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Data spatial autocorrelation model parameter
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ABSTRACT

Mobasseri, Bijan Gholamreza. Ph.D., Purdue University,
May 1978. A Parametric Multiclass Bayes Error Estimator
for the Multispectral Scanner Spatial Model Performance
Evaluation. Major Professor: C. D. McGillem.

Efficient acquisition and utilization of remotely

sensed data requires an extensive apriori evaluation of the

performance of the basic data collection unit, the multi-

sp ctral scanner. The objective is the development of a

fully parametric technique to theoretically evaluate the

systems response in any desired operational environment

and provide the necessary information in selecting a set

of optimum parameters.

The probability of correct classification of the

various populations in the data is defined as the primary

performance index. The multispectral data being of

multiclass nature as well, requires a Bayes error estima-

tion procedure that is dependent on a set of class statis-

tics alone. !The underlying problem facing the development

of such technique is discussed and a solution based upon

sampling of the feature space is proposed. The classifi-

cation error estimator is expressed in terms of an N

dimensional integral where N is the dimensionality of the

feature space. A set of successive linear transformations

a
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prior to the error estimation process provides an N to 1

dimensionality reduction by reducing the Bayes error

estimate to a product of N one dimensional integrals.

The statistical properties of the estimate is formulated

and its relationship with the geometry of the decision

boundaries discussed.

The multispectral scanner spatial model is represented

by a linear shift-invariant multiple-port system where the

N spectral bands comprise the input processes. The scanner

characteristic function, the relationship governing the

transformation of the input spatial and 'hence spectral

correlation matrices through the systems, is developed.

Specific cases for Gaussian and rectangular point spread

functions are examined. Random noise is considered and

its interpretation in the context of multispectral data

is discussed.

In order to validate the Bayes error estimation

algorithm's proper performance, multivariate normal data

is simulated and the classification accuracy of a set of

test cases determined by the parametric and Monte-Carlo

type methods. The comparisons of the results provides the

required information for evaluation of the theoretical

t
	 Bayes error estimtor performance.

The integration of the scanner spatial model and the

parameter classification error estimates provides the

necessary technique to evaluate the performance of a
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multispectral scanner. A set of test statistics are speci-

fied and the corresponding output quantities computed by

the characteristic function. Two sets of classification

accuracies, one at the input and one atthe output is esti-

mated. The scanner's instantaneous field of view is changed

and the variation of the output classification performance

monitored. The same procedure is followed with additive

noise at the scanner output.

In conclusion on the basis of these theoretical results

the interaction between the classification accuracy,

signal-to-noise ratio, spatial resolution, data spatial

correlation and scanner aperture is explained and some

suggestions regarding the selection of optimum system

parameters is presented.
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CHAPTER 1

Introduction

The utilization of earth orbiting platforms as a means

of environmental data acquisition has undergone a tremendous

growth in the past decade. The feasibility of such tech-

niques was first demonstrated using a multispectral scanner

(MSS) carried in a low flying aircraft. The launching of the

Earth Resources Technology Satellite (ERTS), later re--

named the Landsat, greatly increased the scope of remote

sensing technology [1]. Positioned in a polar orbit with a

repetitive coverage period of 18 days, a variety of agricul-

tural and environmental data are collected and telemetered

to the ground for processing. on board, a rotating mirror

multispectral scanner operating in four nonoverlaping bands

of electromagnetic radiation constitute the main component

of the data collection system [2].

The electromagnetic energy reflected by a target is de--

composed into four spectral bands and then transmitted to

earth through a PCM channel. The signal degradations caused

by various transformations within the scanner subsystem are

of great importance. The finite scanner aperture and the

atmospheric and quantization noise are but some of the con-

tributing factors. The optimization of the entire set of
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interactive parameters within the scanner can be quite in-

volved. From an information processing view, however, five

major categories emerge.

1. Spectral band location in the electromagnetic spec-

trum

2. Spectral bandwidth

3. Number of sneetral bands

a. Spatial resolution

5. Signal-to-noise ratio

Due to the finite capabilities of scanner and data

analysis techniques, the continuum of the electromagnetic

spectrum cannot be fully utilized. Therefore, sampling of the

spectrum becomes essential. The band location is generally

determined by the target spectral characteristics such that

different cover types exhibit different spectral signatures

in the same band. The wavelength limits can be shifted some-

what to improve crop identification, but the spectral band-

width cannot be decreased very much for a fixed signal-to-

noise (SNR) ratio. The SNR decreases with decreasing bandwidth.

The spatial resolution has a direct relationship with

the signal-to-noise ratio and the classification accuracy.

An increase in the resolution requires a narrower aperture

which in turn leads to decreased SNR, reduced classification

performance and a smaller area scanned for the same data rate.

For a coarse resolution, the scanner aperture is wider, SNR

is higher classification error rate in general increases, but
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'mixed pixels', due to averaging of the adjacent field pixels,

will arise.

In a multispectral, remotely sensed data gathering system

the final and most important result is the association of

each resolution element on the ground with a previously de-

termined population and the evaluation of the performance of

such a classification operation. The selection of the par-

ameters•within a scanner has as a primary aim the minimiza-

tion of the probability of misclassification (PMC) of the

data. Thus, the classification performance is an indicator

against which the choice of other system parameters can be

compared.

1.1 Statement of The problem and a Desired

operational. Framework

The reflected energy from agricultural and other cover

types of interest is corrupted by various noise sources, re-

shaped by the finite scanner point spread function (PSF) and

then quantized and transmitted back to the ground stations

for processing. At the Purdue University Laboratory for

Applications of Remote Sensing (LARS), the remotely sensed

data is analyzed by classifying it into one of M populations

by an optimum (minimum probability of error) Bayes classifier.

We define the resulting probability of correct classification

as the index of performance for a multispectral scanner and

describe the goal as the evaluation and simulation of an

optimum multispectral scanner system within the framework of
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interactive relationships between the spatial resolution,

signal.-to-noise ratio and classification error rate. Implicit

in this statement is the fact that the spectral band location

and bandwidth have already been optimally selected as part

of the system design process.

The classification accuracy obtained by processing the

actual data is necessarily suboptimum due to the aforemen-

tioned degradation sources. A reference PMC could-be defined

by analyzing the performance using the reflected signal at

the scanner input, even though this signal is obviously in-

accessible. By simulating a theoretical model for the MSS,

however, the classification error rate can be evaluated and

compared at the scanner input and output thereby establish-

ing an upper bound on the system performance in the context

of the defined index of performance. Arbitrary spatial reso-

lution can be specified and its interactive relationship with

the SNR and PMC studied.

This interrelationship has been investigated before and
some general trends are known. In one experiment [3], initial

high resolution aircraft data was classified and the cor-

responding classification accuracy determined. Lower resolu-

tion scanner PSF's were then specified and convolved with the

aircraft scanner data to generate a coarser resolution data

base. Transformations were carried out for different PSF's

and it was concluded that the corresponding PMC's were a de-

creasing function of the spatial resolution.
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The technique employed in [3] is inherently empirical

due to the utilization of actual, data in the simulation pro-

cess. Two potential shortcomings of this procedure can be

cited: (a), The multispectral signal used is already cor-

rupted by the degradation sources and their effects cannot

be isolated; and (b), The accuracy of the system performance

calculations is dependent on the size of the available data

set. in many applications the data availability can be limit-

ed due to the cost, ease of acquisition, availability of

ground truth etc. In particular, by convolving an initial

data base with a cascade of scanner PSF's to generate a low

resolution set, the averaging property of the convolution

causes successive reductions in the numerical size of the

convolved data and directly affects the statistics and the

corresponding estimate of the classification accuracy.

The need for a different algorithm to simulate a multi-

spectral scanner and evaluate its theoretical performance

has been demonstrated. This method in order to be as flex-

ible as possible, should depend entirely on the parameters

of the model; i.e., population statistics, scanner PSF, noise

level etc. Fig. 1-1 is a basic block diagram of the desired

MSS model and the performance evaluation process. X is the

multispectral feature vector. The scanner model is a linear

system with specified PSF. The statistical description of the

scene is computed at both the scanner input and output,

f(X),f'(X). The corresponding probabilities of correct clas-

sification are provided by the classification error estimator,



5

Pc and Pc. This realization of the process is highly parame-

tric and displays minimum dependence on X. For a given geo-

graphical scene, the scanner PSF and additive noise can be

varied and the resulting interaction with Pc observed. Each

of the blocks in Fig. 1-1 is composed of various subsystems

which will be considered in more detail in later chapters.

The projected algorithm will have several capabilities.

