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ABSTRACT

Mobasseri, Bijan Gholamreza. Ph.D., Purdue University,
May 1978. A Parametric Multiclass Bayes Error Estimator
for the Multispectral Scanner Spatial Model Performance
Evaluation. Major Professor: C. D. McGillem.

Efficient acquisition and utilization of remotely
sensed data requires an extensive apriori evaluation of the
performance of the basic data collection unit, the multi-
spectral scanner. The objective is the development of a
fully parametric technique to theoretically evaluate the
systems response in any desired operational environment
and provide the necessary information in selecting a set
of optimum parameters.

The probability of correct classification of the
various populations in the data is defined as the primary
performance index. The multispectral data being of
multiclass nature as well, requires a Bayes error estima-
tion procedure that is dependent on a set of class statis-
tics alone. ffhe underlying problem facing the development
of such technigue is discussed and a solution based upon
sampling of the feature space is proposedQ*}The_classifi-
cation error eétimator is expressed in terﬁs of an N
dimensional integral where N is the dimensionality of the

feature space. A set of successive linear transformations
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prior to the errox estimation process provides an N to 1
dimensionality reduction by reducing the Bayes error
estimate to a product of N one dimensional integrals.
The statistical properties of the estimate is formulated
and its relationship with the geometry of the decision
boundaries discussed.

The multispectral scanner spatial model is represented
by a linea; shift-invariant multiple-port system where the
N spectral bands comprise the input processes. The scanner
characteristic function, the relationship governing the
transformation of the input spatial and hence spectral
correiation matrices through the systems, is developed.
Specific cases for Gaussian and rectangular point spread
functions are examined. Random noise is considered and
its interpretation in the context of multispectral data
is discussed.

In order to validate the Bayes error estimation
algorithm's proper performance, multivariate normal data
is simulated and the classification accuracy of a set of
test cases determined by the parametric and Monte-Carlo
type methods. The comparisons.of the results provides the
reguired infbrmation for evaluation of the theoretical
Bayes error estimtor performance.

The integration of the scanner spatial model and the
parameter classification error estimates provides the

necessary technique to evaluate the performance of a

i bl i
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multispectral scanner. A set of test statistics are speci=-
fied and the corresponding oukput guantities computed by
the characteristic function. Two sets of classification
accuracies, one at the input and one atthe output is esti-
mated. The scanner's instantaneous field of view is changed
and the variation of the output classification performance
monitored. The same procedure is followed with additive
noise at the scanner output.

In conclusion on the basis of these theoretical results
the interaction between the classification accuracy,
signal-to-noise ratio, spatial resolution, data spatial
correlation and scanner aperture is explained and some
suggestions regarding the selection of optimum system

parameters is presented.
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CHAPTER 1

Introduction

The utilization of earth orbiting platforms as a means
of environmental data acquisition has undergone a tremendous
growth in the past decade. The feasibility'of such tech-
niques was first demonstrated using a multispectral scanner
(MSS) carried in a low flying aircraft. The launching of the
Earth Resources Technology Satellite (ERTS), later re-
named the Landsat, greatly increased the scope of remote
'senSing technology [11l. Positioned in a polar orbit with a
repetitive coverage period of 18 days, a variety of agricul=-
tural and environmental data are collected and telemetered
to the ground for processing. On board, a rotating mirror
multispectral scanner operating in féur nonoverlaping bands
of electromagnetic radiation constitute the main component
of the data coliéction system {2].

The electromagnetic energy reflected by a target is de~
composed into four spectral bands and then transmitted to
earth through a PCM channel. The signal degradations caused
by various transformations Wiﬁhin the scanner subsyétem are
of gxeat impdrtance. The finite scanner aperture and the
atmospheric and'guantization noise are but some of the coﬁ—

tributing factors. The optimization of the entire set of




interactive parameters within the scanner can be quite in-
volved. From an information processing view, however, five
major categories emerge.

1. Spectral band location in the electromagnetic spec-

trum

2. Spectral bandwidth

3. Number of spectral bands

4. Spatial resolution

5. Signal-to-noise ratio

Due to the finite capabilities of scanner and data
analysis technigues, the continuum of the electrqmagnetic
spectrum cannot be fully utilized. Therefore, sampling of the
spectrum becomes essential. The band location is gemnerally
determined by the target spectral characteristics such that
different cover types exhibit different spectral signatures
in the same band. The wavelength limits can be shifted some-
what to improve crop identification, but the spectral band-
width cannot be decreased very much for a fixed signal-to-
noise (SNR) ratio. The SNR decreases with decreasing bandwidth.

The spatial resolution has a direct relationship with
the signal-to-noise ratio and the classification accuracy.

An increase in the resolution requires a narrower aperture
which in turn leads to decreased SNR, reduced classification
performance and a smaller area scanned for the same data rate.
For a coarse resolution, the scanner aperture is Wider, SNR

is higher classification error rate in general increases, but




‘mixed pixels', due to averaging of the adjacent field pixels,
will arise.

In a multispectral, remotely sensed data gathering system
the final and most important result is the association of
each resolution element on the ground with a previously de-
termined population and the evaluation of the performance of
such a classification operation. The selection of the par-
ameters.within a scanner has as a primary aim the minimiza-
tion of the probability of misclassification (PMC) of the
data. Thus, the classification performance is an indicator
against which the choice of other system parameters can be

compared.

1.1 Statement of The problem and a Desired

Operational Framework

The reflected energy from agricultural and other cover
types of interest is corrupted by various noise sources, re-
shaped by the finite scanner point spread function (PSF) and
then quantized and transmitted back to the ground stations
for processing. At the Purdue University Laboratory for
Applications of Remote Sensing (LARS), the remotely sensed
data is analyzed by classifying it into one of M populations
by an optimum (minimum probability of error) Bayes classifier.
We define the resulting probability of correct classification
as the index of performance for a multispectral scanner and
describe the goal as the evaluation and simmlation of an

optimum multispectral scanner system within the framework of

e



=Y

interactive relationships between the spatial resolution,
signal-to-noise ratio and classification error rate. Tmplicit
in this statement is the fact that the spectral band location
and bandwidth have already been optimally selected as part

of the system design Process.

The classification accuracy obtained by processing the
actual data is necessarily suboptimum due to the aforemen-
tioned degradation sources. A reference PMC could:-be defined
by analyzing the performance using the reflected signal at
the scanner input, even though this signal is obviously in-
accessible. By simulating a theoretical model for the MSS,
however, the classification error rate can be evaluated and
compared at the scanner input and output thereby establish-
ing an upper bound on the system performance in the conte#t
of the defined index of performance. Arbitrary spatial reso-
lution can be specified and its interactive relationship with
the SNR and PMC studied.

This interrelationship has been investigated before and
some general trends are known. In one experiment [3], initial
high resolution aifcraft data was classified and the cor-
responding classification accuracy determined. TLower resolu-
tion scanner PSF's were then specified and convolved with the
alrcraft scanner data to generate a coarser resclution data
base. Traﬁsformations were carried out for different PSF's
and it was concluded that the cofresponding PMé‘s were a de-

creasing function of the spatial resolution.

i




The technique employed in [3] iz inherently empirical
due to the utilization of actual data in the simulation pro-
cess. Two potential shortcomings of this procedure can be
cited: (a), The multispectral signal used is already cor-
rupted by the degradation sources and their effects cannot
be isclated; and (b), The accuracy of the system performance
calculations is dependent on the size of the available data
set. In many applications the data availability can be limit~-
ed due to the cost, ease of acguisition, availability of
ground truth ete. 1In particular, by convolving an initial
data base with a cascade of scanner PSF's to generate a low
resolution set, the averaging property of the convolutiocn
causes successive reductions in the numerical size of the
convolved data and directly affects the statistics and the
corresponding estimate of the classification accuracy.

The need for a different algorithm to simulate a multi-
spectral scanner and evaluate its theoretical performance
has been demonstrated. This method in order to be as flex-
ible as possible, should depend entirely on the parameters
of the model; i.e., population statistics, scanner PSF, noise
level etc. Fig. 1-1 is a basic block diagram of the desired
MSS model and the performance evaluation process. X is the
multispectral feature vector. The scanner model is a linear
system with specified PSF. The statistical description of the
scene is computed at both the scanner input and output,
£(X),£'"(X). The corresponding probabilities of correct clas-

sification are provided by the classification error estimator,
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Pc and %é. This realization of the process is highly parame-
tric and displays minimum dependence on X. For a given geo-
graphical scene, the scanner PSF and additive noise can be
varied and the resulting interaction with ﬁé observed. Each
of the blocks in Fig. 1~1 is composed of various subsystems
which will be considered in more detail in later chapters.

The projected algorithm will have several capabilities.
The most important one is the ease of parameter manipulation.
Variation of the scanner spatial resolution will cause the
output statistics to be modified with a corresponding var-
iation in the estimate of the classificatioh error. Similarly,
variations in the population separability at the scanner in-
put and the resulting interaction with the PMC can be studied.

This built-in flexibility is a desirable and almost im-
perative feature of the scanner system modeling. A specific
example is the class statistics manipulation. The generation
of a new data set, with prescribed statistics, from the exist-~
ing data set, requires appropriate software and, depending on
the data base magnitude, can be potentially time consuming.
The alternative in the proposed algorithm is to supply the
statistics alone.

The following comment is in order here. Much emphasis
has been placed on the data-~independent feature of the al-
gorithm. It is clear that this requirement can only be car-
ried so far. Whatever the method, the population statistics
must be specified. This condition can be satisfactorily
met only by access to an available data set, quality not-

withstanding. The distinction emerges at this point that




the contribution of the data to the final result ends at this
stage for a parametric model whereas the data utilization
will continue throughout the model for an empirical scheme
with an error compounding effect.

The M35 simulated model, being a linear system, lends
itself to well established system theory methods and, de-~
pending on the functions involved, closed form relationships
relate the scanner input and output statistics. For the
block diagram of Fig. 1-1 to be operational, the contents of
the classification error estimator element must be specified.
The input to the base is the set of population statistics in
the form of M mean vectors and covariance matrices and
the output is a set of M performance indices, i.e., the pro-
babilities of correct classification.

The parametric Bayes error estimator is developed in
chapter 2. The resulting algorithm requires the data
spectral covariance matrices as the only input and produces
a set of probabilities of correct classification for each
population. In chapter 3 the MSS and multispectral data
spatial model is discussed and the desired spectral transfer
functions obtained. The experimental results in the form
of validation of the classification errdr estimator using a
set of test cases is covered in chapter 4. The scanner
spatial model is evaluated in chapter 5 and the associated
relationship between the MSS spatial parameters, scene

correlation, noise and classification accuracies are discussed.

ok




A summary and suggestions for further work is the topic

of chapter 6.
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CHAPTER 2
Parametric Bayes Error Estimator in a

Multiclass Multidimensional Environment

There are basically two types of data classification
methods availlable; parametric; and nonparametric. Non-
parametric classification, such as nearest neighbor, is in-
dependent of the statistical description of the data, requires
access to a large data base and generally is suboptimal rela-
tive to the Bayes classifier. It has been shown that the
multispectral scanner data can be acceptably described by
Gaussian statistics [4]. Therefore, resorting to nonpara-
metric classification would discard valuable a priori know-
ledge that can improve performance.

Parametric classification, requires the statistical.de~
scription of the data, either exactly or by parameter estima-
tion. Among all parametric claséifiers, Bayes or maximum
likelihood (ML) classifiers are optimum in the minimum probabili-
ty of error sense. Although classification of any data set,
parametric or otherwise, is fairly straightforward, determin-
ation of the performance of the classifier is far from straight-
forward. The complexity of the problem is primarily a function
of the dimensionality of the measuremeﬁt space and, to a les-

ser degree, a function of the multiplicity of populations.

b e e e s
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Unless the measurement space is limited to a single dimension,

an assumption of very limited applications, exact error rates

are not known for ML classifiers.

11

Multispectral data seldom contains only two classes and

always is of a multidimensional nature.

The performance

calculation for this case has been essentially of a Monte-

Carlo nature. The classifier is trained on a portion of the

data and then tested on either the same portion or a different

segment. The estimate of the probability of error is defined

as
A M n,
€= ) Plw,)=

i=1 VN

(2-1)

where M, P(wi), n, and Nt are the number of populations, a

priori class probability, misclassified samples from class

w; and the total number of available sampl

~

es, respectively.

£ is an asymptotically unbiased and consistent estimate of

the PMC [5]. Eg. (2-1), with various modi

fications, is

practically the only available PMC estimator. The majority

of the literature on statistical classification has been de-

voted to the case of two multivariate normal populations with

heavy emphasis on the equal covariance matrices assumption.

2.1 Review of Previous Work

The field of classification and discrimination, other-

wise referred to as allocation, identification, pattern recog-

nition and pattern selection has been one of the most in-~

tensely researched areas of statistics and has attracted con-

tributions from a variety of disciplines.

In a bibliography,

ﬁ.

P
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Anderson et al [6] list over 400 papers published before
1967. |

In the beginning stages of research‘(prior to 1930),
the classification problem did not have a précise definition,
and was often considered‘in the context of testing the eguality
of two distributions [717. The first cléar formulation of the
problem is attributed to the pioneering work of Fisher whose
ideas were first exposed in the works of other people [8].
In his first paper [9]} Fisher considered-classification as
a problem in'multiple taxonomy. For univariaté, two popu-
lation cases he suggested a rule that would assign the measure-
ment X to w; if |X-X,| was the smallest of |X-X;| and [X-X,]
a nearest neighbor rule in current terminology. When measure-
ments were multidimensional, Fisher reduced the problem to
~ the univariate case by selecting a linear combination of the
measurements, Fisher's linear discriminant function (LDF),
the parameters of which were selected so as to minimizé the.
rétio of the within class scatter to the between claés scat-
ter. He called this the optimum”linear'combiﬁatiOn;

One of the most significant developments occured with
the fundamental results of Neyman and Peérson T10}1. This was
followed by the formulation of the Bayes rule and minimax |
‘Bayes rule for two populations and known Statisﬁics'by.wéich..
[11]. wWald [12] considered the same problem and suggestéd
'replacing-the:unkndwﬁ qﬁantiﬁiesfwitﬁ ﬁhéir maxiﬁum.likélihbod

estimates. Von Mises [13] obtained a rule that would maximize

. P T




13

the minimum probability of correct classification when an

cbservation is to be assigned to one of several populations.

.. S
I, S

In a literature survey of a field as diverse as sta-
tistical classification, one necessarily has to focus on the
particular aspects of the subject most relevant to his work.
Therefore, two broad topics; binary group classification and

multiple group classification under the assumption of multi-

S T

variate normal (MVN) statistics are surveyed. -

2.1.1 Classification Into Two MVN Distributions With
Bgual Covariance Matrices
Let the distribution of X in w, be N(p,,I) i=1,2, where

Uy and I are assumed to be known. This arrangement comprises

e e iCa -

a classical case for which precise error expressions exist.

IL.et A2 = (Hl"Eg)TE-l(Hl_Ez) be the Mahalanohis distance, then

_ o 3
Pelu, = 202 (22

where Q(a) is defined as
2
pd

ola) = —— f e 2 ax (2-3)
o

V2T
This case has been discussed by, among others, Welch
[11], Wald [12] and Rao [14]. The distribution of classifi-
cation statistics, if known, can directly provide the error

probability. Anderson [15] proposed his W classifigation sta- -
hY

tistics by substituting the ML estimates of the unknown para-

meters in a general likelihood ratio rule (plug-in LR). The

e e S o s a9
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distribution of W proves to be quite complicated to the point
of being impractical. Bowker [16] showed that W can be repre-
sented as a function of two independent 2x2 Wishart matrices
one of which is noncentral. Bowker and Sitgreaves [17] used
this result to find the asymptotic expansion of the W dis-
tribution function in terms of Hermite polynomials. Teichroew
and Sitgreaves [18] used an empirical sampling technigque to
estimate its distribution. Okamoto [192] considered the sta-
tistics of W where the number of degrees of freedom r of S,
the sample pooled covariance matrix, is not necessarily

nl+n2—2, where n, and n, are the random sample sizes from wq

1
and w,. He then obtained an asymptotic expansion for

D[ (W-A%/2) /A < k/m ] (2-4)

in terms of nl, n, and r as n1 and n., tend to « and nl/n2

2
tends to a constant. John {20,21] obtained the distribution
of the statistics of W when the common covariance matrix is
known.

When the class statistics are based on.samples, T =
T(X,BysM5,Z) is a decision rule whose plug-in estimate, T,
is obtained by substituting the corresponding sample estimates

for pysH,r and ). then the conditional error porbability

based on T is given by

Tey(T) = PIT classifies X in#o mjlgl,gz, S, M= u.l (2-5)

i, = 1,2
i#73
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The unconditional exrror probabilities of T are ai(T) =
E[ei(ﬁ)]. Denote the estimate of ei(ﬁ) by éi(%) where the
unknown parameters have been replaced by theilr respective

ML estimates. ai(T) is defined similarly. Let T, be the

~
minimax rule with known parameters and T_as its plug-in

o]
version. John [22] obtained the distribution of ei(%o) when

Z is known. Dunn and Varady [23] using an empirical Monte-
Carlo technigue considered 1 - ai(To), 1 - ei(%o) and

1 - ;i(%o} and derived a confidence interval for ei(%o)'
Lachenbruch [24] introduced his leaving-one-ocut method and ob-
tained an almost unbiased estimate for ei(%o). Hills [25]
showed that when n, = n, ai(%o) > ai(To). Lachenbruch and
Mickey [26] compared seven estimation techniques by Monte-
Carlo type simulation and concluded that the two most common
methods, resubstituting the training samples for testing and
the plug-in version of Mahalanobis distance, perform relative~
ly worse than others. Glick [27] showed that as N4 10,7,

;i(T)+ai(T) a.s. uniformly in the class of all rules; more-

over, if T is a LR rule, ai(T)+ai(T) a.s. and ai(T)+ai(T).

2.1.2 Classification Into Two MVN Populations When
Covariance Matrices Are Unegual.
This case differs from the equal covariance matrices case
due to the quadratic form of the discriminant function (T
being a Bayes rule). Let the distribution of X in w; be
N(Hi'Zi) i=1,2, Zl £ 22. Classification statistics again have

been a point of interest. Assuming that all the relevant
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parameters are known, Cooper [28] studied the optimality of
the quadratic discriminant function under stochastic regimes
other than normal. When covariance matrices are proportional,
Han [29] obtained the distribution of the likelihood ratio
and extended the result to circular matrices [30].‘

Gilbert [31] considered the effect of inequality of the
coveriance matrices on Fisher's linear discriminant function
and concluded that when Zl = dZZ the performance of Fisher's
LDF is adequate only for small values of 4. Using simula-
tion techniques, Chaadha and Marcus [32] compared the be-
havior of three distance statistics and stated that Mahalanobis
A2 and Anderson-Bahadur distance are similar in performance
and superior to Reyment's generalized distance. Fukunaga
and Krile [33], using the distribution of the quadratic dis-
criminant function, expressed the probability of error as an
integral and applied the technique to data reported previously

[34].

2.1.3 Classification Into Multiple MVN Populations

The problem of optimally classifying an observation into
one of M populations under the assumption of general means
and covariance matrices and obtaining the error rates has re-
ceived little attention compared to the previous cases. The
reasons are severalfold. Derivation of the classification
statistics, so popular in some restricted cases, comes to a
halt when faced with the requirement of a joint distribution

of M quadratic forms. The solution, if not outright impossible,
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is certainly of dubious practical value. Therefore, the as-
sumption of equality of the covariance matrices, accompanied
by linearization of the discriminant functions, is widespread.
Cacoullos [35] considered the case when the distribution of

X in w, is N(Ei,Z) i=1,...,M and assigned X to the closest Wy
in the Mahalanobis distance sense. Lachenbruch [35] compared
the ML rule with Fisher's LDF, the parameters of which are
the eigenvalues of a certain matrix. He concluded that when
the means are arranged in a simplex, the ML rule performs
much better than the LDF and only when the means are collinear
is Fisher's LDF performance comparable to the ML method.

In general, multiple group classification is comparatively
unexplored, the corresponding error expressions particularly
0. In order to make the mathematics tractable, simp;ifying
assumptions have generally been invoked. The assumption of
equal covariance matrices reduces the dimensionality of the
problem by linearizing the decision boundaries. Hence,
an otherwise quadratically partitioned feature space is now
divided by hYperplanes. In many cases this can lead to exact
error expressions. However, the practicality and usefulness
of this procedure is open to question. When the multiple group
classification problem is detection of known signals embeded
in Gaussian noise, the covariance matrices are indeed equal.
In other applications such as classification of variousagri-

cultural cover types, however, such an assumption is groundless

due to the stochastic nature of the signal itself. The

e o = e —— v . N PR e e e
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available error estimation techniques are generally of the
empirical Monte—-Carlo type.

In addition to the references cited, there are various
review articles and bibliographies on classification error
estimation. Some of the most comprehensive ones are by
Anderson et al [6], Subrahmanian [ 37], Cacoullos and Styan

[ 38], Lachenbruch [35] and Toussaint [40].

2.2 The PMC as a Multiple Integral

The classification of a multidemensional observation
vector into one of M populations is conceptually identical to
the binary case. Let @, M and N be the feature space, number
of classes and the dimensionality of @, respectively. The
procedure is to divide 2 into M mutually disjoint sets, Pi,
and to assign each feature vector to a set in accordance with
an appropriate rule. This is illustrated in Fig. 2~1.

The estimation of the classification accuracy using the
Monte—~Carlo technique is possible but frequently undesirable
because of accuracy and repeatability limitations and the data
dependent nature of the calculation. Therefore, an analytical
formulation of the error estimation is sought. Let Zi’
i=1,2,...,M partition  in RN. The Bayes risk is defined as

[411]

M M |
R=) Jz jélP(wj)Cijf(}_([mj)d}_{ (2-6)

where Cij is the cost of deciding w; where mj is true. 1In

e il




Source

Fig. 2-1 Allocation of a Measurement Vector X to an
Appropriate Partition of the Feature Space.
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the case where Cij = 0 for i=j and Cij =1 for i # j Ris
the probability of error.

Among all of the possible choices of Zi’ the Baye rule
partitions @ into Z = 2% such :that R = R* is the minimum
probability of error [41]. Assuming that the population sta-
tistics follow multivariate normal law, the optimum Bayes rule

is as follows [427

§swi if w, < Wj ¥, #3 i=1,2,....M

i
where
W, = (X-p) 7Y T(x-p)+1n|Y [-2 2nP(w,)
1 -~ 53 i'= =i 3 i
with X = observation vector
i, = mean vector for class w,
—* * (2-7)
i = covariance matrix for cglass W,
P(mi) = a priori probability for class W

The error estimate based on direct evaluation of (2-6) ex-
hibits all the desired properties outlined previously.

The evaluation of multiple integrals bears little re-
semblance to their one dimensional counterparts, mainly due
to the vastly different domains of integration. Whereas there
are three distinct regions in one dimension; finite, singly
infinite, and doubly infinite; in an N dimensional space there
can be potentially an infinite variation of domains. Thus,
the established one dimensional integration techniques do not,
in general, carry over to an N dimensional space. Therefore,
it is not surprising that no systematic technigue exists for

the evaluation of multivariate integrals. The available
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methods are'generally applicable to elementary regions and
integrals.

