible, with the available technology, must
be the goal of every sensor designer and operator.
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We shall next examine further the information
content parameters of such systems by discussing
each of these six categories in turn.

2.1 Spectral Sampling Scheme

Information extraction techniques, be they manual
or machine-based, rely upon making identifications
based upon features in the data. The scheme by
which these spectral, spatial and temporal varia-
tions are sampled and represented, therefore,
provides the basis for the devising of these
features. Traditionally, the spectal sampling
scheme has involved measuring the energy emanating
from each scene element in a given set of non-
overlapping spectral bands. For example, the bands
used in the Landsat MSS are those from 0.5-0.6,
0.6-0.7, 0.7-0.8 and 0.8-1.1 micrometres and some
pains were taken in the construction of the MSS to
ensure that these bands, though immediately
adjacent, had minimum overlap. The relatively
simple systems now in operation utilise these
spectral band measurements directly as the features.
The matter of precisely which scheme of sampling
the spectral distribution of energy is optimal
remains an open question. Recent work indicates
that there is considerable further potential for
exploiting the spectral distribution of energy as
a source of information [4].

2.2 Spatial Sampling Scheme

Spatial sampling refers to the scheme by which the
spatial distribution of energy emanating from the
scene is sampled and represented in the data. The
usual method for accomplishing this is to digitally
raster (sequentially sweep) the scene, preserving

a measure of energy from each ground resolution
element. However, the degree of adjacency of the
resulting "pixels" (picture elements) can certainly
be varied to permit either overlap or underlap, the
sensor sensitivity distribution over a pixel may be
varied and the pixel size may be varied from spectral
band to spectral band, to name only a few possibil-
ities. Furthermore, the term spatial sampling scheme
is meant in a broad enough sense to include the dwell
time of the sensor on a given pixel and the use of
polarization measures as features. Consideration of
polarization characteristics has apparently not
advanced very far as yet, although some early

results indicate promise [5,6]. The use of linear
solid state array sensors such as that to be used

on the French SPOT satellite permit a large increase
in pixel dwell time, as compared to line-scanning
devices and this, in turn, permits an improved
signal-to-noise ratio for a given spatial and
spectral resolution. The use of spatial character-
istics in information extraction is now beginning

to be intensively researched and later in this

paper we shall introduce some of the lines of

thought being pursued.

2.3 Signal-to-Noise Ratio

The third of the six categories mentioned, signal-
to-noise ratio, is included to make direct account-
ing for the impact of the various sources of noise
in the system. From an information representation
standpoint a multispectral vertical view of the
surface of the earth represents very complex
subject matter. Signal versus noise in this
application is not a very simple matter. It has
been found useful in this case to use a stochastic
process model for the signal as well as the noise
and we are led to the following definition of
signal and noise. The signal is all spectral,
spatial and temporal variations which are inform-
ation-bearing with respect to the user classes

desired, whereas noise is all such variations which
are not information-bearing. In these terms it is
clear that given variations from the earth's
surface may be signal for one user and noise for
another user. For example, electromagnetic variat-
ions due to soil patterns might be signals for the
soil scientist but noise for the crop scientist.

The original signal model used in remote sensing
sprang from the concept that different earth
surface covers each have a unique spectral response,
sometimes referred to as a spectral signature and
that deviations from this unique response represent
noise. Such a signal model has served well in the
early stages of the science, particularly where
the data complexity is not great and where the
applications are not too complex. However, as the
demand by users for more detailed earth resource
information has grown and as the complexity of
data sets, in terms of signal-to-noise ratio and
dimensionality, has grown, more detailed models
have been desirable. In particular, it is recog-
nised that a given ground cover is not character-
ised by a single spectral response but an ensemble
of responses. For example, as human observers we
call wheat in a number of different states or
conditions still wheat. Indeed, some of the
spectral response variation from the 'norm" is
information-bearing; the details of this variation
may be made to assist in discriminating between
different materials with similar mean spectral
responses. For example, green vegetation in a
naturally occurring situation may tend to have a
higher variance than green vegetation which is
highly cultured.