The most important one is the ease of parameter manipulation.

Variation of the scanner spatial resolution will cause the

output statistics to be modified with'a corresponding var-

iation in the estimate of the classification error. Similarly,

variations in the population separability at the scanner in-

put and the resulting interaction with the PMC can be studied.

This built-in flexibility is a desirable and almost im-

perative feature of the scanner system modeling. A specific

example is the class statistics manipulation. The generation

of a new data set, with prescribed statistics, from the exist-

ing data set, requires appropriate software and, depending on

the data base magnitude, can be potentially time consuming.

The alternative in the proposed algorithm is to supply the

statistics alone.

The following comment is in order here. Much emphasis

has been placed on the data-independent feature of the al-

gorithm. It is clear that this requirement can only be car- 	 +

ried so far. Whatever the method, the population statistics

must be specified. This condition can be satisfactorily	 E

met only by access to an available data set, quality not-

withstanding. The distinction emerges at this point that

a



the contribution of the data to the final result ends at this

stage for a parametric model whereas the data utilization

will continue throughout the model for an empirical scheme

with an error compounding effect.

The M3S simulated model, being a linear system, lends

itself to well established system theory methods and, de--

pending on the functions involved, closed form relationships

relate the scanner input and output statistics. For the

block diagram of Fig. 1-1 to be operational, the contents of

the classification error estimator element must be specified.

The input to the base is the set of population statistics in

the form of M mean vectors and covariance matrices and

the output is a set of M performance indices, i.e., the pro-

babilities of correct classification.

The parametric Bayes error estimator is developed in

chapter 2. The resulting algorithm requires the data

spectral covariance matrices as the only input and produces

a set of probabilities of correct classification for each

population. In chapter 3 the MSS and multispectral data

spatial model is discussed and the desired spectral transfer

functions obtained. The experimental results in the form

of validation of the classification error estimator using a

set of test cases is covered in chapter 4. The scanner

spatial model is evaluated in chapter 5 and the associated

relationship between the MSS spatial parameters, scene

correlation, noise and classification accuracies are discussed.



A summary and suggestions for further work is the topic

of chapter 6.
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CHAPTER 2

Parametric Bayes Error Estimator in a

Multiclass Multidimensional Environment

There are basically two types of data classification

methods available; parametric; and nonparametric. Non-

parametric classification, such as nearest neighbor, is in-

dependent of the statistical description of the data, requires

access to a Large data base and generally is suboptimal rela-

tive to the Bayes classifier. It has been shown that the

multispectral scanner data can be acceptably described by

Gaussian statistics [4]. Therefore, resorting to nonpara--

metric classification would discard valuable a priori know-

ledge that can improve performance.

Parametric classification, requires the statistical de-

scription of the data, either exactly or by parameter estima-

tion. Among all parametric classifiers, Bayes or maximum

likelihood (ML) classifiers are optimum in the minimum probabili-

ty of error sense. Although classification of any data set,

parametric or otherwise, is fairly straightforward, determin-

ation of the performance of the classifier is far from straight-

forward. The complexity of the problem is primarily a function

of the dimensionality of the measurement space and,. to a les-

ser degree, a function of the multiplicity of populations.
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Unless the measurement space is limited to a single dimension,

an assumption of very Limited applications, exact error rates

are not known for rte, classifiers.

Multi.spectral data seldom contains only two classes and

always is of a multidimensional nature. The performance

calculation for this case has been essentially of a Monte-

Carlo nature. The classifier is trained on a portion of the

data and then tested on either the same portion or a different

segment. The estimate of the probability of error is defined

as
M	 n.

S	
C p(W. ^ 3

i-1 i Nt
(2-1)

where M, P(w i ), ni and Nt are the number of populations, a

priori class probability, misclassified samples from class

w i and the total number of available samples, respectively.

e is an asymptotically unbiased and consistent estimate of

the PMC 151. Eq. (2- 1) , with various modifications, is

practically the only available PMC estimator. The majority 	
3

of the literature on statistical classification has been de-
`s

voted to the case of two multivariate normal populations with

heavy emphasis on the equal covariance matrices assumption.

2.1 Review of Previous Work

The field of classification and discrimination, other-

wise referred to as allocation, identification, pattern recog-

nition and pattern selection has been one of the most in-

tensely researched areas of statistics and has attracted con-

tr-ibutions from a variety of disciplines. In a bibliography,
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Anderson et al [6] list over 400 papers published before

1967.

In the beginning stages of research (prior to 1930),

the classification problem did not have a precise definition,

and was often considered in the context of testing the equality

of two distributions [7]. The first clear formulation of the

problem is attributed to the pioneering work of Fisher whose

ideas were first exposed in the works of other people [8].

In his first paper [91, Fisher considered classification as

a problem in multiple taxonomy. For univariate, two popu-

lation cases. he suggested a rule that would assign the measure-

ment X to w i if 1X-Xi 1 was the smallest of 1X--X1 J and ( x-X21

a nearest neighbor rule in current terminology. when measure-

ments were multidimensional, Fisher reduced the problem to	 A

the univariate case by selecting a linear combination of the

measurements, Fisher's linear discriminant function (LDF),

the parameters of which were selected so as to minimize the

ratio of the within class scatter to the between class scat-

ter. He called this the optimum linear combination.

One of the most significant developments iccured with

the fundamental results of Neyman and Pearson [10]. This was

followed by the formulation of the Bayes rule and`minimax

Bayes rule for two populations and known statistics by Welch

[111. Wald [12] considered the same problem and suggested

replacing the unknown quantities with their maximum likelihood

estimates. Von Mises [13] obtained a rule that would maximize
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the minimum probability of correct classification when an

observation is to be assigned to one of several populations.

In a literature survey of a field as diverse as sta-

tistical classification, one necessarily has to focus on the

particular aspects of the subject most relevant to his work.

Therefore, two broad topics; binary group classification and.

multiple group classification under the assumption of multi-

variate normal. (MVN) statistics are surveyed.

2.1.1

Let

E i and E

a cl.assi

Let A2 =

Classification Into Two 14VN Distributions with

Equal Covariance Matrices

the distribution of X in w i be N(hi ,Z) i=1,2, where

are assumed to be known. This arrangement comprises

cal case for which precise error expressions exist.

(^l-Li2)TE
-1
	 be the Mahalanobis distance, then

Ps w1 = Q (--2 )	 (2--2)

where Q(a) is defined as

x
2

Q(a) = 1
	

e 2 dx	 (2-3)
,/2—,ff f a

This case has been discussed by, among others, Welch

[. 11], Wald [12] and Rao [14]. The distribution of classifi-

cation statistics, if known, can directly provide the error

probability. Anderson [151 proposed his . W classifigation sta-

tistics by substituting the ML estimates of the unknown para-

meters in a general likelihood ratio rule (plug-in LR). The
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i
distribution of W proves to be quite complicated to the point

of being impractical. Sowker [161 showed that W can be repre-

sented as a function of two independent 2x2 Wishart matrices

one of which is noncentral. Bowker and Sitgreaves [17] used

this result to find the asymptotic expansion of the W dis-

tribution function in terms of Hermite polynomials. Teichroew

and Sitgreaves [181 used an empirical sampling technique to

estimate its distribution. Okamoto [191 considered the sta-

tistics of W where the number of degrees of freedom r of S,

the sample pooled covariance matrix, is not necessarily

n1+n2-2, where n1 and n2 are the random sample sizes from wl

and ca t . He then obtained an asymptotic expansion for

P[ (W-02/2) /q < k/7r 1 1 	(2-4)

in terms of nl , n2 and r as n  and n 2 tend to - and n1/n2

tends to a constant. John [20,21] obtained the distribution

of the statistics of W when the common covariance matrix is

known.

When the class statistics are based on samples, T

T(X,Etl ,V 2 ,E) is a decision rule whose plug-in estimate, T,

is obtained by substituting the corresponding sample estimates

for E1 ,E 2 , and Z, then the conditional error porbability

based on T is given by

ei(T) = P[T classifies X into wjjXl,X2, S,	 _ i 1 	(2--5)

.i,j = 1,2

i T J

i
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The unconditional error probabilities of T are a i (T) W

E[ei (T)]. Denote the estimate of ei (T) by ei (T) where the

unknown parameters have been replaced by their respective

ML estimates. a i (T) is defined similarly. Let T o be the

minimax rule with known parameters and To as its plug-in

version. John [223 obtained the distribution of e i (To) when

_ is known. Dunn and Varady [233 using an empirical Monte--
h	 A

Carlo technique considered 1 - a i (T0), 1 - ei (T0 ) and

1 - e i (To ) and derived a confidence interval for ei(To).