Let us examine the domains of integration encountered in
the Bayes error estimation. The regions of integration, Pi’
are defined by the inequality w, < Wj ¥ij# i. Therefore, ry
is defined by a set of intersecting hyperquadratics, the
mathematical'represehtation of thch is too complicated to
be practical. The population_statistics, of course, determine
the geometrical shape of a boundary. The most tractable geo-
metry results from the assumption of identical covariance
matrices, Zi = z Vi' An orthonormal transformatioﬁ reduces
Z to an identity matrix; hence, each discriminant function W
defines a hypersphere centered at the population mean in the
transformed coordinate syStem. Such an arrangement leads to
hyperplanes as optimum partitions of the feature space.

The assumption of equal covariance matrices, albeit
unrealistic, is prevalent in the statistical classification
literature and has its roots in the linear property of the
boundaries. Fig. 2-2 shows a case of four populations with
two features.

In approximating the solution to any multiple integral,
‘the parameters to be determined are a set of weighting factors,
Wy Woree oW and a set of points, PysPgre1Py in Z. 'Then

(2-6) can be represented as a finite Rieménn sum

-
J £(X)av = [} w,

_ ) (2=
z 1
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In order to illustrate the difficulties involved with evalua-
ting (2-8), an examination of its one dimensional counterpart
b .
m
fk(x)f(x)dx} )} w.f(p,) (2-9)
=1 + 3
a
where k(x) is a weighting function, is useful. One way to
evaluate (2-9) is to pre-select 12 according to a certain rule

and require that Wy oo W be chosen such that

1
b m
e = j kix)f(x)ax - Z wif(pi) (2-10)
a i=1

is zero for all monomials of degree n. The Newton-Cotes in-
tegration technique is a prime example of this rule where the
interval (a,b) is divided into m equal subintervals of length
{b-a)/m. Among other well known methods having this property
are the trapezoidal and Simpson's rule.

Sometimes, it is advantageous to have a set of points with
uneqgual spacing. The most common choice is when Pl""'Pm
are the m zeros of an orthogonal polynomial Pm(x). There are
numerous methods each using a particular set of polynomials to
generate the desired abscissas [43], among them are the Cheby-
shev orthogonal polynomials of the first and second kind. This
approach provides a relation similar to (2-9) except that the
rule is exact for all polynomials of degree 2m-1. A notable
example is the m-point integration rule of the Gauss Type.
The extension of one dimensional techniques to higher
dimensional spaces is hindered for a variety of reasons.

As pointed out previously, orthogonal polynomials play an

Ut
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important part in the evaluation of one dimensional integrals;
however, there is no generalization of such method to higher
-dimensions. For example, given m points Pyre--P in R2 it
may not be possible to find a polynomial, in x and y, to take
on prescribed values at the points p;- The next item is the
more complicated structure of the N-dimensional functions
which necessarily causes complicated domains of integration

such as (2-7).

2.2.1 Decision Boundaries

In a series of papers, Cooper explored various decision
boundaries arising in a pattern classification problem, with
the emphasis on the optimality of some well known rules un-
der more general conditions. Hyperspheres arising from spher-
ically symmetric distributions were found to be optimum for
Pearson Type II and Type VITI in addition to a normal distri-
bution [ 44,45]. Error expressions were obtaiﬁed by integration
of the random measurement vector |X| within the constant radius
sphere. For the more genera. case, guadratic partitions were
claimec to be optimum for not only normal population but for
the general class of monotone distributions with equal de-
terminant covariance matrices [46] . 1In the latter case, the
statistics, not the functional form of the class density func-
tions, are the only required parameters. |

Althdugh multiclass , multifeature data classification
is straightforward, the probability of error estimation

through non-Monte Carlo teéhniques shows only a structural

(| P I Ty T ST T
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similarity to the binary, unidimensional case. It is signifi-
cant that the complexity of the classification accuracy esti-
mation in_the general case under study is mainly a function
of the dimensionality of the feature space and only partly a
function of the population multiplicity. An exact error ex-
pression, for example, exists for M-class, single dimension
Bayesian classification.

The integral expressing the error is an Nth order multiple
integral over domains defined by (2-7). Consider Fig. 2-2.
The region of interest which would yield the highest proba-

bility of correct classification for class wq is a triangle.

T[] el el el

then Fl is a set defined by the following simultaneous in-

equalities
X, < m/2
Plz X, > —(xl+m)
Xy > Xy-m
Hence 3m
2 m
P [ F(X|w,)dx 2f 2
— w =
1 0 X, =M

(2-11)

~

Therefore, Pclwl can be evaluated to any degree of precision

desired. The point of this simple example was to demonstrate

the importance of the boundaries of Tye The ease of formulation
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Fig. 2-2 Four Populations with Equal Covariance
Matrices: Linear Boundaries.
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was mainly due to the linear .-contours of integration, pvre-
cipitated by the equal covariance matrices.

Relaxing the equal covariance matrices assumption con-
siderably complicates the problem. First, there is no trans-
formation, unitary or otherwise, that would decouple the
feature space for all the populations simultaneously; and
second, the boundaries of interest are now portions of various
hyperquadratics. These two changes alone would rule out any
meaningful representation of ﬁc in a form similar to (2-11).
Fig. 2-3 shows a typical multiclass case.

The dimensionaiity of feature space can be regarded as
the most important complicating factor. There are at least
three parameters dependent on N.

1. order of the error integral

2. geometry of Fi's

3. computation time

The existence (or lack of it) of technigues in evaluation of
multiple integrals has been discussed before. While it could

be argued that the multiplicity of populations, M, has a

more pronounced affect on the decision regions, it is undoubtedly

true that there are no complex boundaries in one dimension
regardless of the value of M. In addition, boundary visuali-
zation, so helpful in error estimation, will ﬁo longer be pos-
gible for N>3. It will be shown in later chapters that the
computation time is related exponentially to N and linearly

to M.

T ST T
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T Y

Fig. 2-3 Optimal Partitioning of the Feature Snace
and the Resulting Quadratic Boundaries.
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In this section, the difficulties associated with a
direct evaluation of the multidimensional classification error
integral were discussed. The parameters of the problem, in
order of decreasing contribution to the problem complexity,
are listed below

1. Inequality of covariance matrices

2. Dimensionality of feature space

3. Multiplicity of populations

2.3 Approximation to the Classification Error Integral

In the previous section the Bayes error was expressed
as a multiple integral over RN, the N dimensional Cartesian
coordinate system of the feature space. The underlying dif-
ficulties.in evaluation of (2-6) were attributed to the in-
tractable mathematical description of the contours of Pi'
and the N-th order multiple integral over an arbitrary shaped
domain, Fi. There are two transformations that would cir-

cumvent these problems.

2.3.1 Coordinate Transformation
The multispectral scanner detects the reflected electro-
magnetic energy in a number of optical and infrared bands.
Although these bands are essentially non-overlapping, the re-
sponses observed are correlated. A rise in signal amplitude
in one band is accompanied by a similar effect in an adjacent
band. In statistical terms this property translates into a

probability space with correlated wvariates.

‘
i
:
:
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The M populations are represented by a set of general
mean and covariance matrices. Great algebraic simplifica-
tion would occur if every ) was in a diagonal form resulting

in separable density functions. This simplification stems

from the application of product rule. Let X = (xl,xz...,xN)eB

and ¥ = (yl,yz,...yN,)eG be in Euclidean spaces of N and N'

dimension respectively. A Cartesian Product BxG, is a space

of N+N' dimensions with points (X;:Xgs.. - Xyryjs¥g-+-yy') such
. .

that (xl,xz...xN)gB and (yl,yz,...yN JEG. Let there exist

an m point integration rule, R, over B

m
R(£) = ] a,f(X;) I £(X)AV X, €B (2-12)
i=1 B

and an n point integration rule, R', over G

n
R'(£) = ] b.f(Y.)n ff(g)dv Y.eG (2-13)
=13 T ]

Then the product rule of R and R' defined over BxG is given

by
m n '
RxR' = J } a,b,f(X,,¥.)% J £(X,Y)av (2-14)
2 R N B e R -

From these properties, it quickly follows that if R integrates

£(}) exactly over B and R' integrates g(¥) exactly over G then

provided h(X,¥) = £(X)g(Y¥), RxR' integrate h(X,Y) exactly
over BxG. A brief proof of this theorem given in [47] fol-

lows.
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Fig. 2-4 Three Linear Transformation Stevs Prior to
Feature Space Sampling.
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f hiX,Y)av = f £(X)g(¥)av = }ff(pdeJg(g)dvG
BxC BxG B G
7 I
= a.f(X,) b.g(¥.)
MR R T P =ty |
i=1 =1 (2-15)
m T
=i£1 jglaibjf(}—{i)g(gj)
=R x R'

Potentially, this rule can reduce the dimensionality of a .
problem from N to 1. Such a property is not an intrinsic
feature of the remotely sensed data, however. DMoreover, there
is no transformed space in which M(M>2) covariance matrices
can be represented in diagonal form.
Since the calculation of §C|mi precedes the estimation
of overall classification accuracy, an M stage successive es-
timation procedure in M linearly related probability spaces

can be envisioned. For example, stage i consists of the fol-

lowing mapping

1
1

By = Hy 7 By
T .

Mj = Q E% \ ]=l'2,...’M (2_16)
T

5., = %

s, = 8750 |

where ¢ is the eigenvector matrix derived from Ei' Therefore,
in each transformed space, Ti(Q), Wy has a null mean vector
and a diagonal covariance matrix. PFig. 2-4 is a pictorial
representation of (2-16) for two classes. This unitary trans-

formation is linear, preserves the Euclidean distance and

B PPN TR gL R LY, S I
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pairwise divergence and the probability of error is invariant
under such mapping. It will be shown that formulation of

N

Pclm. in Ti(Q) will provide an N to 1 dimensionality re-
i

duction.

2.3.2 Discrete Space Approach

For any continuous formulation of a problem there exists
a discrete counterpart, specific choice of which is dependent
upon individual cases and requirements. Let Q be the con-
tinuous probability space. A transformation, T, is required
such that in T(Q), I, can be completely described in a non-
parametric form, thereby bypassing the requirement for an
algebraic representation of Pi. Thails desired transformation
would sample @ into a grid of N-dimensional cells according
to a certain rule; thus, expressing the Bayes error integral
in the discrete space of T(R).

The sampling of the probability space is eguivalent to
the discrete representation of the random variates along each
feature axis. The multispectral data is generally modeled as
a multivariate normal random process. What is required,
therefore, is a discrete approximation to a normal random
variable that would exhibit desirable limiting properties.
Let yntiin,p).be a binomial random variable with parameters

n and p. Then X defined by

x e ——— ] Yn i 0,1,2;--.1’1 ‘ (2-17)

S e e e el daas
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)4 \
pd __—Entire cell

. assumed inside
/ L.+——— Entire cell

assumed ocutside

Fig.

2-5 Boundary Location Estimation.
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converges to x“N(0,l1) in distribution [48]; i.e.,

1lim Fn(x)+F(X)
N+ ,

The convergence is most rapid if p=%. Then
(¥, -n/2)2 :
X, = —— (2-18)
yn
The variance of X, is set equal to the eigenvalue of the
transformed Z; by incorporating a multiplicative factor
(/x;) in (2-18).

The segmentation of by a union of elementary hyper-
volumes makes nonparametric representation of Pi'and its con-
tours feasible. Some comments regarding the structure of the
sampled 9 are in order. The coordinates of each cell's center

are known and given by (2-18}. The spacing between the cen-

ters is readily shown to be equal to 6i = a, along the ith

51|

axis. The grid extent is therefore + /H.ci with n+l cells
along each coordinate axis. The simultaneous solution of the
set of M Nth degree polynomials is now reduced to the identifi-~
cation of each cell with one of M partitions within Q.
Specifically, following the orthonormal transformation on W
and sampling of 2 accorxrdingly, each cell's coordinate is as-

signed to the appropriate I. This process is carried on ex-

haustively, therefore r, can be defined as a set such that

r, = {UX :X el .} ' ,(3_19)

Fig. 2-5 shows a pictorial representation of (2-19). ‘The
description of domains of integration as a union of elementary

units alleviates the need for the precise knowledge of the
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boundary location, although the sampling grid can provide an
estimate within one 8. Once the exhaustive process of assign-
ment is completed §c|mi' the integral of f(glmi) over T,, is
represented by the sum of hypervolumes over the elementary
cells within Pi.

Using this procedure, cumbersome implementation of
numerical integration technigues in multidimensions are
avoided. One of the main features of the orthonormal trans-
formations preceding the sampling process is the decoupling
of Zi, thereby generating the separability property of the
transformed f(glwi) along each dimension. Invoking the product

rule and designating the domain of a cell, centered at the

origin within Fi' as C,:

8 $ §

_L _2 XN
2 2 z
J f(_}_{lmi)dx = j f(xl[mi)dx1J f(x2|wi)dx2...J f(xNImi)de
8 8 8
C; -1 -2 - N
2 p) 2

(2-20)

This unit of probability volume is equal to the product of
N one dimensional normal integrals, the value of which is
widely tabulated. Thus, no involved numerical procedure is
required to evaluate (2-20).

The relationship expressed in (2-20) is the building
block in the probability of error estimation. Referring to
this algorithm as a 'Controlled Space Partitioning' (CSP} we can

write the conditional classification accuracy estimate as

e el T . tikee - OP B
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§ s
1 2
€ gk [ JEE
13 2,3
Pclw-— ) J 8y f(xllmi)li(c)dxlfc 8, f(lewi)Ii(C)dxz
i Ce ' C-—= —
1 2 2 2
Ny (2-21)
C+._1_\1.
N 2
c_ N
N 2
~ n ~
P = Plw,)P
© i£1 “y clog
where Ii(C) =

0 otherwise

C = The domain of an elementary cell

Pig. 2-6 is a geometrical representation of (2-21).

2.4 Error Analysis

Formulation of a problem with inherently continuous par-
ameters in a discrete gpace as a means of approximation or
estimation of the end product necessarily incurs erfors that
need to be studied. Error terms cannot be expressed in the
form of exact expressions and can only be bounded or put in
gsome defined statistical model; otherwise, the approximation
would be exact. Extension of the one dimensional integration

error analysis results does not appear to be possible due to

the lack of any correspondence between the unidimensional and

multidimensional integration domains. In the multivariate
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Fig. 2-7 Type II Error Structure.
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integration field, the errors studied are related to the simple
domains such as hypercubes, simplexes etc. [49].

There are basically two types of error encountered in the
implementation of the CSP algorithm. Type I error originates
in the one dimensional integration of a normal density Ffunction
over the region (a,b). This quantity is available both in tabu-
lar form and as FORTRAN callable subroutine subprograms which
are capable of supplying arbitrarily high accuracy results.
Type II error occurs only at the boundary of ry because the
sampled grid essentially estimates the location of such contours.
A self cancelling property of this type of error is brought about
by the geometrical structure of the regions when: (a),f(§|mi) is
integrated over the whole elementary hypercube instead of a por-
tion inside T, (grid point X close to the boundary and §n¢ri):
and (b),f(xlmi) is not integrated over a portion of T, (grid
point gn close to the boundary but §n¢ri). (a) adds a positive
bias and (b) adds a negative bias to the result of integration,
ﬁc. For a sampling grid with fine subdivision and over the
ensemble location of all the bnundaries, the events

{§neri or §n¢;d§n near the boundary} (2-22)

have equal likelihood; hence; positive and negative biases
occur equally often. ¥Fig. 2-7 shows the structuré of type

IT error in 2-dimensions.

2.4,1 Statistical Properties of the Estimate
The error encountered in estimating the classification

error is primarily of type II. Much insight into the structure

ke
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of this errxor is obtained by examining the problem in one
dimension. Let f£(x|w) be a class conditional Gaussian density
functionr N{0,1), and let Xy be a fictitious unknown boundary
possibly separating w from some other population. A grid of

i ze i i i i X . X .
size n is set up and it is determined that noePl and n0+l¢rl

| Fig, 2-8. X, has equal likelihood of being inside or out-

, o
side Pi. Equivalently, it can be stated that Xy is random
with uniform wvariations within one §, i.e.,

wo(x, -8, x o+ 98 (2-23)
*h n, 27 ng 2

The error in estimating the area of Fi can therefore be repre-
sented as

f(x)dx (2-24)

;

n
o

which, depending on X, can take on either positive or nega-

tive values. The expected value of e is

x & x

- n, 2 b

e = J s [f ' f(x)dx]f(xb)dxb
2

X

o nO

n
=3[0 et r-amy)ax (2-25)
O
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2-8 A Case of Net Negative Estimator's Bias.
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The variation of e vs. x  is plotted in Fig. 2-9.
- o
Examination of e shows that although small, it is

mostly negative. Its magnitude decreases with increasing
n and x - These properties can also be deduced geometrically.

0
The negative bias is due to the following obvious ineguality

Q(a)-Q(b)>Q(ec)-0(da)

given that
r a<b<c

c-a>0
{ a-b>0 (2~-26)

a,b,c,d>0

L

Fig, 2-8 shows two cases where the closest cell to the boundary
is considered either inside (Xhoeri) or outside (xnoéri) the
decision region resulting in an over and underestimation of
correct classification, respectively. From (2-26) it then
follows that the magnitude of negative bias is greater than
that of positive bias. Thus, this procedure gives estimator
with a net negative bias.

A different situation exists when the region of integra-
tion is doubly connected as in Fig. 2-10. In this case the
shift of a cell center from just inside the boundary to just
outside, produces an opposite effect.  Whereas in the pre-
vious case such a shift would have reversed the sign of the
bias term from positive to negative with an increase in mag-
nitude, in the¢. new domain the net change in bias will be

positive simply because the inside-to-outside move now is
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Fig. 2-10 A Case of Net Positive Estimator's Bias.
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toward the mean rather than away from it.

In N dimensions the total error in estimating the
conditional probability of correct classification can be
represented by a weighted sum of the boundary errors,

g

&g = 12:.1 wie,  (2-27)
where NB‘is the number of cells along thzs boundary, W,

is the weighting sequence and ey is the N dimensional error
associated with the ith boundary cell. In order to obtain

a variance expression for e., the statistical properties of

q
ei need to be determined. From (2-22) it follows that the
location of the boundary is uniformly distributed within
one boundary cell width. In general, it does not follow
that the volume error is also ﬁniformly distributed within
one cell volume. This is strictly true only in cases where
the decision boundary and the boundary of a cell arev'par—
allel’'. 'Adoption of a uniform diStﬁibutibn assumption for
e however, provides a conéiderablé simplification in the

derivation of an expression for the wvariance of the error.

With regard to the first expression for the variancé of e

T
it should be noted that the assumption of a uniformly
distributed e, generates a variance higher than the true
value. Thus, the resulﬁing expression can be taken as an
upper bound on the variance of € Let
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where Ve is the volume of an elementary cell given by

N

v, =T &, | (2~29)
€ i=1

‘The contribution of ey to the total integration error
should clearly be weighted to incorporate the effect of boun~
dary location relative to the mean of ws;e AN appropriate
choice for the weighting sequence w, is the height of f(glwi) ]
at a particular boundary point. A weighting process such as
this effectively assigns a 'gignificance' to each e, . Although ;
the magnitude of e, may have been large in the context of i ?
volume approximation of Fi' if the normalized distance of |
su-h cell to 7] is large it generates negligible volume under ;
£(X|w,;). i

In order to obtain a variance expression for e,, the small

T
bias is assumed negligible. The variance of individual er-

rors, e, is
i

2
v
_.c _ 2 _
Var{ei} = 5 = o (2~30)
Therefore,
fe,} = E{e’} = E{ ?B I;B }
Varie = Eieg = E w.w.e.e,
T T i=1 j=1 i 1] o
o
NB 273 NB NB o
= ) w,Cel + ) W W, e, (2-31) :
i= i=1 j=1 *+J 1 |
i#d =
?B 2 o Ng ?B ;
= W, o, -+ W.W.D.:.0.0. 3
i=l 1% g=pog=1 YRR :
i#j

where pij is the correlation coefficient between e, and e.. Ob-

taining an analytical expression for Py in N dimensions is

3

lkhh“‘-mb'.u‘m.-.‘)-v e



theoretically feasible however its complexity considerably
diminishes the usefulness of (2-31). Because the pij are
small for widely separated boundary cells, a reasonable ap-

proximation to the var{eT} is given by

var{e } = XB . (2-32)
arle, izlwiai
Expanding (2-32)

N
2 1 2

1 ST
w., = e X.er {(2-34)
J (27!')N/2 ?IT o4 =J Bi

i=1

where Ty is the boundary domain of Pi. Substituting
i

8, = % o, in (2-33)
n
N 2
i=l v/n
2N N
= 2 S )i 0'?_ (2—35)
12n i=1

Therefore, (2~32) is equal to

NB
2N 2
Var{eT} = §§ (H?) .Z £] (2-36) .
i=1
where fi is the exponential part of (2-34}. ¢
jt-]
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ORIG % QUAJ’IN

i il i AL sk TLTE o o e



48

The variation of Var {eT} vs. n and N cannot be fully
explored due to the zfi factor which is problem-dependent.
However, it does follow that Pc is convergent in the mean-

square sense;

E{IPC-P I2} = Var{eT} —> 0 for n+ o (2-37)

o

This observation is less than obvious since as n increases

so do NB and zfi and, hence, could potentially be self-
canceling. Although the increase of NB and n are monotonic,
experimental evidence suggests thﬂ:NB as a percentage of cells
within Pi steadily decreases so while more cells are allocated
to Tsr comparatively fewer ones reside near the boundary.
Therefore, Zfi only slows the convergence of the variance to-
wards zero. It also follows from (2-37) that variance de-

creases for high recognition rates (i.e., small fi}.

2.5 General Comments

Formulation of a problem in an N-dimensional spaée re-
guires coping with situations not present in the single dimen-
sion case. In addition to the mathematical complexities, the
practicality of implementation of any method should be closely
examined. In particular, with the digital computer capability
and its cost as the ultimate limiting factor, the computation
time of processing in an N-dimensional domain takes on a prime
importance.

Techniques requiring exhaustive enumerations can be

potentially expensive, in many instances totally beyond the




available resources. The implementation of (2-21) requires
processing of an N-dimensional grid of points. With (n+l)
cells along each axis, there are (n+l)N such points to be
allocated to their respective domains. In one dimension, very
accurate estimates can be obtained long before the size of

n+l presents any computational difficulties. The multi-
dimensional case is different. The exponential rise 0of the
grid size with N can make the executior time prohibitively

long. This °'dimensionality effect' can effectively generate a
g

computational barrier and thus render the algorithm inoperative

if n is "too large'.

The quality of the estimate as shown in sec. 2.4 is
dep=sndent on the size of n; i.e., the grid fineness. So the
central gquestion is whether n can be large enough to generate
a high quality estimate and yet small enough to make the
estimation process feasible. The sampling grid, the algoxrithm
and remotely sensed data itself have properties that help
answey this question in the affirmative. The current MSS
systenr in operatién collects data in four spectral bands. It
is believed that future space platforms primarily Landsat C
- will be equipped with scanners.having data collection cap-
ability not beyond five spectral bands. Therefore, N for all
useful purposes is limited to the 4 to 6 range. .Actually,
optimum processes may not utilize all of these bands due to

their redundancy.
The next question is the relative magnitude of n. The

answer lies partly in the outer location of the desired

e A L i 1R
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boundaries and the fact that the sampling grid must cover the
entire relevant domains. It turns out that in most cases of
interest, Pi is a simply connected domain but Zi is a doubly
connected domain. This approach toward the evaluation of
the classification performance through the estimation of
probability of correct classification ensures that sampling
of the probability space is confined to a closed finite do-
main of Pi, thus alleviating the need to sample Zi' a far
larger region. Having established that Fi is bounded in many
cases, the question now is whether the outer limits of the
grid will encompass the appropriate boundary and thus sample
Pi thoroughly with a reasonable magnitude for n.