Unlike signal models, those for noise in remote
sensing systems have from the beginning been thought
of in terms of stochastic models. Here, too, some
significant progress has been made in understanding
the sources of noise, thus improving the stochastic
models but there is a great deal of potential for
further progress. Noise sources can conveniently
be discussed in terms of two categories, those
whose origin are within the scene and those gener-
ated on-board the spacecraft. Noise from the scene
originates from background variability character-
istics, variations in illumination or view of scene
and in the atmosphere.

As compared to scene noise, sensor system noise is
characterized by having its origin in the portion
of the system built by man and, therefore, is to some
degree under his control. Typical sources of noise
of this type [7] are optically induced noise in

the sensor system, detector processes such as
thermal noise, modulation noise and shot noise,
quantization noise and noise induced by computation.
Each of these sources of noise has different
characteristics and a suitable mathematical repre-
sentation must be used for each. For example,
thermal noise is customarily modeled as independ-
ent white gaussian noise with fixed mean and
variance while shot noise is a signal-dependent
noise whose magnitude increases with the magnitude
of the signal level. Perhaps the greatest effort
in noise study has been with regard to atmospheric
effects but the relative deleterious contribution
of each of these sources has never been well
established.

As indicated above, from an information flow view-
peoint, it is the role of the sensor system to serve
as a transducer, converting information content as
contained in electromagnetic variations into data
and to do so with minimum information loss. Taken
as a group, then, the first three categories listed
above, the spectral and spatial sampling schemes
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and the signal-to-noise ratio, define the inform-
ation entering the system via the sensor at a single
data collection time. It is clear that these three
are directly interrelated with one another; they
define the fashion in which the energy available at
the sensor is to be partitioned. For example, for
a specified dwell time, simultaneously requiring
very high spatial and spectral resolution leaves
relatively less energy to produce high signal-to-
noise ratio. Thus, one cannot expect to specify
sensor parameters from all three categories
independently. A determination of the information
content of the data necessarily implies examining
these three as a set.

2.4 Ancillary Data

In information systems based upon remote sensing,
information is frequently added to the data stream
either (1) directly from sources other than the
spaceborne sensor or (2) in a somewhat less direct

way during the information extraction process itself.

An example which illustrates the former would be
the registration of geographically distributed data,
such as topography, previous land use, governmental
boundaries, etc., directly onto the sensor image
data; an example of the latter would be through the
use of ancillary information such as training
samples in the analysis process. The less direct
case has been the traditional means by which ancil-
lary data is incorporated into a remote sensing
information system. The air photo-interpreter uses
his knowledge of a region to draw conclusions about
what he sees in imagery, conclusions which he would
be unable to draw without this knowledge. Indeed,
the more knowledge he has of the region, the more
conclusions he can correctly draw about imagery
from it.

The same is true of computer-based data analysis
systems. Training samples are essential to pattern
classification algorithms. They are the analog to
the knowledge which a photo-interpreter uses in
drawing conclusions or, perhaps more precisely,
they are the means by which the knowledge of the
scene which the human analyst possesses is entered
into the system information flow. It has been
found, for example, that the more data of this type
which is utilised in such computer analysis of
remote sensing data, the greater accuracy which can
be expected and the more complex the sensor data
that can be successfully utilised (see reference 1,
Ch. 7).

In contrast to this, the intention of the more
direct incorporation of ancillary data, such as
registration of geographically distributed data
with remotely sensed data, is to add directly to
the information content of the data stream by
increasing its dimensionality. As remote sensing
data continues to become more routinely used and as
the use of geo-reference data bases becomes more
and more common, the importance of this type of
ancillary data use will continue to grow.

2.5 Information Desired at the Output

As compared to the other categories, all of which
characterize information flow Znto the system, this
category is the output. In many problems it can be
specified in terms of a list of discrete classes
into which the image data is to be divided, e.g.,
crop species, urban classes and the like. In some
more advanced applications the degree of membership
in a class may also be required. This might be the
case, for example, if crop condition, projected
yield, projected crop maturity date and the like
are required. 1In all cases it is to be noted that

there is a relationship between this category and
the other categories as well. Broadly stated,
this relationship comes down to the more or less
obvious fact that simple information output may be
produced by using a simple information extraction
algorithm on simple data but correspondingly more
complex data and algorithms must be used if more
complex information products are required.