Lachenbruch [24] introduced his leavin g-one--out method and ob-

tained an almost unbiased estimate for e i (T0 }. Hills [25]

showed that when n i = n2 ai (T0 ) > ai (T0 ?. Lachenbruch and

Mickey [26] compared seven estimation techniques by Monte-

Carlo type simulation and concluded that the two most common

methods, resubstituting the training samples for testing and

the plug-in version of Mahalanobis distance, perform relative-

ly worse than others. Glick [27] showed that as nl,n2-+Coil

a i (T) -+a i (T) a. s. uniformly in the class of all rules; more-

over, if T is a LR rule, ai (T) -)-a i (T) a. s. and ai (T) -3-a i (T) .

2.1.2 Classification into Two MVN Populations When

Covariance Matrices Are Unequal.

This case differs from the equal covariance matrices case

due to the quadratic form of the discriminant function (T

being a Bayes rule). Let the distribution of X in w  be

N (Il if y i ) i=1,2, Yl 7^ Z 2 . Classification statistics again have

been a point of interest. Assuming that all the relevant
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parameters are known, Cooper [28] studied the optimality of

the quadratic discriminant function under stochastic regimes

other than normal. When covariance matrices are proportional,

Han [29] obtained the distribution of the likelihood ratio

and extended the result to circular matrices [30].

Gilbert [311 considered the effect of inequality of the

cov.-.riance matrices on Fisher's linear discriminant function

and concluded that when X1 = dh the performance of Fisher's

LDF is adequate only for small values of d. Using simula-

tion techniques, Chaadha and Marcus [32] compared the be-

havior of three distance statistics and stated that Mahalanobis

A 2 and Anderson--Bahadur distance are similar in performance

and superior to Reyment's generalized distance. Fukunaga

and Krile [33], using the distribution of the quadratic dis-

criminant function, expressed the probability of error as an

integral and applied the technique to data reported previously

[341.

2.1.3 Classification Into Multiple MVN Populations

The problem of optimally classifying an observation into

one of M populations under the assumption of general means

and covariance matrices and obtaining the error rates has re-

ceived little attention compared to the previous cases. The

reasons are severalfold. Derivation of the classification

statistics, so popular in some restricted cases, comes to a

halt when faced with the requirement of a joint distribution

of M quadratic forms. The solution, if not outright impossible,

a

i
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is certainly of dubious practical value. Therefore, the as-

sumption of equality of the covariance matrices, accompanied

by linearization of the discriminant functions, is widespread.

Cacoullos [ 35] considered the case when the distribution of

X in W i is N{^i ,^) i^l,...,h^ and assigned X to the closest mi

in the Mahalanobis distance sense. Lachenbruch [36] compared

the ML rule with Fisher's LDF, the parameters of which are

the eigenvalues of a certain matrix. He concluded that when

the means are arranged in a simplex, the ML rule performs

much better than the LDF and only when the means are collinear

is Fisher's LDF performance comparable to the ML method.

In general, multiple group classification is comparatively

unexplored, the corresponding error expressions particularly

SO. In order to make the mathematics tractable, simplifying

assumptions have generally been invoked. The assumption of

equal covariance matrices reduces the dimensionality of the

problem by linearizing the decision boundaries. 	 Hence,

an otherwise quadratically partitioned feature space is now

divided by hyperplanes. In many cases this can lead to exact

error expressions. However, the practicality and usefulness

of this procedure is open to question. When the multiple group

classification problem is detection of known signals embeded

in Gaussian noise, the covariance matrices are indeed equal.

In other applications such as classification of various agri-

cultural cover types, however, such an assumption is groundless

due to the stochastic nature of the signal itself. The
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available error estimation techniques are generally of the

empirical Monte-Carlo type.

In addition to the references cited, there are various

review articles and bibliographies on classification error

estimation. Some of the most comprehensive ones are by

Anderson et al [6], Subrahmanian [37], Cacoullos and Styan

1381, Lachenbruch [337 and Toussaint [40].

2.2 The PMC as a Multiple Integral

The classification of a multidemensional observation

vector into one of M populations is conceptually identical to

the binary case. Let R, M and N be the feature space, number

of classes and the dimensionality of Q, respectively. The

procedure is to divide Q into M mutually disjoint sets, F.,

and to assign each feature vector to a set in accordance with

an appropriate rule. This is illustrated in Fig. 2-1.

The estimation of the classification accuracy using the

Monte--Carlo technique is possible but frequently undesirable

because of accuracy and repeatability limitations and the data

dependent nature of the calculation. Therefor., an analytical

formulation of the error estimation is sought. Let Zi,

i=1,2, ... ,M partition n in RN . The Bayes risk is defined as

[411
M	 M

R =1
	 Z P(w j)Cij f(X[w j )dX	 (2-6)

i=1 J Z i j`1

where Cij is the cost of deciding w  where w  is true. In



19

,^^^	 r2
Source 

2

r-wm	 ^,	 r

rM

Fig. 2 -1 Allocation of a Measurement Vector X to an
Appropriate Partition of the Feature Space.
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the case where Cij = 0 for i=j and Cij = 1 for i ^ j R is

the probability of error.

Among all of the possible choices of Z i , the Saye rule

partitions 9 into Z = Z* such -hat R = R* is the minimum

probability of error [41]. Assuming that the population sta-

tistics follow multivariate normal law, the optimum Sayes rule

is as follows (421

XE:w	 if W  < Wj

where

W. = (x- i ) T - (X-v.) +ln j Y 1-2 Qn P (w )i
with	 X = observation vector

i = mean vector for class wi
(2-7)

^i = covariance matrix for class wi

P(wi ) = a priori probability for class w 

The error estimate based on direct evaluation of (2--6) ex-

hibits all the desired properties outlined previously.

The evaluation of multiple integrals bears little re-

semblance to them: one dimensional counterparts, mainly due

to the vastly different domains of integration. Whereas there

are three distinct regions in one dimension; finite, singly

infinite, and doubly infinite; in an N dimensional space there

can be potentially an infinite variation of domains. Thus,

the established one dimensional integration techniques do not,

in general, carry over to an N dimensional space. Therefore,

it is not surprising that no systematic technique exists for

the evaluation of multivariate integrals. The available
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methods are generally applicable to elementary regions and

integrals..

Let us examine the domains of integration encountered in

the $ayes error estimation. The regions of integration, ri,

are defined by the inequality W i < W  Vi ^4 i. Therefore, r 

is defined by a set of intersecting hyperquadratics, the

mathematical representation of which is too complicated to

be practical. The population statistics, of course, determine

the geometrical shape of a boundary. The most tractable geo-

metry results from the assumption of identical covariance

matrices, i - E V. An orthonormal transformation reduces

to an identity matrix; hence, each discriminant function W

defines a hypersphere centered at the population mean in the

transformed coordinate system. Such an arrangement leads to

hyperplanes as optimum partitions of the feature space.

The assumption of equal covariance matrices, albeit

unrealistic, is prevalent in the statistical classification

literature and has its roots in the linear property of the

boundaries. Fig. 2-2 shows a case of four populations with

two features.

In approximating the solution to any multiple integral,

the parameters to be determined are a set of weighting factors,

wl ,w2 ,...wm and a set of points, pl,p2, ... ,p. in Z. Then

represented as a finite Riemann sun

m
£ (X} dV	 w f (pi)

i=^:
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In order to illustrate the difficulties involved with evalua-

ting (2-8), an examination of its one dimensional counterpart

b m
k 	 f(x)dx r E wif (Pi )	 (2-9)

f

where k(x) is a weighting function, is useful. One way to

evaluate (2-9) is to pre-select p i according to a certain rule

	

and require that	 w1...wn be chosen such that

br
e = I k (x) f (x) dx -	 wif (p i )	 (2-10)

	

a	 i=1

is zero for all monomials of degree n. The Newton-Cotes in-

tegration technique is a prime example of this rule where the

interval (a,b) is divided into m equal subintervals of length

(b-a)/m. Among other well known methods having this property

are the trapezoidal and Simpson`s rule.

sometimes, it is advantageous to have a set of points with

unequal spacing. The most common choice is when pl,...,pm

are the m zeros of an orthogonal polynomial P m (x). There are

numerous methods each using a particular set of polynomials to

generate the desired abscissas (43], among them are the Cheby-

shev orthogonal polynomials of the first and second kind. This

approach provides a relation similar to (2-9) except that the

rule is exact for all polynomials of degree 2m-1. A notable

example is the m-point integration rule of the Gauss Type.

