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1. INTRODUCTION

Multispectral photography offers a means of measuring the spectral variations
in reflected energy from a scene in addition to the spatial and panchromatic tonal
measurements obtained from conventional photography. Color and color infrared are
the most common forms of multispectral photography. Multiple camera and multilens
camera systems employing different film~filter combinations can sense many spectral
bands over the range of film sensitivity of approximately .4-.9 micrometers.

A study of digitized multispectral satellite photography was conducted to seek
answers to the following two questions: (1) What are the data handling problems
and requirements of converting photographic density measurements to a usable
digital form; (2) What surface features can be distinguished using multispectral
data taken at satellite altitudes. The results of this study include the digitiza-
tion of three multiband black and white photographs and a color infrared photograph
the conversion of the results of digitization to a useful digital form, and
several data analysis experiments.

The NASA Apollo 9 mission carried two multispectral photographie sensors.2 One
consisted of three cameras with black and white film and filter combinations which
sensed reflected energy in approximately the .48-.61, .59-.71 and .68-.89 micro-

nmeter wavelength bands. The other sensor was a single camera exposing color in-
frared film, which senses approximately the same bands. Details of the film
sensors are presented in Table I. The Imperial Valley, California, was selected as

a test site because of the generally low clcud cover over the area and the diver-
sity of ground features, e.g., agricultural areas, desert, mountains. At the time
of the mission, extensive ground truth was collected in the Imperial Valley by the
University of Michigan3 to enable detailed study of problems related to remote
sensing from satellite altitudes. A photographic print of the Apollo 9 frame
studied is presented in Figure la.

1This work was supported by the National Aeronautics and Space Administration
Grant Number NGL15-005-112 and U. S. Department of Agriculture Contract 12-14-100-
10292(20).

2Kaltenbach, J. L., "Apollo 9 Multispectral Photographic Information,"” NASA TM
X-1957, April 1970,

3Spansail, N. et al., "Imperial Valley Ground Truth for Apollo 9 Overflight of
March 1969," University of Michigan.
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Recent analysis of this photography by wiegandu et al. produced good results
for surface features such as sugar beets and salt flats. Three categories of
surface features in the southern California region were studied here: crops, soils
and geological features. The analysis deseribed consists of several steps which
fall into three major phases. ‘

° data preprocessing
® training class and signature analysis
° automatic classification and result evaluation

. . Phase 1 includes microdensitometry and color separation of the film, analog to
digital conversion, data registration and formatting. Phase 2 and 3 compose an
iterative process in which training classes are updated based on classification
results obtained from the previous training area, and the process continues until
satisfactory results are achieved.

The analysis conducted used digital techniques throughout. This approach
allows a wide variety of analysis and display methods to be used in writing and
executing the appropriate program for a digital computer,

The paper first discusses the data preprocessing operations which were carried
out. Analysis of the data on two levels is then discussed. A large scale or
"global" study is performed to determine the spectral signatures of green vegeta-
tion, soil, rocks, water, clouds, and other general surface covers (section 5).
Then the crop (section 6), soil (section 7), and geological (section 8) classes are
studied to determine what features can be discriminated in these categories,

2. PHOTOGRAPHY AS A SENSOR OF SCENE REFLECTANCE

Photographic materials can be viewed as chemical detectors of electromagnetic
energy over a limited portion of the spectrum. Electromagnetic energy from the sun
is reflected by the scene and collected by the camera-lens system. The amount of
energy reaching the film is a function of the sun's energy spectrum, scene bi-
directional reflectance, atmospheric attenuation and scattering, lens distortions
and filter effects. The exposure of the film is a function of energy reaching it,
exposure time, aperture and emulsion characteristics. Variability in all of these
parameters is in addition to the scone variability due to different spectral
responses of the same class of interest.

The silver halide cmulsion of the film is transformed by exposure to the light
energy which produces increasing density after development. The relationship be-
tween exposure and density is approximately logarithmic, and film sensitivity is
described by the well-known D log E curve. Over the linear portion of the curve
the relationship between density and exposure is of the form D = atbe+(log E). The
shape of the D log E curve can be determined by photographing a step-calibration
wedge containing several steps of known exposure variation.

Measurement of film density is facilitated by the wide variety of densito-
meters available today. A densitometer measures the fraction of light transmitted
through the film. This quantity is called transmittance: T. Density is defined
as the base 10 logarithm of the inverse of the transmittance:

D = log ; or D = log Eo
T It

T . . .
'W1egnnd, C. L., Leamer, R, W., Cerbermann, A. I., "Crop Species and Soil
Condition Discrimination on Lktachrome Infrared Apollo 9 Tmagery," USDA, Weslaco,

Texas,
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where Io is the incident light and It is the transmitted light. The density of the

Apollo 9 transparencies studied were measured using a precision rotating drum micro-
densitometer.®™ The densities were converted to electrical form, sampled and
converted to an eight-bit binary number. The sampling rcsolution used was approxi-
mately .001 inch which resulted in a sampling-ground resolution at nadir of about
200 feet. The estimated resolution of the Apollo 9 photography is approximately

350 feet at nadir and increases to over 750 feet at the edpe of the frame.

Sampling at 200 feet insures that resolution crror is not introduced due to samp-
ling and is large enough that grain effects do not cause extreme noise problems.

The digitized density samples were recorded on magnetic tape for computer pro-
cessing. The 70 mm frames sampled at .001 inch produce about 4.5 x 10° samples.

The three multispectral black and white transparencies were scanned using
white light. The color infrared transparency was scanned sequentially using blue,
green, and red filters and no filter in the white light path. Thus seven repre-
sentations of the frame were obtained on tape resulting in a total of over 30
million density readings. A computer gray scale printout of the white light scan
of the color infrared frame is presented in Figure 1b. The microdensitometer was
adjusted so that the density range of the film covered most of the dynamic range of
the instrument,

Surface feature classification was conducted using both multispectral black
and white data and color separation data from the color infrared film. The com-
parison between multispectral and multibase sensors was made to determine the
relative merit of the two for the case reported in Section 6. If equal or superior
results could be obtained from color film, then the added expense and registration
problem associated with the multispectral black and white approach could be avoided.