" Define gei as the extent of the sampling grid along the
ith transformed feature axis. From sec. 2.3.2, |gei| = VMo, .
Although no such quantity can be precisely defined for Tir
let rei be the outer limits of Pi in some average sense.

Two cases can be distinguished: (a), rei<lgei| in which case

clearly, the grid has sampled the entire domain of interest;

and (b), Fei>igei|, a condition which either means that n is

exceedingly small or that Pei is located very many cis away

from p.. 1In this case any error committed but unaccounted
for, will have very small effect on the outcome due to the
negligible volume under a normal density function for any-
thing more than a few standard de§iations from the origin.
Since in most applications n 28, the grid extent will be

>+ 2,20 and will satisfactorily sample the entire domain of

interest.
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CHAPTER 3

Line Scanner Imaging Systems

The primary goal of a remote sensing system is tlre
collection from a scene of reflected or emitted electro-
magnetic energy in selected spectral bands. This task has
been traditionaily accomplished by airborne photographic
equipment and is analyzed by photointérpretation tech-
niques. There are several major drawbacks associated
with such a method.

The sensitivity of photographic films is generally
limited to the near ultraviolet-near infrared band; there-

fore, night time operation is severely limited unless the

scene is externally illuminated. Clouds, fog and smoke are

opaque through this portion of electromagnetic spectrum.
Most importantly, handling of the film itself is awkward
and the accompanying telemetry problem can make its
deployment aboard a nonrecoverable vehicle unattractive.
Nonphotographic sensors overcome many of these short-
comings. Through the selection of the proper detector,
spectral coverage can be extended to microwave and beyond
where clouds and bad weather do not sericusly hinder the
sensor’'s performance. Having the data in the form of an

electrical signal lends itself to efficient and powerful
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transmission and processing technigues.

3.1 Types of Systems

The maﬁority of current remotely sensed data is ob-
tained in the ultraviolet, visible and infrared portions
of the spectrum by scanning systems. One of the earliest
of such systems was °‘Reconofax’ operating in the visible
region [50]. It used either moonlight or an internal
illumination source o produce maps of the ground scene
at night. ILack of detectors with rapid rise time, produced
imagery with unsatisfactory resolution compared to photo-
graphic methods. As a result of improvements in detector
technology, current scanning system can produce imagery
of high guality within a reliable, compaét and fairly simple

structure.

3.1.1 Multispectral Scanners

A widely used earth resources data gathering‘SYStem is
the elegtro—optical scanning radiometer othexwise known as
a multispecitral scanner. A MSS is génerally'an'bbjedt |
plane scanner [51] and consists oanArotating_mirror and a
téléédoPe that diﬁects.ﬁéfledﬁal.énéigynfiom.a Sméll portion
of the object plane. A bank of detectors requnding to
different waveiéngths feceiveé the inéoming radiatioﬁ
whigh, after detection, sampling and quantization, is tele-

metered to the ground station. When such a system is placed

S
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in an aircraft or an earth orbiting satellite a strip map
of the ground scene is produced. The cross-~track coverage
‘ig performed by the osecillating mirror and vehicle motion
accomplishes the along~track coverage. Contiguous coverage
is required to prevent underlap. This can occur if the
satellite speed is too high or the mirror's rotational

rate too slow.

This simple structure can be upgraded to include the
currently employed scanners in which an n sided mirror
rotates at a‘rate of r revolution per second thereby
producing n iines for each rotation. There are a total of
d detectors and, thus, 4 lines are scanned by each side of
the mirror. A total of nxd lines are scanned for a full
rotation.

Let kt be the dwell time of a detector on each
resolution element and V and H be the speed and altitude
of the wvehicle, respectively. It can be shown [50] that
subject to a dwell time not less than kt and a no underlap
scanning mode, the angular resolution of an MSS has a lower

bound given by
6 2 (2nk/nd) (V/R) (x) __ (3-1)

with equality for contiguous lines. From a hardware point
of view, the adjustable parameters are limited. V and H
are interdependent and are determined by orbit considerations.

T is a property of the detector. n and d are variable
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parameters to chooge as a means of the MSS instantaneous
field of view (IFOQV) confrol.

| One of the most widely used operational remote sensing
instruments is the Landsat multispectral scannef. Landsat,
-an Earth resources monitoring satellite, is positioned
on a polar orbit at an altitude of about 900 km with a
complete global coverage cycle of 18 daYs.. The vehicle's
operation is chosen so as to provide a 14% écan overlap;
The MSS collects data in 4 spectral bands, two visible and
two near infrared, all in spatial registration. Six lines
are scanned simultaneously and with an IFOV of 87: urad
providing a ground resolution of about 80 m, with a total
cross—fange width of 185'km. The Skylab 5192 scanner pro-
vided similar resolution with 13 spectral bands from 0.5 um
to 12.5 ym. Among other MSS éystems is the Thematic Mapper
for Landsat D. Spectral coverage is extended to 7 bands
from .51 ym to 2.35 um>with'some géps plus a thermal band
from 10.4 ym to 12.6 um. ‘Angul-ar resblution of 33 yrad will
qofrespond to a ground IFOV of 30 m'at'av900 km altifﬁde

[52].

3.2 System_Modelinq of a Multi5pectral Scanner System

" The oﬁjeétiveéAoutliﬁed in the.iﬁtroductory chépter
required.a parametric répresentation and evaluation of the
MSS performance. Like any other complex and.integrated |

- system, the multiplicity of parameters is numerous. Sensor

T
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choice, band selection and telemetry links, are but a
few of the interacting components of the system design.
From the viewpoint of information extraction and pro~
cessing, however, the spatial characteristics of a
scannér along with the spatial resolution and additive
noise take on a particular significance.

Modeling of the MSS by a linear system opens the
way to the application of existing techniques in system
theory. Since the classification accuracy is totally
a function of class statistics under the Bayes rule,
examination of the random proces. transformation
carried out by the scanner PSF can be most revealing.
Topics of particular interesf are

1. Effect of the scanner IFOV on population
statistics.

2. EBffect of data spatial correlation on the
classification accuracy.

3. Effect of signal~to-noise ratio on
classification accuracy.

4. Trade off between spatial resolution and
SNR.

5. Effect of spatial resolution on
: classification accuracy.

6. The interactive relationship between IFOV,
spatial correlation, class statistics, SNR
and classification accuracy.

T
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3.2.1 MSS Spatial Model

‘The incident electromagnetic energy after reflection
from a target is detected by the scanner IFOV. The ulti-
mate goal of such operation is a perfect reproduction of the
radiant energy. This objective cannot be accomplished with
any physically realizable system. Finite IFOV, required
by detector sensitivity among other things, keeps the
ground resolution at a finite level. The resolution .
degradation can be subsequently dealt with throuch various
image enhancement techniques [53,54].

‘The averaging operation performed by the scahner
point SPread funciion can be modeled by a linear shift-
Cinvariant multiple—iﬁput, muitiple—output system. ZInput
signals consist of N random processes in N spectral bands
corrupted by atmospheric noise and ecattering. :Each input
is linearly transformed by the scanner PSF and additional
detector and pfe—amp noise further contributes to the signal
degradation.

Fig. 3-1 is a basic block diagram‘of this epatiel
model. h(x,y) is the two dimensienal PSF to be specified
ferleny desirea syetem; in‘perticﬁlar‘wﬁere the'MSS is
concerned, the assumptlon of a Gausszan shaped IFOV has. been
W1de5bread. The justlflcatlon for thls is essentially
satisfactory experimental results and perhaps equally
impertant is the mathematical conveﬁience-of this model.

Note that the results obtained hereafter are fundamentally

memAL |
?)r POOB‘ Umﬂ




Fig.

3-1 MsSS Spatial Model as a Linear System.
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independent of the functional form of the PSF. However,
using fhis assumption, it is frequently possible to
obtain closed form exprassions and to make comparisons
with alternate methods a majority of which adhere to
the same assumption.

In a two dimensional plane a Gaussian PSF is specified

by the following relationship

[}
N

H IN
own

t
3] |"<:
o

hi(x,y) = c,e (3-2)

1
The important parameter is £y PSF's characteristic
length, which in effect determines the ultimate ground
resolution and noise content of the collected data.
Increasing r, results in a deterioration of the former
but improvement of the latter. The significant
property of h(x,y), is its separability along the

cross and along-track directions resulting in some
simplifications of the analytical relationships
governing the scanner operation. In practice, h(x,y)
is truncated at some point, usually 0.1 h(0,0), to keep
the computation time down. fhe noramlizing constant

Cy s provides a unity gain for this averaging operation

{(appendix A).

T
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An alternate PSF but not as yet operational aboard
Landsat is the rectangular function defined by

2

l/rO

2], ly] <z /2

hix,y) =

The definition of the IFOV adopted here for either a

Gaussian or rectangular PSF is such that IF0V==rO.

3.2.2 MSS Statistical Model and Spatial Correlation
As the‘input random processes undergo a linear trans-
formation, so do their statistical properties. In order to
investigate the various interactive relationships outlined
previously, an understanding and knowledge of the signal
flow through the scanner is essential.
Relating the statistics of the multispectral signal
at the scanner output to the corresponding part at the input
can be accomplished in various ways. It has been pointed
out that a two dimensional convolution is equivalent to a
matrix multiplication in which one matrix is block circu~
lant [55]. ZLet F and G be the input and output matrices
arranged in szl column vectors. Then they are related
by
G = HF o _ - (3-3)

where PSF matrix H, has_the following structure

—
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|— - o o 9 1

Ho HP—l Hl

H = _l o) 2
| Hplp  Hay Hs

Each element in H is itself a PxP matrix. For a particular
case, a selected number of fields can be chosen and pro-
cessed by (3-3) to produce the G matrix followed by the
calculation of a pooled auto and cross spectral correla-
tion matrix.

This methﬁd has the advantage of requiring no a priori
spatial information yet its data dependent nature makes
the results of any study limited to the particular data set
used. The more general approach, providing possibly closed
form expressions for the quantities desired, is the appli-
cation of linear system theory techniques to the MSS. This,
however, requires some a priori specification of data pro-
perties in an algebraic form, the main item being the spa-
tial correlation model.

Agricultural crop planting, natural formations of ter-
rain, water supplies, etc. all exhibit a certain homogeneity
ir. their structure; therefore, it is expected that the re-
flected energy sensed by a scanner will show the same pro-
perty in the form of a correlation between adjacent pixels
of the final digital data set. Comparatively speaking,

spectral classification has been much more widespread than

a .
I . I -
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spatial c¢lassification, resulting in less than a full

attention to the spatial properties of remoctely sensed data.
It has been suggested, however, that the experimentally ob-
served correlation functions approximately follow a decaying

exponential [56,57]. This assumption implies a Markov model

for the spatial characteristics of the data. ILet Bk be

the spatial correlation matrix of the kth spectral band

Bk = [rij] i,j = 0,1, ...,no—l (3-5)

Under the two assumptions: (a), Markov correlation struc-

ture; and (b), separability along the cross—track and

along-track directions, R, can be specified as follows

R, = fr..1 = o> pJ i,j=0,1,..., n-1 (3-6)

where Py and pyk are the adjacent pixel correlation
k
coefficients along the respective directions given by

o = o Kk

(3-7).

kk
o Yy

Similarly, the spatial crosscorrelation matrix between two

bands p and g is defined as

= [r;.1 = P pj i,j=0,1, ..., no-l (3-8)

.
S PP S S

PR




62

(3-9)

In order to examine the validity of the Markov model
and the separability property of the correlation functions,
a sample aircraft MSS data set is selected and the estimate
of the auto and crosscorrelation functions in two spectral
bands, one in visible and one in near infrared, is obtained
by a lagged-product sum method [58]. The separability char-
acteristics can be checked by completing the entire cor-
relation matrix, R, using [rij] = [rirj] and comparing it

to the experimentally okserved guantity. Let E be the error

matrix associated with this operation, then

E = |[r.j] - lr,r. i (3-10)

The results are shown in Fig. 3-2 through Fig. 3-4 and
Tables 3-1 through 3-3. Although the shape of the
correlation curves themselves indicate an approximate
exponential behavior, a gquantitative weighted least-squares
fit shows that this assumption is indeed wvalid. The
différential between the correlation of the lines and
columns of this data set stems from the fact that the
analog signals are sampled in a way that generatés unequal

separation between the corresponding ground resolution
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" .Table

3-1

Channel 2.
1.00 0.95
0.81 0.79
0.54  0.55
0.34 0.36
0.25 0.27
0.22 0.24
.16 0.19
1,00 0.95
0.81 0.77
0.54 51
0.34 -32
0.75 .23
G.22 .2
0.1% .25
0 0
0 2.6
u 7.2
0 ii1.1
0 4.8
0 16.6
0

24

0.87

0.74
0.52
0.35
0.28
0.25
0.20

0.87

6.70
47
.3

.19
.13

0
5.4
2.6

4.2
25
24
35

0.79
0.67
0.48
0.33
0.27
0.25
0.21

0.79

0.63
.42
27
.19
.17
.12

0
5.9
12.5
18.1
29.6
3z
42.8

0.71
0.60
0.42
0.29
0.25
0.23
0.20

0.71
0.57
.38
.24

.15
.11

0
5

9.5
17.2
32
34.7
45

0.64
0.53
0.31
0.25
0.21
0.21

. 0-19

0.64

0.51
.34
21
.16
.14
.1

0
3.7
8.1
16

23.8
33.3
47.3

0.58
0.48
0.32
0.21
c.18
0.18
0.16

0.58

3.1

4.7
22.2
33.3
43,7
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Table 3-2 Error Matrix Tor Correlation Tunction Approximation for
Channel 8.
1.00 .9 77 .64 .52 41 .33
JL 68 .59 .48 .37 .28 .20 _
43 43 .38 .3 .21 .12 .06 | ]
R, = .33 .35 .33 .27 .19 .12 .06
230 .32 .31 .28 .23 .17 .12
i 22 .75 26 .24 .20 .15 11
1 .10 .13 W14 .13 J1 .08 .05
1 ~ _
i 1.06 .9 77 .64 .52 A .33
J1 .64 - 55 45 .37 .3 .11
“ 43 .39 .33 .27 .22 .17 14
ik "Ry = 33 .3 25 .21 .17 L4 .1 j
30 .27 .23 .2 .15 .12 .09 ;
22,2 .17 .14 .11 .09 .07
.1 .9 .07 .06 .05 .04 .03
0 0 0 0 0 0 0 o
0 5.8 6.7 6.2 0 6.5 45 o
o 9.3 131 1p 4.5 30 57 it
B, i o 14,2, 24,2 22,2  10.5 14.2  45.4 :
o 15.6  25.8  2B.5  34.7  99.4 25 | DR |
o 20 34.6  41.6 4% 5 36.3 |
o 36.7 50 53.8  54.5 50 40 -
b3
QRIGEQBL &?’E‘fﬂﬂ
oF BOOF
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Table 3-3

R
;

28

a0

o O o0 QO o o o

Error Matrix for Cross Correlation Function Approximation

Between Channels 2 and 8.

.00 .92 .81 .69 .59 .50 .44
.93 88 .78 67 .56 .48 41
73 .7 66 .54 44 .36 .3

48 47 430 .36 .28 .21 .16
30 .31 29 .24 .18 .12 .08
.23 .25 26 .21 .16 .12 .08

.22 .24 .24 .22 .19 .15 .12

.00 .92 .81 .69 .59 .50 44
.93 .86 .75 .64 .55 J46 A
.73 .67 .6 .5 43 .36 .32
48 hb .38 .33 .28 .24 .71
.30 .27 w24 .2 .17 .15 .13
.23 .21 .18 .16 .13 W11 .1
.22 2 .18 .15 .13 11 .1
0 0 0 ] ] 0
2,2 3.8 4.5 1.8 4.16  2.43
5.6- 6.2 7.4 2.3 0 6.75
6.4 11.6 8.3 0 17.5 23.8
- 13.0 17.2  16.6 5.5 20 38.4
16 25 23.8 18.7 8.3 20
16.6 25 31.8 31.6 26.6 16.6
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elements along the scan swath and vehicle down track motion.
The unusually high cross-track pixel-to-pixel correlation
is attributed to the use of very high resolution aircraft
data. For satellite imagery a pxk = (0.8 is a more common
value.

The separability property of the correlation matrices
appears to be a reascanable assumption according to the
correlation error matrices. As will be shown later, this
is not a feature‘peculiar to this data set but is observed
throughout most of the multispectral data bases. The main
property exhibited by E, is that the separability assump-
tion becomes progressively invalid for higher lag values.
This, however, is not particularly detrimental to the
correlation model proposed here due to the fact that although
the absolute error term expressed in percentage can be rela-
tively high, the normalized values of the correlation func-
tion in the range of concern are themselves guite small,
and thus, carry little weight in influencing the final
results.

With the correlation model well defined, the output
spectral covariance matrix can be specified. Let Rgigj
and Zg be the output spatial correlation matrix between
spectral bands i and j and output covariance matrix, re-

spectively, then

i,3 = 0, i,j=1, t ey -
Zg(l 3) [Rgigj( 01 i,j=1,2 N (3~11)

_—

k
E
E
i
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Note that when considered over the ensemble of all the

bands, matrix Rgis an (nOxN)(noxN) partitioned matrix,

giveﬁ by
IR 1 R,
99 9199
R 1 IR
x 291 929

]

1

e RO

=9 9y

IR
ng%s

R .1 * " Bygl
_ 9% oy

(3-12)

where [gij] is the noxnO spatial correlation matrix. Z

however, is only a function of zero lag elements of Rg’

Bgigj

(0,0).

need be calculated.

Therefore, only NxN out of (noxN)(nOKN) entries

of R
-

correlation matrix is a small subset of spatial correlation

It is clear that the spectral

matrices vhose elements have the following locations.

z_g(i,j) = gg(iwl)no,(j-l)no) i,9=1,2, ..., B (3-13)

The analytical relationship between the input and out-

put correlation matrices of an N-band MSS is investigated

in Appendix A.

Specific results are obtained for a

Markov-correlated data set, a Gaussian and a rectangular

shaped scanner IPOV.

The main result obtained there is a

scanner characteristic function WS(T,n,a,b) given by

o en e

DA mcaleAra et o 1d b o ) md b iriee s
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2
agr2 %irz
o) Q..
Z e 2 HgE il
Ws (tyn raiirbji) = e Q(aiiro—%}-%e allro ro
2.2 2.2
%iro-ﬂl.n E*ro
e 2 1 ab,.r --Die 2 ii‘od,.r +—)
il’o r
o
(3-14)

where aiiand biiare the parameters of input spatial cor-
relation function determining the adjacent pixel correlation
in band i, r, is the scanner PSF characteristic length
and Q0 is as defined earlier.

WS plays a central role in the spatial modeling of a
multispectral scanner. It is a function by which all
channel variances and band-to-~band correlation coefficients

are weighted to produce the corresponding output quantity.

Specifically,
o} =w,(0,0,a,,,b,.) o> i=l, ..., N
93 £5

s s i =1, ..., N
qlgj W“(O 0,a,;/bs )% flfj i3
wW2(0,0,a ’bjj) (3-15)
AGE B
JETNAL P
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’ (a..,bii) and (ai

where s - i "bij) are the input

£ify" 9195 ] |
crosscorrelation coefficient between bands i and j. The
corresponding output guantity, the parameters of the band

i autocorrelation function and the parameters of bands i

and j crosscorrelation function, respectively.

Evaluating Ws(r,n,a,b) for all values of 1 and n can
complete the entire output spatial matrix Bg' The Bayes
dlassifier, however, is not a spatial classifier but} rather,
is a spectral one and, as a result, the knowledge of an
NxN spectral covariance matrix is sufficient for classifi-
cation purposes. As it was envisioned at the beginning,
developing a parametric model proviﬁes a significant flex-

ibility in the system analysis. For example, Ws can

selectively supply any entry of the output spatial matrix

desired. Here, WS(T,n,a,b) can complete the output
t=n=0
spectral covariance matrix
{a2+b?) 2
2 o

WS(O,O,a,b) = 4e Q(aro)Q(bro) (3-186)

For example, when the input random process is a two spectral
band data set, the output spectral correlation matrix,

§g ig given in terms of §f as follows:

e emiknt a e e e
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1 s
£5
8. =
=-£ L 1
g =
-
1

(3-17)

I+ is clear that, depending on the particular value of
Ws, the output correlation matrices, and hence, classifica-
tion accuracies will be modified. The variations of WS as a
function of scene correlation and scanner spatial parameters
can be very illuminating. For a Gaussian scanner PSF, Ws
is plotted vs. the sample-to-sample correlation for a fixed
line~to-line correlation. The IFOV is used as a running
parameter, Fig. 3-5 through 3-12. The adjacent sample
correlation coefficient ranges from a neér white noise 0.1
to total correlation of 1 (constant signal amplitude).
The adjacent line correlation coefficient extends from 0.65
to 1. Similar plots are shown for a rectangular PSF, Fig.
3-13 through 3-15. Examination of these results reveals
several important features: (a), Since O.SWé.il, the out-
put channel variances are always smaller than the corres-

ponding input guantity. This is an expected result due to
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the averaging operation of the scanner, (b), for a fixed
sample~to-sample correlation the spectral band variances
at the output increase with decreasing TFOV with an accom-
panying degradation in classification accuracy, (c), for
a fixed IFOV, the channel variances increase with decreas-
ing scene correlation. These observations apply to any
one of the cases with a fixed inter-line correlation.
Consider two cases in which IFOV and sample-to-sample
correlation are fixed, then a higher adjacent line
correlation produces an increase in the output band variance.
The variations of the spectral correlation coefficients
between bands are similarly determined. From (3-17),
depending on the parameters of the correlation model, the
ratio of two characteristic functions can potentially

either increase or decrease the spectral band correlation.

3.3 DNoise in Multispectral Scanner System Modeling

Random noise is the ultimate limiting factor in a data
transmission and processing system. Although the per-
formance of remote sensing systems is affected by many
other parameters, additional noise entering the system at
various stages can have a significant impact on the final
analysis of the data. Hence, no model would be complete
without the identification of the noise sources and deter-
mination of their contribution to the system performance

degradation.




86

There are two broad categories of noise generating
sources: external and internal. External noise is primar-
ily caused by the afmosphere in the form of molecular
absorption and scattering. In the case of the MSS in Landsat
there are two major absorption bands at a wavelength of
about 0.68 um due to the present of oxygen and water vapor
which result in an attenuation of up to 10% or more for a
vertical path from the surface of the earth to‘the platform.
Scattering is the major cause of attenuation of the
reflected energy. It has been experimentally observed that a
combined Rayleigh and Mie scattering can cause up to 40%
transmission loss through the atmosphere at 0.4 pum with a
decreasing effect at higher wavelengths [59]. A designer
has little influence over these natural phenomena and
can only select appropriate windows in the atmospheric
transmission spectrum to minimize absorption and scattering.
In view of this situation consideration of external noise

sources will not be pursued further.

