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ABSTRACT

Layered classification offers several advantages over the very familiar
single-stage approach. The single-stage method of pattern classification
utilizes all available features in a single test which assigns the "unknown®
to a category according to a specific decision strategy (such as the maximum
likelihood strategy). The layered classifier classifies the "unknown" through
a sequence of tests, each of which may be dependent on the outcome of previous
tests. Although the layered classifier was originally investigated as a means
of improving classification accuracy and efficiency, it has beccme apparent
that in the context of remote sensing data analysis, other advantages also
accrue due to many of the special characteristics of both the data and the
applications pursued. This paper outlines the layered classifier method and
discusses several of the diverse applications to which this approach is well
suited, ‘ .

+ INTRCDUCTION

" The pattern classifiers commonly implemented in remote sensing data pro-
cessing systems have an elementary logical structure like that shown in Fig-
ure 1. To classify cach "unknown," the decision process is applied to a fixed
sét of features (usually spectral measurements) to select one of the candidate
pattern classes. For some remote sensing problems encountered in practice,
however, this simple structure is less than ideal and may even be inadequate.
A structure like that suggested by Figure 2, a "decision tree” or "layered
classifier,”™ can be put to good use. The following cases illustrate this
tact.. - :

In regions characterized by highly variable topography, spectral response
may depend significantly on topographic variables such as slope and aspect [1l].
With the digital data bases and the data registration facilities which are now
available, it is possible to overlay, say, satellite multispectral scanner (MSS)
data and topographic data. Thus, it is feasible to use the topographic data
in the classification process - except that the topographic data cannot be
handled as simply an additional variable (or variables). Ideally, one might
wish to use the topographic variable (s) to stratify the multispectral data
analysis problem, and then apply a multivariate maximum likelihood procedure
to the stratified data. This can bé accomplished with a layered decision pro-
cgdure, in which the data is stratified in the first layer and the classifica-~
tion is accomplished in one or more succeeding layers.
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Another case in which a kind of stratification is of use is in detection
of diseased crops. The spectral bands which are optimal for disease detec-
tion are not necessarily the bands optimal for crop species discrimination.
Rather than use all of these bands jointly for every classification, which
may be prohibitively expensive in terms of computational load, it would be
preferable to use the "disease detection bands" only when the crop species
of goncern has been detected. Again, a multilevel decision procedure can be
used, .

Another class of problems for which layered classification is helpful is
that characterized by very limited size training sets. Under such limitations,
it may be necessary to restrict the dimensionality (number of features) of
any decision procedure used in order to avoid the "dimensionality problem;"
i.e., the phenomenon which, when the number of training samples is small, de=
creases classification accuracy when new pattern features are added [2,6].

This problem can often be circumvented by substituting multiple decisions with
low dimensionality for a single decision having high dimensionality, which
can be accomplished using layered decision logic.

Many other examples could be cited. In general they involve one or more
of three factors: (1) compatibility of the scene variables with each other
and- with the analysis process; (2) the desire to maximize classification accu-
racy; (3) the desire to minimize classification cost (usually measured in
terms of computer time). The challenge is to devise a systematic and effec-
tive procedure for determining the optimal decision logic.

APPROACH

For generality, we shall state the problem as follows:

Assume there is a set of classes C = {cl, cz,...cm}, a set of measure-~
ments or features F = {flp fz,...,fn} with which to discriminate between the
classes, and a set of decision procedures P = {pl, pz,...,pk} which can be

applied to the features to achieve the required discriminations. Formally,
a "decision tree" is a tree-like structure of connected nodes, such as shown
in Figure 3, which defines a logical decision (classification) procedure.
Each node (junction point) in the tree is labelled by a triple of the form
{Ci’ Fi, pi}, where Ci is a subset of C, Fi is a subset of F, and Pi is a

single element from P. Thus each triple defines a step in the decision pro-
cess for classifying any given data observation. The uppermost or root node
in the tree is always labelled with C; the lowest or terminal nodes in the
tree are often, but not always, labelled with individual elements of C,

The problem is to select from the set of all possible decision trees a
tree which (1) at every node uses a decision procedure compatible with the
available data features, and (2) maximizes the overall classification accuracy
while (3) minimizing the classification cost. Conditions (2) and (3) must be
met in terms of an "optimal®” trade-off. For almost any practical problem,
the specifications for some of the nodes in the tree will follow naturglly.
from the problem itself. But there may be a very large number of p0551bil}ties
for the remainder of the nodes. Designing an "optimal” decision tree requires
first a criterion for evaluating any given tree, and then a strategy gor
searching for the .optimal tree among the possibilities. In the remainder
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of this section we shall describe briefly a design approach we have been de-
veloping. The details may be found elsewhere [2].