3. DATA PREPROCESSING

The individual scans were stored as separate data sets on tape. In order to
analyze this data using multispectral pattern recognition programs, each of the
scans must be stored in such a manner that each scene point is in geometric coinci-
dence ig gll bands or channels. This image registration problem has been studied
at LARS®>” and a software system has been devcloped to register or "overlay"
multiple images of the same scene. This system was used to combine the individual
scans onto one tape with the image points stored in such a manner that any ground
point can be addressed by a line-and-column coordinate pair and a channel pointer.
The data channels and their associated wavelength bands are given in Table II. An
IBM System 360 Model u4ui computer was available for the analysis.

The calibration operations which can be performed on film data are of two
forms:

1. Sensor calibration
2. Scene reflectance calibration

Sensor calibration determines non-linear relationship between film density and
incoming radiation, removes the off-axis response reduction, compensates for
obliqueness in the image, etc. Scene reflectance calibration relates scene reflec-
tance to the film density resulting from the exposure. Relatively accurate sensor
calibration can be achieved by using, for example, calibrated step wedges for
exposure calibration and applying known off-axis correction factors. The fall-off

*The film was scanned by Optronics International, Chelmsford, Massachusetts,
and Fairchild Space and Defense Systems, Syosset, New York. The cooperation of
these two firms is greatly appreciated.

5Anuta, P. E., "Digital Registration of Multispectral Video Imagery," SPIE
Journal, Vol. 7, No. 6, September 1969.

o 6Anuta, P. E., "Spatial Registration of Multispectral and Multitemporal
Digital Imagery Using Fast Fourier Transform Techniques," IEEE Transactions of
Geoscience Electronics, Volume GE-5, No. 4, October 1970.
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in sensitivity as a function of off-axial position in the scene is approximately as
a cos*0 function where 8 is the look angle from the principal axis. This effect
can be compensated for by dividing the measurements by this function. These are
the two major densitometric distortions in photography, and removing them greatly
improves the quality of the data. The missing link is the relationship between
exposure and scene reflectance. No simple method is available for calibrating
scene reflectance, however. Two general approaches can be taken:’7 (1) determine
the incident light energy at the target and the reflected energy at the camera and
compute the reflectance; (2) place calibration panels having known reflectance
curves in the scene and use the resulting film density for the panels as calibra -
tion references. The second method is generally preferred. ‘

No reflectance calibration references were available for the study reported
here, and the classification analysis procecded on the assumption that the
separability of the classes of interest could be predicted from the uncalibrated
relative scene-reflectance measurements obtained from the photography.

4. TRAINING PROCEDURES FOR THE PATTERN CLASSIFIER

The spectral properties of reflected radiation from a scene can be used to
identify the nature or category of objects in the scene. This process is known as
a multispectral pattern recognition. The spatial or temporal properties of scene
objects can also be used for identification. Alphabetic character recognition is
the classic example of pattern recognition using spatial features. Pattern recog-
nition using spectral or temporal data is a relatively new discipline, and the
Apollo 9 experiment was one of the first space systems to carry multispectral
sensors. There are threec major problems which must be addressed when attempting
multispectral pattern recognition:

1. Separability of classes of interest

2. Variability of the characteristics of the classes over the domain
of the measurements

3. Uniqueness of the spectral characteristics of these classes

The work reported here addresses the first two questions. The uniqueness of
the classes over a large area is a complex problem and is the subject of current
research at LARS.

Multispectral pattern recognition techniques have recently been applied to
automatic remote sensing of crop, soil, geological, and hydrological surface fea-
tures using data from low altitude airborne multispectral sensors.8 The avail-
ability of multiband and color infrared photography from the Apolloc 9 mission has
enabled these same techniques to be tested on data gathered at satellite altitudes.

Several methods are available for studying imagery to determine separable
classes in given data. The statistical multispectral pattern analyzer of LARSYSAA
(see Reference 8 ) developed at LARS supplies several methods of class selection.,
The system can compute the multidimensional first and second order statistics for
up to 30 wavelength bands. These statistics are printed out in the form of histo-
grams, correlation matrices, and coincident 1l-sigma spectral plots. Any of these
forms can be used to group data areas having similar spectral responses. This
system also includes a divergence analyzer which can be used to compute the pair-
wise separability between all classes. The analyzer can also be used to select
the optimum set of wavelength bands to be used for classifications based on this

7Silvestro, Frank B., "Multispectral Photographic Determination of Reflec-
tance," Photogrammetric Engineering, Vol. 35, No. 3, March 1969,

8Fu, K. S., Landgrebe, D. A., Phillips, T. L., "Information Processing of
Remotely Sensed Agricultural Data," Proceedings of the IEEE, Vol. 57, No. 4,
pp. 639-653, April 1969. '

1986



divergence criteria. Another method of class separation utilizes clustering tech-
niques to group image points around cluster centers in multidimensional space 1n
such a way that the overall variance for the resulting sets is minimized.