3.3.1 System Noise
The noise generated within the scanner subsystem is
primarily of two types: (a) noise introduced by the sen-
sors in the detection stage of the incoming radiation:
and (b) the quantization noise déveloped“in the A/D con-
version process prior teo transmission to the ground

stations.
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Detectors are the most basic and crucial elements in
a scanner system. Initially, thermal detectors, in which
the impinging radiation heats a sensitive element ard a
temperature~dependent property is monitored, were in wide-
spread use. The advent of high speed scanning mechanisms,
requiring extremely short dwell time on a ground resolu-
tion element, required detectors with much higher sensitivity
than thermal detectors. Photodetectors, where the photon
energy in the incident radiation produces free charge
carriers, are now primarily used in visible and infrared
detection stages and provide time constants of the order of
nanoseconds. Their disadvantage, compared to thermal
detectors, is their limited spectral response and in most
cases they reguire cooling. The currently operational
Landsat-2 employs photomultipliers for the bands 0.5-0.6:m,
0.6-0,7um, 0.7-0.8um, and silicon photodiodes for the range
0.8-1.1ym. TLandsat-C will carry a thermal band, 10.4-12.6um
using two mercury-cadmium-telluride detectors [60].
The noise generated by a detector is a combination of photon
and photomission noise. Let e<l be the photocathode effi-
ciency of a photomultiplier with a gain Gn, the sampling
time T, the charge on an electron q‘a==l.6x10'_19

the signal current out of the detector, is. The signal-

to-noise power ratio at the output is given by [61].

SNR = Is (G-1)T/q (+e)a™ (3-18)

coulomb and o




The sampling time per detector, T, for the Landsat MSS is
about 0.4 us. Assuming some typical values for other

parameters:

Is = 1 mA
G =3 -
n =10

the SNR at the detectors output is approximately
SNR ~ 42 dB (3-19)

The next noise source is the A/D conversion process
where analog signals are sampled and gquantized to 2B levels,
each B bits long. The performance of the guantizer can be,
evaluated in two ways. It is clear that the signal pre-
sented to the digitizer is already corrupted by detector
noise, so the signal plus noise is actually being quantized
and assigned to one of the 2B levels. Therefore, the
presence of noise makes this assignment subject to a finite
probability of error thus affecting the performance measure.
The second method simply involves the specification of
noise power introduced by a uniform guantizer and is given

by [62]

o = a%/12 (3-20)

where A i1s the quantization step size. Defining a balanced

system in which the detector and guantization noise are

[P R T
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equal, the combined SNR is therefore
SNR ~ 39 dB (3-21)

The data generated by Landsat is guantized to one of
64 levels {6 bit per pixel) with A=l. 1In terms of the
first performance measure, the assumpition of equality of
gquantization and detector noise contribution to total

system noise, implies that at the quantizer input

b= 2= V12 | (3-22)
n

where ¢ is the ratio of step siZe to rms noise. For this
particular value of ¢, the probability of the 6th bit being
incorrectly assigned is 0.12 and essentially zero for 6th
and/or the 5th bit [63,61].

Random noise in the context of multispectral remotely
sensed data takes on a particular rxole. In the more clas-
sical applications of pattern reCOgnition'such as an M-ary
communication channel employing one of M equally likely
and known signals, noise is identified as the primary
limiting factor in detecting the transmitted message with
zero probability of error. The distinction emerges at this
point that multispectral data is itself a realization of a
stochastic process and as such, there is an inherent finite
probability of errcr, regardless of noise, associated with
the testing of hypothesis. In the analysis of the data,
the noise and signal statistics will be merged and represent
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the population statistics and if the additive noise has
Gaussian properties, the populations will still be normally
distributed. In fact, it is plausible for some other
hypothetical class to have identical statistics without
noise as a part of its own properties. Therefore, a 'noisy'
class can pétentially be as separable as another 'noise-fred
population.

The additive random noise has two major impacts on the
statistics of multispectral data. The obvious one is the
broadening of the distributions, resulting in more inter-
class overlap hence a higher error rate. The second effect
is on the data spatial correlation where the adjacent pixél
correlation decreases with increasing noise power. Consider
two univariate populations, Fig. 3-16, with equal variances
where the first class is corrupted by random additive
Gaussian noise. After transmission through the scanner,

according to the properties of WS, w, emerges with a

1

smaller variance than ., with corresponding classification

2

accuracies, and P . Consider two other populations,

P
Clml Clmz
wi and mé with identical variances such that

var{m;} = Var{wé} = Var{ml} = Var{mz} (3-23)

where neithér'mi—or m; are affected by random noise. There-

fore,
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L)
pX|m1.>pX|ml (3.24)

and similarly for o - At the scanner output, the clas-

Ylml
sification accuracies are P and P '.  From the spatial :
c[ml c]m2 i
correlation properties of mi and mé expressed in (3-24) 3
and WS it is clear that |
P > P ' (3-25
clu;” Telug )

Does this mean the noisier the data the better? In terms of
intrinsic classifiability of a population maybe but the
guestion is what is beihg classified. Random noise can
alter a statistics to the point that it will no longer
represent the specific class under consideration and in
fact in a multipopulation environment, the modified : i
statistics could approach those of another existing popu—
lation and thus increase the overall error rate not to
mention the esthetic degradation of the image caused . o
by it.

Another topic to be considered and defined is the term

signal-to-noise ratio. It is frequently desirable to

s

examine the performance of a system in a variable noise

content environment. When the subject is the actual data,

s s 2y

it should be noted that one is already dealing with a E

|
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noisy signal and, therefore, any additive noise will be in
addition to the existing guantity. Let R be the noisy

data, S the signal and N the noise, then
R(x,y) = 8(x,y) + N{x,Y) (3-26)

The artificial noise N' is added to R to produce R'

R' (x,¥) = R(x,y) + N'(x,y) (3-27)
. 2 2 2 2
The (SNR)' = oR/o,, and SNR = os/c,, are related by
N N
-
N
{SNR) ' = — + SNR ' (3-28)
o

If the noise content of the data is considerably smaller
than the added noise, then (SNR)' ~ SNR.

The way to determine the noise power to be added to
the multispectral data for simulation purposes is open to
discussion. Consider a frame of data, R(x,y), containing
M populations. A particular SNR can be specified and
from that the noise variance derived. The signal variance,
however, is a pooled average of all the class variances and
for that matter the given SNR does not hold for any one
of the popﬁlations. Another alternative considered in [64)
is to measure noise solely on the basis of its variance.

The definition adopted here is to basé the variance
of the signai on the entire picture frame and in effect

lump the individual class variances that may be present in




the particular data set. The reasoning behind this approach
is that long before any knowledge is available about the
population structure of a data set, random noise is already
added to the signal; therefore, any class-dependent defini-
tions of SNR would be unrealistic. These considerations are
primarily applicable to actual data sets. In a highly con-
trolled simulation environment, however, some or all of the
above restrictions can be relaxed. For example, noise can
be added to each class in different gquantities in order to
observe its effects on the classifiability of one particular
population.

The next question to be resolved is the location, in
the MSS spatial model, at which this definition of SNR
applies. In Fig. 3-1 additive noise could enter both at
the input and the output of the scanner system. While this
is a realistic model, from a practical point of view the
input noise does not limit the system performance so much
due to the following reasons. First is the fact that other
noise sources involved; i.e., quantization and detector-
noise are generally more doﬁinant than any other disturbance
arising from the atmosphere during normal operating condi-
tions. Second, and more importantly, is the MSS résponse to
a white noise random process. It has been pointed out that
the variance of the output process is proportional ﬁo the |
input adjacent pixel correlation. The variation of_WS VS. P

indicates that when the input scene displays little spatial
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correlation, the varaiance of the output process is a very
small fraction of the corresponding input quantity. Let
f(x,y),Nf(x,y), £'(x,v} and Nf'(x,y) be the input random
process, input additive white noise, the output random
process and the noise component of the output signal i

respectively; then

f'{x,y) = £(x,y)*h(x,vy) (3-29)

Nf'(x,y) = Nf(x,y)*h(x,y) (3-30)

P S AT TTTY PR I

Define (SNR)f = Var{f(x,y)}/Var{Nf(x,y)} and
(SNR)f' = Var{f'(x:y)}/Var{Nf'(x:Y)}. The following in- |

equalities hold

Var{f'(x,y)} < vVar{f{x,y)1} {3~31) o
o]
LA

Var{N' (x,y)} << Varing(x,y)} : {3-32) i

hence

; ;
' - L
(SNR) ;' >> (SNR) . (3-33) }

It then follows that the noise component of the output pro- !

cess (prior to guantization and detector noise) is guite

negligiblé and for all practical purpoSes'can be neglected.
Random noise generated in the detection stage of the

incoming signal is, therefore, the major disturbance factor.

L
3
A
e
o
L
b
k

Having narrowed the noise contribution to one source, the

logical definition of SNR would be the ratio of MSS output
variance (negligible noise content) to that of gquantization

and detector noise (Ngg); i.e.,
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(8NR) , = Var{f' (x,y)}/Var{N_(x,y)} (3-34)

Note that for a fixed noise power, (SNR)O is always smaller

than (SNR)i, the input signal-to-noise ratio

(SNR}, = Var{f(x:Y)}/Var{qu(x,y)} (3-35)
Since
Var{f' (x,y)} = W Var{f(x,y)} < Var{f(x,y}} (3~36)
hence
(SNR) | = WS(SNR)i (3-37) ,
|
. i c
mem§u£%1~ﬁff§%1ﬂr
o B00F &7
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CHAPTER 4
Experimental Evaluation of the Parametric

Multiclass Bayes Error Estimator

An experimental investigation was carried out to con-
firm the proper operation of the CSP error estimation
algorithm described in Chapter 2. In order to satisfactor-
ily accomplish the task, as much peripheral uncertainty
as possible must be eliminated so that any deviation from
the desired result can be traced directly to the methodology
or the computer codes. This requirement eliminates the use
of real data which is likely to have characteristics that
are highly dependent on outside and generally uncontroll-
able elements. A more satisfactory approach is the
generation of a completely synthetic data base with known
and prescribed properties. After the validation process
has been successfully completed, actual Landsat data
will be employed and the probability of correct classifi-
cafion for.the various popuiations within that set

estimated by a count estimator and the CSP estimation

technique and the results compared.
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4,1 Description of the Data Base

The generation of a synthetic data base requires con-~
trol of two characteristics; spectral and spatial. Stage I
simulates M populations with N features each of which has
a specified multivariate normal density Ffunction.
Let p and I be the desired mean and covariance matrix.
The following linear transformation on a random vector

XwN(0,I) produces ¥YvN{(u,I)
T=aAX+

where A is the square-root matrix associated with I, i.e.,

a’a =3

the number of samples per class is generally decided by the
examination of histograms as a check for normality of the
statistics. No attempt was made to incorporate the
geometrical shape as a factor in generating the random
field and any specified number of lines and columns in a
rectangular array of points can be produced. Statistically,
this data set represents an 'ideal' data set except for

the lack of any serial correlation in Y caused by the same
property in X. The almost zero pixel-to~pixel correlation
is immaterial due to the fact that the Bayes spectral class-
ifier and the CSP error estimators do not utilize any spa-
tial correlation information available for the data. A

schematic diagram of the entire data base simulation and

.
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model evaluation is shown in Fig. 4-1l.

4.2 (8P Error Estimation Model: Validation and Checkout

With the probability of correct classification of the
various populations in a data set as the prime performance
index, the M-class, N-feature Bayes error estimator
developed in Chapter 2 comprises the basic tool by which the
MSS system model is analyzed. A comprehensive set of test
procedures is required to verify the proper operation of
this algqfithm and to observe its response to variable
operating states.

The merits of a simulated data base were discussed in
sec. 4.1. The question raised now is how to select the
features associated with such a base. In addressing this
question, the following should be kept in mind. The main
puréose l.ere is the wvalidation of the error estimation model
independently'of other system components. Therefore, the
test populations need not and, indeed, cannot be 'representa-
tive' of the classes found in the multispectral data. Hence,
any conclusion drawn from the results serves only to
evaluate the performance of the algorithm. In generating
the simulated data, however, certain general guidelines
were followed.

1. The minimun number of populations should be 3

and the minimum number of dimensions preferably
be the same.
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2. The structure of the class statistics should lend
itself to logical and simple manipulation of its
parameters.

3. A separability measure should be defined that would
reflect the changes in population parameters.

As an initial condition, three classes arranged in a
simplex are considered, Fig. 4-2. This arrangement keeps
the computation time low thus allowing the examination of
the algorithm's performance for fine sampling grids, allows
systematic parameter variation by assigning the mean vectors
to different coordinates along their respective feature axis
and maintains a geometrical insight as the population
statistical structure is varied. Two basic categories are
considered: (a) constant covariance matrices, variable
mean vectors; and (b) constant mean vectors, variable
covariance matrices. Because of the multiplicity of
parameters describing the class statistics, it would be
desirable to have a separability criterion that would lump
all of the variables together and generate a single number
after each change.

There are a number of separability measares to choose
from. Bhattacharyya distance (B-distance) and divergence
are the most notable., The former criterion will be adopted
here mainly because it provides an upper bound for the error
probability which can be compared with other error estimators
examined here. ILet the two populations o and‘m be

1 2

distributed according to N(El%f and N(u,,Z Then J, the

2)'
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B-distance, and Pe’ the resulting upper bound on the proba-
bility of error, are given by [4l].

- 1.
T oz +n, -1 1 s

1 +2,) |
T=F ) (S (yrpy)tgen

1
]% (4-3)

1.
-2
[z, 1% 1z,

Py < /Plo)Play) e =cC (4-4)
The Chernoff bound, CB, in (4-4) applies to a binary set but
it can be generalized by a pairwise summation. The result-
ing bound, however, is not adequately tight.

The only practical reference against which the results
of the CSP error estimation algorithm can be compared is
the Monte-Carlo (MC) type simulation of the population
statistics using pseudorandom numbers, assignment of
samples to their respective categories by a Bayes classifier
and finally a count estimator to provide the classification
accuracy. A criterion however, needs to be defined if the
results of the comparison are to be meaningful. One such
measure is the equality of the total number of samples used

in the estimation process; i.e.,
N
number of samples|MC = (n+1) (4-5)

where the right side of (4-5) is the total number of cells

in the sampled space of Q.
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4.2.1 PFixed Mean, Variable Scatter

In a feature space of multivariate nature the multi-
plicity of dimensions generates a vast number of possible
combinations of parameters to manipulate. Even for the
moderate size case proposed here there are 3 variances,
9 covariances and 3 mean values capable of taking on a
continuum of an infinite number of states. Therefore, a
certain degree of arbitrariness miist be emploved in select-
ing the initial values and their subsequent variations.
The approach selected here is the adoption of one variable
statistic against a fixed background in the form of two
static populations. The fixed statistic is selected after
examination of the correlation matrices obtained for dif-
ferent types of ground cover, [65]. An attempt was made
to choose correlation structures that would approximately
represent two typical cases, albeit crudely. As pointed
out before, whether this is true or not has little bearing
on the results of this wvalidation procedure. This choice
simply displays an attempt to be as realistic as possible.
Assuming that the set of three spectral bandé is composed
of two in the visible and one in the near-infrared, the

fixed correlation matrices are given by,

e i e L

T
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(4-6)
1 0.94 0.15

1
[

0.05

The class with the variable scatter is specified by a
choice of 4 different across-band correlation values rang-
ing from a low of 0.15, medium of 0.45, medium high of 0.75
and a high of 0.95. The permutation of these four numbers
taken 3 at a time generates 24 different cases out of
which 13 result in invalid non-positive definite matrices.
For each remaining case, an average B—disﬁapce J is com-
puted and the 11 permissible combinations are tabulated in
the order of increasing separability, Table 4-1. J% is the
value of J normalized to the highest J in the table

and sij is the channel i and j correlation coefficient.

The means are fixed at 0.7 ¢ on each axis with o=1. The
grid size for the CSP error estimation technique ranged from
4 to 14 cells per axis with an increment of 1 which is
equivalent to 43 to 143 samples for the corresponding MC
estimator. For each of the 1l cases outlined in Table 4-1,

there exists 3 plots. The first two show the variation of

the CSP (MC) error estimator vs. grid (sample) size and the
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third plot shows the variance of the error estimate for the
two aforementioned techniques. Each plot is accompanied by
a table of values, Throughout sec. 4.2.1, ‘'case i' corre-
sponds to the particuiar separability of rank i (from the
top) of Table 4-1 and NB% is the number of boundary cells
as a percentage of the inside cells, and GS,.the grid size
is the number of cells per axis.
The results of the variable scatter geometry provide .

the basic understanding of the potentials and operating

principles of this error estimation technigque and exhibit

many properties universal to this algorithm. The first and
probably the most important item to be explored is the

variation and dependence of the estimate on the grid size.

This relationship is particularly crucial due to the fact

that although there is a theoretical convergence estab-

lished, the rate of convergence determines the feasibility

of implementation of this technique as a viable alternative

to other data dependent algorithms. This is especially
true since the number of cells within the grid bears an
exponantial relationship with the dimensionality of the

data. Examination of the CSP error estimator vs. grid size

plots quickly disposes of this concern. The pattern }
exhibited fhroughout is one of a rapid climb to a steady
state value and oscillations of small magnitude around it.
. The rapid convergeﬁcé is besﬁ'démonstréted thCase'G.

Where the estimate of the overall classification accuracy

bak
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at the smallest grid size was off 7.1% from its f£inal value,
it jumped 6.2% by incrementing the grid size by one step
to 5 cells per axis and from then on gained only 0.9% to
level off at 72.9% for 14 cells per axis. In terms of the
total number of cells involved, the initial rise of 6.2%
was gained by an increase of 61 cells while the addition of
2619 more cells improved the estimate by only 0.9%. Similar
behavior is observed in Case 2 where the one step rise of
7.8% was accompanied by a 10 step rise of 1.1%. These ef-
fects are evident in all 11 cases with varying degrees
of intensity. On the average the initial rise of 5.14%
was followed by a 1.78% increase toward the final value.
This property is remarkable in view of the performence
of various sampling techniques. For a 3 dimensional grid
with 5 cells per axis, there are a total of 125 points
involved which provide an estimate of aforementioned
guality. The performance of the MC technique with that
small a sample size is totally inadequate. 1In fact, gener-
ating the required Gaussian data base with 125 samples is
itself very difficult. Fig. 4-3 demonstrates the devia-
tion from normality of the statistics for small sample size
while for comparison purposes, a corresponding histogram
using 2744 (143) samples is shown in Fig. 4-4. It is,
therefore, clear that small sample behavior of the CSP
technique is very superior to small sample size behavior

of the Monte Carlo technigque. It can be argued, however,
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TABLE 4- 1 TEST CASES ARRANGED BY INCREASING SFPERABILITY.
VARIABLE SCATTER.

S12 513 523 J

2.75 0.15 0.45 0.50
.45 .15 8.75 .52
8.75 .45 .15 8.54
8.15 ®.45 9.75 .58
9.45 9.75 .15 .59
.15 .75 8.45 9.60
9.45 .15 .95 1.48
8.95 9,15 9.45 1.52
B.45 .95 .15 1.58
.15 .95 8,45 1.58
@.95 0.45 8.15 1.72

Ta c
29 39.0
30 40.6
31 41.6
34 43.9
34 44.3
35 44.7
86 69.4
g8 69.5
91 .6
92 79.7
160 72.1
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TABLE 4~ 2 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND KC

A

Felu

1
6 o
4 S§4.9 71.9
5 64.8 68.5
6 63.6 69.9
7 65.6 69.4
8 66.3 64.3
9 68.2 68.4
10 69.3 66.6
11 68.4 69.1
12 68.8 67.6
13 68.8 69.9
14 68.6 69.3

ESTIMATION TECHNIQUES. CASE

csp

69.6
72.2
71.8
71.4
69.4
70.3
71.7
72.8
73.7
74.2
74.3

75.0
74.4
75.9
73.8
73.6

. 78.7

74.4
73.8
76.9
74.2
74.1

P

c

Csp

70.9
73.3
73.1
76.3
76.5
75.9
7.7
76.8
76.6
76.6
75.9

TABLE 4~ 3 PERCERT CSP AND MC STANDARD DEVIATIONS

mﬂ

(oI e B N o B ¥ QR ¥

16

12
13
14

Csp

4.3
2.6
3.0
2.6
2.2
1.9
1.7
1.5
1.4
1.3
1.2

MC

5.7
4.1

3.1

2.5
2.0
1.7
1.4
1.3
1.1
1.0
6.9

|ug

MC

81.3
81.0
78.1
76.9
76.2
75.9
75.3
75.6
76.4
77.4
76.7

Liv P

Csp

64.8
7e.1
69.3
71.1
76.8
71.5
72.9
72.7
73.0
73.2
72.9

ACHIEVED FOR CLASS 1.

41.5
41.5
34.2
3.3
30.0
29.8

76.0
74.7
74.3
73.4
71.3
73.7
72.1
72.9
73.6
73.8
73.4
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TABLE 4~ 4 PERCENT CLASSIFICATION ACCIIRA(ZIIES OBTAINED BY CSF AND MC

ESTIMATION TECHNIQUES. CASE

Fel vy

csp MC

——

48.7 68.8
67.2 67.8
61.1 65.3
65.3 66.7
64.7 63.4
§5.1 65.9
64.3 61.8
63.2 66.4
64.1 64.7
64.4 66.0
64.5 63.5

Ew_ooqo)m.n.lma

D o e )
B W N

TABLE 4~ 5 PERCENT CSP AND HC STANDARD DEVIATIONS

O W N th b

10

12

R

Pc:lw2 f’c!m?‘ Fe
Csp MO CSP MO CSP MC
68.8 75.6 71.4 so.1 63.0 77.€
71.7 71.9 73.6 88.2 70.8 73.3
78.9 73.5 75.8 81.6 §9.3 73.5
71.4 74,1 77.7 78.1 71.5 72.9
70.3 72.5 78.4 78.1 71.2 71.3
78.6 176.0 78.1 77.9 71.3 73.0
72.1 74.9 78.5 77.7 71.7 7.1
72.0 73.8 78.4 77.8 7.2 72.7
73.1 75.1 78.3 178.0 71.8 72.6
73.3 73.5 78.0 7.3 71.9 72.9
73.4 74.1 77.8 78.5 71.9 72.1

ACHIEVED FOR CLASS 1.
csp MC 3
3.3 6.0 74.9
2.5 4.3 49.5
2.2 3.3 41.8
1.5 2.6 30.8
1.2 2.1 31.7
1.2 1.8 25.1
1.4 1.5 26.0
1.4 1.3 21.2
i1 1.1. 21.2
8.7 1.0 18.2
0.8 0.9 18.2
oRiGID PACE o
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bk iz ‘,,v tex
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VARIABLE SCATTER. CASE 2
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TABLE 4~ 6 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE 3

A

PClml Pclw2 Pc]ug P,

G CsP  MC CSP MC CSP MC CSP MC

4 62.4 73.4 65.7 73.4 72.6 82.8 66.9 76.6
5 86.8 77.7 67.5 71.9 73.7 77.7 63.4 75.8
6 68.1 78.1 67.6 70.4 73.9 78.1 69.9 75.5
7 71.5 80.9 87.8 71.6 73.8 71.2 71.0 76.5
§ 73.3 73.6 67.4 76.0 75.7 77.3 72.1 73.6
9 76.8 75.9 67.8 74.5 75.5 75.6 73.1 75.3
16 79.4 74.0 1 69.8 70.4 76.8 75.2 75.1 73.2
11 78.6 75.2 70.2 71.5 76.3 76.2 75.8 74.3
12 78.3 75.0 71.1 73.8 76.3 76.9 75.2 75.2
13 78.8 77.1 71,7 71.9 76.7 77.1 75.8 75.4
14 78.0  75.8 71.7 70.9 76.3 75.9 75.3 74.2

TABLE 4- 7 PERCENT CSP AND HC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

& csp e N,
4 4.0 5.2 91.4
5 3.4 3.7 64.1
6 3.0 2.8 58.5
7 2.6 2.2 46.4
8 2.2 1.8 43.7
9 1.4 1.5 35.4
- 10 1.2 1.3 34.4
11 .1 L1 28.7
12 1.0 1.0 27.9
13 0.9 0.9 24.0
14 0.8 e.s 23.8

®
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TABLE 4- 8 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC

ESTIMATION TECHNIQUES. CASE

clw

1
MC

g .

