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Abstract

A recently proposed neural network architecture, the parallel consensual neural network, is applied
in classification of data from multiple data sources. The parallel consensual neural network (PCNN)
architecture is based on statistical consensus theory and involves using stage neural networks with either
non-linearly transformed input data or different initializations for the stage networks. When non-linear
transformations are applied, the input data are transformed several times and- the different transformed
data are used as if they were independent inputs. The independent inputs are classified using stage
neural networks and the outputs from the stage networks are then weighted and combined to make a
decision. Optimization methods are proposed to compute the weights for the stage networks. The given
experimental results show the superiority of the optimization approach as compared to conjugate-gradient
backpropagation in classification of test data. :

1 Introduction

The recent resurgence of research in neural networks has resulted in the development of new and improved
neural network models. These new models have been trained successfully to classify complex data. In
pattern recognition applications, the question of how well neural network models perform as classifiers
is very important. In previous papers [1],[2], it has been shown that neural networks compared well to
statistical classification methods in classification of multisource remote sensing/geographic data and very-
high-dimensional data. The neural network models were superior to the statistical methods in terms of overall
classification accuracy of training data. However, statistical methods based on consensus from several data
sources outperformed the neural networks in terms of overall classification accuracy of test data. Thus
it would be very desirable to combine certain aspects of the statistical consensus theory approaches and
the neural network models. However, it is very difficult to implerrfk-;nt.statistics in neural networks. In 3]
parallel consensual neural networks (PCNNs) were proposed and implemented as stage-wise neural network
algorithms. The network models in [3] do not use prior statistical information but are somewhat analogous
to the statistical consensus. theory approaches. In this paper the methods proposed in [3] are extended to
include optimal weights for the stage networks. The paper begins with a short overview of consensus theory
followed by ‘a discussion of the PCNNs. Finally, experimental results are given.
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2 Consensus Theory

Consensus theory [4],[5] is a well-established research field involving procedures for combining single prob-
ability distributions to summarize estimates from multiple data sources with the assumption that the data
sources are Bayesian. In most consensus theoretic methods, the data from each source are at first classified
into a number of source-specific data classes [1]. The information from the sources is then aggregated by a
global membership function and the data are classified according to the usual maximum selection rule into -
a number of user-specified information classes. The combination formula obtained in consensus theory is
called a consensus rulé. Several consensus rules have been proposed. Probably the most commonly used
consensus rule is the linear opinion pool which has the following form for the information class if n data
sources are used:

Ci(2) = Yamloslm) ®

where Z = [z1,...,2,] is a pixel, p(w;|z;) is a source-specific posterior probability and a;’s (i = 1,...,n) are
source-specific weights which control the relative influence of the data sources. The weights are associated
with the sources in the global membership function to express quantitatively our confidence in each source
[4]. The linear opinion pool is simple but has several shortcomings, e.g., it is not externally Bayesian since it
is not derived from class-conditional probabilities using Bayes’ rule. Another consensus rule which overcomes
the shortcomings associated with the linear opinion pool is the logarithmic opinion pool:

Li(2) = H (plwjlzi))™ - A (2)

The logarithmic opinion pool has performed well in classification of data from multiple sources [4].

It is desirable to implement consensus theoretic approaches in neural networks since consensus
theory has the goal of combining several opinions and a collection of different neural networks should be
more accurate than a single network in classification. It is important to note that neural networks have been
shown to approximate class-conditional probabilities, p(w;|z;), at the output in the mean square sense [6].
Using this property of neural networks it becomes possible to implement consensus theory in the networks.