All surface features to be analyzed arc identified by first printing out a
gray scale picture on the computer line printer. The gray tones in the original
picture are reproduced by a selected set of print chain characters, i.e., blank for
very white and M for very dark. Line and column coordinates, which identify
uniquely ecach point in the scene, arc printed along the edges of the computer-
generated picture. Areas to be studied are specified by their line and column coor=
dinates punched on cards. These cards are read by the analysis program, and the
statistical alporithms are applied to the data. The output is inspected manually
and the selccted data is modified until a satisfactory training set is arrived at.
Then a final set of mean and correlation matrices is generated for use by the
pattern classifier. This training procedure was applied to each task of recog-

nizing crop, soil and geological features as well as to a synoptic recognition task.
5. SYNOPTIC ANALYSIS OF TOTAL FRAME

A synoptic feature-analysis was made on a global scale over the entire 10,000
square mile area of the frame to develop a computer-derived map of the following
features: clouds, cloud shadow, water, rock, bare soil, sand, green vegetation,
and salt flats. Training areas were selected by visual inspection of the gray
scale pictorial printouts and large photographic prints of the film transparencies.
The training areas chosen displayed varieties of surface features in several
categories; clustering was then used to define subclasses in these areas. For
example, the Imperial Valley produced the green vegetation and bare soil training,
the desert region east of the Valley produced the sand and alluvium samples, and
mountain areas near the Colorado River were used for rock-type samples. The first
and second order multidimensional statistics were then computed using the statis-.
tiecs processor of LARSYSAA. Tigure 2 shows the relative spectral reflectance
levels for each of the synoptic or global classes considered, along with those for
the crop classes to be discussed. These values were obtained from the film density
values measured by the film scanner. The analog-to-digital conversion processes
and densitometry scale the density measurements to a range of 0 to 255. This range
is inverted in the computer so that maximum density is represented by 0 and zero
density is represented by 255. Thus, the values in Figure 2 are proportional to
scene reflectance; however, the exact relationship is not known.

Classification was performed on the total frame using the LARSYSAA classifier,
and the computer-generated surface-feature map obtained is presented in Figure 3.
The classification accuracy achieved can not be specified since the only ground
truth available was for the NASA test site in the central Imperial Valley. A good
estimate of classifier performance can be obtained by simply comparing visually the
classification result with areas of known surface cover in the photograph of Figure
la. Areas of water, bare soil, and green vegetation are readily apparent, and the
rock outcrops shown compare closely with a geological map of the area. Overall
classification accuracy was judged to be very good. Clouds, sloud shadow, green
vegetation, water, sand and alluvium are apparently readily identified by the
classifier. The soils, soil-rock mixture, and rock types tend to be confused, but,
as stated, precise evaluation was not possible for this experiment. To better
evaluate the performance of the classification process much more detailed classifi-
cation analysis was performed on small test sites.

6. CROP TYPE IDENTIFICATION EXPERIMENTS

The two areas in the central Imperial Valley where extensive ground truth was
taken by the University of Michigan are denoted 15A "Dogwood Road" and 15D "McCabe
Road". Both of these areas are located within the heavy rectangular border seen in
the lower left of Figure 1b. Figure La is a computer-generated reproduction of
test area 15A, and Figure 4b contains area 15D.

Annotated scanner display prints supplied by the University of Michigan were
used to locate the agricultural fields in the computer pictorial printouts. Line
and column coordinates of the fields in areas 15A and 15D were identified and
punched on cards. The film density data and the field coordinate cards were input
into LARSYSAA, and histograms and statistics were computed and printed for each
field. Certain crop types such as carrots, lettuce, and onions have very high
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percentages of soil background and were present in very small number. An adequate
statistical sample could not be obtained for these classes; thus they were deleted
from this study.

The evaluation procedure used here requires test fields for each training
class be defined. Deleted classes are not specified by test fields and do not
affect the classification accuracy for the classes being studied. In an operation-
al system the entire frame is in effect a test field, and all classes present,
whether or not they were included in the training classes, would effect the results.
As stated above, the analysis of every class present in the total frame is beyond
the scope of the present study. The classes studied here are barley, alfalfa,
sugar beets, bare soil, and salt-affected bare soil called salt flats. These are
the major crops and cover-types present in large quantity in this area. Water was
also included in the classes studied. The statistical mean values for the film
transmission data for the crop and soil classes studied here are presented in
Figure 2 along with the classes discussed in the total frame analysis. These val-
ues represent uncalibrated spectral reflectances for these classes.

Sugar beets, alfalfa, and bare soil fields exhibited significant variations in
their spectral responses and so the clustering facility was used to identify sub-
classes of these classes. The clustering algorithm defined seven subclasses of
bare soil, two for sugar beets and two for alfalfa. Several statistically separate
classes may exist for each class of agricultural importance. The classification
process classifies statistically separate classes but computes performance by
grouping together all subclass decisions for each agricultural class. For example,
the clustering algorithm defined seven subclasses of bare soil. The classifier
will classify on the basis of seven classes of soil, but results will be grouped
into one class called bare soil.

The divergence analyzer was used to compute the pair-wise separability between
the classes and subclasses studied. The divergence value is related to the squared
distance between classes in a multidimensional pattern space. The pair-wise
divergences are given in Table II for each of the 105 pairs of classes and subclass
groups. These values serve to predict the degree of success that will be achieved
by the classifier. The divergences between both barley subclasses and sugar beets
subclass 3 are very small compared to other interclass divergences, which suggests
that these subclasses are not very separable. Also sugar beets subclass 2 is near-
ly identical to alfalfa subclass 1, and sugar beets subclass 3 is similarly close
to alfalfa subclass 2 indicating a lack of separability of these classes. Almost
all of the other class pairs have relatively large divergences, and good separa-
bility is expected for these classes.

Samples of data from each of the classes defined by the clustering process
were selected and used for training the pattern classifier. The major value of the
histograms produced by LARSYSAA is to insure that the training sets chosen are
approximately Gaussian. Test site 15A was represented by 66,000 data points and
th2 training samples selected totaled 1132 or 1.7%. The data for test site 15D
contained 27,300 points and 788 training samples (2.8%) were taken for this area.
The statistics processor of the pattern classifier system was used to compute the
training statistics for each of the classes selected. These statistics consist of
the means and covariance matrices to be used by the Gaussian maximum likelihood
classifier.

Two methods of statistical pattern recognition were used to classify the
multiband imagery. One method classifies each image point into one of the defined
classes. The other classifies an entire field as one decision. One advantage of
the "per field" classification scheme, as it is called, is speed. A disadvantage
is that the field coordinates must be determined and fed to the classifier before
any classification can be performed. The per point classifier can classify any
area without specified field boundaries, but it is a time-consuming process since
every resolution element in an image is classified individually.