The extension of one dimensional techniques to higher

dimensional spaces is hindered for a variety of reasons.

As pointed out previously, orthogonal polynomials play an
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important part in the evaluation of one dimensional integrals;

however, there is no generalization of such method to higher

-dimensions. For example, given m points p l , ... pm in R2 it

may not be possible to find a polynomial, in x and y, to take

on prescribed values at the points p i . The next item is the

more complicated structure of the N-dimensional functions

which necessarily causes complicated domains of integration

such as (2-7).

2.2.1 Decision :Boundaries

In a series of papers, Cooper explored various decision

boundaries arising in a pattern classification problem, with

the emphasis on the optimality of some well known rules un-

der more general conditions. Hyperspheres arising from spher-

ically symmetric distributions were found to be optimum for

Pearson Type II and Type VII in addition to a normal distri-

bution [44,45]. Error expressions were obtained by integration

of the random measurement vector IXI within the constant radius

sphere. For the more general case, quadratic partitions were

claimed to be optimum for not only normal population but for

the general class of monotone distributions with equal de-

terminant covariance matrices (45] 	 in the latter case, the

statistics, not the functional form of the class density func-

tions, are the only required parameters.

Although multiclass , multifeature data classification

is straightforward, the probability of error estimation

through non-Monte Carlo techniques shows only a structural
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similarity to the binary, unidimensional case. It is signifi-

cant that the complexity of the classification accuracy esti-

mation in the general case under study is mainly a function

of the dimensionality of the feature space and only partly a

function of the population multiplicity. An exact error ex-

pression, for example, exists for M-class, single dimension

Bayesian classification.

The integral expressing the error is an Nth order multiple

integral over domains defined by (2-7). Consider Fig_ 2-2.

The region of interest which would yield the highest proba-

bility of correct classification for class w 1 is a triangle.

Let

[(' 
	 [0] [_m]

41= 0	 2= m3=-m	
}^4= [

_m
m]

then f l is a set defined by the following simultaneous in-

equalities

x2 < m/2
T 1 :	 x2 > - (xl+m)

X2 > xl--m

Hence	 3m
2 m

2
Pcl^ =	 f(XIwi)dXi = 2f	 f(xl,x2lw)dxldx2! 1  l	 0 xl-m

(2-11)

Therefore, Pc1W can be evaluated to any degree of precision
1

desired. The point of this simple example was to demonstrate

the importance of the boundaries of P i . The ease of formulation

ORIG 0ri a 
Jac Pa

s
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Fig. 2-2 Four Populations with Equal Covariance
Matrices: Linear Boundaries.
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was mainly due to the linear contours of integration, pre-

cipitated by the equal covariance matrices.

Relaxing the equal covariance matrices assumption con-

siderably complicates the problem. First, there is no trans-

formation, unitary or otherwise, that would decouple the

feature space for all the populations simultaneously; and
	 i

second, the boundaries of interest are now portions of various

hyperquadratics. These two changes alone would rule out any

meaningful representation of pc in a form similar to (2-11).

Fig. 2-3 shows a typical multiclass case.

The dimensionality of feature space can be regarded as

the most important complicating factor. There are at least

three parameters dependent on N.

1. order of the error integral.

2. geometry of Pi's

3. computation time

The existence (or lack of it) of techniques in evaluation of

multiple integrals has been discussed before. While it could

be argued that the multiplicity of populations, M, has a

more pronounced affect on the decision regions, it is undoubtedly

-true that there are no complex boundaries in one dimension

regardless of the value of M. In addition, boundary visuali-

zation, so helpful in error estimation, will no longer be pos-

sible for N>3. It will be shown in later chapters that the

computation time is related exponentially to N and linearly

to M.
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W1

W4

Fig. 2-3 Optimal Partitioning of the Feature SAace
and the Resulting quadratic Boundaries.

-.,
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In this section, the difficulties associated with a

direct evaluation of the multidimensional classification error

integral were discussed. The parameters of the problem, in

order of decreasing contribution to the problem complexity,

are listed below

1. Inequality of covariance matrices

2. Dimensionality of feature space

3. Multiplicity of populations

2.3 Approximation to the Classification Error Integral

In the previous section the Bayes error was expressed

as a multiple integral over RN , the N dimensional Cartesian

coordinate system of the feature space. The underlying dif-

ficulties in evaluation of (2-6) were attributed to the in-

tractable mathematical description of the contours of ri,

and the N-th order multiple integral over an arbitrary shaped

domain, r i . There are two transformations that would cir-

cumvent these problems.

2.3.1 Coordinate Transformation

The multispectral scanner detects the reflected electro-

magnetic energy in a number of optical and infrared bands.

Although these bands are essentially non-overlapping, the re-

sponses observed are correlated. A rise in signal amplitude

in one band is accompanied by a similar effect in an adjacent

band. In statistical terms this property translates into a

probability space with correlated variates.
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The M populations are represented by a set of general

mean and covariance matrices. Great algebraic simplifica-

tion would occur if every I was in a diagonal form resulting

in separable density functions. This simplification stems

from the application of product rule. Let X = (xl,x2...,xN)sB

and Y = (yl,y2,...yN,)EG be in Euclidean spaces of N and N'

dimension respectively. A Cartesian Product BxG, is a space

of N+N' dimensions with points (x l,x2,...xN,yl,y2...yN') such

that (xl,x2 ... xN)sB and (yl,y2,...yN')EG. Let there exist

an m point integration rule, R, over B

M

R(f) _	 aif(Xi)	 f(X)dV XiEB	 (2-12)

i=1	 B

and an n point integration rule, R', over G

R' (f) = I bj f(Yj }ti If(Y)dV Y j EG	 (2-13)

j=l	 G

Then the product rule of R and R' defined over BxG is given

by

M n
RxR' = I	 Y aib j f (Xi,Yj	

f 
f (X, Y) dV	 (2-14)

i=1 j=l	 B

From these properties, it quickly follows that if R integrates

f(l) exactly over B and R' integrates g(Y) exactly over G then

provided h (X,Y)	 f (X) g (Y) , RxR' integrate h (X, Y) exactly

over BxG_ A brief proof of this theorem given in [47] fol-

lows.

}
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Fig. 2-4 Three Linear Transformation Sten s Prior to
Feature ,Space Sampling.
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iI (X,Y) dV = I f (X) g (.Y) dv = f (X) dVB g (Y) d^]'G
BxG	 BxG	 B	 G

	

m	 n
-- I a f(X ) I b g(Y )
i=1 i -i j=1	 ^3	 (2-15)
M -n

	

^- I	 I a b jf(Xi)g(Yj)
i=l j=1 i

R x R'

Potentially, this rule can reduce the dimensionality of a

problem from N to 1. Such a property is not an intrinsic

feature of the remotely sensed data, however. Moreover, there

is no transformed space in which M(M>2) covariance matrices

can be represented in diagonal form.

Since the calculation of Pcjm. precedes the estimationz
of overallclassification accuracy, an M stage successive es-

timation procedure in M linearly related probability spaces

can be envisioned. For example, stage i consists of the fol-

lowing mapping

I

l? j ^ u j 	 hi

Mj	
TUj
	 j=1,2,... ,M	 (2-16)

f  = 1TEjo

where I is the eigenvectbr matrix derived from E i . Therefore,

in each transformed space, Ti(0), W  has a null mean vector

and a diagonal covariance matrix. Fig. 2-4 is a pictorial

representation of (2-16) for two classes. This unitary trans-

formation is linear, preserves the Euclidean distance and

i
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pairwise divergence and the probability of error is invariant

under such mapping. It will be shown that formulation of

P 	 Ti (2) will provide an N to 1 dimensionality re-

duction.

2.3.2 Discrete Space Approach

For any continuous formulation of a problem there exists

a discrete counterpart, specific choice of which is dependent

upon individual cases and requirements. Let 0 be the con-

tinuous probability space. A transformation, T, is required

such that in T(Q), r i can be completely described in a non-

parametric form, thereby bypassing the requirement for an

algebraic representation of r i . 7'pis desired transformation

would sample n into a grid of N-dimensional cells according

to a certain rule; thus, expressing the Bayes error integral

in the discrete space of T (Q) .

The sampling of the probability space is equivalent to

the discrete representation of the random variates along each

feature axis. The multispectral data is generally modeled as

a multivariate normal random process. What is required,

therefore, is a discrete approximation to a normal random

variable that would exhibit desirable limiting properties.

