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ABSTRACT

This paper presents a method for classifying
multisource data in remote sensing and geo-
graphic information systems using interval-
valued probabilities. In this method, each data
source is considered as an information source
which provides a body of statistical evidence. In
order to integrate information obtained from
multiple data sources, the method adopts
Dempster’s rule for combining multiple bodies
of evidence. Preliminary experiments have been
undertaken to illustrate the use of the method in
a supervised ground-cover classification on
multispectral data combined with digital eleva-
tion data. They demonstrate the ability of the
method in capturing information provided by
inexact and incomplete evidence when there are
not enough training samples to estimate  statis-
tical parameters.

1 INTRODUCTION

Since quantitative approaches began to be
applicable to remote sensing data analysis by
developments of the digital computer and sensor
systems in 1960s, information concerning the
surface of the earth and its environment has
been largely extracted from the multispectral
data obtained by a single sensor. In recent years,
as remote sensing and other data acquisition
technologies have advanced, there has been a
trend towards exploiting remotely sensed multi-
spectral data in conjunction with other ancillary
data in geographic information systems for the
purpose of extracting more reliable information
from multi-attribute data bases [1-3].

Most traditional classification methods for
the analysis of multispectral data have been
formulated based on the multivariate statistical
theory. Ancillary data in geographic information
systems, however, present a couple of problems
when combined with purely spectral data in an
automated classification. Firstly, while it is
often reasonable to use the multivariate Gaussian
distribution to represent multispectral data
alone, this parametric model may not be applica-
ble to geographic or topographic data. Secondly,
various data sources are in general not equally
reliable [4]. These problems have been the moti-
vation for the development of classification
techniques where disparate data sources are
assessed separately, and individual assessments
are combined by some means.

The primary objective of our research is to
develop a general, computer-based method of
classification for muitisource data in remote
sensing and geographic information systems. In
the method, the body of evidence provided by
each data source is represented by interval-
valued (rather than point-valued) probabilities,
which is a generalization of the ordinary addi-
tive probabilities, so that uncertainty can be
included as a measure. In order to aggregate the
information from multiple data sources and to
propagate the uncertainty throughout the combi-
nation of information, this method requires a
function for combining non-additive probabili-
ties. .
There are two basic problems in multisource
data analysis using interval-valued probabili-
ties (IVP): (1) how to represent bodies of
evidence by IVP, and (2) how to combine IVP 10
give an overall assessment of multiple bodies of
evidence. In this paper, after introducing the
axiomatic definition of IVP, we will describe how
to construct IVP for a body of statistical




evidence based on the Likelihood Principle. Then
we will examine Dempster's rule for combining
multiple bodies of evidence in the sense of the
desirable properties which agree with human
intuition.. For the purpose of demonstrating the
concepts, this approach will be applied to the
problem of ground-cover classification on multi-
spectral data in conjunction with digital eleva-
tion data.

2 AXIOMATIC DEFINITION OF IVP

Interval-valued probabilities are, in general,
a more adequate scheme to express one's state of
knowledge in the sense of handling uncertain
and/or incomplete evidential information. They
can be thought as a generalization of ordinary
probability, with the lower and upper extremes
of the interval corresponding to an event being
bounds for the unknown probability of the event.

There have been various works introducing
the concepts of IVP in the areas of philosophy of
science and statistics. For example, Koopman [5]
derives the upper and lower probabilities from
intuition. Smith [6] induces an interval-valued
probability from betting odds. Good [7] considers
an interval-valued probability system on the
analogy of the outer and inner measures of a
nonmeasurable set. And Dempster {8] formulates
a system of upper and lower probabilities
induced by a multivalued mapping. Although the
mathematical rationales behind the above
approaches are different, there are some prop-
erties of IVP which are commonly required. The
axiomatic approach to IVP is based on those
common properties, so that it can avoid concep-
tual ambiguities.

DEFINITION [9] Suppose 8 is a finite set of
exhaustive and mutually exclusive events. Let B
denote a Boolean algebra over the subsets of ©.
The interval-valued probability [P, , P*] is

defined by the set-theoretic functions:

lower probability function P, :B— (0, 1] (2.1)
upper probability function P*: B-10, 11 (2.2)
satisfying the following properties:

[) P*A)2P.(A)>0 forallAeB (2.3)
[I[) P*®)=P,(0)=1 (2.4)

III) P*®) =P, (®) =0 (2.5)
IV) P*A)+P,(A)=1 forany AeB (2.6)
v) Forany ABe B and AnB=0,
P,(A)+P,(B) < P,(AVYB) < P, (A)+P*(B)
<P*(AVB) < P*(A)+P*(B) (2.7)

Given a system of IVP over B, the actual prob-
ability measure, P(A), of any subset A of © is
assumed to lie in the interval [P,, P*] such that

P.(A) < P(A) < P*(A) (2.8)

The degree of uncertainty about the actual prob-
ability of A is represented by the width, P*(A)-
P «(A), of the interval. In particular,
P*(A)=P4«(A)=P(A) when there is complete knowl-

edge of the probability of A. In this case, the IVP
becomes an ordinary additive probability. And

P‘(A)+P..(X)=O when there is absolutely no
knowledge of the probability of A.