3 Neural Networks with Parallel Stagés

A block diagram of the parallel consensual neural network (PCNN) architecture is shown in Figure
1. Each stage neural network (SNN) has the same number of outputs neurons as the number of information
classes and is trained for a fixed number of iterations or until the training procedure converges. When the
training of the first stage has finished, the classification error is computed. Then another stage is created.
The input data to the second stage are obtained by non-linearly transforming (NLT) the original input
vectors. That stage is trained in a fashion similar to the first stage. When the training of the second stage
has finished, the consensus for the SNNs is computed. The consensus is obtained by taking class-specific
weighted averages of the output responses of the SNNs using source-specific weights [4], similar to the ones in
equations (1) and (2). Error detection is then performed and the consensual classification error is computed.
In neural networks it is very important to find the "best" representation of input data and the consensual
method attempts to average over the results from several input representations or different initializations for
the stages. Also, in the consensual neural networks, classification of test data can, be done in parallel with all
the stages receiving data simultaneously, which makes this method attractive for implementation on parallel
machines. : : R .
The PCNN is self-organizing in the following sense: If the consensual classification error is lower than
the classification error for the first stage, another stage is created and trained in a way similar to the second
stage, but with another non-linear transformation of the input data or another initialization of the stage
neural network. Stages are added in the consensual neural network as long as the consensual classification
error decreases or a tolerance limit is reached. If the consensual classification error is not decreasing or is
lower than the tolerance limit, the training is stopped. Using this architecture it can be guaranteed that the
PCNNs should do no worse that single stage networks, at least in training. To be able to guarantee such
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Figure 1: Parallel consensual neural network architecture

performance in ciassiﬁéatioh of test data, cross-validation methods can he used. Also, it has been shown [7]
that if all the networks in a collection of neural networks arrive at the correct classification with a certain
likelihood 1 — p and the networks make independent errors, the chances of seeing exactly k errors among N

copies of the network is:
o k(1 __ . \n—k
( K ) p*(1-p)
AY
which gives the following likelihood of a sum of network outputs being in error:

>, < . )1)"(1—19)"”'c

k>nf2

which is monotonically decreasing in N if p < 1/2. This implies that using a collection of networks reduces
the expected classification error if the networks have equal weights and make independent errors. It has also
been shown [8] that the standard deviation of the classification of a portfolio of neural networks (such as the
PCNN) decreases as the number of stage networks increase. :

In [3] two versions of the PCNN were proposed. Both PCNNs combine the information from separate
.inputs and can be considered neural network implementations of the consensus rules in equations (1) and
(2). Here we concentrate on the PCNNS, the consensual neural network version of the linear opinion pool
which will be referred to below as the PCNN.

Related neural network architectures to the PCNN have been proposed by Hansen and Salamon (7],
Ersoy and Hong [9], Deng and Ersoy [10], Valafar and Ersoy {11}, Alpaydin [12}, and Nilson [13]. However,
the PCNN architecture is different from all of these. It uses non-linear transformation between stages and
. weights the output from all the SNNs. '

4 Optimal Weights

The weight selection schemes in the PCNN should reflect the goodness of the separate input data, i.e.,
relatively high weights should be given to input data that can be classified with good accuracy. There are
at least two possible weight selection schemes. The first one is to select the weights such that they weight
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Figure 2: PCNN with weighted individual stages . ‘

the individual stages but not the classes within the stages. This scheme is shown in Figure 1. In this case

. one possibility is to use equal weights for all the outputs of the SNNs and effectively take the average of the

outputs from the SNNs. Another possibility is to use reliability measures which rank the SNNs according
to their goodness. These reliability measures are, e.g., stage-specific classification accuracy of training data,
overall separability and equivocation [1]. ‘

The second scheme is to choose the weights such that they not only weight the individual stages
but also the classes within the stages. This scheme is depicted in Figure 2. In the case of the PCNN the
combined output response Y can be written in a matrix form as

Y=XW

where X is a matrix containing the output of all the SNNs and W contains all the weights. Assuming that
X has full column rank, the above equation can be solved for W using the pseudo-inverse of X or a simple
delta rule. o , ‘

Let’s now look at the problem of choosing the weights such that they not only weight the individual
stages but also the classes within the stages. In order to find the optimal weights in Figure 2 we define -

X=[X1 X5 ... Xa],

Wi
o w
. W — R
: - Wn . N e .
where X; i ="1,-... ,n are m X p matrices. Each row of X; represents an output \{ééi’,pr of each stage
network SNN i. W; i=1, ... ;narep X p matrices representing the weight of eachi stage network SNN 1.
IfY = D is the desired output of the whole network we have e T o
. XW=D.