Let yn uB i(n,p).be a binomial random variable with parameters

n and p. Then x  defined by

Y	 nA
x - n
	

v	
Y = 0,1,2,...n

n np^	 n
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Fig. 2-5 Boundary Location Estimation.
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converges to xtiN(0,1) in distribution [481; i.e.,

lim Fn (x) -}F (x)
n--co

The convergence is most rapid if p = 1 . Then.

(Yn-n/2 ) 2
xn =	 (2-18)

The variance of x  is set equal to the eigenvalue of the

transformed E  by incorporating a multiplicative factor

() in (2-18) .

The segmentation of O by a union of elementary hyper-

volumes makes nonparametric representation of P i and its con-

tours feasible. Some comments regarding the structure of the

sampled n are in order. The coordinates of each cell's center

are known and given by (2-18). The spacing between the cen-

ters is readily shown to be equal to S. = 2 a. along the ith1 V—n 1
axis. The grid extent is therefore + Vn_ a  with n+l cells

along each coordinate axis. The simultaneous solution of the

set of M Nth degree polynomials is now reduced to the identifi-

cation of each cell with one of M partitions within Q.

Specifically, following the orthonormal transformation on mi

and sampling of n accordingly, each cell's coordinate is as-

signed to the appropriate r. This process is carried on ex-

haustively, therefore T i can be defined as a set such that

r  = {Uxn :x n  
E:r i }	 (2-19)

Fig. 2-5 shows a pictorial representation, of (2-19)	 The

description of domains of integration as a union of elementary

units alleviates the need for the precise knowledge of the

()PIIG]NAL PAGE Ib
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boundary location, although the sampling grid can provide an

estimate within one S. Once the exhaustive process of assign-

ment is completed P cjWi' the integral of f(XIw i) over r i , is

represented by the sum of hypervolumes over the elementary

cells within r..

Using this procedure, cumbersome implementation of

numerical integration techniques in multidimensions are

avoided. One of the main features of the orthonormal trans-

formations preceding the sampling process is the decoupling

Of E 1 , thereby generating the separability property of the

transformed fQXjw i) along each dimension. Invoking the product

rule and designating the domain of a cell, centered at the

origin within r i , as C i :

	

S 1 	 a2	 aN

j	

2	 2
	 f(XIw i )dx =	 f(xIJWi)dxir
	

f(x2 lwi )dx2 ...f 6 4 f(xNlwi)dxN

C1 -	 _a1	 _&2 

	

2	 2	 2
(2-20)

This unit of probability volume is equal to the product of

N one dimensional normal integrals, the value of which is

widely tabulated. Thus, no involved numerical procedure is

required to evaluate (2-20).

The relationship expressed in (2-20) is the building

block in the probability of error estimation. Referring to

this algorithm as a'Controlled Space Partitioning'(CSP) we can

write the conditional classification accuracy estimate as
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Fig. 2-6 A Conceptual Illustration of the CSP Error Estimation
Technique Using Two Features.
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i+ s2	 2+s2

Q 	 f	 S f(x Ito )I, (C)dx J	 s f(x 1w •1)I. (C)dxc wi cc	 c_ 1	 1	
7	 1 c_ 2	 2	 2

1 2	 2 2

SN	 (2-21)

N 2.... f	 s_N f (XI Wi)Ii(C)dxN
J c
N 2

n
PC 	P(w)Pic - i^1 	 c1mi

1 if C Sri
where	 Ii(C)

0 otherwise

C = The domain of an elementary cell

Fig•2-6 is a geometrical representation of (2-21).

2.4 Error Analysis

Formulation of a problem with inherently continuous par-

ameters in a discrete space as a means of approximation or

estimation of the end product necessarily incurs errors that

need to be studied. Error terms cannot be expressed in the

form of exact expressions and can only be bounded or put in

some defined statistical model; otherwise, the approximation

would be exact. Extension of the one dimensional integration

error analysis results does not appear to be possible due to

the lack of any correspondence between the unidimensional and

multidimensional integration domains. In the multivariate
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overestimation

Fig. 2-7 Type ST Error Structure.
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integration field, the errors studied are related to the simple

domains such as hypercubes, simplexes etc. [491.

There are basically two types of error encountered in the

implementation of the CSP algorithm. Type I error originates

in the one dimensional integration of a normal density function

over the region (a,b). This quantity is available both in tabu-

lar form and as FORTRAN callable subroutine subprograms which

are capable of supplying arbitrarily high accuracy results.

Type II error occurs only at the boundary of r  because the

sampled grid essentially estimates the location of such contours.

A self cancelling property of this type of error is brought about

by the geometrical structure of the regions when: (a),f(Xiw i ) is

integrated over the whole elementary hypercube instead of a por-

tion inside r  (grid point X  close to the boundary and Xn^ri);

and (b), f (X I w i ) is not integrated over a portion of r  (grid

point Xn close to the boundary but Xn^r i). (a) adds a positive

bias and (b) adds a negative bias to the result of integration,

Pc . For a sampling grid with fine subdivision and over the

ensemble location of all the boundaries, the events

{xne r J_ 	 xn iIXn near the boundary}	 (2-22)	
iF

have equal likelihood; hence; positive and negative biases

occur equally often. Fig. 2--7 shows the structure of type
Y

II error in 2-dimensions. 	 h

2.4.1 Statistical Properties of the Estimate

The error encountered in est,imating.the classification

error is primarily of type II. Much insight into the structure

a
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of this error is obtained by examining the problem in one

dimension. Let f(xlw) be a class conditional Gaussian density

function, N(O,l), and let x  be a fictitious unknown boundary

possibly separating w from some other population. A grid of

size n is set up and it is determined that x  er i and xn +10i
0	 0

Fig. 2-3. x  has equal likelihood of being inside or out-
0

side r i . Equivalently, it can be stated that x b is random

with uniform variations within one S, i.e.,

xbruU(xn - 2 , n + 2) 	
(2-23)

	

0	 0

The error in estimating the area of r  can therefore be repre-

sented as	
n

e = f f (x) dx	 (2-24)
x
n0

which, depending on xb , can take on either positive or nega-

tive values. The expected value of e is

_	 n +2 bx
e=	 o	 I f	 f (x) dxlf (kb ) dxb

no- 2	 no

xn +2
I	 a

S	 o
n -20

I ^0+2
Q(xn ) - S f
	 Q( b)dkb

o 	 $
xn -2

0

(2-25)
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The variation of a vs. x  is plotted in Fig. 2-9.

-0Examination of a shows that although small, it is

mostly negative. 	 its magnitude decreases with increasing

n and x  . These properties can also be deduced geometrically.
0

The negative bias is due to the folloT%ring obvious inequality

Q (a) -Q (b) >Q (c) -Q (d)

given that
a<b<c
c-a>0

d--b>0	 (2-26)

a,b,c,d>0

Fig. 2-8 shows two cases where the closest cell to the boundary

is considered either inside (xn E Ti ) or outside ( xn ^ ri ) the
O	 o

decision region resulting in an over and underestimation of

correct classification, respectively. From (2-26) it then

follows that the magnitude of negative bias is greater than

that of positive bias. Thus, this procedure gives estimator

with a net negative bias.

A different situation exists when the region of integra-

tion is doubly connected as in Fig. 2-10. In this case the

shift of a cell center from just inside the boundary to just

outside, produces an opposite effect. Whereas in the pre-

vious case such a shift would have reversed the sign of the

bias term from positive to negative with an increase in mag-

nitude, in thy : zew domain the net change in bias will be

positive simply because the inside-to-outside move now is
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Yno

Fig - 2-10 A Case of Net Positive Estimator's Bias.

I
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toward the mean rather than away from it.

in N dimensions the total error in estimating the

conditional probability of correct classification can be

represented by a weighted sum of the boundary errors,
NB

e  =	 wiei	 (2-27)
i-1

where NB is the number of cells along tba boundary, wi

is the weighting sequence and e  is the N dimensional error

associated with the ith boundary cell. In order to obtain

a variance expression for eT, the statistical properties of

ei need to be determined. From (2-22) it follows that the

location of the boundary is uniformly distributed within

one boundary cell width. in general,it does not follow

that-the volume error is also uniformly distributed within

one cell volume. This is strictly true only in cases where

the decision boundary and the boundary of a cell, are 'par-

allel'. Adoption of a uniform distribution assumption for

ei , however, provides a considerable simplification in the

derivation of an expression for the variance of the error.

with regard to the first expression for the variance of e 

it should be noted that the assumption of a uniformly

distributed e,a.. 
generates a variance higher than the true

value. Thus, the resulting expression can be taken as an

upper bound on the variance of e T. Let

ei ti u ( 2 ' _T)	 (2-28)



46

where v  is the volume of an elementary cell given by

N

v  - H d i	 (2--29)
i=1

The contribution of e  to the total integration error

should clearly be weighted to incorporate the effect of boun-

dary location relative to the mean of w i . An appropriate

choice for the weighting sequence wi is the height of f(X1wi)

at a particular boundary point. A weighting process such as

this effectively assigns a 'significance' to each e i . Although

the magnitude of e  may have been large in the context of

volume approximation of Fi , if the normalized distance of

su.-h cell to pi is large it generates negligible volume under

f(xlwi ) .