In order to evaluate the classification accuracy quantitatively, many test
fields were extracted from the test sites. Of the total of 533 fields in the two
flight lines, 174 were chosen as a test. Certain ones were deleted from the study
because they were of a class not included in the training classes, or were too
small to be defined in the imagery. The test fields are for the classes: barley,

sugar beets, alfalfa, bare soil, salt flats, and water,

1988



The per field classification was carried out for each of the fifteen posgib}e
combinations of the four channels available, as defined in Table II. A description
of the fields and the classification results are presented in Tables IV and V. The
maximum overall classification accuracy achieved for 1line 15A was 70.8% and for 15D
was 70.6%. Study of the Dogwood Road results revealed that the accuracy for
certain classes was relatively unrelated to the channels used. Bare soil and
barley show relative constant classification accuracy for all cases where two or
more channels are used. The accuracy for supar beets recopnition is best with all
four channels and the alfalfa performance is poor in all cases. Salt flats and
water were recognized with high accuracy in all cases. An interesting result was
the high accuracy achieved by some of the classifications using only one or two
channels. The highest accuracy for barley (82.1%) was achieved using only channel
one (Panchromatic). The peak for bare soil, 100%, was obtained using channels 2
and 3 (green and infrared) and 3 and 4 (infrared and red). Equal maxima for
several channel combinations were seen for alfalfa. The fields classified and the
classification results are listed in Tables 4 and 5 for the four-channel classifi-

cation.

The test sites were also classified using the per point classifier. The per
point decision map for line 15A, Dogwood Road, is presented in Figure 5a, and the
corresponding map for 15D, McCabe Road, is presented in Figure 6a with the classi-
fication symbols listed under the figures. Some of the roads in the areas are
drawn in to aid in matching the results with the gray scale printout of the areas
shown in Figure 4a and b. The test fields are indicated by a border of + signs.
Figures 5b and 6b are test field border printouts to enable identification of the
fields. The field numbers correspond to the ones in Table IV and V. The per point
classification was not performed using all 15 of the possible combinations of the
four available channels.

A comparison of the results of the per point and corresponding per field
classification is presented in Table VI. The three channel (green, red, IR) and
four channel (panchromatic, green, red, IR) comparisons are presented. The results
are quite similar for the Dogwood Road site, but the per point sugar beet and salt
flat classification was poor compared to the per field results for the McCabe Road
test. This indicates that the training data for the McCabe Road area were not as
complete as for the Dogwood Road area. The per field classifier is evidently able
to give better results using incomplete training data. This result also tends to
indicate the value of clustering as a method of training analysis. Although
clustering was used for both the Dogwood and McCabe areas, the individual cluster
points were used as training for the Dogwood area only. For the McCabe Road area
the clustering results were used to select the entire field as training, and there
was most likely more than one subclass in the field. The resulting mixture of
classes can cause the per point results to be poorer than the per field results in
that a field having a majority of points in a particular class will most likely
be classified into that class by the per field classifier. The per point classi-
fier will count all the points not classified into the class assigned to the field
as errors. For example, if 75% of the points in a barley field looked like barley
and 25% looked like alfalfa, the per field classifier would probably call the
entire field barely and claim a 100% accuracy. The per point classifier would list
the accuracy on the field as 75%.

The analysis discussed up to this point used data from the multiband black and
white exposures only. Color separations data from the color infrared film was
obtained by scanning the film with blue, green, and red filters in turn to separate
the densities of the three dyes. The digitized density data from the three scans
were then registered and analyzed in the same manner as the multispectral black and
white film data. The Dogwood Road test site data were classified using the per
field classifier and the same training and test areas used for the multispectral
B § W analysis. The comparative results are listed in Table VII using the results
for the per field multiband black and white classification as reference. The
overall difference is only =-2.3%. he differences for the two major crops, however
were quite significant, barley decreasing by 16.7% and sugar beets improving by
10.8%. This evidence is insufficient to conclude that one film sensor is superior
to the other; however, this result agrees with the intuitive expectation that the
multilayer color film structure somewhat degrades the spectral resolution compared
to that obtainable using separate film-filter sensors.
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The general conclusion indicated by the classification results is that specific
breakdowns of crop types is difficult from three band satellite photography and in
some cases impossible. The results were obtained, however, from uncalibrated
photography having considerable overlap of the spectral bands, and other distor-
tions in the spectral data were present. Improved photographic fidelity with more
and better-separated spectral bands may result in significantly better crop sep-
aration accuracies.

Figures 5 and 6 offer a qualitative evaluation of the classifierp performance.
Inspection of these printouts reveals that the basic structure of the field
patterns, roads, cities, etc., is captured by the classifier. One can extrapolate
the successful classifications shown by the bordered test fields to other parts of
the area to obtain a judgement of the overall performance. The area classified in
lines 15A and 15D was approximately 135 square miles represented by 93,900 resolu-
tion elements. The test fields included 5906 of these points which covered 12,474
acres. Although the performance of the classifier appears to be good over a large
area, the usefulness of the automatic processing approach will depend on the
accuracy requirements of the particular application.

7. SOIL MAPPING EXPERIMENTS

Soil scientists at LARS attempted to use the digitized Apollo 8 data to iden-
tify the soil patterns or soil associations in the area of El Centro in the
Imperial Valley, California. The El Centro area in Imperial County is located in
the Southeast portion of California. It covers 540 acres and has quite uniform
topography which is slightly rolling and in some places broken by sand dunes. The
climate is dry and irrigation is necessary for the growth of cultivated crops. The
soils of the study area are generally young and the surface soils and subsoils are
very much alike. The material which forms the soils consists primarily of sediment
deposited by the Colorado River, and local alluvium from the California coastal
range of the Chocolate Mountains. A new soil map of the area of the Imperial
County was not available so the study used representative soil groups which were
found in a soil map published in 1918, Figure 7, and in a description found in a
Soil Survey of the E1 Centro area, California, 1922. Also, a report for the gen-
eral soil map for the Imperial County, California, 1967 was used. Two sand types,
four loamy and one clayey soil were found to be spectrally separable in the study.