e . RS ~-:"_.
W is an unknown matrix, and its least square estimate Wop: is sought to minimize the square error
o . : [
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This is a well known problem from linear regression, signal processing and adaptive filters. The formula for
Wopt uses the pseudo-inverse of W, i.e.,

Wopt = (XTX) 1 XT D

where X7 is the transpose of X, and (XT X)~*X7T is the pseudo-inverse of X if XTX is non-singular. In
the case that X is not of full column rank this solution becomes ill-conditioned. In that case one can use
dummy augmentation to make W a full column rank matrix in a higher dimensional space and then solve
the problem. There are at least two other suboptimal methods for solving the optlmlzatlon problem above.
The rest of this section will be denoted to these methods.

The first method is to use sequential formulas to compute the optimal W. Let the 1th row vector of
the matrix X be z7 and the ith row of the matrix D be d, then W can be calculated 1terat1vely using the
sequential formula. :

. VVH-I = W -+ Ps-i-lzt-‘l-l (dT+1 s+1)
Pizip1zT P
P. = P treTitlTy r = 0,1, ...,
i+1 [ 1+x',1‘+1P'$s‘+1 ! r m

where Wm is the least square estxrna.te of Wopt. The initial conditions to the sequential formula are Wo =0
and Py = BI, where B is a positive large number. - '
~ The second method solving the least square error problem is to choose unitary W which mlnlmlzes
“D XW||. We compute _ ; a
ID— XW|* = [ID|®. -2 < D, XW > +||X|?

where < D, X W >= tr(DWTXT) and tr returns the trace of of its argument matrices. If
. XTD =VEyT
is a singular value decomposition (SVD) of XD then
te(DWTXT)y = t(XTDWT)
= t(VEUTWT)
= t(SUTWTY) .

p .
= Z Ui(XTD)t,','
=1 i

where T = [t;;] = UTWTV is a unitary matrix. This sum is maximized when all #;; = 1, that is when
T
Wepe = VU=

5 EXPERIMENTAL RESULTS

The PCNNo were used to classify a data set consisting of the following 4 data sources:
1. Landsat MSS data (4 data channels)

2. Elevation data (in 10 m contour intervals, 1 data channel)
3. Slopo data (0-90 degrees in 1 degl-ee increments, 1 data channel).
4. Aspect data (1-180 degrees in 1 degree increments, 1 data channel)

Each channel comprised an image of 135 rows and 131 columns, all channels were co-registered. The
area used for classification is a mountainous area in Colorado. It has 10 ground-cover classes which are listed
in Table 1. One class is water; the others are forest types. It is very difficult to distinguish between the
forest types using the Landsat MSS data alone since the forest classes show very similar spectral response
[1]. Reference data were compiled for the area by comparing a cartographic map to a color composite of
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Table 1: Training and Test Samples for Information Classes in the Experiments on the Colorado Data Set

Class # | Information Class - Training Size | Test Size
1 Water 301 302
2 Colorado Blue Spruce 56 56
3 ‘Mountane/Subalpine Meadow 43 44
4 Aspen 70 70
5 ‘Ponderosa Pine 1 157 157
6 Ponderosa Pine/Douglas Fir 122 122
7 Engelmann Spruce 147 147
8 Douglas Fir/White Fir 38 . - 38
9 Douglas Fir/Ponderosa Pine/Aspen 25 25
10 Douglas Fir/White Fir/Aspen 49 50