In order to obtain a variance expression for e  the small

bias is assumed negligible. The variance of individual er-

rors, e  is	 2

	

Varfei1 = v12	 ai l 	(2--30)

Therefore,
NB NB

Var{eT }	 E {e 2 1 = Ef ^	 Z wiwjeiej}
i=l j=l

NB 2 Z NB NBE W. e. +	 w.wje.ej	 (2--31)
i=1 z	 i=1 j

NB 2 2 NB NB
--	 wi ai + X	 I wiwjpij,i,j

i-1	 i=1 j=1
ir j

where p ij is the correlation coefficient between ei and e j . Ob--

taining an analytical expression for p ij in N dimensions is	 y
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theoretically feasible however its complexity considerably

diminishes the usefulness of (2--31). Because the p ij are

small for widely separated boundary cells, a reasonable ap-

proximation to the VarfeT } is given by

NB

VarfeT } =	 W. a.	 (2-32)

Expanding (2--32)

Nai = 12 ( II Si) 2	 (2-33)

-XTE-1X.
W , -	 N12 N	 e ^3
	 —3 X.Er	 (2-34)

(2	 a i 	 i
i=1

where TB is the boundary domain of r i . Substituting

S i = 
/-2^- 

a i in (2-33 )
Yn

N 2
a i	 12 ( H
	 2 

a i )
^.=1 3n

22N N 2

	

N IT a 	 (2_35)
12n i=1

Therefore, (2-32) is equal to

NB

Var{eT } = 12 (nir)N	 fi	 (2-35)
i=1

where fi is the exponential part of (2-34).

Tb

0 ^ 200F, Q

t

)

1	 1
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The variation of Var {eT } vs. n and N cannot be fully

explored due to the Ef t. factor which is problem-dependent.

However, it does follow that P c is convergent in the mean-

square sense;

E{ 1P c  - P c 1 2 } = Var{eT} ---> Q for n ^ -	 (2-37)

This observation is less than obvious since as n increases

so do NB and Efi and, hence, could potentially be self-

canceling. Although the increase of N B and n are monotonic,

experimental evidence suggests that N B as a percentage of cells

within r i steadily decreases so while more cells are allocated

to ri , comparatively fewer ones reside near the boundary.

Therefore, Eft only slows the convergence of the variance to-

wards zero. It also follows from (2-37) that variance de-

creases for high recognition rates (i.e., small fi).

2.5 General Comments

Formulation of a problem in an N-dimensional space re-

quires coping with situations not present in the single dimen-

sion case. In addition to the mathematical complexities, the

practicality of implementation of any method should be closely

examined. In particular, with the digital computer capability

and its cost as the ultimate limiting factor, the computation

time of processing in an N-dimensional domain takes on a prime

importance.

Techniques requiring exhaustive enumerations can be

potentially expensive, in many instances totally beyond the
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available resources. The implementation of (2-21) requires

processing of an N-dimensional grid of points. With (n+l)

cells along each axis, there are (n+l) N such points to be

allocated to their respective domains. in one dimension, very

accurate estimates can be obtained long before the size of

n+l presents any computational. difficulties. The multi-

dimensional case is different. The exponential rise of the

grid size with N can make the execution time prohibitively 	
i

long. This 'dimensionality effect' can effectively generate a 	 y

computational barrier and thus render the algorithm inoperative

if n is 'too large'.
i

The quality of the estimate as shown in sec. 2.4 is

dependent on the size of n; i.e., the grid fineness. So the

central question is whether n can be large enough to generate

a high quality estimate and yet small enough to make the

estimation process feasible. The sampling grid, the algorithm

and remotely sensed data itself have properties that help
a

answe'r this question in the affirmative. The current MSS

systew in operation collects data in four spectral bands. it

is believed that future space platforms primarily Landsat C

will be equipped with scanners having data collection cap--

ability not beyond five spectral bands. Therefore, N for all

useful purposes is limited to the 4 to 6 range. Actually,

optimum processes may not utilize all of these bands due to 	
J

their redundancy.

The next question is the relative magnitude of n. The

answer lies partly in the outer location of the desired

;
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boundaries and the fact that the sampling grid must cover the

entire relevant domains. It turns out that in most cases of

interest, Ti is a simply connected domain but Z  is a doubly

connected domain. This approach toward the evaluation of

the classification performance through the estimation of

probability of correct classification ensures that sampling

of the probability space is confined to a closed finite do-

main.of P i , thin alleviating the need to sample Z i , a far

larger region. Having established that r  is bounded in many

cases, the question now is whether the outer limits of the

grid will encompass the appropriate boundary and thus sample

r  thoroughly with a reasonable magnitude for n.

Define ge, as the extent of the sampling grid along the
z

ith transformed feature axis. From sec. 2.3.2, 
I ge i I = v ai.

Although no such quantity can be precisely defined for Pi,

let r
e,x 

be the outer limits of r  in some average sense.

Two cases can be distinguished: (a), re,<lge.I in which casez	 ^
clearly, the grid has sampled the entire domain of interest;

and (b), r ei>19ei l, a condition which either means that n is

exceedingly small or that 
Pei is located very many a's away

from u i . In this case any error committed but unaccounted

for, will have very small effect on the outcome due to the

negligible volume under a normal density function for any-

thing more than a few standard deviations from the origin.

Since in most applications n :B, the grid extent will be

>± 2.2a and will satisfactorily sample the entire domain of

interest.

A

I

A
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CHAPTER 3

Line Scanner Imaging Systems

The primary goal of a remote sensing system is tYe

collection from a scene of reflected or emitted electro-

magnetic energy in selected spectral wands. This task has

been traditionally accomplished by airborne photographic

equipment and is analyzed by photointerpretation tech-

niques. There are several major drawbacks associated

with such a method.

The sensitivity of photographic films is generally

limited to the near ultraviolet-near infrared band; there-

fore, night time operation is severely limited unless the

scene is externally illuminated. Clouds, fog and smoke are

opaque through this portion of electromagnetic spectrum.
i

Most importantly, handling of the film itself is awkward

and the accompanying telemetry problem can make its

deployment aboard a nonrecoverable vehicle unattractive.

Nonphotographic sensors overcome many of these short-

comings. Through the selection of the proper detector,

spectral coverage can be extended to microwave and beyond

where clouds and bad weather do not seriously hinder the

sensor's performance. Having the data in the form of an

electrical signal lends itself to efficient and powerful

i
p
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transmission and processing techniques.

3.1 Types of Systems

The majority of current remotely sensed data is ob-

tained in the ultraviolet, visible and infrared portions

of the spectrum by scanning systems. One of the earliest

of such systems was °Reconofax r operating in the visible

region [50]. it used either moonlight or an internal

illumination source to produce maps of . the ground scene

at night. Lack of detectors with rapid rise time, produced

imagery with unsatisfactory resolution compared to photo-

graphic methods. As a result of improvements in detector

technology, current scanning system can produce imagery

of high quality within a reliable, compact and fairly simple

structure.

3.1.1 Mu.ltispectral Scanners

A widely used earth resources data gathering system is

the electro-optical scanning radiometer otherwise known as

a multispec-ral scanner. A MSS is generally an object

plane scanner [. 511 . and consists o . a rotating mirror and a

telescope -that directs reflect-1,1 energy from a small portion

of the object plane. A bank of detectors responding to

different wavelengths receives the incoming radiation

which, after detection, sampling and quantization,. is tele-

metered to the ground station. when such a system is placed

1
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in an aircraft or an earth orbiting satellite a strip map

of the ground scene is produced. The cros-i-track coverage

is performed by the oscillating mirror and vehicle motion

accomplishes the along-track coverage. Contiguous coverage

is required to prevent underlap. This can occur if the

satellite speed is too high or the mirror's rotational

rate too slow.

This simple structure can be upgraded to include the

currently employed scanners in which an n sided mirror

rotates at a rate of r revolution per second thereby

producing n lines for each rotation. There are a total of

d detectors and, thus, d lines are scanned by each side of

the mirror. A total of nxd lines are scanned for a full

rotation.