58.3 ©7.2
63.8 66.9
62.4 66.3
66.1 66.9
65.3 65.5
64.8 65.3
64.2 62.7
65.6 65.6
67.2 65.5
66.6 67.1
66.1 64.4

tOOOﬂmtﬂ-himO

P A T
AW ON O~ ®

A

Felw
2

csp

63.4
72.3
78.4
71.1
69.3
78.4
7.6
71.4
72.5
72.8
73.3

Mc
71.9
71.9
73.9
73.5
71.9
75.3
72.4
72.4
74.5
72.8
73.2

[

Folu
3

csp

73.9
74.5
75.5
77.9
78.6
73.0
78.9
79.2
79.7
79.7
79.1

MC

29,
81.
81
79.
78.
78.
77.
78.
78.
8a.
79.

MO PO SR DA S T R S S

s

CsP

65.5
70.2
69.4
7L.7
7i.1
71.1
71.6
2.1
73.1
72.9
72.8

76.6
73.3

72.9
72,0
73.1
71.e
72.1
72.9
73.5
72.2

TABLE 4- 9 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1,

CSP MC
2.5 5.9
1.7 4.2
1.9 3.2
1.2 2.5
1.1 2.1
a.7 1.8
0.6 1.5
0.5 1.3
0.6 1.1
0.5 1.9
8.4 9.9

NB%

48.6

32.0
27.7
23.4
23.3
19.0
18.0
15.6
15.6

13.9

13.3
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TABLE 4-~19 PERCENT CLASSIFICATION ACCURAgIES OBTAINED BY CSP AND XC

78.3
71.7
71.9

wwumma'mm

72.6
71.9
72.4
71.7
73.3
73.0

e e o
HWN -

TABLE 4-11 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVEL FOR CLASS 1.

ESTIMATION TECHNIQUES. CASE

mooqmm.n‘mﬂ

L e
AN - ®

R

P

C

CSP
66.7
68.9
67.1
67.3
67.0
68.1
68.5
69.3
71.4
71.7
71.3

Imz
MC

[

73.4
71.1
73.5
70.7
72.3
74.3
790.6
71.2
73.7
71.4
79.2

csp

3.7
3.2
2.6
2.2
1.6
1.4
1.3
i.4
1.3
1.0
1.0

clug

csp MC

74,2 85.9
74.6 0.2
73.5 81.1
75.4 76.5
75.5 78.3
76.8 77.2
77.6 76.4
77.8 77.1
78.1 77.2
77.6 78.8
77.1 76.7

MC

5.5
4.0
3.6
2.4
2.9
1.6
1.4
1.2
1.1
8.9
9.8

127

v}

Ccsp

67.
71,
76.
71.
71.

72.
73,
73.
74,

~]
W

54.5
43.9
37.9
30.8
28.3
24.5
22.6
19.7
18.8
17.1
16.4

R - N

2
3

o

MC

75.0
73.6
76.7
73.6
73.6
74.9
72.1
73.6
74.3
735.1
73.3
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TABLE 4-12 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND KC
ESTIMATION TECHNIQUES. CASE 6

c[ml Fclm2 Pc[w3 o
G, CSP NS CSP MC CsP MC Csp  MC
4 59.9 7.2 64.3 71.9 73.2 89.1 65.8 76.0
5 67.6 64.5 71.5 71.1 77.1 80.2 72.1 71.9
6 65.6 69.4 69.9 73.5 75.5 82.1 70.3 75.0
7 66.5 67.9 70.6 72.5 77.6 79.3 71.6 73.3
S 65.6 64.3 68.4 72.3 77.3 79.5 70.4 77.9
9 65.9 65.6 69.4 75.3 77.4 78.3 79.9 73.1
10 66.5 65.3 78.2 71.1 79.0 77.9 71.9 71.5
11 67.8 67.9 70.5 71.9 79.7 78.2 72.7 72.7
12 66.7 67.4 72,2 73.7 79.7 78.8 72.8 73.3
13 66.6 70.2 72.0 72.0 79.1 $0.6 72.5 74.3
14 67.8 67.9 72.6 71.2 78.3 78.9 72.9 72.7

TARLE 4-13 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

Csp MC N_%

5 = .
4 2.5 5.9 41.2
5 2.1 4.2 29.2
6 1.9 3.2 31.8
7 1.5 2.5 23.5
8 1.4 2.1 23.0
9 1.0 1.7 18.1
10 1.2 1.5 19.3
11 2.8 1.3 ’ 16.3
12 0.8 1.1 | 15.5
i3 .7 1.0 13.6
14 0.6 6.9 : 13.1
| ORIGINAG ?P‘GEYE%
-'0F'EOOB»Q“1AL

s al
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TABLE 4-14 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE

" A

clw c|m2 clm3 e
6, P M CSP  MC CSP MC e Mo -
4 87.1 98.4 69.6 81.3 77.1 §7.5 77.9 89.1 "
5 95.8 99.9 72.7 71.9 81.4 79.3 $3.3 3.7
6 .95.5 98.5 73.1 73.5 77.7 80.6 82.1 84.2
7 97.8 98.5 73.3 75.3 . 77.4 79.3 82.8 84.4
8 97.7 98.3 71.2 74.2 78.6 77.3 §2.5 83.3
S 98.8 97.7 72.4 77.0 811 79.4 84.1 84.7
10 98.6 98.6 73.6 74.6 81.2 77.5 84.4 83.6
11 99.0 98.2 73,7 74.4 82.2 78.5 84.9 83.7
12 98.8 98.3 75.6 75.5 80.9 79.7 85.1 84.5
13 98.9 98.4 75.1 74.9 . 81.8 79.6  85.0 84.3
14 98,9 ©8.3 75.2 74.7 $8.3 79.3 $4.8 84.1

TABLE 4~15 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

4 3.3 1.2 27.0
5 2.2 6.9 23.5
6 1.2 8.7 23.0
7 1.4 8.5 . 19.1 o
8 1.4 0.4 18.5 |
9 8.9 2.4 16.7

19 8.9 0.3 15.9

11 0.8 8.3 14,7

iz 9.5 0.2 13.9

13 0.5 0.2 13.2

L
5

9.5 8.2 ' 12.5

e e s mre
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TABLE 4-16 PERCENT CLASSIFICATION ACCURAgIES OBTAINED BY CSP AND MC

ESTIMATION TECHNIQUES. CASE

Pclm Felu

1 2
GS CsP MC csp MC
4 86.8 982.2 69.6 81.3
S 95.6 97.5 74.1 87.2
6 94.2 8.0 73.4 76.0
7 97.5 97.5 74.4 76.9
g8 97.4 96.3 72.5 77.1
9 97.7 ©7.3 73.3 78.1
18 97.8 98.1 75.9 76.7
11 98.4 97.5 75.7 76.2
12 98,3 97.5 76.6 78.4
13 98.1 86.8 76.6 76.6
14 98.3 97.0 76.9 77.1

TABLE 4-17 PERCENT CSP AND MC STANDARD DEVIATIONS

GS “Efi
4 2.3
5 2.4
5] 1.8
7 1.5
8 1.2
g 1.0
10 0.8
1 2.8
i2 9.9
iz 2.5
14 8.3

A

Pclm
3
Csp MC
68.5 89.1!
75.1 79.7
74.6 79.6
79.2 76.9
78.8 73.6
8.0 77.1
80.5 74.8
78.4 76.5
7.7 18.2
7€.3 78.7
78.1 715.9

0 8 @ @
W W W A

v

Ccsp

74.7
81.8
80.7
83.7
82.9
83.7
84.4
84.2
84.2
84.3
84.4

41.8
24.8
28.6
22.2
22.4
18.4
19.1
15.9
19.0
14.9
i7.5

139

MC

87.5
81.0
84.5
83.7
82.3
84.5
8§3.2
83.4
84.7
84.0
83.3

ACHIEVED FOR CLASS 1.
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TABLE 4-18 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
. ESTIMATION TECHNIQUES. CASE 9

~

Pclml Pclmz Pc]w3 Fo
Gs Csp MC CsPp MC csp MC CSP MC
4 87.4 99.9 69.4 73.4 76.4 G92.2 _';;:E 88.5
5 96.1 99.2 74.0 71.9 78.7 81.8 82.9 84.3
6 85.6 99.5 69.4 74.8 79,9 83.2 g1.6 85.5
7 98.3 8§.4 71.7 74.1 80.4 82.4 83.5 85.3
& 98.2 99.6 70.6 73.6 81.3 82.0 83.4 85.1
9 99.8 98.8 72.5 77.0 82.4 81.9 84,7 85.9
18 98,9 ©9.2 72.6 73.3 83.8 78.3 85.1 83.8
11 89.3 99.2 73.3 73.5 83.1 8Il.3 85.2 84.6
12 99.2 99.2 74.1 75.7 82.4 82.6 85.2 85.8
13 99.4 99.0 74.5 73.7 82.5 83.3 85.5 85.3
14 99,3 98.8 74.7 74.5 82.7 8l1.1 85.6 84.8

TABLE 4-{9 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

G CSP MC Np%
4 2.5 1.0 aBI.T
5 2.3 9.7 21.1
6 1.9 0.6 ' 24.0
7 1.5 0.4 18,2
8 1.4 8.4 18.2
9 0.9 8.3 19.8
. 10 0.9 0.3 15.7
11 0.6 0.2 16.5
12 0.8 0.2 13.8
13 0.5 0.2 14.3

14 0.4 e.2 12.4
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TABLE 4-20 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC

Ewmqmmnlmﬂ

. e e e
HBoWON -

TABLE 4-21 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1,

A~

ESTIMATION TECHNIQUES. CASE 10

Pclm
1

Csp
§7.0
88.3
95.7
97.7
98.0
99.1
98.9
99.0
99.9

99.2

99.3

MC
89,9
98.3
89.5
99.9
99.4
98.7
98,9
99.2
98.5
98.7
98.7

— e
BN

.
'—QLDOO\']O)UIAL]G]

clm2

CsP
BI.6
73.7
73.3
74.6
72.3
72.5
74.0
74.7
75.1
74.7
74.6

MC
750

71.1

75.5
72.2
71.7
75.9
73.7
73.2
75.1
72.6
73.9

clm3

csp MC

80.9
80.7
81.7
82.8
81.9
21.8
80.8
$1.3
81.8
82.4

csp MC
2.5 1.9
2.3 8.7
1.8 8.6
1.3 9.4
1.4 8.4
1.8 a.3
2.8 9.3
9.6 9.2
9.6 e.z
8.6 a.2
0.6 0.2

81.
83.
go.
8o,
81.
81.
79.
82.
83.
81.

9
2
2

W h O O N ®

®

P
c

Csp

MC

76.7 88.5

82.6
83.2
84.7
84.4
84.5
84.9
84.9
85.1
85.2
85.4

—33.3
20.0
22.3
18.2
18.9 .
15.0
15.5
13.2
13.3
11.6
11.5

83.5
86.1
84.2
84.0
85.2
84.5
84.1
85.3
84.9
84.7

P T T

N
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TABLE 4-22 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE 11

Pblwl Pélmz Pc[ma Pc
§§‘ csp _EE&_ _Eggi _fgi_ csp _Egz_ csp MC
4 87.5 98.4 69.4 79.7 78.5 92.2 78.5 EETT
5 98.3 988.2 73.7 74.4 86.9 83.5 83.6 85.7
6 95.9 99.5 71.6 76.0 89.5 85.2 82.7 86.9
- 7 98.7 99.9 73.6 74.7 81.5 82.4 84.4 85.7
8 98.6 99.8 72.2 73.8 82.7 83.5 84.5 85.7
g 99.4 99,7 72.4 77.9 83.3 84.2 85.0 87.3
1@ €9.4 99.9 73.6 75.1 84.5 82.9 85.8 86.0
11 99.6 5.5 74.3 4.1 84.2 82.5 86.! 85.4
12 99.6 99.8 75.6 76.4 84.8 84.7 86.4 87.9
13 99.7 99.7 75.7 75.2 83.9 84.9 §6.5 86.8
14 99.7 99.7 75.9 75.1 83.8 83.4 86.5 86.1

TABLE 4"23 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

GS Csp MC Nﬁ%
4 2.3 8.7 25.09
S 2.3 e.5 20.9
6 1.8 9.4 18.8
7 1.6 @.3 16.1
g 1.4 .2 15.6
g 1.2 a.2 14.8
18 1.3 9.2 16.8
11 8.9 6.1 15.2
12 ' 8.7 6.1 16.6
i3 8.3 8.1 1S.1
14 8.7 a.1 15.3
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TABLE 4-24 COMPARISON OF CSP AND MC PERCENT CLASSIFICATION ACCURACY.
VARIABLE SCATTER.

»

Polw
1
Case CSP MC

I

0 W gDt bW

—
©

1t

68.6
64.5
78.0
£6.1
73.e
67.8
898.8
98.3
92.3
89.3
88.7

62.3
63.6
73.8
64.4
73.9
67.9
98.3
97.0
98.8
88.7
99.7

~

Pc|m
2

Csp
74.3

73.4
71.7
73.3
71,7
72.6
75.2
76.9

74.6
75.9

MC
4.1

74.1
70.9
73.2
79.2
71.2

4.7

77.1
74.5
73.9
75.1

~

P

¢y

CSP MC

75.9
77.8
76.3
79.1
771
78.3
80.3
78.1
82.7
82.4
83.8

76.7
78.5
75.9
79.1
76.7
78.9
79.3
75.9
81.1
g81.6
83.4

v Y

CsP
72.8

71.9
75.3
72.8
73.8
72.9
84.8
84.4
85.6
85.4
86.5

84,7
86.1

- ,‘.g._,._.-.mm_d
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that in any I'C simulation process such small sample sizes
are not used anyway, but it is precisely the reasons out-
lined above that makes employment of a large data base
mandatory. This requirement would not be overly restrictive
with unlimited computation time. Since this is generally
not the case, adequate performance with small sample
sizes becomes a significant property. The sufficiency
of small grid sizes for adequate performance was expected
considering the structure of the sampling grid. In sec. 2.5
this matter was discussed and it was pointed out that the
grid is a partitioned hypercube with each edge 2 v/n o,
long. Therefore, small values of n are capable of sampling
substantial portions of the feature space.

The next systematic feature in the variation of the
CSP estimator is a periodic oscillations for each increment
of the grid size. This phenomenaon, like most other proper-
ties of this estimator, is the product of the geometry of
the problem. As described before, the rule governing the
assignment of sampling cells to a particular domain can
potentially exclude (include) the entire cell even though
only a portion of it lies outside (inside). The grid, being
a dynamic structure, interacts with the fixed boundaries to

produce the oscillatory character of the estimate the manner

and intensity of which depends on the shape of the boundaries

involved. Among all the cells that are located around the

contours of ri there are always some =xcluded from the
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inside domain but the centers of which are close enough to
the boundary such that one increment in the grid size would
move them to the inside. This outside-to-inside shift would
turn an underestimating grid to an overestimating one.

The size of this step depends on the number of cells capable
of making this shift. It is not hard to see thatwith a
grid composed of elements with linear features, the worst
case occurs when the boundaries themselves are linearly

structured. In fact, when the feature space is divided

by a set of hyperplanes, this periodic cycle can take on

substantial amplitude and hence provide a worst case
situation for this algorithm. This is in general a very
minor limitation due to the fact that actual remotely
sensed data, and most data in general where the information
itself is a realization of a stochastic process, are
unlikely to be optimally classified into region bounded

by hyperplanes. Estimation of the numerical values of the
estimates for various cases here shows that after a

steady state value has been reached, the magnitude of the
oscillation peaks are well within 1 percent.

The variation of the MC estimate with the sample size
exhibits less recognizable features mainly due to the under-
lying randomness of the process. What is particularly
different is the absence of the initial rise of the
classification accuracy estimate. This observation should

be viewed with caution, however, due to the small sanple




158

sizes involved. In order to use the results of these
estimates in a conclusive manner, any comparisons made
should be restricted to samples of greatexr than 1000
(equivalent to 10 cells per axis) which in that range the
estimate exhibits an adequately small variance.

One topic yet unexplored is how close is the CSP
esimate of the classification accuracy to the Bayes
estimate. In the general case under study, the availabil-
ity of such reference is quite limited and in fact count
estimators are the only alternative. Therefore, the
availability of the MC estimation results makes the
required comparison feasible. Table 4~24 lists 4 classi-
fication accuracy estimates obtained wvia CSP (MC) techniques
for the highest grid size (sample size). Throughout this
table, the values of the two estimates are quite close and

in two cases (ﬁC] Case 5 and P Case 4) the results

Wy clm2
are idential to one significant figure. The differential for
ﬁc ranges from a low of 0.2% for Case 2 and 6 to a high cf
1.1% for Case 3 and 8. Averaged over all the cases, this
difference amounts to 0.6%.

One of the most desirable properties of any estimator
is consistency. The error variance is calculated using
(2-37) and is plotted for all the 11 cases. Examination of
these plots clearly shows that the variances of the CSP

estimates are monotonically decreasing as the number of

cells per axis increases. This is particularly

e a7t e o imahat

B TR o)
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significant because as discussed in sec. 2.4.1 (2-37)

does not conclusively indicate that 1lim Var{eT} -+ 0
n-+w

although it strongly suggests that. This property is
brought about by the fact that the total number of the
peints on the boundary, NB’ as a percentage of the points
inside, mondtonically decreases with increasing grid size.
This observation is consistent with the assertion that
the boundary cells are the only error causing elements

in the CSP algorithm. Comparing the <SP and MC error
variances for different cases, several properties are
distinguished. The CSP error variance, for the medium
recognition rates, is generally below that of the MC tech-
nigque. The rate at . ich the MC variance falls, however,
is faster and thus if their initial values are close a
crossover takes place for large sample sizes. This
difference in the rate of decay is evident from the
expression for CSP error variance. Rewriting (2-37)

2. B

= L1 (2 -

The corresponding variance for a MC estimator is given by

var ey} = E%“—“’- (4-8)
t

where ¢ is the Bayes probability of error. Noting that

Nt = nN, it is clear that both estimators fall off at a
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rate of l/Nt' The CSP error variance, however, has another
sample dependent texm, zgf, which steadily increases with
increasing Nt and thus cancels 1/Nt term to some extent,
hence slower convergence., In the high classification
accuracy bracket both estimators have small variances with
that of MC slightly below CSP. This property is due to
the fact that e(l-e¢) is the dominant factor for small Nt'
Once the initial wvalue of the MC error variance is smaller,
its faster fall off would keep it below that of CSP. The
differences involved, however, are small. Selecting a
medium size grid, the absolute value of standard deviation
differential ranges from a high of 1.16% for Case 1l to a

low of 0.13% for Cases 3 and 5.

4.2.2 Fixed Scatter, Variable Mean

In order to observe the variation of the probability
of misclassification with changes in the mean of a popula-
tion, the simplex arrangement of Fig. 4-2 was maintained
along with the fixed statistics of w., and Wy Case 1 of
sec. 4.2.1, the smallest separability, was selected as an
initial starting point and the nonzero component of Hy
ml, was lncremented by 0.lc step each time. A total
of 7 cases ranging from J= .55 to J=0.96 were cov.:.ed and
are listed in Table 4-25. <imilar to the variable scatter

case, the classification error estimate is obtained using

CSP and MC techniques. In order tc avoid duplication

e ey
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TABLE 4~25 TEST CASES ARRANGED BY I'"REASING SEPERABILITY,
VARIABLE MEAN.

my J I3 Gyt
a.8 ©.55 57 41.8
0.9 9.60 62 44,7
i.09 0.66 68 47.5
1.1 .73 73 51.4
1.2 0.£) 7 53.2
1.3 8.88 .o 55.9
1.4 ©.96 1ae 58.4




TABLE 4-28 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP

ESTIMATION TECENIQUE. €ASE 12

% Pc|m:L Pc|u)2 o Wy ¥

4 57.6 69.6 71.2 66.2
5 66.8 72.3 75.5 71.5
6 67.9 71.0 74.5 70.8
7 71.6 71.4 76.2 72.9
8 72.3 69.6 6.5 72.8
9 72.9 70.4 7.9 73.4
() 73.2 72.6 77.4 74.4
11 72.7 73.2 77.4 4.4
12 2.1 74.2 76.8 74.4
13 72.7 74.3 77.8 74.9
14 72.1 74.4 76.9 4.5
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TABLE 4-27 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP
ESTIMATION TECHNIQUE. CASE 13

T |

>

~ ~ ~

Cs el wy Pl o P wy c

4 68.1 69.6 73.7 67.8
5 74,1 72.3 76.9 74.5
) 74.3 71.0 75.6 73.7
7 76.9 71.6 75.6 74.7
8 76.1 69.8 75.8 74.3
9 75.9 71.3 77.89 74.7
16 75.4 73.0 78.1 75.5
i1 75.0 73.5 77.3 75.3
1z 75.3 74.4 78.2 76.9
13 75.1 74 .4 78.8 75.8

14 75.9 74.5 7.4 75.6

Ny

o




RIVIVNO 900 d0
ST HLVd TVNIDIEO

180@

S5 T

B T

29 T

—«—O0V~<0DACOOND ZAHADORTIHNNDON)

\
|
Y
i
|
\L
|

75 =, S
78 F
CHERNOFF BOUND= 44.7
85 } } t { } } : t ;
4 8 2] i3 12 14
5 7 S 11 135
NO OF CELLS PER AXIS
FIG, 4-39 CSP CLASSIFICATION gaCCURACY ESTIMATE Vs. GRID SIZE.

VARIABLE MEAN.