Optimality Criterion

For a given data processing system, the computation time required to
analyze the data of interest reflects the relative "cost" of the analysise.
For instance, the time increases with the complexity of the decision pro-
cedure and the number of pattern features used. On the other hand, it is
usually possible, up to a point, to "buy” analysis accuracy by paying the
cost of a more complex decision procedure and/or adding more features.

The optimality of a given decision tree is expressed in terms of both
the time required by the classifier to process the data and the error rate
achieved. Since, up to a point, one of these factors can be traded for the
other, the relative importance of these factors must be specified for the
problem at hand. The optimality criterion is expressed as an "evaluation
function® E: '

E== (T +XK -+ ¢) ; ’ (1)

where T is the time required for classification and € is the resulting error
rate. The constant K expresses the relative importance of computation cost
(time) and classification error. We have chosen to use the negative expres-
sion so that achieving optimality corresponds to maximizing the evaluation
functione.

Searching for an Optimal Tree

For any given problem, it would be theoretically possible to enumerate
(make an ordered exhaustive list of) all possible decision trees and evaluate
them one by one using eq. (1) to find the best possible tree. But for almost
any nontrivial problem encountered in practice, this is infeasible because
of the enormous number of possible trees. To get this problem down to man-=
ageable proportions, a sktrategy has been adopted which we refer to as Tguided
search with forward pruning” [2)]. Essentially, the strategy is to construct
the tree a node at a time, estimating the suitability of all candidate struc-
tures for the node under consideration, and discarding all but the most prom—
ising candidate "subtree,”

The "guided search with forward pruning® strategy requires a means for
evaluating each node. For each candidate structure following node di' the
evaluation is computed as follows:

n

i
E(di) = -T(di) - K.E(di) + jzlE(di"'

L (2)

where T(di) and e(di) express the efficiency and accuracy of the node di and

the summation ig an estimate of the evaluation functions of the descendant
nodes of d, (which are n, in number). A lower bound is used to form this

estimate, which is the evaluation of a conventional single=stage classifier
applied at that point.



Constructing the decision tree in this sequential fashion cannot guaran-
tee that the optimal tree will be obtained, because, unfortunately, the opti=-
mal choice at any level in the tree is not necessarily independent of choices
gt'later stages. However, improvement over conventional single-stage class-
ifiers is generally achievable, a fact amply demonstrated by the empirical
results obtained to date [2,3].

Estimation of Classification Accuracy

Use of eq. (2) requires computation of classifier error in order to
evaluate any candidate subtree. However, even under the simplifying assump-
tion that all classes to be recognized have multivariate Gaussian statistics,
direct calculation of classifier error is not feasible [4]. Instead it is
necessary to use an indicator function which provides a measure of the sta-
tistical separability of the pattern classes for any given subset of the
pattern features. Several such functions have been investigated for this
purpose, a transformation of the Bhattacharyya distance having proved most
suitable so far [2,3,4].

Alternative Decision Tree Design Procedures

The search strategy discussed above provides an analytical tool for de-
signing decision trees based on the statistical relationships between the
pattern classes. In some instances, however, the appropriate design criteria
may not be of a statistical nature. In such cases, a more user-interactive,
less automatic procedure may be followed. Tvpically, the user will specify
those nodes of the decision tree which can be specified from consideration
of the problem characteristics and then use the optimal search method to de=-
termine the remainder of the tree. A good example is the approach for over-
coming cloud problems, which is described in the next section.

APPLICATIONS

In the Introduction, we cited two potential applications and an entire
class of problems for which lavered classifiers are useful. Several more
applications are listed in Table I. We will now describe a number of in~-.
stances where this method has actually been used experimentally.

Water Temperature Mapping

It was desired to map the surface temperature of a river for which a
multispectral scanner data set was available including a calibrated thermal
channel [5]. To accomplish the desired mapping, it was first necessary to
locate the river using the visible and reflective infrared scanner channels.
The temperature of the water was then determined from the thermal infrared

channel.

Figure 4 shows a simple decision tree structure used to accomplish the
desired result. The design was simple enough to perform manually, without
the use of the optimal search procedure.