These were: Rositas fine sand and Rositas very fine sand consisting of light
yellowish brown incoherent sand developed in the eastern and western parts of the
area associated with the very fine sand and with sand dunes. Larger areas of
Rositas fine sand are located between the Alamo River and the Ash Canal (see
Figure 7). Southeast of El Centro, west of Holtville, smaller bodies of Rositas
fine sand exist.

Rositas fine sand and Rositas very fine sand consist of 80-90% incoherent
sands, 5-7% silt, 2-7% clay and very low amounts of organic matter. They are very
well drained. The surface of both sands are light yellowish brown or yellowish
gray. Since the Rositas very fine sand contains higher percentages of very fine
sands, the surface is much more compact. Both sands have high reflectance in all
portions of the spectrum (see Table VIII). On the basis of their physical charac-
teristics, the pattern recognition system had no problem in detecting and separat-
ing sand-covered surfaces from other bare soils in the investigated area.

South of Holtville and east of El Centro are areas with very fine sand of the
Rositas series mixed with 10-35% silt and 10-12% clay known as Meloland fine sandy
loam. Since the amount of sand is 30-70%, and the silt, clay and organic matter
1s 1increased, the color of these soils is darker than the Rositas sands. The
spectral reflectance values are much lower throughout the spectral wavelength bands.

Since the difference in physical and chemical properties of the soil cause
differences in soil spectral responses, we cxpected to detect spectrally other
soils with hipgher content of silt and clay than just the Meloland fine sandy loam.
South of the Meloland, in the vicinity of Bowker Road are oases of Holtville soils
containing about 50% silt, 25% clay, and 1-40% fine sand and very fine Rosita
sands. These s50ils are developed on nearly level flood plains and old lake bottoms.
The surface layers are light brown silty clay loam. Table VIII shows values of
rellected spectral eneryy of Holtville loams of two locations in the El Centro
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area. Both Holtville soils have very close relative reflectance values in all
parts of the spectrum. They both absorb much more of incident solar energy than
sands and sandy soils.

Imperial Soils located between Ash Canal and Anderholt Road and scattered
south of Holtville and Meloland are lighter in color than Holtville soils having
lower silt content. They occur on nearly level bottoms of old lake beds. They are
hipghly calcareous and usually contain gypsum and soluable salts. The amount of
reflected solar energy of Imperial loams is higher than that of Holtville soils.
Imperial soils with 35% clay and high organic content and with poor natural drain-
age - called Imperial silty clays - reflect much less than the loamy and sandy

soils.

Training samples of these soil types were selected and used to train the
pattern classifier. The classification map produced for the area shown in the
abstracted soil map in Figure 7 is presented in Figure 8. The various classifica-
tion decisions are shown as shades of gray and annotated by arrows. The computer
classification map differs greatly from the soil map due to the fields of green
vegetation covering most of the area which block the soil background. Also,
cultural influences occurring over a period since the date of the map (1918) have
changed the apparent soil structure of the area.

Many bare soil "fields" were correctly classified, however, and the high
reflectance sand areas were readily recognized. Quantative evaluation of the
classifier performance was not determined in the study reported here. Instead,
study of the spectral characteristics of areas of known soil type was emphasized.
Separability of the soil types in this area was established using the three-band
film data. The conclusion of this part of the study is that the three-band
spectral data gathered at satellite altitude shows great promise for large-scale

soil mapping.
8. GEOLOGICAL MAPPING EXPERIMENTS

Basically, geological mapping is a method of expressing, at a manageable
scale, the spatial distribution of rock types. Previous photointerpretation
studies of the satellite photographs of this area did not achieve the required
differentation between materials of geological interest to provide the geologist
with an adequate tool for differentiating rock types. The main purpose of this
study was to determine what rock units could be distinguished in the Apollo 9
photography using multiband pattern recognition techniques.

The only "ground truth" used for the study was the San Diego-El Centro and
Salton Sea sheets of the California Geological Map. In addition, a more detailed
preliminary manuscript map of the area was provided by Mr. P. K. Morton of the
California Division of Mines and Geology. Figure 9 is a generalized map based on
the above mentioned maps. Within the study area the rock units were divided into
the major groupings listed in Table IX.

Detailed analysis of the Cargo Muchacho-Chocolate Mountains area was perform-
ed to determine if the bedrock material could be differentiated. In these analyses
the computer was trained with samples taken from fields representing every major
rock type as well as other features such as water, etc.

The results of this detailed analysis are shown in Figure 10. The overall
correlation between the computer-classification maps and the generalized geological
map (Figure 9) is excellent, with many of the most prominent geological features
well-mapped and distinguishable. The major rock groups can not only be differen-
tiated, but they can also be identified. Such features as contacts (marked 1 and
2 respectively in Figure 10) and faults (marked 3 and 4) can be readily recognized.

It was found that several spectral classes were necessary in order to map
adequately a single rock type. For example, as many as ten spectral classes could
be assigned to granite. Examination of these spectral classes with reference to
the topographic features portrayed in the geologic maps, indicated not only that
the overall tone of the rock types was important but also that topography played a
major role in the spectral response of the various rock units. The number of
spectral classes which were significant in each major rock type and the maximum
relief for the rock types are summarized in Table X.
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It was noted that ridges and highs tend to display the least reflectance
within any given rock unit and that reflectance tends to increase down the slopes
with the low, flat areas displaying the highest reflectance. Area (5), Figure 10
in the northern Cargo Muchacho Mountains is an area mapped as granite. The
computer display shows the granite pattern best as a series of linear elements
which correspond to the ridges in the area.

The results of the geological study were encouraging. The three spectral
bands of the Apollo 9 photographs were sufficient for differentiating the major
rock units in this particular area. It was found that even though relief presents
a problem, the overall distribution of rock types can be determined. The map
constructed from the spectral classification simulated the geologic map quite well,
and it appears that large scale, automatic reconnaissance geologic mapping can be
performed using multiband photography.