2.6 Temporal Sampling Scheme

The sampling and representation of temporal variat-
ions in the scene may be assumed to be just as
information-bearing as the spectral and spatial
dimensions. It does require that the space
platform must be scheduled for passes at the appro-
priate times, thus, perhaps complicating the
mission profile and these passes must be done in
relationship to the cloud cover. However, one can
certainly add to the intrinsic dimensionality of
the data stream by the construction of multitemp-
oral data sets. At the same time one can add
enormously to the number of classes and subclasses
which exists in the data. A given (uniform) earth
cover type at one time can usually change in a
number of different ways with time; thus, a
bitemporal observation may have many more classes
present, a tritemporal still more and so on. This
serves to broaden the number of types of inform-
ation products which can be produced, assuming,

of course, that the information extraction
algorithms of adequate complexity and the needed
ancillary data are available.

3. INFORMATION EXTRACTION

Given, then, that earth-observational remote sens-
ing image data are a rich source of information
about the earth and its environment, the following
sections survey the methods which may be used to
extract that information, i.e., convert it to forms
useful for specific applications. Of principal
interest are image processing methods which can be
implemented on high-speed digital computers.
Computer analysis of remote sensing image data was
given great impetus by the launching of the first
Landsat satellite by the U.S. in 1972, There are
several compelling reasons for employing computer-
ised analysis techniques, for example:

Data Volume: Modern sensor technology has
produced remote sensing instruments having very
high spatial resolution. The degree of detail
available in data of this resolution can be used
to good advantage for many earth observational
applications but requires processing of extremely
large quantities of raw data. High speed digital
computers are needed to achieve the required
processing rate.

Dimensionality: Each MSS pixel from Landsat
consists of four measurements made on a ground
resolution element. In addition, the satellite's
periodic passes over each ground point make avail-
able a virtually unlimited number of measurements
per point. Treating each measurement as a component
of a vector, computer-implemented numerical methods
can deal with these high-dimensional measurement
vectors more quantitatively than would be possible
using manually oriented techniques, thereby
facilitating the utilization of the numerous pieces
of data about the ground scene.

Timeliness: The value of the product resulting
from remote sensing data analysis tends to decrease
as the time required to produce the product in-
creases., Computerized numerical methods can produce
analysis results far more rapidly than manual image
interpretation methods.
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TABLE 2

IMAGE PROCESSING OPERATIONS TYPICALLY APPLIED TO EARTH-OBSERVATIONAL IMAGE DATA

Preprocessing

Information Extraction

Radiometric calibration
Illumination angle correction
Scene-to-scene registration
Scene-to map registration
Projection conversion

Noise suppression

Supervised classification
Clustering

Texture analysis

Change detection

Image segmentation

Factor analysis

Furthermore, the computer is an inherently quantit-
ative device, which enhances the objectivity and

repeatability of the analysis results which can be
produced from the quantitative remote sensing data.

Although the computer plays a central role in the
implementation of image analysis methods, this is
not necessarily to the exclusion of human partici-
pation in the analysis. At the present state of
computer science and artificial intelligence, there
remain tasks which are performed most efficiently
by human faculties and still other tasks which we
simply do not yet know how to accomplish by machine.
Our design goal is to use the human analyst and the
computer as effectively as possible, admittedly,
though, with a bias toward achieving analyst-
assisted computer processing as opposed to computer-
assisted manual processing.

Finally, it is worth emphasising that information
extraction is presumed to be the objective and that
this implies distillation of concentrated inform-
ation from possible vast quantities of raw data.
There are often many computerized preprocessing
steps required prior to initiation of the actual
information extraction steps (see table 2) but a
characterizing aspect of the latter is that the
output of an information extraction step is of
greatly diminished volume compared to the input.
Classification is a typical information extraction
step, often mapping a high-dimensional data vector
(pixel) into a single real number (the "class" of
the pixel). The following discussion will outline
several ways that classification can be accomp-
lished, effectively utilizing and extracting the
information in the data.

3.1 Information from the Spectral Domain:
The Basic Approach to Classification

In simplest terms, the task of classifying multi-
spectral remote sensing data can be described as
follows (see reference 1, Ch. 3).