Avoiding the Clouds
The classification of agricultural crops from satellite multispectral
data promises to be one of the major applications of remote sensing. However,
at many of the latitudes where important cropland is found, the remote sensing
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data is often cloudy. A layered classifier used in conjunction with data
from multiple satellite passes over the same area can alleviate this problem
to a substantial degree,

In an experiment which demonstrated this capability, LANDSAT data col-
lected over Livingston County, Illinois on June 29 and July 16, 19273, were
geometrically registered. It was desired to determine, using the data from
the June 29 pass, the acreage of corn and soybeans planted in the countye.
However, ten percent of the county was obscured by clouds and cloud shadows.
Training statistics were determined for both dates, and the decision logic
shown in Figure 5 was used to classify the data. Again, as in the previous
case, the decision tree was determined by the problem logic, without resorting
to the optimal search procedure.

As shown in Figure 5, the layered classifier was used simply to elimi-
nate the effects of clouds in the earlier data set. More complex logic could
have been developed. For example, at points where neither data set had
clouds or shadows, all eight data channels could have been used for classifi=-
cation with the aim of improving the classification accuracy.

Optimization of Accuracy and Efficiency

A number of applications examples are described in [2] which involve
designing layered classifiers so as to optimize accuracy and efficiency. In
one fairly typical case it was desired to identify the classes "coniferous
forest,” "deciduous forest,®” "agriculture,"” "water," and "bare rock.” In the
analysis process, twenty-six spectrally distinct subclasses were identified,
and the optimal search procedure was used to derive an appropriate decision
tree, which is shown in Figure 6. (A simplified notation has been used in
this figure to specify the tree, All nodes use maximum likelihood as the de-
cision criterion.) This tree is fairly typical in several respects, including
its breadth and depth. Efficiency of the classification process is gained
through the fact that many of the decisions involve a small number of features
(for the classification algorithm used, the time required is roughly propor=
tional to the square of the number of features). Accuracy is gained by using
an optimal subset of features for each decision, which is generally a subset
determined by the specific classes to be discriminated in that decision.

SUMMARY

We have described here a flexible method for classification of remote
sensing data. This method can be applied to a wide range of problems and
varieties of data not conveniently handled by conventional classifiers. It
also provides a means of maximizing classification accuracy and efficiency by
optimizing the number and selection of features used in each decision,

The "decision tree® approach allows the user to take advantage of special
characteristics of the problem at hand by manually specifying parts of the
decision tree. Where the problem is one of choosing among a vast number of
alternative tree structures, a programmed "optimal search procedure” is avail-
able, Often a hybrid of the manual and optimal search procedures provides
the most suitable decision tree structure for a practical problem,

For problems involving large numbers of pattern classes and features,

the "optimal search procedure” described here cannot guarantee that the re-=
sulting decision tree is truly the optimal tree. Future research using
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heuristic search procedures and mathematical programming techniques is ex-
pected to improve on the design tools now available,
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Table I. SOME APPLICATIONS OF LAYERED CLASSIFIERS

General Application

Change Detection

Use of Mixed Feature Types

Class-specific Properties

Other

Example

Snow pack variation
Water level variation
(e.g., reservoirs)

"Urban sprawl”
Logging practices

Texture

Topography

Geophysical data
(€eGor aeromagnetic)

Crop disease detection

Forest type mapping

Water quality mapping

Water temperature mapping
(see text)

Avoidance of cloud effects
(see text)
Minimization of data dimensionality



unknown
sample

use features fl,fz,...,fn

water bare soil corn soybeans wheat  trees

Figure 1.- Common single-stage classifier.

unknown
sample

use feature subset

water bare soil green vegetation

use feature
subset

crops trees

use feature
subset

corn soybeans wheat

Figure 2.- A layered classifier.
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Figure 3.- General form of the
decision tree.




C [water,other]

max.

likelihood |} F

1= [reflective bands]

water other
level v
slicing

radiant
temperature

FZ = [thermal band]

Figure 4.- A layered classifier for
water temperature mapping.

C = [corn,soybeans,clouds,
cloud shadows, other]

max.

likelihood, Fy = [£y,£5.f f4]

12729

ZoTn soybeans other clouds & shadows

= [corn,soybeans,
other]
= [fS’f6’f7’f8]

likelihood

corn soybeans other

Figure 5.- Agricultural classification in the
presence of clouds.
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