3 REPRESENTATION OF IVP

When a body of evidence is based on the
outcomes of statistical experiments known to be
governed by any probability model, it is called
statistical evidence. One of the basic problems
for any theory of IVP is how to represent a given
body of statistical evidence as IVP. According to
Eq. (2.6), specifying either P* or P, is enough for
constructing IVP.

Suppose the observed data in a statistical
experiment are governed by a probability model
(pg :9 € ©}, where pg is a conditional probabil-

ity density function on a sample space X given 6,
and consider them as providing a body of statis-
tical evidence for B.

Our intuitive feeling is that an observation
xeX seems to more likely belong to those ele-
ments of © which assign the greater chance to x.
In other words, x makes 6€© more plausible than
0'e® whenever pe(x)>pe.(x). Thus, IVP for sta-

tistical evidence may be determined by the
likelihood functions of observed data.

Based on the above principle, Shafer [10]
proposed the foilowing equation:

P*((8)lx) =Cpg(x)  for all 8 €8 (3.1)



where C is a normalizing constant which does not
depend on 0. In fact, we can have various IVP
depending on C. For example, Shafer's linear
plausibility function is defined as:

max pg(x)

P*(Alx) = for all Acp and A=d (3.2)

max py(x)

The corresponding lower probability function is
given as:

max pg(x)
geA

P.(A) =1 - for all Aep (3.3)

max pg(x)

In particular, when the set A is singleton, say
{6'}, the function in Eq.(3.2) gives the relative
likelihood of 8' to the most likely element in 8.

4 DEMPSTER'S RULE FOR COMBINING IVP

The role of rules for combining evidence is to
integrate the conditional knowledge about a
proposition based on each single piece of
evidence into combined knowledge based on the
total evidence.

Various subjective Bayesian updating rules
have been obtained by applying one or two of
statistical independence assumptions to Bayes'
rule [11,12]. However, there have been some
controversies over the inconsistency between
independence assumptions and their updating
rules[13-15].

Dempster's rule [8] has been known to be
mathematically well defined and accord with
human intuition in combining multiple sources
of evidence under uncertainty. The only condi-
tion that Dempster's rule requires is that the
bodies of evidence to be combined must be
entirely distinct. Combining entirely distinct
bodies of evidence may be considered as a fusion
of the individual observations made by indepen-
dent observers on the same experiment. The
meaning of independence here is that one's
observation does not have effect on any of the
other's, which is quite different from the
conventional independence definitions in proba-
bility theory.

Suppose there are two entirely distinct
bodies of evidence, Ej, E2, which provide a

proposition 8 with lower probabilities, pj, Pz,
and its negation ® with q;, qp, respectively,
where p;+q;< 1, i.e,, they are not additive. Then,
the respective IVP for 6 and @ based on E;are [pj,
1-q;] and [qj, 1-p;]. Dempster's rule gives the

lower probabilities for 6 and 8 based on the
combined evidence as follow:

Py Py*P;(1-P5-95)+p,(1-P,4y)

P,(8IE1 E2)=
1 -P1'4,-9,P,

(1-p)-(1-p,)
T 1-p;45°q;°P,

=1 (4.1)
Q;°6,+q,(1-p,-q,)+q,(1-p;qy)

P.(BIE1 E2)=
1-p;-q,-9,P,

(l'ql)‘(l'Q2)
" 1-p1°q,79,°P;

=1 (4.2)

The upper probability for each proposition is

obtained by using Eq.(2.6).

Let @ denote the operation of combining IVP
using Dempster's rule. It has the following prop-
erties:

1 It is commutative and associative; the order of
evidence in combination does not effect the
final result.

2 [p4. p*19[0, 1] = [p., p*); [0, 1] plays the role of

identity to this rule.

3 [0, 01®[1, 1] is undefined.

4 [0, 0] and [1, 1] are annihilators; for an inter-
val [py, p*}#(0. 0], [p.. p*1®(1, 1]={1, 1}, and for

an interval [p,, p*]=(1, 11, [p.., p*]1®(0, 0] = [0, 0]

5 The width of the combined interval is no larger
than those of the intervals before the combi-
nation; the width of IVP corresponds to the
measure of uncertainty, and it seems intu-
itively reasonable that the amount of the
measure of uncertainty gets smaller as we
gather more evidential information.

5 EXPERIMENT AND DISCUSSIONS

For the purpose of demonstrating the
concepts, this approach was applied to the
problem of ground-cover classification on multi-



spectral data in conjunction with digital eleva-
tion data.