Each multispectral measurement defines a point in a
Cartesian coordinate system or "measurement space'.
From the presumption that a specific ensemble of
spectral measurements characterizes the ground
cover types of interest, it follows that the points
in the measurement space corresponding to a given
ground cover type occupy a well-defined region of
the measurement space and, furthermore, that the
regions associated with different cover types are,
or tend to be, distinct or '"separable'. Using
information available from the ground scene to be
classified, the measurement space may be partitioned
into regions corresponding to the different ground
cover types (see fig. 1). To classify each of the
pixels in the scene, it is then only necessary to
determine in which of the regions of the measure-

ment space the measurement vector from a given
pixel lies.

2y
Vegetation
-~ decision
boundaries
X2
Figure 1  Measurement space.

Clearly, the step of partitioning the measurement
space is crucial because the results of this step
determine the quality of the ultimate classification,
i.e., how accurately the pixels in the scene will be
classified. This step is often called '"training the
classifier",

Although there are numerous ways in which this step
may be carried out directly [8], an indirect
approach based on statistical decision theory is
commonly adopted, motivated by the fact that the
regions of the measurement space occupied by the
various classes of interest often overlap. Since
points in the regions of overlap cannot be classi-
fied with certainty, it is desirable to adopt a
strategy which performs classifications having
maximum probability of being correct. A widely used
strategy which accomplishes this is as follows.

Let the spectral measurements for a pixel be the
components of a vector X. Assume the pixel is to be
classified into one of m classes: {wi|i=1,2,...,m}.
Then X is classified into that class wj for which
the posterior probability p(wi|X) is maximum, i.e.,
wj is the class most probably present given the
observed set of measurements.

It is convenient to use the fact that the foregoing
classification rule is equivalent to (produces the
same results as) a rule which classifies X into the
class wj maximizing the product p(X|w;) p(wi), where
p(X|wi) is the probability of observing X given that
the class is wj and p(wi) is the prior probability
that a pixel will belong to class wj (the fraction
of the observed universe which belongs to class wi).
The probabilities required to implement this form
of the rule are easier to obtain in practice than
the posterior probabilities.
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Figure 2(a)
the maximum likelihood rule.

An agricultural area classified using pixel classification based upon

The darkest regions represent wheat and
the lightest regions wooded pasture.
forest, hay, other grain crops and non-farming uses.

The various shades of gray indicate
The original data

was gathered by an airborne multispectral scanner with twelve bands extend-
ing from the visible through the reflective and thermal infrared.

(b) Sample classification of the same area.

When the prior probabilities of the classes are
assumed to be equal, the classification is made to
maximise just p(X[mi). This is commonly referred
to as maximum likelihood classification.

Under the additional assumption that the distribut-
ion of data in each class is adequately described
by a multivariate normal probability density funct-
ion, i.e., for class wj
p(Xlog) = —— - exp [-5(X-Up) 12571 (x-Up)]]

e b
where n is the number of measurements and Uj and Ij
are, respectively, the mean vector and covariance
matrix for class wj, the decision rule can be
reduced to the following specific form (see refer-
ence 1, Ch. 3):

Classify the pixel X into the class wj for which
the following discriminant function is maximum:

2 T.-1
g;(X) = loge p(w;) -Yloge|Zj|-%(X-U;) "Zi™ (X-Uj)

Unéer this rule, the partitioning of the measure-
ment space is specified by the family of quadratic
surfaces defined by

gi(X) - g3(X) =0
1,505 Jdiy 208, sms i#7j

These surfaces are completely determined by the set
of prior probabilities, mean vectors, and covariance
matrices for the classes. Typically all of these
quantities are estimated from empirical data.