CASE 13

S9T




TABLE 4-28 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP
ESTIMATION TECHNIQUE. CASE 14

~

G Pc|m le’c!m
1 2

4 £9.0 69.6
5 79.5 72.3
(33 76.4 71.0
7 79.6 71.6
8 77.3 70.2
g 77.5 71.6
10 77.4 73.2
11 77.8 73.5
12 77.9 74.4
13 79.1 74.4
14 78.6 74.6

Pr::lm3 Pe

3.7 70.8
77.2 76.4
75.6 74.4
75.8 75.5
77.6 75.9
77.8 75.6
78.4 76.4
75.8 76.7
78.8 77.1
78.9 F7.5
78.4 77.5
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TABLE 4-29 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP
ESTIMATYON TECHNIQUE. CASE 15

~

A

% Pc]ml Pclmz
4 74.7 9.6
5 0.9 72.3
6 77.5 71.2
7 0.0 72.1
8 78.5 71.0
9 80.3 71.8

10 80.8 73.3
1 81.7 73.6
12 82.8 74.5
13 $2.6 74.5
14 82.3 74,7

PC w 3 PC
75.1 73.1
7.2 76.8
76.4 75.9
75,9 76.6
78.3 75.9
78.5 76.9
79.4 77.8
79.8 78.3
79.7 79.0
75.3 78.8
79.2 78.7
oRIC
ot ¥0

le8
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TABLE 4-3@ PERCENT CLASSIFICATION ﬁggiﬂ%ACIES OBTAINED BY CSP

ESTIMATION TECHNIQUE. C

~

~

G, cluy B, o, 2. " B,
& 5.5 < 69.5 77.8 74.3
5 81.4 72.3 77.5 77.8
8 - 79.2 71.2 76.4 75.6
7 $1.8 72.3 77.4 77.2
8 82.5 71.8 78.5 77.6
9 85.2 71.8 79.0 78.7
10 85.4 73.3 80.3 79.7
11 85.2 73.6 80.3 79.7
12 84.5 74.5 79.9 79.7
13 84.2 74.7 $0.0 79.6
14 84.0 75.0 79.5 79.5
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TABLE 4-31 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP
ESTIMATION TECHNIQUE. CASE 17

% Folug  Felo,  Feluy e
4 75.8 69.6 77.8 74.4
5 81.8 72.3 77.9 77.3 :
6 80.8 71.4 76.8 7.3 }
7 84.9 74.0 77.8 78.9
8 87.2 71.8 79.4 79.4
9 87.7 71.8 80.2 79.9
10 86.5 73.3 80.8 80.2
11 86.0 73.6 80.9 80.2
12 $6.0 74.6 80.6 80.4
13 86. 1 74.9 80.3 80.4
14 86. 1 75.3 $9.9 8.5
b
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TABLE 4-32 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP
ESTIMATION TECHNIQUE. CASE 18

G Fe {wy Fe | wg Fo | w Pe
4 758 Wm . —74.a
s 83.2 72.4 78.5 78,0
6 83.6 71.7 77.7 77.7
7 89.6  74.0 78.6 80.7
8 88.6 71.8 79.4 79.9
9 88.2 71.9 80.2 £0.1
10 87.0 73.3 1.9 80.8
11 87.8 73.7 81.3 81.0
12 £8.0 74.9 1.0 81.3
13 89.8 75.3 0.8 82.0
14 89.9 75.9  81.0 $2.3
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of the results, however, the Monte Carlo error estimate is
reported only for one sample size of about 6000. A large
sample was chosen to assure a small bias and variance.

Table 4-33 compares the CSP error estimates for the largest
grid size with the corresponding MC estimation results.
Cases 12 through 18 refer to the 7 cases listed in Table
4-25 with increasing variability. In examination of the
results related to the variable mean case, all the CSP
estimate properties are observed again; particularly evident
is the generally rapid rise to a steady state value followed
by a small magnitude oscillation. The curve corresponding
to the Class 1 classification accuracy generally moves as
expected. The separability increase by translation of My
along x

also improves §c| and ﬁc]w but the improvement

1 W,y 3

is not as great. ﬁc[m increased 18% from Case 12 to Case
1

18 while in the same range P and ﬁcl improved 1.5%

clu, Wy

and 4.1%, respectively. The comparison of CSP and MC
estimation results reveals that the differential between
them is again small. For ?c, the difference ranges from a

high of 0.9% for Case 6 to a low of 0% for Case 4, Table

4-33.

4.2.3 Classification Error Estimation When

the Bayes Rate is Known
Throughout this validation process the missing element
has always been a fixed reference point in the form of a
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TABLE 4-33 COMPARISON OF CSP AND HC PERCENT CLASSIFICATION ACCURACY.

~

VARIABLE MEAN.

Pclm
1
Case CSP

MC

—

N1 R WON

72.1
75.9
79.6
82.3
84.0
86.1
89.9

72.5
76.2
78.8
81.3
84.9
87.1
89.9

Y

Polw
2

Csp

74.4
74.5
74.8
74.7
75.8
75.3
75.9

MC

74.4
74.6
76.4
74.8
75.7
74.9
76.0

clu,
CSP_ MC

76.9 76.9
77.4 78.3
78.4 78.7
79.2 88,1
79.5 80.1
78.0 809.1
g1.0 80.9

CsP

74.5
75.6
77.5
78.7
79.5
79.8
82.3

MC
74.6
76.3
78.0
78.7
80.7
8.7
82.0

T
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known Bayes error. When only two classes are present in the
data set, however, the desired guantity has been computed
for up to an eight dimensional feature space {33]. The
availability of this result provides two significant
properties: (a) the reference error is sample-independent;
(b) by working in a two dimensional subspace large grid
sizes, impractical in higher dimensions, can be employed to
observe the limiting behavior of the CSP algorithm and more
importantly considerable insight to the geometry of the grid
dynamics can be gained by actually displaying the domains
of integration.

The variation of the probability of correct classifi-
cation vs. grid size using the CSP estimation technigue for
a two dimensional feature space is shown in Fig. 4-45,

The reported Bayes classification accuracies are super-

imposed on the plot and serve as asymptotes;

Pc| = 97.2%
¥1

2
P = 94_0%
C

The grid size ranges from a coarse 5 cells per axis to a

very fine 75 cells per axis.
The behavior of the classification accuracy is some-
what different than the previous test cases. Two notice-

able features are slower convergence and oscillations around
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the assymptotes. The slower convergence can be traced to
the property that the error estimate's variance is inversely

proportional to the per axis cell number and exponentially

to the dimensionality of the feature space. For example, on

the basis of the total number of cells within the grid, 12
cells per axis in 2 dimensions where ﬁciwi has its highest
surge, corresponds to somewhere between 3 and 4 cells per
axis in 4 dimensional space and the corr-esponding numbers
are only 8 and 9 for 75 two dimensional cells per axis.
Another property not observed in the wvariable scatter or
variable mean cases it the dissimilarity between the func-
tional form of ﬁclmi and ﬁclwz. In the 3 dimensional feature
space examined before, all the estimates showed similar var-
iational form with the grid size. 1iIn this case Pclmz ex-—
hibits periodic overshoots at 11-~12, 15-16, 26-27, 43-44,
etc. cells per axis. Thes2 oscillations are of the same
nature as described in sec. 4f2.l. In this case, however,
it is possible to get a close up of the zctual estimation
process. Consider the 15-16 jump. The two dimensional areas
of integration are shown in Fig. 4-46. Take one scan line

going through the ., domain (dotted region). This line is

1
marked with cell centers for three different grid sizes

GS==15, 16,17, Fig. 4-47. Denote two of these boundary cells

by Xy and Xy and let us follow their movement as grid size

increases. For Gs==15’}ﬁ)= .54, and x6==2.7 are located

inside and outside of the o domain. Recall that this

domainis multiply connected. Therefore, the estimated

‘.. ,__i.__,_
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£

locations of the boundaries are in the intervals

0 < % £ = .54

b
(4-10)

2.14 < x ¢ wr = 2.7

b

For G, = 16, x, and x5 have moved to .52 and 2.58 respec-

b
tively, and the boundary location is now narrowed to the

domain

0

1A
»
1A
H]
L ]
wn
[N]

*b
(4-41)

xb = 2.58

Ia
-
1A

2,14

b

The next grid size G_ = 17 is where ﬁclw takes on a rapid
2

jump. Now the boundary is determined to lie in the

interval

.5 ix 21
(4-12)
2,5 £ x =2 3.0

Comparing (4-~12) with (4-11) establishes that the boundary

must lie in the narrow interwval

.5 £ x £ .52
(4-13)
2.5 £ x £ 2.6
In this step, however, X, = .5 has moved from outside to

inside and xp = 2.5 made a similar move to outside of the
integration domaian. Recalling the discussion on the
estimator's bias in sec. 2.4.1, shows that in this

transition a net positive gain has occurred in the

ORIGINAL PAGE IS
OF POOR QUALITY

X, and xé are still one outside and one inside respectively. .
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estimation of the volume under f(§jm2), hence the surge
ﬁ -
cimz
The comparison of the estimation results in 4 dimension

in

with the one just obtained can shed some light on the effect
of data dimensionality on the performance of the CSP algo-
rithm. Using 4 features, the reported Bayes classification

accuracies are [33]

= 8
Pclmz = 95,0% {(4A-14)
P = 96.2%
C

The results are shown in Fig. 4-48. Note that the func-
tional form of this estimate is much more like the cases
studied in a 3 dimensional feature space and the oscillation
property is considerably less pronounced than its two
dimensional counterpart due to a higher feature space
dimensionality. The final values are all within0.1% of

the reported classification accuracy. In fact, consider-
ing that (4-14) is shown up to only 1l significant digit,

the differential can be attributed to the round off factor

and the estimates and their asymptote may well be identical.

4.3 Clagssification Accuracy Estimates Using

Landsat and Aircraft MSS Data

The performance of the CSP estimation technigue has

been extensively investigated using simulated data. ' That

et 2z
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study was intended to werify the proper operation of the
algorithm. The actual application of this technigue, how-
ever is the estimation of the probability of error in the
classification of various cover types present in multi-
spectral remotely sensed data. The currently operational
ﬁandsat—2 gathers information in 4 spectral bands. There-
fore, the feature space is a moderate 4 dimensional domain
where the CSP algorithm can effectively operate. In cer-
tain conditions some of the bands may be deemed redundant
and thus a subset of the available 4 may be used. Three
test regions were selected providing different numbers

of cover types and classification error rates: Ogle county
Illinois; Grant Couty Kansas; and Graham County Kansas.

The results of the parametric error estimator are
compared with those of LARSYS, a data anlysié and classifi-
cation technigue developed at the Purdue University Labora-
tory fdr Applications of Remote Sehsing. According to this
algorithm a set of training fields is selected for each |
cover type based on ground truth infdrmation. These fields
are then used to provide the necessary statistical input
to an optimal Bayes cléssificaﬁion such as (2-7). The
entire frame of data is then classified by testing each pixel

using (2-7). In order to obtain an estimate of the classi-

- fication accuracy, a set of test fields is chosen and follow-

ing the completion of the classification process, a count

estimate such as (2-1) is computed for the misclassified
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Table 4-34 Percent Classification Accuracies
Obtained by CSP and LARSYS Algorithms,
Ogle County, IL

Class No, of Samples LARSYSS CSP%

Corn 411 87.3 91.7
Soybean 224 90.6 - 91.3
Othere 217 94.0 90.6
Overall 852 90.7 91.2

Tahle 4-35 Percent Classification Accuracies
Obtained by CSP and LARSYS Algorithms,
Graham County, KAN

Class No. of Samples LARSYS% CSP%
Baresoil 443 65.9 78.3
Coxrn 99 89.9 | 91.0
Pasture 1376 98.4 95.1
Wheat 459 94.8 93.9
Overall 2377 87.2 89.6

\k\

e e e
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Table 4-36 Percent Classification Accuracies
Obtained by CSP and LARSYS Algorithms,
Grant County, KAN

Class No. of Samples LARSYSS CSP%
AGl 793 52.3 59.3
AG2 444 75.8 73.3
AG3 134 90.3 88.8
Nonfarm 762 94.9 90.5
Wheat 930 B2.7 79.7
Overall 3065 79.2 78.3

Table 4~37 Comparison of Percent Classification
Accuracies Obtalaed by CSP and LARSYS
Algorithms for Graham County Simulated data

Class LARSYS% CSP% Difference
Baresoil 77.8 78.3 0.5
Corn 9l1.2 91.0 0.2
Pasture 95.3 85,1 0.2
Wheat 94.2 93.9 0.3
Overall 89.6 82.6 0.0
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Table 4-38 LARSYS Classification Accuracies for
Three Realization of Graham County
Simulated Data.

Random Random Random
Class Start #1 Start #2 Start #3
Baresoil 77.0 79.7 79.0
Corn 9l1.2 g92.1 91.0
Pasture 94.8 96.1 95.0
Wheat 94.0 94.2 94.8
Overall 89.2 90.5 90.0
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samples. Frequently the training fields themselves are

used in the performance calculations.

4.3.1 Ogle County, Illinois
This data is a portion of Landsat scene 1017~16093
acguired August 9, 1972, and has a LARS runtable entry of
72037806. Three training classes were used and classifi-
cation was performed using 4 spectral lands; viz., channels
1 through 4. Table 4-34 shows both the classification
accuracies obtained using the LARSYS point classifier ard

the CSP error estimation technique.

4.3.2 Graham County, Xansas
This data set is LACIE SRS segment 1018 and has a LARS
runtable entry of 74078500, Channels 9 through 12 which
are the acquisition corresponding to Landsat scene 1672-
1644, were used. Four training classes were developed
from 229 training fields. Results are tabulated in Table

4-35.

4,.3.3 Grant County, Kansas
This data set is LACIE SRS segn@nt 1036 and has a LARS
runtable entry of 74027600. Channels 5 through 8 which are
the acquisition corresponding to Landsat scene 1655-~16512,

were used in the classification study. Five training

-
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classes were developed from 388 training fields. Results

are tabulated in Table 4-36.

4.3.4 Discussion of the Results

Examining the results obtained here reveals that the
performance of the CSP error estimator is consistent with
ttat of sec. 4.2 using simulated data and closely matches
MC classifier's output. As close as the CSP and LARSYS
results may look, the differential in some cases is greater
than the ones observed using artificial data. For example,
in Graham County, bare soil is classified with 65.9%
accuracy while the indicated theoretical value is 78.3,
pasture is classified with 44.8% éccuracy vs. the expected
result of 95.1%. Similarly, in Grant County? AGlL is clas~
sified with 52.5% accuracy vs. 59.3%. A possible explana-
tion, initiated by examining the histogram of the actual
data (Fig. 4-49), may lie in the validity of the assumption
about the normality of the data under study or much more
likely, the normality of the statistics of the training
areas. In order to remove this element of uncertainty,
artificial data was generated using the Graham'Couﬁty
statisties. The simulated data was then reclassified using
LARSYS. No attempt was made to keep the field sizes in |
the simultaed data equal to those in the original set since
the purpose of this step was to generate data having

statistics as close to normal as possible. The new

e il Py




classification accuracies are tabulated in Table 4-37.

The results are illuminating. While the bare soil was
classified with a 65.9% accuracy in the actual data, in the
simulated data this rate has risen to 77.8%, a gain of
almost 12%, to put it within 0.5% of the result predicted
by the CSP algorithm, similar observations can be made about
other classes. The simulated data set being one realization
of a stochastic process, makes the LARSYS results a random
guantity. In order to make sure that Table 4-37 is not
just one special case, the simulated data was re-generated
three times using a different starting point for the pseudo-
random number generator. The results shown in Table 4-38
confirm the preceding observations since the same close
match exhibited before is repeated.

The results of the CSP error estimator are grid size
dependent. Since variations in performance as a function
of grid size were studied before, the classification
accuracies reported here for the actual data are for a
single GSr usually around 12. For illustration purpose,
the Graham County data was analyzed using a step wise
grid employed before and the results are shown in Fig. 4-50.
Note that the estimator exhibits the same properties ob-

served repeatedly in the earlier studies,

4.4 Concluding Remarks

The performance of a multiclass multidimensional

parametric Bayes classifier has been tested under widely
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different conditions. In all cases, the results matched
whatever reference point available. When that reference

was the equivalent MC estimators, the CSP sstimate was
within 1% of it. Considering that an MC estimate is a
random quantity, repeating the error estimation with another
sample function of the process produces a different realiza-
tion of the classification accuracy estimate. 'Therefore,

an averaged MC estimator is well within the 1% maximum
deviation from the CSP results. In Table 4-38 where three
realizations of the MC estimator are computed, the overall
classification accuracy estimates are 89.2%, 90.5%, and
90.0%. This compares with the fixed CSP estimate of 89.6%.
Whereas the individual differences are 0.4%, 0.5%, and 0.4%,
the averaged MC estimate, 89.9%, is 0.3% off. 1In fact,

thig difference may be reduced éven further, if the number
of MC estimates that are averaged is increased.

When the eﬁact Bayves error rates were availéble, sec.
4.2.3, the CSP estimator provided essentially identical
results. It has been shown that this algorithm has uniform
performance with consistent systematic features throughout
the test cases. One possible limitation emerged in that
when hyperplanes parallel to the coordinate axes forming
the boundaries of the feature space the CSP estimation
technique performs poorly due to periodic high amplitude
overshoots when there is a total shift of a considerable

number of boundary cells from the outside to the inside
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of integration domain and vice versa. However, this is
expected to be an unlikely occurrence with real data.

In conclusion, it should be kept in mind that the class-
ification error estimation algorithm developed here was not
intended to provide a higher quality estimate than various
random sampling techniques. The fact thatit does so in
many cases is only incidental but justifiable. The orig-
inal goal was the development of an estimation algorithm
dependent on the parameters of the problem alone. To
that end the CSP estimation procedure has met the

objectives.

ORIGINAL PAGE IS
OF POOR QUALITY,

. e -

ST T

i M




197

CHAPTER 5

Experimental Evaluation of the MSS Snatial Model

This chapter is aimed at the validation and analysis
of the scanner spatial model developed in chapter 3.
Successful accomplishment of this task enables the inte-
gration of this model and the parametric Bayes error
estimator as a complete set of tools for the evaluation
cf the performance of a MSS for any set of specified
parameters. PFrom Fig. 4-1 where the entire simulation pro-
cess is depicted, it is seen that there are three phases
involved. (i) Validation of the scanner characteristic
function by comparing the output spectral covariance matrix
of a convolution operator with that of the scanner linear
system model. The input to the former is a simulated or
real data set and to the latter is the statistical and
spatial parameters of such a set. The resulis should
closely match. (ii) Introduction of additive random
Gaussian noise at the scanner input and output. (iii) Com-
parison of the probability of correct classification at the
input to that of wvarious output stages with noise power,
‘scanner IFOV and data spatial structure as variables.
Before embarking on the experiment, it is necessary to

develop a suitable simulated data set.
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5.1 Description of the Data Base

Stage II of the test data base simulation starts here.
The checkout of the CSP error estimator required specifica-
tion of the spectral characteristics of the data alone due
to the fact that the spatial information is transparent
to the Bayes spectral classification algorithm. The
validation of the scanner model requires further condition-
ing of the stage I simulation output.

The 'white noise' property of the available test data
although insignificant previously, would no longer be a
realistic assumption about the multispectral data. In
particular, the scanner's response is quite sensitive to
the spatial structure of the input process (Fig. 35 through
3-12). It has been shown in sec. 3.3.2 that a Markov model
closely approximates the spatial correlation of the multi-
spectral data. Therefore, stage II of the simulation pro-
cess consists of an additional transformation on the
existing data base as a means of creating an exponential
correlation property with any desired parameters. The
technique to accomplish this task is formulated in the
discrete domain in Appendix B. It is shown that filtering
of a white noise process where the filter's PSF is a two

dimensional one sided exponential,

—x/rx ~y/ry

hix,y) = c, e e

v

x,y 2 0 (5-1)
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generates a two dimensional random field with the adjacent

sample and line correlation given by

-1/r
p. = e X
® (5-2)
-1l/r
_ y
=
Py

respectively. In addition t¢ the correlation generating
property, (5-1) inevitably alters the spectral structure
of the input process. From (B-17) the output variance

associated with any spectral band is given by

~2N -
o =W (0,0) a (5-3)
g -2 _ -2 £

p 1 p. T =1

X Y

where Nois the filter's PSF length in pixels, o is the
variance of the input process, Ug the corresponding output
guantity and W(0,0} a quantity depending onlagry and Nb
(5-3) approaches its continuous version for large No which

is
2 2 _
g /Uf = l/4_rxrY {5-4)
In chapter 3 it was pointed out that the magnitude of the

variance reduction is large when a white noise process is

transmitted through a MSS. Since the exponential filter

is basically a linear system, the same property is observed

in (5-4). For example, in order to generate a data set

with the following somewhat typical correlation structure:

T TP



200

px = 0.85
(5-5)
= 0.75
°y
it requires that
r = 6.15
X (5-6)
r = 3.47
y
From (5-4)
2 2 _ _
Ug /cf = ,012 (5=7)

and thus, the output variance is slightly over 1% of the
input variance. This small fraction causes practical prob-
lems in generating the desired data set due to the finite
dynamic range of the digital data on the storage medium.
The representation of the problem in the discrete domain,
however, provides the length of the filter as another
variable to control the ratio expressed in (5-4). Let

Ny=5 and T and ry be as specified in (5-6). Then from
{5-3}

¢ 2/ 2

g % = 0.048 (5-8)

The resulting intersample and line correlations are now
0.65 and 0.53, respectively. The exponentially correlated

data base is generated with adeqguate N/rx and N/ry ratio

to closely approximate the continuously derived results.
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5.2 Evaluation of the Scanner Characteristic Function

The scanner characteristic function, the transfer func-
tion that establishes a parametric/analytical relationship
between the input and output of a multiband MSS, is the pri-
mary means by which various interactive processes within the
scanner are studied. Like every other model developed so
far, it is desirable to establish that near identical results
are obtained using empirical techniques. In Fig. 4-1, this
validation process is laid out. A white noise process
with some prescribed statistics is generated and then con-
ditioned to exhibit a specified pixel-to-pixel correlation.
The actual data is transformed by a convolution operator
having the PSF of the desired scanner and then the output
statistics estimated. The statistics of the same input
process are operated on by the scanner characteristic func-
tion and the output statistics directly computed. The
comparision of the two resulting covariance and correlation
matrices will produce the required result.

For this test the particular choice of tue input
statistics is relatively unimportant. Therefore, in order
to use the data already available, Class 1 in Case 1

listed in Table 4-1 is selected as test data;

1.0 0.75 . 0.15
Sp. = 1.0 0.45 (5-9)
1.0




The channel standard deviations are set at a large

oy = 30 i=1,2,3 (5-10)
to cope with two successive variance reducing linear trans—
formations. The variables of the problem are the scene
correlation and the scanner IFOV. The IFOV is defined
as the angle at the scanner subtended by a resolution
element on the ground; e.g., 87 urad for the lLandsat
MS8S. This definition when based on a Gaussian PSF is not
unigque. One convention that has been used [3] defines
the IFOV as the angle between points where the PSF has
dropped to half its peak amplitude, Fig. 5-1. Throughout
this chapter the definition adopted is such that IFOV
and characteristic length, r,, are identical.

Scanner systems with different resolution capabilities ;
and different signal sampling intervals produce images
with different adjacent nixel separation. In order to
eliminate the dependency of the problem formation on the
actual physical distance between each resolution element,
the spatial parameters are normalized to that quantity 5 E f
and thus many of the results are on a per pixel basis.
Later in the experiment alternate conventions are defined
based on the particular problem under study. According é ';

to this definition, pixel separation in effect is unity.

‘This assumption is particularly relevant in the simulation
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Aircraft 6 meter

A Simulated system
resolutich elements o

Cross track
Down track

Fig. 5-1 Conceptual Illustration of a Picture
Element Viewed from the Satellite.
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stages of the experiment since data is artificially
generated and one can assign any desired gquantity to the
samples and lines separation interwval.

In order to experimentally verify the theoretical
variations of the scanner characteristic function a test
data set is required. The adjacent sample correlation is
scanned from 0.6 to 0.2 with an increment of 0.05 while
the adjacent line correlation is kept at 0.7 for the first
set and 0.8 for the second. For test purposes two sets of
scanner PSF's with ro==l and 4 pixels are selected. The
particular choice of these parameters are again somewhat
arbitrary. An attempt was made, however, to make the
selections realistic-in terms of practical systems.

For each adjacent sample correlation, adjacent line corre-
lation and the scanner IF0OV, the ratio of the output
variance to the input variance is experimentally deter—
mined and the results superimposed on thé theoretical

plot of the characteristic function vs. scene correlation.
This is done for one spectral band and the results are
shown in Fig. 5-2 and 5-3. The percent difference between
the theoretical and experimental characteriétic functions,
W, and ﬁ&is expressed in Tables 5-1 through 5-4, where Wi
is the functional value for the ith sample-to-sample
correlation in the corresponding table.