Table 1 describes the set of data sources for
the experiment. The image in this data covers a
forestry site around the Anderson River area of
British Columbia, Canada. Source 1 consists of 4-
band airborne multispectral scanner data in the
visible region. Sources 2 and 3 are synthetic
aperture radar imagery in the shallow mode and
the steep mode, respectively. The spectral band
coiumn of sources 2 and 3 explains the band, and
the transmit and receive type of SAR images. For
example, XHV means that the image is obtained
in X-band (A=3am) of microwave by horizontal

of independence of evidence underlying
Dempster's rule.

We have defined 4 information classes out of
9 cover types, and they are listed in Table 3. We
assume that the classes have Gaussian distribu-
tions on DEM also. In Table 4, separabilities
between classes based on DEM alone are
computed by J-M distance. They are large enough
not to be ignored, and DEM seems information-
bearing from the cover type classification's

point of view,

Table 1. Data set for Experiment.

polarization transmit and vertical polarization
receive. The last source is the digital elevation
data (DEM). Source Data Input Spectral
Table 2 is the statistical correlation matrix index type channel band(p,m)
between spectral bands of the multiband image 4 '50-.55
and the other sources. Correlations between 1 A/B MSS 5 55-.60
every pair of bands (except XHV and XHH bands 6 60-.65
of SAR SHAL) from different sources are rela- 7 65-.69
tively low compared to those from the same XHV
source. When the data can be assumed to be 2 SAR XHH
normally distributed, their uncorrelatedness SHAL LHV
implies statistical independence. Thus, if XHV LHH
and XHH bands are excluded from the second XHV
source, we may assume that the data sources are 3 SAR XHH
globally independent. In remote sensing, how- STEEP LHV
ever, it is believed that different remote sensors LHH
provide physically independent observations. 3 DEM
Hence, allowing the second source to keep XHV
and XHH bands does not violate the assumption
Tabie 2. Statistical correlation matrix between bands and sources.
A/B MSS SAR SHAL SAR STEEP
4 5 6 7 XHV XHH ILHV ILHH | XHV XHH LHV LHH
4 1.000 .996 .984 981 .975 .744 .102 .074] .039 -.141 076 -.084
A/B 5 1.000 .992 .990] 961 .742 .099 .069] .046 -.128 .082 -.075
MSS 6 1.000 .998] .955 .672 .089 .060} .045 -.122 .078 -.068
7 1.000{ .951 .684 .093 .062] .048 -.122 .079 -.068
XHV 1.000 .677 .103 .075} .018 -.170 .061 -.101
SAR XHH 1.000 .147 .103| .075 -.102 .097 -.076
SHAL LHV 1.000 .323] .209 .187 .165 .163
LHH 1.000 | .144 .147 .097 .087
XHV 1.000 .391 .559 .378
SAR XHH 1.000 .339 471
STEEP LHV 1.000 .347
LHH 1.000




Table 5 summarizes the classification
results after using 20 training pixels for each
class. The maximum posterior classification on
the composite of all four data sources (MPCC)
provides a small increase in overall accuracy,
but decreases average accuracy by a consider-
able amount compared to accuracy of source 1
alone. Meanwhile, our method (MSDC) increases
both overall and average classification accura-
cies.

The experiment demonstrates the ability of
our method to capture uncertain information
based on inexact and incomplete multiple bodies
of evidence. The basic strategy of this method is
to decompose the relatively large size of
evidence into smaller, more manageable pieces,
to assess plausibilities based on each piece, and
to combine the assessments by Dempster's rule.
In this scheme, we are able to overcome the diffi-
culty of precisely estimating statistical param-
eters, and to integrate statistical information as
much as possible.

Table 3. Information Classes in Experiment.

Class Cover Pixel| % of
No. types count| total
1 |douglas fir w/ lodgepole ping 5423{24.10
2 hemlock w/ cedar 3173114.10
3 |douglas fir w/ other species| 1309| 5.82
4 clearcuts 12600)55.99

Table 4. Separability between classes on DEM

class 2 3 4
1 574  .927 .630
2 1.000 .690
3 .719

Table 5. Classification results

Class
Source] 1 2 3 4 Overall Average

1 p0.3564.7071.89 81.98]73.75 69.73
2 [2.3042.96 25.90 79.86|69.71  55.26
3 p2.2019.57 3.97 72.68{56.28 37.11
4 b1.9171.57 0.0081.98]68.51 51.37

MPCC p#8.85 52.44 63.48 91.35]174.02  64.03
MSDC 59.52 68.23 88.69 82.70}77.84 77.29

6 CONCLUSIONS

In this paper we have investigated how
interval-valued probabilities can be used to
represent and aggregate evidential information
obtained from various data sources. Overall
concepts of interval-valued probabilities have
been employed to develop a new method of clas-
sifying multisource data in remote sensing and
geographic information systems. One of the
features of the method is the capability of plau-
sible reasoning under uncertainty in pattern
recognition and information processing, espe-
cially where observed data are not 100% reli-
able.
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