Let k T be the dwell time of a detector on each

resolution element and V and H be the speed and altitude

of the vehicle, respectively. it can be shown [50] that

subject to a dwell time not less than k T and a no underlap

scanning mode, the angular resolution of an MSS has a lower

bound given by

0 : (2 ITk/nd) (V/H) ( T )
	

(3-1)

with equality for contiguous lines. From a hardware point

of view, the adjustable parameters are limited. V and H

are interdependent and are determined by orbit considerations.

T is a property of the detector. n and d are variable
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parameters to choose as a means of the MSS instantaneous

field of view (IFOV) control.
3

One of the most widely used operational remote sensing

instruments is the Landsat multispectral scanner. Landsat,

an Earth resources monitoring satellite, is positioned

on a polar orbit at an altitude of about 900 km with a
7

complete global coverage cycle of 18 days. The vehicle's

operation is chosen so as to provide a 14% scan overlap.

The MSS collects data in 4 spectral bands, two visible and

two near infrared, all in spatial registration. Six lines

are scanned simultaneously and with an IFOV of 87 Arad

providing a ground resolution of about 80 m, with a total. 	 y
3

cross. -range width of 185 km, The Skylab 5192 scanner pro-
9

vided similar resolution with 13 spectral bands from 0.5 pm

to 12.5 um. Among other. MSS systems is the Thematic Mapper
Al

for Landsat D. Spectral coverage is extended to 7 bands	 s

from .51 liars to 2.35 Um with some gaps plus a thermal band
a

from 10.4 pm to 12.6 pm. Angular resolution of 33 Arad will

correspond to a ground IFOV of 30 m at a 900 km altitude

[521•

3.2 System Modeling of a Multispectral Scanner System

The objectives outlined in the introductory chapter

required.a parametric representation and evaluation of the-	 i 	

A

i

MSS performance. Like any other complex and integrated i

system,.the multiplicity of parameters is numerous.. Sensor

t
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choice, band selection and telemetry links, are but a

few of the interacting components of the system design.

From the viewpoint of information extraction and pro-

cessing, however, the spatial characteristics of a

scanner along with the spatial resolution and additive

noise take on a particular significance.

Modeling of the MSS by a linear system opens the

way to the application of existing techniques in system

theory. Since the classification accuracy is totally

a function of class statistics under the Bayes rule,

examination of the random proces_• transformation

carried out by the scanner PSF can be most revealing.

Topics of particular interest are

1. Effect of the scanner 1FOV on population
statistics.

2. Effect of data spatial correlation on the
classification accuracy.

3. Effect of signal-to-noise ratio on
classification accuracy.

4. Trade off between spatial resolution and
SNR.

5. Effect of spatial resolution on
classification accuracy.

6. The interactive relationship between IFOV,
spatial correlation, class statistics, SNR
and classification accuracy.
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3.2.1 MSS Spatial Model

The incident electromagnetic energy after reflection

from a target is detected by the scanner SFOV. The ulti-

mate goal of such operation is a perfect reproduction of the

radiant energy. This objective cannot be accomplished with

any physically realizable system. Finite IFOV, required

by detector sensitivity among other things, keeps the
ground resolution at a finite level. The resolution 	 -

degradation can be subsequently dealt with through various

image enhancement techniques [53,54].
i

The averaging operation performed by the scanner

point spread function can be modeled by a linear shift

invariant multiple-input, multiple-output system. input

signals consist of N random processes in N spectral bands

corrupted by atmospheric noise and scattering. Each input

is linearly transformed by the scanner PSF and additional

detector and pre-amp noise further contributes to the signal

degradation.

Fig. 3-1 is a basic block diagram of this spatial

model. h(x,y) is the two dimensional PSF to be specified

for any desired system. in particular where the MSS is

concerned, the assumption of a Gaussian shaped IFOV has..been

widespread. The justification for this is essentially

satisfactory experimental resul.ts . and. perhaps equally
9

important is the mathematical convenience of this model.

Note that the results obtained hereafter are fundamentally

ORXGIIq PAGE lb
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Fig. 3--1 MSS Spatial Model as a Linear System.
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independent of the functional form of the PSF. However,

using this assumption, it is frequently possible to

obtain closed form expressions and to make comparisons

with alternate methods a majority of which adhere to

the same assumption.

In a two dimensional plane a Gaussian PSF is specified

by the following relationship

x2 w y2
2	 2

	

h(x,y) = cle ro a ro
	

(3-2)

The important ;,parameter is ro , PSF's characteristic

length, which in effect determines the ultimate ground

resolution and noise content of the collected data.

Increasing ro results in a deterioration of the former

but improvement of the latter. The significant

property of h(x,y), is its separability along the

cross and along-track directions resulting in some

simplifications of the analytical relationships

governing the scanner operation. In practice, h(x,y)

is truncated at some point, usually 0.1 h(0,0), to keep

the computation time down. The noramlizing constant

cl , provides a unity gain for this averaging operation

(Appendix A) .
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An alternate PSF but not as yet operational aboard

Landsat is the rectangular function defined by

I/r2 	 fx(,fy( <ro/2
h (x , y) =

1	 0

The definition of the IFOV adopted here for either a

Gaussian or rectangular PSF is such that IFOV =r 0

3.2.2 MSS Statistical Model and Spatial Correlation

As the input random processes undergo a linear trans-

formation, so do their statistical properties. in order to

investigate the various interactive relationships outlined

previously, an understanding and knowledge of the signal

flow through the scanner is essential_.

Relating the statistics of the multispectral signal

at the scanner output to the corresponding part at the input

can be accomplished in various ways. it has been pointed

out that a two dimensional convolution is equivalent to a

matrix multiplication in which one matrix is block circu-

lant [551. Let F and G be the input and output matrices

arranged in P2 x1column vectors. Then they are related

by
G = HF
	

(3-3)

where PSF matrix H, has the following structure
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Ho HP-1	
....

Hl

Hi Ho	 .... H2H T

HP-1 H?-2 Ho

Each element in H is itself a PxP matrix. For a particular

case, a selected number of fields can be chosen and pro-

cessed by (3-3) to , produce the G matrix followed by the

calculation of a pooled auto and cross spectral correla-

tion matrix.

This method has the advantage of requiring no a priori

spatial information yet its data dependent nature makes

the results of any study limited to the particular data set

used. The more general approach, providing possibly closed

form expressions for the quantities desired, is the appli-

cation of linear system theory techniques to the MSS. This,

however, requires some a priori specification of data pro-

perties in an algebraic form, the main item being the s pa-

tial correlation model.

Agricultural crop planting, natural formations of ter-

rain, water supplies, etc. all exhibit a certain homogeneity

in their structure; therefore, it is expected that the re-

flected energy sensed by a scanner will show the same pro-

perty in the form of a correlation between adjacent pixels

of the final digital data set. Comparatively speaking,

spectral classification has been much more widespread than
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spatial classification, resulting in less than a full

attention to the spatial properties of remotely sensed data.

it has been suggested, however, that the experimentally ob-

served correlation functions approximately follow a decaying

exponential [56,57]. This assumption implies a Markov model

for the spatial characteristics of the data. Let Rk be

the spatial correlation matrix of the kth spectral band

Rk = [rij ] i,j = 0,1, ..., no-1	 (3-5)

Under the two assumptions: (a), Markov correlation struc-

ture; and (b), separability along the cross-track and

along-track directions, Rk, 	 be specified as follows

Rk = [ri ,] = p	 p3	 i,j = 0 1 1, ..., no-1	 (3-6)
k yk

where p
Xk 

and pyk are the adjacent pixel correlation

coefficients along the respective directions given by

px = e -akk
k

(3-7).

e-bkk
py

k

Similarly, the spatial crosscorrelation matrix between two

"	 bands p and q is defined as

6q = [r	 Pi_ px	 p	 irj =0 r l r --r no-1	 (3-8)
Pq Pq

where
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-a

P	 = e pqxpq

(3-9)

-b
P	

_"e 
pq

Ypq

In order to examine the validity of the Markov model

and the separability property of the correlation functions,

a sample aircraft MSS data set is selected and the estimate

of the auto and crosscorrelation functions in two spectral

bands, one in visible and one in near infrared, is obtained

by a Jagged-product sum method [581. The separability char-

acteristics can be checked by completing the entire cor-

relation matrix, R, using [rid I = [rir^ I and comparing it
a

to the experimentally observed quantity. Let E be the error

matrix associated with -this operation, then

E	 I[r
ij

I -- Irir^I!	 ( 3- 10)

The results are shown. in Fig. 3-2 through Fig. 3-4 and

Tables 3-1 through 3-3. Although the shape of the

correlation curves themselves indicate an approximate

exponential behavior, a quantitative weighted least-squares

fit shows that this assumption is indeed valid. The

differential between the correlation of the lines and
:a

columns of this data set stems from the fact that the 	 a

analog signals are sampled in away that generates unequal

separation between the corresponding ground resolution
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Tab le	 3-1	 Error Matrix for Correlation Function Approximation for

Channel 2.