Examination of the error terms and the accompanying

figures indicates a relatively close match between the two




TABLE 5- 1 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC

FUNCTION. IFOV= 1,ABRJACENT LINE CORRELATION=0.70

n

92.60

0.65
0.70
0.75
0.80
©.85
0.90

TABLE 5— 2 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC

?

0.56
9.58
0.60
9.62
9.63
9.65
0.65

W,
0.54
@.56
8.59
0.62
.65
6.68
.79

3.76

3.60
1.70
2.9

3.10
4,40
7.10

FUNCTION. IFOV= 4,ADJACENT LINE CORRELATION=0.70

8.60
8.65
.70
a.75
9,80
.85
8,90

8.14
8.16
.18
.20
0.23
B8.27

2.31

14.38
i8.70
16.60
19.00
13.00
14.86
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TABLE 5- 3 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC
FUNCTION. IFOV= 1,ADJACENT LINE CORRELATION=0.80

Px
0.60
0.65
0.79
92.75
6.80
0.85
.98

TABLE 5— 4 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC
IFOV= 4,ADJACENT LINE CORRELATION=0.80

FUNCTION.

0.60
0.65
0.70
0.75
0.80
6.85
6.90

Wy
.15
0.17
©.20
0.25
.26
3.31
9.37

.18
8.21
8.24
0.27
.31
8.35
@.41

2.80
4.20
8.10
16.20
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independently derived functions. When py==0.7 and ro==l
pixel, the percent error ranged from a high of 7.1%
at px==0.9 to 0% at px==0.75 for an average of 3.4%. For
r0==4 pixels the percent error ranged from a high of 18.7%
at px==0.65 to 9.7% at px==0.9 for an average of 13.9%.
The explanation for a higher discrepancy between the
theoretical and experimental values of the latter case
can be attributed to the inherent error of a discrete
testing of an essentially continuous phenomenon. Thile
this error is always present, under certain unfavorable
conditions may become significant. In this case a large
IFOV dictates the choice of PSP with a considerably
greater nunber of samples in order to satisfactorily
approximate its continuous counterpart. This in turn
requires a larger size data base and accompanying increase
in computation time. The last factor was the main con-
straint that limited the PSF's length and contributed
to the increase in deviation from the theoretical result.
This factor notwithstanding, Fig. 5-~2 and 5-~3 show a very
acceptable harmony between the two results and provide
substantial evidence for the validity of the analytic
scanner characteristic function.

This validation was accomplished in the context of
variances alone. That this is not a special case is
easily concluded from the property that the output cross-

channel spectral correlation coefficients are simply ratios
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of one or several appropriate characteristic functions.
Having tested its building block, the experimental verifi-
cation of the entire spectral correlation matrix is
implicitly accomplished .

By means of the above evaluation the parametric models
deve loped for the analysis of the MSS performance is
accomplished. Therefore, unless stated otherwise, all the
results obtained hereafter will be based entirely on the
statistical properties of the populations, scanner parameters
etc. and no data bases, simulated or measured, will be

employed.

5.3 MSS and Classifiability of the Multispectral Data

A major application of the various parametric models
and methods developed during this study is in determining
the interactions among the MSS system parameters on a
data-independent basis. Having experimentally verified
the validity of the models , such evaluation of the
performance of a multispectral scanner is feasible. 1In
any system analysis the definition of an index of performance
is a basic requirement. When the system is a MSS in a
remote sensing data gathering package, the accuracy by
which various populations present in the final data set
are classified primarily determines the deqgree of success
of the initial design. Therefore, throughout this chapter
the objective is to observe the probability of current

classification at various stages of the MSS5, Fig. 5-4,

e e et e e
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S hixy) ~—Zg

Fig. 5-4 A Statistical Illustration of the
MSS Model.
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and monitor its variations with the SNR, scanner IFOV

and spatial correlation of the scene. A Gaussian PSF
N

is employed unless stated otherwise.

5;3.1 Classification Accuracies at the MSS Output: No Noise
The test statistics is Case 1 in Table 4-1

containing 3 classes with 3 features. The input to the

scanner is a spatially correlated data set with an adjacent

sample correlation ranging from 0.5 to 0.95 in steps of

0.05. For each P, @ corresponding pY is computed on the

following basis. The sampling of the analog Landsat data

is such that the ratio of the ground distance between the

cross-track pixels to that of along-track is about G.7.

Since the adjacent pixel correlations along these two

directions are egual in a continuous model, it follows

that if

p; = g a7 (5-11)

- T,n = 0’ l' 2' . e

oM = o7P" (5-12)

y ]
then

a = 0.7b {5-13)
therefore

T = pn(10/7)

v X (5-14)

With the input statistics defined as above, 10 cases are

obtained and for each case T, is varied from 1 to 8 pixels

ke B e e bee o B Lt e e St



213

and an output classification accuracy is estimated for
each combination of the scene correlation and scanner IFQV.
Fig. 5-5 through 5-~14 and Tables 5-5 through 5-14 show

the variation of the output probabilities of correct
classification as a function of IFOV. 13 cells per axis
are used in the CSP error estimation algorithm.

The variations of the output probabilities of correct
classification are in complete agreement with those projected
by the characteristic function. The most notable feature
is the inverse relationship between the scene spatial cor-

relation and the slope of P vs. IFOV at the output.

cl w
When the scene is spatially hi;hly uncorrelated such as

Fig. 5-5, ﬁc gained 16.2% by increasing the IFOV from 1

to 2 pixels wide, whereas, the same increase in IFOV
produced a gain of 9.7% for Py = 0.6, 6.7% for px==0.7,

3.3% for px==0-8 and only 0.9% when px==0.95. This

behavior can be predicted from the variations of W_ vs

Py Referring to Fig. 3-5 through 3-12 where W, is plotted,
it is observed that the one step reduction in input

variance gets progressively smaller toward higher scene
correlations. For the test case under study where any
reduction of the class variances along a feature axis can
contribute to increased separability, the aforementioned
property of WS accounts for the changing slope of ﬁc]

w .
' i
‘over the ensemble of the scene spatial correlations.

s

e LA 3 weteatn
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TABLE 5- 5 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS, IFOV
ADJACENT SAMPLE CORRELATION=G.50

A ~

IFOV cloy  Felu, Foloy % |
1 68.0 74.2 76.6 73.2 E
2 82.4 86.0 84.9 84,4 L
3 91.5 894.3 92,7 92.8
4 96.5 97.8 87.6 97.1
5 98.7 99,2 9%.9 95.06
G 99.6 29.8 98,7 99.7
7 893.9 98,9 99.9 99.6
8 99.9 2g8.9 99.9 g99.0
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TABLE 5- 6 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=0.5S

P ~ o pien TS

TFOV olo, el Folu, e

i 66.5 70.6 75.6 0.9

2 78.3 $3.7 82.6 81.6 :'

3 87.7 91.6 29.8 89.7 |

4 94.2 95.9 94.8 95.0

5 97.3 98.4 97.7 97.8 é

6 98.9 99,4 99. 1 99,1

7 99.6 99.8 99,7 99.7 )
8 99.8 99.9 9.9 99.9 -
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TABLE 5- 7 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFQV
ADJACENT SAMPLE CORRELATION=0.68

~ ~ Ead A

1FOV Fe |y Fel g Pel wy e :
1 64.4 68.5 74.7 69.2

2 75.3 1.2 0.2 78.9

3 84.2 87.7 86.8 86.2

4 91.2 93.7 92.3 92.4 E
5 95.2 96.8 95.8 95.9

6 97.5 8.6 98.0 98.0 :

7 98.9 99.4 99. 1 99.1

8 99.5 99.7 99.6 99.6
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TABLE 5— 8 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=0.85

-~

IFOV Pclw f,clﬂ-l Aclw ﬁc
I 1 2 3
1 63.1 66.8 73.5 87.8
2 72.3 78.6 77.9 76.3
3 £0.5 84.8 3.8 83.0
4 86.7 98.4 89.0 88.7
5 92.1 94.6 93.1 93.3
< 95.4 96.9 95.9 96.1
7 97.5 98.5 97.7 97.8
8 98.7 99.2 98.9 98.9
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TABLE 5- 9 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV

ADJACENT SAMPLE CORRELATION=0,70

g

ot

W N M A WN

@c|ml Pc|m2 Pc|m3
B61.5 = T 65.6 /3.6 T 66.9
69.4 75.0 76.6
75.5 82.9 81.2
$3.0 86.7 85.7
87.6 a1.6 9.8
1.9 94.6 92.9
94.6 96.2 95.5
96.7 8.1 97.2

f’C

73.7
79.9
8§5.1
82.7
93.1
95.4
97.3
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TABLE 5-1@ SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFQV
ADJACENT SAMPLE CORRELATION=8.75

EOV Pclml ﬁclm2 Pc|m3 ﬁc

1 59.5 84.2 73.2 65.7

2 66.4 69.9 75.7 70.7

3 72.3 78.6 77.9 76.3

4 78.0 83.2 81.7 81.0

5 83.0 86.7 85.9- 85.2

6 87.2 90.4 89.2 89.0 ;

7 ~91.0 93.6 92.2 92.2 : ’i
8 © 93.3 95.3 94,2 94,3 L
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TABLE S-11 SCANNER OUT?UT CLASSIFICATION ACCURACIES V8. IFQV
ADJACENT SAMPLE CORRELATION=8.80

IFQV

t

W WY %t bW

A

Fe lwy o Jwg Fo | g Fe

58.2 63. 1 7Z2.5 54.6
63.4 66.8 73.5 67.9
68.5 73.3 76.6 72.8
72.4 78.6 78.7 76.6
77.9" $3.0 81.4 $0.8
82.4 85.6 84.7 84.2
84.9 88.2 87.1 86.7
87.6 81.6 89.8 89.7
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TABLE 5-12 SCANHER OUTPUT CLASSIFICATION ACCURACIES VS. IFGV
' ADJACENT SAMPLE CORRELATION=0.85

A ~

oV Pc:]m:L Pc|m2 Fe wy Fe

] 56.8 62.2 72.5 63.8

2 60.9 65.5 73.4 66.6 -

3 64.4 68.2 74.9 68.9 S
4 67.9 73.1 76.3 72.4 |

5 71.5  78.1 77.1 75.6

6 74.9 80.6 79.5 78.3

7 77.9  83.1  8L.5 0.8

8

8a.7 84.8 £3.9 83.1
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TABLE 5-13 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFQV
ADJACENT SAMPLE CORRELATION=0.98

A A A

TEOV Folw Folw Pclw iic

1T TSTQ_:L _6-1_.22 15-9.; b3.1
2 58.2 63.1 72.9  64.7
3 60.8 65.0 73.3 66.4
4 61.9 66.5 73.5 67.3
5 65.4  68.9 74.7 69.7 4
6 67.7 71.1 76.3 71.7 o
7 69.4 75.6 76.8 73.8 S
8 72.3 78.6 77.8 76.2
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TABLE 5-14 SCANNER OUTPUT CLASSIFICATION ACCUBACIES VS. IFQV
ADJACENT SAMPLE CORRELATION=8.95

IrFQV

W 0 Mt R WON -

Pc[w 13c|m 1::'c[w 1‘;;c
1 2 3

54,1 60.3 72.1 62.1
55.9 61.0 73.0 63.0
56.2 62.2 72.5 63.6
57.9 62.9 72.7 64,5
58.7 63.3 72.9 65.9
59.7 64.4 73.3 63.8
61.5 65.6 73.6 66.9
61.9 66.2 73.5 67.2
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The second property universally observed is the expon-

ential type rise of P precipitated by the changing

|
slope of the curves for a fixed p; and p;. This property
is brought about by the nonlinear weighting feature of Ws

as the IFOV is varied. Let

Al = W(pxrpyrrl)
32 = W(pxrpyr?z) (5~15)
A =

where rye r, and ry are three different IFOV's increasing

order. Then,

A, — A, < A, - A (5-186)

Therefore, the classification accuracy improvement must
necessarily taper off as IFOV increases. This last property
is probably best demonstrated in Fig. 5-14 where the input
process has a high degree of spatial correlation. The

plots of P vs. IFOV are nearly flat with an overall

clo,
1

classification improvement of 5.1%. This compares with
13.2% for px==0.9, 25.1% for px==0.8 and 26.7% for px==0.5.
For a degenerate case where P, = py==l, the characteristic
function indicates that input and output classification j
accuracies are identical. This of course is predictable -

yince total spatial correlation is tantamount to a process

with only a DC value. | o
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5.3.2 Classification Accuracies at the MSS Output:
‘ Additive Gaussian Noise

In this subsection the definitions and conventions
adopted in sec. 3.3 will be adhered to throughout. In
order to study the effect of additive random noise in the
classifiability of remotely sensed data, the scanner
output class conditional statistics undergo the following

linear transformation
T . =23 + I (5-17)
-g g N

where Eg is the noise free output statistics and EN is

the covariance matrix of a white noise process and as

such it is also diagonal. The SNR in this case is

defined on a class conditioned basis. However, the classes

in the test case all have equal channel variances with

equal spatial correlation parameters, therefore, the

class cenditional SNR is identical for all three populations.
A fixed spatial correlation model with px==0-85 and py==0-79

is chosen and the output probability of correct classifation

vs. IFOV is estimated for SNR=10, 20 and 30 dB. The noise
enters the system at the MSS output and models the quanti-
zation and detector noise. Fig. 5-15 through 5-17 and
Tables 5-15 through 5-17 show the interaction of noise

énd scanner IFQV and their effects on the output
classification accurawy, Fig. 5-18 shows ‘the

dependence of Pc on IFOV with SNR as a running parameter.
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Note that a fixed output SNR implies a variable noise
power environment.

The functional variation of the classification
accuracies vs. IFOV is essentially identical for dif-

ferent noise levels. increases monotonically with

2
cluy
increasing IFOV for a fixed SNR. Compared to the noise
free case of Fig. 5-12, the slopes of Pclm in the noise
i
added case are relatively close. The classification

A

accuracies, P o, P o’ P l
clug” “elu,” Tclu,

and ﬁc increased 23.9%,
22.6%, 11.4% and 19.3% respectively where the corresponding
numbers for SNR=10 4B are 20.7%, 19.9%, 14.3% and 18.3%
as IFOV ranged from 1 to 8 pixels. The percent improvement
of the output classification accuracy vs. IFOV therefore
is not heavily dependent on the output SNR in this case.
The deterioration of the classification accuracies as noise
power is increased 1s greater for larger scanner IFOV's.
This is due to the fact that the coarse resolution output
with a smaller variance is more susceptible to random
disturbances than a process that already has an appreciable
variance. This property is illustrated in Fig. 5-18
where the SNR =10 dB curve diverges from the rest of the
plots for higher IFOV's.

The tradeoff between the SNR and IFOV is also illus-
trated in Fig. 5-18 by observing that Pc is multiple
valued, i.e, e combination of SNR and IFOV that result

in a particular ﬁc is not unique. In the case under study
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TABLE 5~15 SCANNER OUTPUT CLASSIFICATION ACCURACIEE VS. IFOV
SNR=19 DB ADJACENT SAMPLE CORRELATION=8.85

Fov e ty Eo| g Fa) Wq e %
1 53.5 59.3 57.8 56.9 !
2 56.1 64.6 59.4 69.9

3 - 58.7 66.3 66.3 61.8

4 60.9 68.3 62.4 63.9

5 66.8 71.2 64.5 67.5

8 70.5 74.1 65.6 70.1.

7 72.5 76.8 7.0 73.1

8

74.2 79.2 72.2 75.2
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TABLE 5-16 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
SNR=20 DB ADJACENT SAMPLE CORRELATION=8.85

TFOV Pc:Im Pc|m Pclm
-r o6, 1 L 63.@2 70.83
2 58.9 65.7 71.0
3 62.1 67.7 73.3
4 66.7 70.6 75.1
5 70.9 75.1 76.6
6 74.3 80.2 78.5
7 77.0 83.3 79.7
8 79.9 84.9 82.1

f,C
—83.4

65.2
67.7
76.8
74.2
77.7
80.0
82.3
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TABLE 5-17 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
SNR=30 DB ADJACENT SAIPLE CORRELATION=0.85

-~ ~ A ~

o Felo,  Felu,  Felug o
1 56.2 83.5 717 53.8
2 60.2  65.7 73.0 66.3
3 62.9 67.9 75.5 68.8
4 68.3 70.8 76.3 71.8
5 71.5 76.2 77.8 75.2
6 74.4 $0.3 79.5 78.1
7 77.1 83.5 81.6 88.7 s
s 0.2 $5.1 3.4 82.9 =
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a 70% classification accuracy can be achieved when IFOV =6
pixels, SNR=10dB or IFOV=3.8 pixels, SNR=20dB or

ITFOV = 3.5 pixels and SNR=304B. Equivalent if the

system noise level is such that the SNR is at a low 10 dB,
to achieve a prescribed minimum classification performance,
.The-fesulting data spatial resolution will suffer. The same
classification accuracy can be obtained with a 60%
improvement in spatial resolution if the MSS is oéerating

at a 30dB B&NFE.

5.4 Summary and Conclusions

The objective of this chapter was to employ the CSP
error estimation technique and MSS model in an integrated
parametric package that would produce the theoretical
response of the MSS in a fully controllable environment.
The results presented are not intended to be exhaustive
but rather to demonstrate the method and to illustrate
general trends in the system response. It is constructive
to compare the patterns observed with those obtained by
other nimulation techniques.

A parallel study aimed at the same objectives is
reported in [3]. High resolution (6m) aircraft MSS data
was éonsidered with a cascade of simulated scanner PSF's
‘to produce data sets with 30m, 40m, 50m and 60m ground
resolutions and the clagssification performance was estimated -

for each case. The results provided less than conclusive
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evidence on the monotonic realtionship between classifica-
tion performance and the IFOV due to the very small rise
in ﬁc as IFOV was enlarged. This conclusion can be
fully understood from the theoretical curves of ﬁc vs.
IFOV. The significant parameter, data spatial correlations,
is what determins how strongly classification performance
and IFOV are interrelated. As for a real data set, its
spatial correlation structure is a fixed parameter. In
case of high resolution aircraft data, pixel-to-pixel
correlation can be as high as 0.9 or 0.95. Fig. 5-13
and 5-14 with px==0.9 or 0.95 respectively clearly illus-
trate that'f’c and IFOV are inded weakly coupled. Had
the data under investigation in [3] been less spatially
correlated, this coupling would manifest itself more
strongly. For satellite data having a DY of about
0.75-0.8, ?c shows considerably stronger sensitivity to
variations of IFQV.

The following conclusions emerge from the theoretical
simulation of MSS spatial characteristics.

1. The achievable classification performance monoton-
ically increases with increasing IFOV, at the
expense of spatial resolution.

2. The degree of such dependence is directly related
to the extent of spatial correlation of the random
processes at the scanner input. M process with
a DC value alone will have identical classification

performance at the MSS input and output regardless
of IFOV. .

Ry
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Additive noise, by reducing the class separabilities
produces a degradation of the classification per-
formance. For any fixed SNR, however, P, still
increases with increasing IFOV.

When a minimum classification performance is a
design parameter, Fig. 5-18 determines the required
operating states. For the test case under study,
given that min{P,} =70%, the lower bounds on IFOV
are 6, 3.75 and 2 low resolution pixels for SNR,
10dB, 20dB and 30 dB respectively.
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CHAPTER 6

Conclusions and Observations

In this chapter we provide a broad evaluation of the re-
sults of the study and the degree which it has satisfied
the objectives put forth initially. The performance of
CSP Bayes error estimator was, by far, the most signifi-
cant result. The transformation of ideas from abstract to
practical more often than not is limited by the finiteness
of the available resources; hence, it is often irrelevant
whether a method is theoretically sound. In this case with
the exponential rise in the number of sampling cells due
to the dimensional effect, a requirement for more cells
per axis wﬁuld have put the usefulness of the algorithm
in grave doubt. That this was not to be the case has been
amply demonstrated in the experimental results of chapter 4.
Admittedly the feature spaces considered canuaot be
classified as being of high dimensionality but within the
scope of the present and near future MSS data gathered by
satellites will consist of four or five bands of visible
and infrared radiation. In fact even that may be reduced
if some of the bands prove to be redundant in the prepro-
cessing stages of data analysis. The systematic behavior

of the estimate vs. grid size is a characteristic that
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. provides some degree of a posteriori information. Knowing
that the estimator almost universally approaches the

Bayes error with a decreasing negative bias and the fact
that at about 8 cells per axis the estimate is within 1% of
its final value, one may select a small gfid size and choose
to project the final value by heuristic or other numerical
techniques. This approach may be useful when the data is

of unusually high dimensionality.

There are undoubtedly a number of refinements that
could accelerate the rate of convergence even further. It
has been mentioned frequently that the boundary cells are
the primary source of the estimation error. By adopting
a larger grid, the measurement space is divided into finer
partitions indiscriminantly. The optimum strategy should
sample the interior of Fi as coarsely as possible and the
boundary rergion as finely as possible. One such technique
is to first 'detect' the boundary by a coarse grid and then
perform the partitioning by working around that segment
while leaving the interior grid intact. In implementing this
modification, however, close attention should be paid to
the theoretical convergence prOpeity of the modified esti-
mator. The choice of sampling grids cother than binomial
may be considered although one such grid with variable
cell size was employed with no discernible improvement in

performance.
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The evaluation of the scanner spatial model provided
the first application of the CSP error estimator. Compared
to simulation techniques using a large data base, manipu-
lation of the MSS parameters proved to be much simpler.

The problem was simplified somewhat by the availability of
closed form relationships governing the ihput-output statis-
tical dependencies. This was possible because of the par-
ticular approximating function and for the scanner's PSF.
The spatial characteristic function is by no means bound

by such an assumption. The technique employed in Apnendix A
can be carried out for any specified PSF in which case the
results in general are not in closed form. The observed
response of the MSS was in close agreement with the reported
results based on Monte-Carlo technigques. The primary
difference was a far greater flexibility provided by the
scanner model in examining the response to various parameter
manipulations.

The number and kind of potential applications of the
analysis package developed here are far greater than
there was space Eo elaborate. The spatial model can be
expanded to include a greater range of noise levels and
sources. It is possible to accumulate a catalogue of
system response curves corresponding to combinations of
different scanner and ground scene parameters. A set of
desired system parameters can be specified and the remaining

set determined from the theoretical response characteristics.
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The availability of several different sets of parameters
to achieve a certain performance index underlines the inher-
ent tradeoffs in de51gn1ng a multlspectral Scanner system.

The fundamental function of thig parametrlc package, there-

fore, is to prov1de for an easily 1mplementable technique
to evaluate the system S performance with maximum flexi-

bility and minimum input information.

BEIS
' ORIGINAL PAG
OF POOR QUALITY

e bt i g

Ly et g,




s T A ATEE R TR e L

BIBLIOGRAPHY




10.

11.

251

BIBI\IOGRAPHY

Landgrebe et al., "Analysis Research for Earth Re-
sources Information Systems: Where Do We Stand?"
Purdue Univ/Laboratory for Application of Remote
Sensing Information Note 062273, 1973

National Aeronautics and Space Administration
Earth Resources Technology Satellite Data Users
Handbook, NASA Document No. 71504249

Landgrebe D. A. et al., "An Empirical Study of Scanner
System Parameters," Purdue Univ/Laboratory for Appli-
¢ations of Remote Sensing Information Note 110876,
1976

Crane, R. B., Malila, W. A. and Richardson, W.,
"Suitability of the Normal Density Assumption for
Processing Multispectral Scanner Data," IEEE Trans.
Geoscience Electronics, Vel. GE~10, No. 4, Oct. 1972

Som, R. K., A Manual of Sampling Techniques, Heinemann,
1973.