In outline form, then, multispectral remote sensing
image data may be classified, based on the multi-
spectral measurements, by (1) estimating from
reference data the parameters (prior probabilities,
mean vectors, covariance matrices) characterizing
the classes of interest, and (2) classifying each
pixel in the scene based on a statistical decision
rule and the class parameters. The resulting
classification may be used to generate a cover-type
map of the area analysed, it may be summarised in
tabular form or it may serve as an input to further
information extraction processes. A typical cover
map produced by such a procedure is shown in

fig. 2(a).
Clustering and Unsupervised Classification

Clustering algorithms seek to partition data in the
measurement space into subsets or ''clusters'" such
that the within-cluster variability is minimum while
between-cluster variability is maximum. This is
completely consistent with the presumption noted
earlier that an ensemble of spectral measurements
characterizes each ground cover type and, as a
result, the clustering algorithms, operating

without external supervision, achieve partitionings
of the measurement space which may be quite meaning-
ful and useful. Each of the classes defined by the
partition represents a relatively homogeneous
collection of data and each of the classes may be
said to be spectrally distinct from the others
(assuming that the clustered data consists of
spectral measurements) .

The results of clustering, sometimes called
"unsupervised classification', become most useful
only when the resulting clusters are given labels
corresponding to ground cover classes of interest.
This is accomplished through use of available
reference data but, compared to the training-and-
classification approach (''supervised classification')
described previously, relatively little reference
data is required. This is the most important
advantage of unsupervised classification. On the
other hand, as a consequence of the small amount

of information provided to the algorithm for the
partitioning process, clustering is not nearly as
powerful as the former technique in terms of its
ability to achieve the most meaningful and useful
partitioning. Clustering methods can only dis-
criminate effectively among distinct clusters in the
measurement space; if the regions of the measurement
space occupied by classes of interest are likely

to overlap substantially (e.g., spectrally similar
crop types), unsupervised classification will not

be very successful.

Specific clustering methods employed for remote sens-
ing image data analysis are detailed in references 9
and 10.

3.2 Adding Information from the Spatial Domain

The data analysis methods described so far make very



EARTH OBSERVATIONAL IMAGE DATA — Landgrebe & Swain 114

little use of the spatial characteristics of the
image data. Only the measurements associated with
a given pixel are used to classify the pixel,
However pixels tend to be organised into "objects"
in image data and the shape, size, and texture

of the objects as well as the relationships of the
objects to each other are also relevant character-
izing information that could be used for classifi-
cation. Extensive research has focused on ways

of determining and quantifying spatial features in
image data so that computers can make effective use
of these features for classification and for other
aspects of "image understanding".

Readers interested in the broad range of spatially-
oriented image processing methods being explored
for remote sensing applications are referred to
the extensive recent literature on pattern
recognition and image processing, in which these
applications are invariably given their due. For
present purposes, we shall concern ourselves with
two interesting extensions of the statistical
classification approach described above, each of
which makes use of the spatial organisation of the
image data to achieve improved classification
performance.

Sample Classifieation [11,12]

Objects in a scene are often spectrally homogeneous
and, if the resolution of the sensor is small
compared to the average size of the objects, each
object consists of several pixels. This is not to
say that all of the pixels comprising the object
are spectrally identical but at least any texture
evidenced by the object is uniform over the extent
of the object. This characteristic of image data
can be used to advantage to improve both the
accuracy and efficiency of the classification
process. Historically this approach was first used
in remote sensing to classify agricultural fields
and hence became known as '"per-field classificat-
ion". More generally it may be referred to as
object classification or sample classification.

In this context, a sample is a collection of
observations all assumed to be members of the same
population.

Assume for the moment that it is possible to segment
a remotely sensed scene into objects or samples

(in the sense noted above). Let X = X1,X5,...,Xg
represent a set of s pixels in an object, a sample
from a population characterized by one of the class
probability functions determined through use of
reference data. A maximum likelihood sample
elassification strategy is defined as follows:

Assign X to class wj if

log p(X|wj) = max log p(zjmj)
J

where p(}Jw.) is the joint class-conditional
probability”that s such pixels would occur given
that the object belonged to class w5

If the sensor system operates such that adjacent
pixels do not cover overlapping ground areas, it
may be assumed that the pixel measurements are
class-conditionally independent, i.e.,

S
pP(X|ws) = T p(X,|w:).
= oy TR

This represents an important simplification because
the high-dimensional joint conditional density
function can be computed readily from the ordinary
class-conditional densities. As in the case of the
pixel classifier defined in the previous section,

the class densities may again be assumed to be
multivariate normal, each characterized by a mean
vector and covariance matrix.