9. SUMMARY AND CONCLUSIONS

The results of this experiment of reducing uncalibrated space photography to
useful information are promising. Many earth surface features were distinguishable
using multispectral measurements collected from a satellite platform. The data
handling techniques required for the conversion of photographic measurements to a
multispectral data base require further study. The initial results obtained in
this experiment coupled with other current research findings encourage the use of
multiband photography as a multispectral data collection instrument. More impor-~
tant is the promise shown for automatic reduction of multispectral measurements
from satellite platforms to useful management information.

The data registration technique used in this experiment to overlay the multi-
spectral black and white photographs continues to be researched. At present the
techniques require a large computational resource for cach area of interest.

Future capabilities such as optical processing techniques or an improved algorithm
may greatly reduce this cost of data handling as well as increase the number of
measurement dimensions (i.e., make more temporal measurements available). A

second method of decreasing registration costs is the use of multiemulsion (i.e.,
color) photography. Improvements in the properties of each layer of this type of
film are required to enable measurements of narrower bands of energy. Increased
ability to convert these measurements to calibrated electronic signals is also
required. This will solve the registration problem and also enhance the informa-
tion content of the photograph. The results of using trilayer film in this
experiment encourage further development toward these goals. The third method

ot decreasing the data handling requirements is the use of multispectral scanners
at satellite altitude. This, coupled with the classification results reported here
enhances the expectations of future remote sensing systems. The concept of storing
image measurements on film and retrieving them for later use should continue to be
researched,
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Code Film Filter Band

A

B

S0-180 Fktachrome Infrared Photar 15 .51-.89 micrometers
3400 Panatomic-X Photar 58B .47-,61 micrometers
S0-246 B/W Infrared Photar 89B .68-.89 micrometers
3400 Panatomic-X Photar 25A .59-.715 micrometers

TABLE I. FILM FILTER COMBINATIONS USED IN S0-65 EXPERIMENT

Four Hasselblad cameras with 80 mm focal lengths were
used for space use

Channel Wavelength Band Band

Number (Micrometers) Description
1 .51 - .89 Panchromatic
2 47 - .61 Green
3 .59 - .71 Red
4 .68 - .89 Infrared

TABLE II. WAVELENGTH BANDS AND DATA SETS USED IN ANALYSIS
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TABLE III.

INTERCLASS DIVERGENCE MATRIX

(Area 15A (Dogwood Road)
Channels 2,3,4

wWa-
Barley | Sugar Beets| Alfalfa Bare Soil t:r

Subclass 1 2 1 2 3 1 2 112 3 4 5 6
Barley 1 8 1208 96| 13| 98] 32| 566} 354 589 436|511} u88 1521 712
2 89 36| 2} 35 8| 281} 162 313 222{269] 318 | 879) 43}
Sugar 1l 241 75 22 63 74/ 26/ 94 37| 9u| 71| 518 285
Beets 2 2y 3] 15/ 194 91 223 126|200( 164 | 829 412
3 29 4 280] 169 30é 206} 254|264 | 933 431
Alfalfa 1 21] 180{ 74 192 110{181{ 169 | 784 378
2 273 149 293 182[2u45} 245 | 960 49§
1 25| 2§ 28] 75] 92 201 291
2 54 27]101}120 } 337 307
3 18f 19 75 | 265| 196
y 24| 32 | 3us6} 219
5 28 | 268 135
6 4o 218
Salt Flat 264
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TABLE IV. PER FIELD CLASSIFICATION

Test fields in the Dogwood Road area (flightline 15A);
data collected in the .51~.79, .46-.61, .68-.89, .53-.71
micrometer ranges.

Field Ground Truth % Ground Acres Computer
No. Classification Cover Classification
Barley 35 76 Barley
6 Barley 96 116 Barley
12 Barley 95 85 Barley
17 Barley 100 53 Sugar Beets
18 Barley 100 66 Barley
19 Barley 100 70 Barley
20 Barley 90 55 Alfalfa
36 Barley 100 110 Barley
47 Barley 100 104 Barley
48 Barley 100 36 Barley
71 Barley 100 77 Barley
76 Barley 80 15 Barley
10k Barley 90 113 Barley
105 Barley 95 57 Sugar Beets
119 Barley 60 138 Sugar Beets
143 Barley 40 12 Bare Soil
173 Barley 100 2y Barley
198 Barley 100 36 Barley
199 Barley 100 32 Barley
213 Barley 95 139 Barley
227 Barley 30 42 Barley
240 Barley 30 32 Sugar Beets
243 Barley 100 72 Barley
244 Barley 100 80 Barley
249 Barley 95 g5 Barley
279 Barley 100 58 Barley
284 Barley 80 104 Barley
285 Barley 100 24 Barley
Total Barley 1921
Acreage
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TABLE IV. CONTINUED

Field Ground Truth % Ground Acres Computer
No. Classification Cover Classification
16 Sugar Beets 90 28 Alfalfa
51 Sugar Beets 95 215 Sugar Beets
52 Sugar Beets 30 67 Sugar Beets
55 Sugar Beets 75 148 Alfalfa
59 Sugar Beets g5 70 Alfalfa
62 Sugar Beets 80 138 Sugar Beets
66 Sugar Beets 80 77 Sugar Beets
77 Sugar Beets 90 65 Sugar Beets
154 Sugar Beets 90 162 Sugar Beets
163 Sugar Beets 90 10 Sugar Beets
164 Sugar Beets 90 18 Sugar Beets
245 Sugar Beets 95 36 Barley
248 Sugar Beets ' 80 66 Sugar Beets
268 Sugar Beets 90 97 Sugar Beets
262 Sugar Beets 80 ‘ 62 Sugar Beets
266 Sugar Beets a5 74 Barley
267 Sugar Beets 90 36 Sugar Beets
289 Sugar Beets 60 83 Sugar Beets
290 Sugar Beets 60 148 Sugar Beets
291 Sugar Beets 70 92 Alfalfa
292 Sugar Beets 70 92 Sugar Beets
298 Sugar Beets 40 80 Barley