Anderson, T. W., Das Gupta, S., Styan G. P. H., A
Bibliography of Multivariate Statistical Analysis,
Oliver & Boyd, Edinburgh, 1972

Pearson, K., "On the Coefficient of Racial Likeness,"
Biometrika, 18, 1926

Barnard, N. M., "™ 2 Secular Variations of Skull
Cherarters in Four .2ries of Egyptian Skulls,"
Annals of Eugenics, 6, 1935

Fisher, R. A., "The Use of Multiple Measurements in
Taxonomic Problems," Annals of Eugenics, 7, 1936

Neyman, J., and Pearson, BE. S., "On the Testing of
Statistical Hypothesis in Relation to Probability
a priori," Proc. Camb. Phil. Soc., 9, 1933

Welch, B. L., "Note on Discriminant Functions,"
Biometrika, 31, 1939

g

i e,




12.

13.

14,
15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

252

Wald, A., "On a Stacistical Problem Arising in the
Classification of an Individual into One of Two
Groups," Ann. Math. Statist., 15, 1944

Von Misses, R., "On the Classification of Observation
Data into Distinct Groups," Ann. Math. Statist., 16,
1945

Rao, C. R., Advanced Statistical Methods in Biometric

Research, Wiley, New YOrk, 1952

Anderson, T. W., "classification by Multivariate
Analysis," Psychometrica, 16, 1251

Bowker, A. H., "A Representation of Hotelling's T2
and Anderson's Classification Statistic," Contrib,
Probability and Statistics (Hotelling Vol), 1960

Bowker, A. H. and Sitgreaves, R., "An Asymptotic
Expansion for the Distribution Functions of the
W-classification statistic,”" Stud. Item. Anal. Pred.
(H. Solomon Ed.), Stanford Univ. Press, 1961

Teichroew, D. and Sitgreaves, R., "Computation of
an Empirical Sampling Distirbution for the W-
clagssification Statistic," Ibid.

Okamoto, M., "Discrimination for Variance Matrix,"
Osaka Math. Jour., 1961

John, S., "The Distribution of Wald's Classification
Statistic when the Dispersion Matrix is Known,"
Sankhva, 21, 1959

John, S., "On Some Classification Statistics I, II,
Sankhva, 22, 1960. (Correction: Sankhya, 23, 1961)

John S., "Errors in Discrimination,”™ Ann. Math. Statist.

32, 1961

Dunn, 0. J. and Varady, P. V., "Probabilities of
Correct Classification in Discrimination Analyses,"
Biometrics, 22, 1866

Lachenbruch, P. A., "An Almost Unbiased Method of
Obtaining Confidence Intervals for the Probability
of Misclassification in Discriminant Analysis,”
Biometrics, 23, 19267

Hills, M., "Allbcation:Rules and'Their Error Rates,”
J. Roy. Statist. Soc. Ser. B, 28, 1966

e G B e B & R kot Pl £ al _a b e




26,

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

253

Lachenbruch, P. A., and Mickey, M. R., "Estimation of
Error Rates in Discriminant Analysis," Technometrics,
10, 1968

Glick, N., "Estimating Unconditional Probabilities
of Correct Classification," Stanford Univ. Dept.
Statistics, Tech. Report No. 3, 1969

Cooper, P. W., "Hyperplanes, Hyperspheres and Hyper-
quadratics as Decision Boundaries," Comput. Info.
Sci. (Pau & Wilcox), 1964

Han, C. P., "Distribution of Discriminant Function
When Covariance Matrices are Propositional,”
Ann. Math. Statist., 40, 1969

Han, C. P., "Distribution of Discriminant Function
in Circular Models," Ann. Inst. Statist. Math.,
22, 1970

Gilbert, E. 8., "The Effect of Unequal Variance-Covariance
Matrices on Fisher's ILinear Discriminant Fanction,"
Biometrics, 25, 1969

Chaddha, R. L., and Marcus, L. F., "An Exmpirical
Comparison of Distance Statistics for Populations
with Unegual Covariance Matrices," Biometrics, 24,
1968

Fukunaga, K., and Krile, T. P., "Calculation of Bayes
Recognition Errors for Two Multivariate Gaussian
Distribution,” IEEE Trans. on Computers, Vol. C-18,
No. 3, 1969

Marill, 7., and Green, D. M., "On the Effectiveness
of Receptors in Recognition Systems," IEEE Trans on
Information Theoxry, Vol. IT-9, 1963

Cacoullos, T., "Comparing Mahalanobis distances, I:
Comparing distances between k normal populations and
another unknown," Sankhya, 27, 1965

Lachenbruch, P. A., "Some Results on Multiple Group
Discrimination Problem," Discriminant Analysis and
Applications, Cacoullon Ed, Academic Press, 1973

Subrahmanian, K., Multivariate Analysis: A
Selected and Abstracted Bibliography. 1957-1972,
Marcel Dekker, Inc., 1973

Cacoullos, T., and Styan, G. P., "A Bibliography of
Discriminant Analysis," Discriminant Analysis and
Applications, Cacoullos Ed., Academic Press, 1973

ORIGINAL PAGE Id
OF POOR QUALITY

P

e e e il ool




39.
40.

41.

42.

43.

49.

50.

51.

52.

53.

Lachenbruch, P. A., Discriminant Analysis, 1975

Toussaint, G. T., "Bibliography on Estimation of
Misclassification," IEEE Trans. Information Theory,
Vol. IT20, No. 4, 1974

Fukunaga, K., Introduction to Statistical Pattern
Recognition, Academic Press, 1972

Van Trees, H. T., Detection, Estimation and Modulation
Theory: Part I, Wiley, 1968

Clenshay, C. W., and Curtis, A. R., "A Method for
Numerical Integration on an Automatic Computer,"
Numer. Math., 2, 1960

Cooper, P. W., "The Hypersphere in Pattern Recognition,"
Information and Control, 5, 1962

Cooper, P. W., "Statistical Classification with
Quadratic Forms," Biometrika, 50, 1963

Cooper, P. W., "Quadratic Discriminant Functions in
Pattern Recognition,"” IEEE Trans. Information
Theory, IT-11, 1965

Davis, P. J., and Rabinowitz, P., Methods of Numerical
Integration, Academic Press, 1975

Molenaar, W., Approximations to the Poisson, Binomial
and Hypergeometric Distribution Functions, Amsterdam
Mathematisch Centrum 1970

Stroud, A. H., Approximate Calculation of Multiple
Integrals, Prentice-Hall, 1971

Holter, M. R., et al., "Imaging with Nonphotographic
Sensors," Remote Sensing with Special Reference to
Agriculture and Forcstry, National Academy of Science,
1970

Goldberg, I. L., "Design Consideration for a Multi-
spectral Scanner for ERTS," Symposium on Information
Process, Purdue Univ., 1969

Bates, J. C., and Dumar, H. J., "High Efficiency
Cnnical Scanner for Earth Resources Application,”
Scanners and Imagery Systems for Barth Observation,

Proceeding of SPIE, 1974

Riemer, 7. E. and McGillem, C. D., "Constrained Opti-
mization of Image Restoration Filters," Applied Optics,
12, 1973

BRI LT P TP T PP Gy




54.

55.

56.

57.

58.

59.

60.

€l.

62.

63.

255

McGillem, C. D., Riemer, T. E., Mobasseri, B. G.,
"Resolution Enhancement of ERTS Imagery," Proceedings
of Machine Processing of Remotely Sensed Data,

LARS, Purdue Univ., IEEE Catalog Number 75CH1009-6,
1975

Hunt, B. R., "Deconvolution of Linear Systems by
Constrained Regression and its Reationship to the
Wiener Theory," IEEE Trans. 2utom. Control, 1972

Ready, P. J., and Wintz, P. A., "Multispectral Data
Compression Through Transform Coding and Block
Quantization," Purdue Univ. TR-EE 72, 1972

Kettig, R. L., "Computer Classification of Remotely
Sensed Multispectral Image Data by Extraction and
Classification of Homogenous Objects," Purdue

Univ. LARS Information Note 050975

Box, G. E., and Jenkins, M., Time Series Analysis:
Forecasting and Control, Holden-Day, 1976

Elterman, L., "Atmospheric Attenuation Model in the
Ultraviolet, Visible and Infrared Regions for Altitude
up to 50 Km," Res. Paper #46, Opt. Phys. Lab., Air
Force Cambridge Research Labs

National Aeronauti= and Space Administration Earth
Resources Landsalt krogram Users Handbook, NASA Document
No. 765054258

Billingsley, F. C., "Noise Consideration in Digital
Image Processing Hardware," Picture Processing and
Digital Filtering, Ed. T. S. Huang, Springer-Verlag,
New York, Heidelberg, Berlin, 1975

Robinson, E. A., Statistical Communication and Detec-
tion, London, Charles Griffin and Co., 1967

Friedman, H. D., "On the Expected Error in the
Probability of Misclassification," Prog. IEEE, April
1965

Ready, P. J., Wintz, P. A., Whitsitt, 8. J., and
Landgrebe, D. A., "Effects of Compression and Random
Noise on Multispectral Data," Proc. 7th Svmposium on
Remote Sensing of the Environment, Univ. of Michigan,
1971

ORIGINAL PAGE IS
OF POOR QUALITY

i

.



65.

66.

256

Landgrebe, D, A. et al., Final Report, ILaboratory for
Applications of Remote Sensing NASA Contract NAS9-14016
June 1, 1975 -May 31, 1976

Papoulis, A., Probability, Random Variables and
Stochastic Processes, McGraw Hill

i e -

T

et mm adl e den



g eaue

APPENDICES




257

Appendix A

Multispectral Scanner Output Statistics

In order to determine the effects of different scanner
IFOV's and their interaction with classification accuracy
of a data set, it is essential that the required output
covariance matrices be parametrically represented in
terms of known input quantities. In sec. 3.2.2 it was
noted that the entire spectral covariance matrix is speci-
fied if the approporiate spatial correlation functions
are known. Let f(x,y), g(x,y) and h(x,v) deﬁote the input
and output random processes associated with any two matching
bands and the scanner PSF, respectively. It is well known
that the above gquantities are related by a convolution

integral.

gl{x,y) = ” f(X“J\lY*'lz)h(Al,Az)dhldkz (a~1)
In order to derive specific results, two different scanner
PSF's are considered: (a) a spherically symmetric Gaussian

PSF; and (b) a rectangular PSF. The spatial correlation

matrix describing the scene is a two sided exponential.
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A.l Gaussian Scannexr PSF

The PSF and spatial correlation model are given by

Roelt,n) = p!f[plnl
££ o "o (A-2)
__x2 _ y2
h(x,y) = c, efo2 gro?2

where Po = e ® is the adjacent pixel correlation assumed
equal along the horizontal and vertical directions. This
assumption is not in contradition with the fact that in a
digital data set sample-~ to-sample correlation is higher
than line-to-line correlation because of the closer
physical distance between the samples. In continuous
domain, such as this formulation, where theoretically
equally spaced lines and columns can exist, there is little
reason for assuming different pixel-~to-pixel correlation
along each direction. Two guantities, c, and r, specify

1
the PSF where c,y is a normalizing constaﬁt providing unity
gain and r, is the filter's characteristic length, closely
related to the IFOV.
With the parameters of the problem defiﬁed, the scanner

output correlation function can be expressed as;

5390V = S (u,v) [H(w,v) |2 (A-3)
where S(u,v) is spectral density. Let M(u,v) = |H(u,v)12,
then
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(A-4)

(A-5)

Using the separability property of the functions involved,

g
= AxB
X2
Vre. r - '
A=_1l0 J e-a[r x[e 2ro? ax
V2 -0
YT XZ
} TC T, J e—alt=x) o 2rg2 gx +
/7w
Jre.r w
170 f ea('r"x) 2r02 dx
V2 T

R g(""'") = J Rff(T—X)m(X)dx IRff(n-Y)m(y)dY

(A-6)

{(a—-7)

Combining the exponentials and completing the squares,

~ a2y 2 (x-ar 22
/‘rrclr -—i—g— at (T~ —-———-9T—
A=—=2L g © J e 2ro’ Ix +
/2 o
azr 2 o (x+ar 2) 2
5 +a'rj - 20 ]
e e 2ro ax (3a-8)
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The individual integrals can now be represented in terms of

the Q function

z:a.z:'r:2 'r-atr2 2
2 g ar ° -
A = 'nrclro e Lm To e 2 dx +
2 2
ar 2
e J e dx
T+axr
rCJ
2 2 2 2
9 5 -a- ar -t 5 +art ar +rt
= 7cyr e o) - ) +e Qf - )
(o] (o]

(a-9)

The constant c¢. is the solution to the following equation

1
2 2
- __X @ .
f Ve, e ro? dx J \/cl e Yo" gyl =1
Therefore,
c. = 1
1 2
'lTJ:‘O

Noting that B is similarly evaluatéd, the spatial correla-

tion function at the scanner output is given by

2 2 2 2
da ro ad ro
5 - at ) . 3 +art c
R g(T;n) = |e Q(aro"ggﬂ'Fe Q(aro'F;gﬁ
{A-11)
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The above relationship can be easily modified to cover
the case of unequal pixel-to-pixel correlation along cross

track and down track directions. If Rff(T'“) is given by

Rff(T'ﬂ) = e"alTI e“b!ﬂ!

Then it follows that

Eng E¥r2
20 -art . 20 +at <,
R__(1,n) = Jle Qlar_ - —) +e Qlar +—)Ix
gy o r, o Ty |
lng kgrz
o o
5~ bn n 7~ T bn n
e Q{br -—) +e Q(br  +-—)
o ry o r,

(a—-12)

Note that since the input process f(x,y) has a unity vari-
ance Rgg(0,0) is in effect a weighting by which any input
variance will be multiplied to produce the corresponding

output spectral variance. The right hand side of (A-8),

therefore, can be considered as a weighting function associ-

ated with any multiband scanner to relate input and output
statistics. Denote this function by WS(T,n,a.b).

The next item of interest is the output crosscorrela-

tion among channels. This guantity, designated by Rg~g~(T'”L

173
is a straight forward extension of the method just de—

scribed. Again assuming a Markov or exponential structure




262

governing the crosscorrelation function between channels

R (t,n) =z 2317l —bijlnl (A-13)
g lom) =1x. ¢ dp 0@ e A-
f:L i flfj f:L fj
where rij is the spectral crosscorrelation coefficient at
» < *
the input such that Irfif_] £ 1. a;4 and b, are defined
similar to a and b. Since the crosscorrelation function
between a pair of outputs of a linear system is related to
the input cross correlation of the same pair in a form
similar to (A-3) [66], i.e.
8 (a,v) = 5. ¢ (u,v)lH(u,v)|2 (A-14)
9193 i3
the same technique used previously provides the acrossband

correlation function at the MSS output.

W {1 a,
S( PRI i

R {(t,n) = r O, ©

b,.) (A-15)

j!

From (A-13), the crosscorrelation coefficient between any

two channels at the scanner output is

Rg g (0,0)
Ty g = E—igl————~ (A-16)
91 ;| g 93
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From (A-15)
R {0,0) = r g. 0. W.(0,0,a..,b..) (a-17)
gigj fifj fi fj s ij3"7ij
also
1
}— ’5 -—
Ugi crfi WS (0,0,aii,bii) (A-18)
hence
r = WS(Qrorajjrbij) -
919 w%(0,0,a..,b..) W2(0,0,a..,b..) fifj (A-19)
' A ¥ Riad £ s T IT37Y9g

Therefore, the band-to-band cerrelation coefficients
are identical at scanner input and output provided
spatial auto and crosscorrelation functions at the

input are equi i.e. - .. = b.,..
P a quivalent, i.e., all alj, b11 blJ

e 4
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A.2 Rectangular Scanner PSF

A rectangular point spread function is defined here

by

2 ro
el Ixllyl £ 2
hix,y)=44 - (A-20)

0 otherwise

Similarly to (A-4);

Rgg(T'”) = Rff(r,n)*m(r,n)

where

r

Am(T;n)‘= 12 (l"'JrTL) (l"'LD"L) |T|lln|5 I‘o (A‘2l)
o o rO

Emplying (A-6) to (A-21)

A= S [ calvxl J;"—L) dx
X -0 Q

o
o T
= 1 [ e a(r=x) (l+—3:—) dx+J e a{r=-x) (l——x—) dx
Ty ~Xs . o (o} o

*o (t~3x) ®
+[ ?VTT¥ (1 - Eyay
T rO

(A-22)

Designating the three terms in the bracket as I, II and III,
routine integration techniques yield the following

results

oF 18
RIGINAL PA
O POOR QUALITY
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-aro
T = l (1_’1-8 ___)e—al'r‘ (A—23a)
ar ar
O
_aaltl
17 = —% (I—LE —) e al< (A—23b)
aro
-axr
o _maltd
I1T = -+ (@ -Ltz& y.@-1=¢ ne 2t (a—230)
ar ailT
ar (]

A similar expression is obtained for B by substituting
n and b for T and a in {A-23a) thru (A-23c¢c). The scanner
characteristic function, WS(O,O,a,b) is evaluated by

equating t=n=0 in I, II and III;

-ar
2 l-e
w_(0,0,a,b) = (1 - ) x
g rorTr ar ar
o
~br
2 -1z ) (a-24)
b T
r, o

{(p~24) is plotted in sec. 3.2.2 for different values of

a, band r .
'e)

M
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Appendix B

Exponential Spatial Correlation Function Simu’ator

As a paﬁt of utilizing a completely simulated data
base, access to one with a Markov-structured spatial
correlation is requiied. In order to obtain such a set a
white noise process can he transmitted through an
appropriate filter.

Let £(x,y). g{(x,y) and h(x,y) be the input, the output
and the desired filter, then

2
Sgg(u,v) = Sff(u,v)IH(u,v)| (B-1)
Since Sff(u,v) = 1 for white noise and the desired spectral
density function, S (u,v) = 2a 5 22b 5 » therefore
g9 a‘“+u” b +v
: _ 2vab 2Vab
It then follows that the desired PSF is a one sided
exponential i.e.
-ax =by -
hix,y¥) = ce e (B-3)

let rX==§-and ry==% be the filters characteristic length

along x and y directions. Then

R )




267

hix,y) =ce ™ e T¥Y x,9y 20 (B~4)

where ¢ is a normalizing constant providing unity filter
gain. 8ince this filter operates exclusively on digital
data, formulation of the problem will be entirely in

the discrete domain. Let the filter's length, in pixels,

be N_. In order to solve for c, the following should

hold
Q{dﬁg;i _.m _n
Y ) himn) =7 Jce ™ e Ty=1
=0 n=o m n
- o -2
=(lce TH(Lcye TV (B-5)
m m

By equating the individual terms to 1, unity gain will exist

along the individual axis as well.

N -1 - m -1 - 2 ek
f c e Tx = cy;(l+e ™ 4+ e TXi4...4+e X
m=0
-1
let P =€ X, the adjacent sample correlation, then
N
m o]
N1 o _ P -1 _
z c, 2 = . ) =1
1'p -1
m=0 X
therefore
p_~1
c, = — (B-6)
Px

a
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1

similarly, defining py =e¢ YY as the adjacent line corre-

lation,
p.~1
o =y (B-7)
27 Mo
Py
but
then
po—l p.-1
c = ( §L ) (—L—) (B-8)
Pyl DYO 1 '

Since the exponential filter in addition to generating
a pixel-to-pixel correlation alters the statistical proper-
ties of the input as well, a knowledge of that effect is
necessary. Let the input to this Ffilter consist of N
random processes corresponding to N spectral bands. The

input and output are related by the following discrete con-

volution;
Nb%lﬁ%—l
g{m,n) = § ) f£(i+m,j+n)wW{i,5) (B-9a)
i=o j=o
where

and no subscript on g(m,n) and £(m,n) designates any two

corresponding bands. The output spatial correlation is

el

P TR

e
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then given by
Rgg(r.n) = E{g(m+1,n+n) g(m,n)}
Ngl Ngil N5l No-1
={ ) ) ) ¥ £(i+mtr,j4n+n) x
i=o0 j=o0 k=0 2=0
£ (k+m, 24n)W{i,J)W(k,2)} (B-10)

Moving the expectation inside;
E{ £ (i+m+t,j+n+n) £(k+m, 24n)} = Rff(i—k+r,j—z+m (B-11)

Since f(x,v) is a white noise process:

r
0 ten # 0
Rff(T'n) = - (B—'}_Z)
2
Gf Ten = 0

Therefore, Rgg(r,n) is non-zero if the following is satis-

fied
i-k+t = 0 —» i=k-t
| (B-13)
j=2+n = 0 —> 4§ =12-n
substituting (B~13) in (B~-10)
N -1 N-1
2
R (t/n) = o/ I wWik,2)W(k-1,2-n) (B-14)
U
Gﬂﬁﬁfag g%x_yr
OF BOV® ¥
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From (B-9b)
k-(NO~l) -(No-l)
W{k,2) = ce Ix e Ty
= W(O;O)p;k py2 (B-15a})
where
N -1 N -1
o o
W(0,0) =ce X e ¥ (B-15b)
N -1 N1
0 O
2 -2k+T -2 2+7 2
R f{t,n) =W 00)[ }[ P :’
gg r ( r kET X g‘=§:n Y f
-2(N_~-t)_ ~2(N _-n)_
" T nf -2tPx © B[ -2n y ° L 2
= W {0,0)p_p,lp p a
Xy\yvx p—2__1 v p-2__l £
X Y

It
=
¥}
°
o
©w
o
~
™
B
=
=Y
%o
()
=
8]
I
=
]
| B
TN
]
(X}
=
(e}
!
=
A
S’
Qa
()
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(B-16)

The variance of the output process is therefore given by

p_zNO -1 p-2No -1
ol = Wzto,O)( = ) ( s ) of (B-17)
g o

Py -1

This result approaches the continuous version for large N, s

r and r i.e.
X Y

~2N
X

o >> 1 and p;z -1 = ?2- and similarly for
' X




py. Under these conditions

2 2
cg / op = 1/4 rxry
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(B-18)

Since the primary purpose of this filter is the generation

of a pixel-to-pixel correlation of some prescribed value,

the following should hold

Rgg( 1 rn) = pxcf
2

R 1 =] g

gg(Tr ) DY g

(B-19)

(B-20}

let =1 and n=0 in (B~16). Using the approximation

X X

2
ng(l:n) = pxcf

and similarly for Rgg(T,l).

it immediately follows that

(B—-21)

The next topic is the across—band statistical and spa-

tial effects the exponential filter might have had on the

multispectral white noise. Following an exact analog of

the derivation presented so far, the crosscorrelation

function for any two bands at the output, gi

by

-2 (N -1) _

-2 (Ng=n)

and gj is given

-2

_ - p

R (1,n) =W2(0.0)p "o n(){
X'y

Px

gigj

-1

)

PR TS
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where the input crosscorrelation function is defined

Rf;f.(r,n) = - ' (B-23)
LJ

a1
Q
h
Q
th
-
-
=
]
o

The band-to-band correlation coefficient at the output is
given by

r = R 6,0)/0_ o B-24

(0,0 /0 o (B-24)

995 919y i 93

It then immediately follows that

r =¥

g.9 £.f (B-25)
i

i i7j

i.e. the correlation coefficients has undergone no change

under this transformation
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