It can be shown that for a given classification
problem, the probability of making an incorrect
classification falls off rapidly as the size of the
object (number of pixels) increases. In addition,

a reduction in computation time is effected when

the pixels are classified as objects, provided only
that the computation time required to isolate the
objects does not negate the time saved in performing
the classification. The saving will be realised as
long as the resolution of the sensor is small
compared to the average size of the objects in the
scene. The references describe an object-finding
strategy that is especially compatible with sample
classification under the assumption of multivariate
normal class statistics. Figure 2 shows a comparison
of an agricultural area classified using pixel
classification and sample classification.

Contextual Classification

Rather than focusing on just the tendency of pixels
to constitute uniform objects in a scene, more
general 'neighbor'" relationships can be exploited
by contextual classifiers. The context is defined
to be a prespecified spatial arrangement of pixels,
such as shown in fig. 3, and the predilection of
certain classes of pixels to occur '"in the company
of" other classes is used to improve classification
accuracy.

i-1,j+1
1 ’\] 1 sJ 1 aj+2
i-1,] i-1,]
i,j-1 i, i,j-1 i, i,j+1
i+1,3

Figure 3 Examples of contextual neighborhood
(the pixel labeled "i,j" is to be

classified).

One form of contextual classifier is a generalis-
ation of the "maximum posterior probability class-
ifier", the first classifier introduced above for
pixel classification. The computations required are
somewhat similar to the sample classifier except
that they also involve the prior probabilities of
observing specified collections of classes in the
prespecified spatial arrangement [13].

Another form of contextual classifier [14,15]
presumes that all pixels have been initially pro-
cessed to determine their probabilities of belonging
to each of the classes of interest. The resulting
array of class probabilities is then iteratively
processed, making stepwise adjustments of the
probabilities, so that they eventually are consist-
ent with a prespecified spatial model for the scene.
The final classification obtained amounts to a
""compromise' between the spectral information
contained in the original pixels and the spatial
model presumed to be appropriate for the scene from
which the data originated.

The utility of both of these contextual classifiers
lies in the improvement in classification accuracy
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land observation systems is now well under way.

User agencies are learning what such systems can do
for them and early expectations are being confirmed
that their use will be valuable, extensive and
diversified. It can reasonably be assumed that once
these users reach the point of repeating activities,
as compared to doing them the first time, the
results will prove even more significant to them.
For example, as city planners draw up the second
five-year plan based upon such techniques, as
foresters monitor a given area for the second and
third time and as crop forecasters survey an area
for the second and third growing seasons, they will
find they can be more precise and draw conclusions
which they did not anticipate being able to draw
based on their initial use of the technology.

they can achieve over simpler, non-spatially
oriented classifiers. This improvement, it turns
out, hinges on the quality of the contextual inform-
ation made available to the classifiers. The
references contain numerous empirical results
related to this matter.

3.3 Information from the Temporal Domain

Scene variation as a function of time has long been
known to be an important source of information
about the earth's surface and environment. Of
course, for some applications, the change itself

is of fundamental interest; examples of such
applications are land-use planning and hydrological
studies of snowpack variation. In other cases, the
observed changes help to discriminate among ground
cover types that may otherwise be spectrally
indistinguishable. A notable example is the
recognition of wheat amidst other crops [16].

Beyond the operational outlook for today's remote
sensing technology, the potential for new technology
and its benefits appears to be very large. Current
sensors, while practical, do not by any means
capture all of the information available from the
orbital vantage point. Current information extract-
ion techniques do not yet make available all of the
information in current data systems, let alone

Availability of periodic observations from Landsat
has provided the opportunity to develop methods for
utilising "the temporal domain'. The image
processing technology necessary for precisely

registering multiple passes over an area has been
created [17] and the development of information
extraction methods for multitemporal data is being
actively pursued. The most direct approach is to
create ''stacked" data vectors by simply concaten-
ating sets of measurements from successive observ-
ations of a given location and to apply the same

future, more advanced ones.

Also, the enormous rate

of development of the computer hardware and software
technologies is rapidly bringing to feasibility
algorithmic approaches which, for reasons of
complexity and sophistication, could not be con-
sidered previously.
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