Total Sugar
Beet Acreage 1867

13 Alfalfa 95 85 Sugar Beets
15 Alfalfa 100 21 Barley
14 Alfalfa 100 73 Barley
22 Alfalfa 90 gy Alfalfa
42 Alfalfa 70 165 Sugar Beets
39 Alfalfa 1 140 Sugar Beets
S0 Alfalfa 80 24 Sugar Beets
58 Alfalfa 95 120 Sugar Beets
186 Alfalfa 60 32 Sugar Beets
282 Alfalfa 80 42 Sugar Beets
288 Alfalfa 95 67 Barley
Total Alfalfa
Acreage 863
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TABLE IV. CONTINUED

Field Ground Truth % Ground Acres Computer
No. Classification Cover ) Classification
1 Bare Soil _ Bare Soil
5 Bare Soil Y Bare Soil
7 Bare Soil 106 Bare Soil
8 Bare Soil -9y Bare Soil
11 Bare Soil 85 Bare Soil
21 Bare Soil . 42 Bare Soil
uy Bare Soil 35 Bare Soil
41 - Bare Soil 9y Bare Soil
45 Bare Soil 67 Bare Soil
46 Bare Soil 91 Bare Soil
61 Bare Soil 115 Bare Soil
155 Bare Soil 35 Bare Soil
157 Bare Soil- 93 Salt Flat
222 Bare Soil 77 Bare Soil
230 Bare Soil 36 Salt Flat
258 Bare Soil 28 Bare Soil
269 Bare Soil 83 Sugar Beets
Total Bare
Soil Acreage 1175
98 Salt Flat 260 Salt Flat
101 Salt Flat 190 Salt Flat
106 Salt Flat 114 Salt Flat
125 Salt Flat 75 Salt Flat
126 Salt Flat 37 Salt Flat
127 Salt Flat 43 Salt Flat
128 Salt Flat 77 Salt Flat
158 Salt Flat 54 Salt Flat
159 Salt Flat 9 Salt Flat
221 Salt Flat 129 Salt Flat
Total Salt
Flat Acreage 988
99 Water 350 Water

Overall Total 7164
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TABLE V. PER FIELD CLASSIFICATION

Test fields in the McCabe Road area (flightline 15D);
data collected in the .51-.79, .46-.61, .68-.89, .59~,71
micrometer ranges.
(Acreages not available)

Field Ground Truth % Ground Computer
No. Classification Cover Classification
235 Barley 90 Sugar Beets
101 Barley 100 Barley
100 Barley 100 - Barley
130 Barley 100 Barley

2 " Barley 60 Sugar Beets
116 Barley 80 Sugar Beets
213 Barley 90 - Barley
202 Barley 100 Barley

75 Barley 95 Barley

26 Babley 90 Sugar Beets
115 Barley 90 Sugar Beets
19 Barley 80 Barley

48 Barley 90 Sugar Beets
62 ' Barley 90 Sugar Beets
18 Barley 100 Barley

90 Barley 30 Barley
198 Barley 100 Barley

79 Barley 100 Barley

60 Barley 100 Barley

89 Barley 100 Barley

80 Barley 100 Barley

52 Barley 100 Barley

34 Barley 90 Barley

82 Barley 80 Barley

16 Barley ) 90 . Barley

59 Barley 70 Barley

87 Barley 70 Barley

83 Barley 90 Alfalfa

15 Barley 30 Barley

58 Barley 70 Alfalfa

57 Barley 100 Barley
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TABLE V. CONTINUED

Field Ground Truth % Ground Computer
No. Classification Cover Classification
179 ' ‘Sugar Beets 90 _ Alfalfa
40 Sugar Beets 80 Sugar Beets
190 Sugar Beets 100 Sugar Beets
178 Sugar Beets 90 Alfalfa
214 Sugar Beets 70 Sugar Beets
39 Sugar Beets . 30 Sugar Beets
74 Sugar Beets 90 Sugar Beets
63 Sugar Beets 30 Sugar Beets
170 *  Sugar Beets ‘ 80 Barley
86 Sugar Beets 90 Sugar Beets
58 Sugar Beets 100 Sugar Beets
160 Alfalfa 90 Alfalfa
159 Alfalfa 95 Alfalfa
185 Alfalfa - g0 Alfalfa
225 Alfalfa 100 Sugar Beets
124 Alfalfa 100 Sugar Beets
99 ! Alfalfa 100 Barley
236 Alfalfa 100 Barley
119 Alfalfa 90 Alfalfa
223 Alfalfa 30 Sugar Beets
104 Alfalfa 80 Alfalfa
117 Alfalfa 80 Barley
177 Alfalfa 100 Barley
216 Alfalfa 100 Alfalfa
29 Alfalfa 90 Barley
17 Alfalfa 100 Sugar Beets
51 Alfalfa 90 Barley
171 Alfalfa 100 Barley
1y Alfalfa 90 Alfalfa
12 Alfalfa 90 Alfalfa
209 Bare Soil Bare Soil
158 Bare Soil Bare Soil
127 Bare Soil Bare Soil
157 Bare Soil Bare Soil
128 Bare Soil Bare Soil
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TABLE V. CONTINUED

Field Ground Truth % Ground Computer
No. Classification Cover Classification
156 Bare Soil Bare Soil
1863 Bare Soil Bare Soil
122 ~ Bare Soil Bare Soil
103 Bare Soil Bare Soil
164 Bare Soil Bare Soil
118 Bare Soil ' Bare Soil
45 Bare Soil Bare Soil
135 Bare Soil : Bare Soil
201 Bare Soil Bare Soil
166 Bare Soil Bare Soil
168 Bare Soil Bare Soil
76 Bare Soil Bare Soil
151 Bare Soil Bare Soil
169 Bare Soil Bare Soil
11. Bare Soil Bare Soil
77 Bare Soil Salt Flat
73 Bare Soil Bare Soil
61 Bare Soil Salt Flat
47 Salt Flat Salt Flat
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TABLE VIa. COMPARISON OF PER FIELD AND PLR POINT
RESULTS USING CHANNELS 1,2,3,4