Total 1008 1011

the Landsat data and also to a line printer output of each Landsat channel. By this method 2019 reference
points (11.4% of the area) were selected comprising two or more homogeneous fields in the imagery for each
class. It has been shown [2],{3] that neural networks are sensitive to having representative training samples.
In order to see how well the PCNNs compared to a backpropagation neural network with a representative
training sample, the training samples were selected uniformly spaced apart in the experiments. Around
50% of the samples were used for training and the rest to test the neural networks (see Table 1). Two
versions of the PCNN were applied in classification of the Colordado data, i.e., PCNN with equal weights
. and optimized weights. (The optimal approach reported here was the inverse method but the suboptimal
methods gave similar results.) The PCNN algorithms were implemented using one-layer conjugate-gradient
delta rule neural networks (CGLC) [2],[14] as its SNNs. The conjugate-gradient versions of the feedforward
neural networks are computationally more efficient than conventional gradient descent neural networks. The
original input data were Gray-coded but that representation has previously given the best results for this
particular data set {2]. Using the Gray-code and 8 bits for each input stage expanded the dimensionality
of input data to 56 dimensions. Therefore, each SNN had 57 inputs (one extra input for the bias), and 10
outputs. In these experiments the Gray-code of the Gray-code was the non-linear transformation selected.
This is the same non-linear transformation used in [3]. Each SNN was trained for 200 iterations. In order
to get comparison to the results of the PCNN, the single-stage conjugate-gradient backpropagation (CGBP)
algorithm with two layers [14] was trained on the same data with a variable number of hidden neurons.
The CGBP neural networks had 57 inputs, 8, 16, 24 and 32 hidden neurons and 10 output neurons. Eleven
experiments were run for the PCNN with different numbers of stages. The highest number of SNNs used

in each PCNN was fifteen. All the neural networks used the sigmoid activation function. The experiments -

were run on a SUN SPARCstation 10/41.

The average results of the experiments with the PCNN are shown in-Figure 3 for the two weight
selection schemes and the standard deviation of the training accuracy for the PCNNs is shown in Figure 4.
The results with the CGBP (for different number of hidden neurons) are shown in Figure 5 as a function of the
number of training iterafions. From these figures it is clear that the PCNN methods outperformed the single
stage CGBP in terms of classification accuracy of test data. Also, the difference between the equal weight
selection and the optimal weighting method became very clear in the experiments. The optimal approach

clearly outperformed the equal weighting approach in terms of training accuracy. In fact, for training data, '

the optimal weighting approach did show monotonically increasing overall accuracy as a function of the
number of stages. This result was expected since the weights in the PCNN were optimized based on the
training data. On the other hand, the PCNN methods showed very similar test accuracies after 15 stages.
On the average, the optimal approa.ch achieved 80.77% overall accuracy for test data as compared to 80.74%
for the equal weighting approach. In comparison, the CGBP method achieved the maximum accuracy of
77% for test data. It is also important to note that the test results with both PCNNs are better than the

ot
£
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best statistical result achieved in [4].

As Figure 4 displays, the standard deviation of the classification went down as a function of the
number of stages used. Overall, the PCNN results in these experiments were very satisfying.

6 CONCLUSIONS

In this paper optimized weights were computed for the stage networks in the PCNN architecture. The results
obtained showed the PCNN architecture to be a desirable alternative to conjugate-gradient backpropagation
for multisource classification when representative training data are available. The results for. the PCNN
outperformed all other methods (applied now and previously on the data set used) in terms of classification
accuracy of test data. The results using the optimized weights were very promising and it is important to
note that the new optimized weighting approach can also be used for the networks proposed in [11] and [12].
Although binary input data were used in the expenments the PCNN with optlmlzed welghts works both
for analog and binary input data.

At this point, the PCNNs require to be tested extensively. Different non-linear transformatlons and
the various weight-selection schemes proposed here need to be explored more thoroughly. Also, different types
of PCNN architectures are being investigated. These architectures include PCNNs with dlfferent non-linear
transforms for each stage and different number of iterations for the stages. The most important remaining
problem in the research concerning the PCNN architecture is the selection of the non-linear transformations.

In this paper we did not concentrate on that problem but used somewhat an ad hoc method, i.e. the Gray- -

code of the Gray-code. Using an optimal non-linear transforma.txon could be critical to the performance of
the PCNN. -
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Figure 3: Average results for the PCNN with equal and optimal welghts as a functlon of the number of
SNNs. The upper curves tepresent training results and the lower curves test results.
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Figure 4: Standard deviation for the training results of the PCNN methods.
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Figure 5: Experimental results for the CGBP with a variable number of hidden neurons. The upper curves
represent training results and the lower curves test results.
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