Class Dogwood Road McCabe Road

Fields Per Sams Per Fields Per Sams  Per
Barley 28 78f6% 911 72.7% 31 67.7% 832 70.8%
Sugar Beets 22 68.2 1046 u43.6 11 54.5 406 27.8
Alfalfa 11 9.1 395 36.0 19 42,1 564 41.7
Bare Séil 10 '82.4 615 77.6 23 95.7 695 86.3
Salt Flats 17 100.0 359 59.9 1 100.0 21 4.8
Water 1 100.0 72 97.2 0 - | J———
OVERALL 70.8% 60.0% 68.2% 61.1%

TABLE VIb. COMPARISON OF PER FIELD AND PER POINT
RESULTS USING CHANNELS 2,3,4

Class Dogwood Road McCabe Road

Fields Per Sams Per Fields Per Sams  Per
Barley 28 75.0% 911 71.2% 31 71.0% 832 76.6%
Sugar Beets 22 59.1 1046 u48.5 11 72.7 406 26.6
Alfalfa 11 27.3 395 38.2 19 42.1 ueh 39,2
Bare Soil 17 82.4 615 77.2 23 91.3 695 85.8
Salt Flats 10 100.0 353 70.5 1 100.0 21 3.5
Water 1 100.0 72 98.6 0  ~---- 0 ~=---
OVERALL 69.7% 62.0% 70.6% 62.1%
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TABLE VII,

B &§ W FILTERED FILM DATA

Barley
Alfalfa
Sugar Beets
Bare Soil
Salt Flat

Water

OVERALL

TABLE VIII.

0.

Fine sand

Very fine
sand

Meloland
fine sandy
loam

Imperial Silty
Clay Loam

Holtville Silty
Clay Loam
Type 1

Holtville Silty
Clay Loam
Type 2

Imperial Silty
Clay

COMPARISON OF MULTIBAND AND MULTIBASE RESULTS
FOR DOGWOOD ROAD (LINE 15A).

70.6%
40.0
31.9
62,1
88.4
© 99,1

59.3%

RELATIVE SPECTRAL REFLECTANCE IN DIFFERENT

COLOR SEPARATION OF COLOR

(Per Field Results)

WAVELENGTH BANDS (MICROMETERS)

47-0.89

339.78
324.21

286.17

28Y4.64

286.81

263.97

250.18

120,55
116.97

103.84

104,20

94.53

35.65

DIFFERENCE
INFRARED FILM DATA
53,9% ~16.7%
35.8 - 4.2
42,7 +10.8
57.6 - 4.5
92.8 + 4.4
9§.5 - 3.6
57.0% - 2.3%
0.68-0.89 0.59-0.71
110.86 108.37
103.92 103.32
98.92 83.41
97,39 83.05
91.47 82.81
85.72 82.60
80.87

91.8%4

2002
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TABLE IX. DESCRIPTION OF MAJOR ROCK UNITS

Sand dunes. Unconsolidated.

Sand and Silty Sand. (Includes both Recent and Pleistocene age
material).

Undifferentiated Slope Material Including Alluvium. Unconsolidated
¢lay, silt, sand and gravel occurring primarily as valley fill
and streamwash deposits. ’

Older Alluvium. Partly dissected, largely unconsolidated, poorly
sorted silt, sand, and gravel of alluvial fans, margins of
larger canyons, and terraces:

Quaternary-Cenozoic Volcanics. Basalt flows, fine grained vesi-
cular basalt and minor iInterbedded conglomerates.

Tertiary Volcanics Undifferentiated. Andesitic and rhyolitic
intrusives and pyroclastics. Includes several separable units
and ages. .

Mesozoiec Granites. Biotite granite, leucogranite, quartz diorite,
and quartz monzonite.

Pre-Tertiary Metasediments and Metavolcanics. Paleozoic to
Mesozoic in age. Predominantly biotite schist quartzites, gneisses
and marbles.

Precambrian Basal Complex. Undifferentiated metamorphic and ig-
neous rocks.

TABLE X. NUMBER OF SPECTRAL CLASSES VERSUS TOPOGRAPHIC RELIEF

Rock Type Maximum Topo- Number of
graphic Relief Spectral
in Feet Classes

Sand 200 1

Alluvium 400 3

Quaternary Cenozoic

Volcanics 1000 7

Tertiary Volcanics 1100 8

Mesozoic Granite 1800 10

Pre- Tertiary Metamorphic 700 5

Precambrian Basal Complex 600 3
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Figure 1.
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Photographic Print of Apollo 9 Frame 3698 and Computer Generated Image of the Digitized Frame



Relative Film Transmission

§00¢

Wavelength Bands

-
200t % Green . 47-.6lu
Red .59-.Tlu
Infrared . 68-.89u

N

o \

\

100}

50}

A
T IO

<
3 T T T

\ N

Cloud Sand Rock Bare Salt Water Alluvi Barley Sugar Alfalfa
Shadow Soil Flats Beets

L—\

Cloud

Cover Type

Figure 2. Relative Spectral Reflectance for Cover Types Studied



Cloud Green
Shadow Alluvium Vegetation

Cloud Colorado
Shadows River
Various
Rock
Types
Water-._*.
Various
Rock
Green Types
Vegetation Basale
Bare
Soil Sand
Dunes

Alluvium

Figure 3. Synoptic Computer Classification Map of Apollo 9
Frame 3698. Gray Tone Encoded.

2006



Figure 4a. Gray Scale Printout of Dogwood Road Area (S065 Site 15A)
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Figure 4b. Gray Scale Printout of McCabe Road Area (S065 Site 15D)
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