1.00 0.95 0.87 0.79 0.71 0.64 0.58

0.81 0.79 0.74 0.67 0.60 0.53 0.48

0.54 0.55 0.52 0.48 0.42 0.31 0.32
Rx 0.34 0.36 0.35 0.33 0.29 0.25 0.21

0.25 0.27 0.28 0.27 0.25 0.21 0.18

0.22 0.24 0.25 0.25 0.23 0.21 0.18
0.16 0.19 0.20 0.21 0.20 0.19 0.16

Rz

1.00 0.95 0.87 0.79' 0.71 0.64 0.58
0.81 0.77 0.70 0.63 0.57 0.51 .47
0.54 .51 .47 .42 .38 .34 .31
0.34 .32 .3 .27 .24 .21 .2
0.75 .23 .21 .19 .17 .16 .14
0.22 .2 .19 .17 .15 .14 .12
0.16 .25 .13 .12 .11 .1 .09

E z 3U 1

0 0 0 0 0 0 q

0 2:6 5.4 5.9 5 3.7 .2
U 7.2 9.6 12.5 9.5 8.1 3.1
0 11.1 14.2 18.1 17.2 16 4.7
0 14.8 25 29.6 32 23.8 22.2
0 16.6 24 32 34.7 33.3 33.3
0 24. 35 42.8 45 47.3 43.7
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'fable 3--2 Error Matrix for Correlation Function Approximation for

Channel B.

R..a

Re

1.00	 .9	 .77	 .64	 .52	 :41	 .33

.71	 .68	 .5.9	 .46	 .37	 .28	 .20

.43	 .43	 .38	 .3	 .21	 .12	 .06

'"	 .33	 .35	 .33	 .27	 .19	 .12	 .06
.30	 .32.	 .31	 .28	 .23	 .17	 .12
.22	 .75	 .26	 .24	 .20	 .15	 .11

.10	 .13	 .14	 .13	 .11	 .08	 .05

.00	 .9	 .77	 .64	 .52	 .41	 .33

.71	 .64	 .55	 .45	 .37	 .3	 .11

.43	 .39	 .33	 .27	 .22	 .17	 .14

.33	 .3	 .25	 .21	 .17	 .14	 .11

.30	 .27	 .23	 .2	 .15	 .12	 .09

.22	 .2	 .17	 .14	 .11	 .09	 .07
A	 .9	 -o7	 .06	 .05	 r 04	 .03

I',

.. s

0	 0	 .	 0	 0	 0	 0	 0
0	 5.8	 6.7	 6.2	 0	 6.6	 45
0	 9.3	 13.1	 io	 4.5	 30	 57
Q	 14.2.	 24.2	 22.,2	 10.5	 14.2	 45.4
0	 15.6	 26.5	 34.7	 29.4	 25
0	 20	 34.6	 41..6,	 45	 40	 36.3
6	 30.7	 5o	 53.8	 54.5	 50	 40
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Table	 3-3	 Error Matrix for Cross Correlation Function Approximation

Between Channels 2 and S.

1.00 .92 .81 .69 .59 .50 .44

.93 .88 .78 .67 .56 .48 .41

.73 .71 .64 .54 .44 .36 .3

R .48 .47 .43 .36 .28 .21 .16

.30 .31 .29 .24 .18 .12 .08

.23 .25 .24 .21 .16 .12 .08

.22 .24 .24 .22 .19 .15 .12

R26

1.00 .92 .81 .69 .59 .50 .44

.93 .86 .75 .64 .55 .46 .4

.73 .67 .6 .5 .43 .36 .32

.48 .44 .38 .33 .28 .24 .71

.30 .27 .24 .2 .17 .15 .13

.23 .21 .18 .16 .13 .11 .1

.22 .2 .18 .15 .13 .11 .1

E28 -

0 0 0 0 0 0 0
0 2.2 3.8 4.5 1.8 4.16 2.43
0 5.6• 6.2 7.4 2.3 0 6.75

0 . 6.4 11.6 8.3 0 17.5 23.8
0 13.0 17.2 16.6 5.5 20 38.4
0 16 25 23.8 18.7 3.3 20
0 16.6 25 31.8 31.6 26.6 16.6

a

9
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elements along the scan swath and vehicle down track motion.

The unusually high cross-track pixel-to-pixel correlation

is attributed to the use of very high resolution aircraft

data. For satellite imagery a px k = 0.8 is a more common

value.

The separability property of the correlation matrices

appears to be a reascnable assumption according to the

correlation error matrices. As will be shown later, this

is not a feature peculiar to this data set but is observed

throughout most of the multispectral data bases. The main

property exhibited by E, is that the separability-assump-

tion becomes progressively invalid for higher lag values.

This, however, is not particularly detrimental to the

correlation model proposed here due to the fact that although

the absolute error term expressed in percentage can be rela-

tively high, the normalized values of the correlation func-

tion in the range of concern are themselves quite small,

and thus, carry little weight in influencing the final

results.

With the correlation model well defined, the output

spectral covariance matrix can be specified. Let R
gigj

and 1
9 
be the output spatial correlation matrix between

spectral bands i and j and output covariance matrix, re-

spectively, then

19(i,j) = [Rg g.(0,0)I 	 i,j =1,2, ...,N	 (3-11)
i a
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Note that when considered over the ensemble of all the

bands, matrix I is an (noxN)(noxN) partitioned matrix,

given by

R̂g

[1gI	 [ggg]	 ..• [^gl
11	 1z	 1N

[R	 [R	 [

g2gl 	 ^g2g2	 -92gN

N 1

(3-12)

where [Rij l is the n0xn0 spatial correlation matrix. 1 
however, is only a function of zero lag elements of R ,

g

R
gigj 

(0,0). Therefore, only NxN out of (n 0xN)(n0xN) entries
`- 
of R  need be calculated. It is clear that the spectral

correlation matrix is a small subset of spatial correlation

matrices `hose elements have the following locations.

Ig (i, j ) = Rg (i--1) no , (J-1)n0)	 i,j =1,2, ..., AT (3-13)

The analytical relationship between the in put and out-

put correlation matrices of an N-band MSS is investigated

in Appendix A. Specific results are obtained for a

Markov-correlated data set, a Gaussian and a rectangular

shaped scanner XPOV. The main result obtained there is a

scanner characteristic function Ws (T,n,a,b) given by

a
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2 2	 ^.ir 2a• ro	 0-^^---- 3 T	 +a . T

Fys (^,n,a^► b )= e 2	 ^zQ^aii 0 r "^' 2	
as Q(aii o+r) x

a	 o

b,2r2	 r2
_ ^

2 0 
-biro	 2 0 ii" Q (b..r + n)

e	 n (bii o r ) +e	 ii o 0
a

(3-14)

where aii and bii are the parameters of input spatial cor-

relation function determining the adjacent pixel correlation

in band i, r  is the scanner PSF characteristic length

and Q is as defined earlier.

Ws plays a central role in the spatial modeling of a

multispectral scanner. It is a function by which all

channel variances and band-to-band correlation coefficients

are weighted to produce the corresponding output quantity.

Specifically,

a2 -Ws (0,0,aii ,bii ) 6f. i=1, ..., N
gi 	 I

Ws 
( O ,0,a i , bi )

s	 ^ ^	 ]	 J	 s ^	 ir7=1.i ..., N

gigs	 W 
Z 0 r 0 `aii'bii ) x f i 3	 JM

W1 ( Q , O , a j j rb jj )	 (3-15)

OF ^^'
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where sfifj' s gigj ' (aii'bii) and (ai j ,bi j ) are the input

crosscorralation coefficient between bands i and j. The

corresponding output quantity, the parameters of the band

i autocorrelation function and the parameters of bands i

and j crosscorrelation function, respectively.

Evaluating Ws (T,n,a,b) for all values of T and n can

complete the entire output spatial matrix Rg The Bayes

classifier, however, is not a spatial classifier but, rather,

is a spectral one and, as a result, the knowledge of an

NxN spectral covariance matrix is sufficient for classifi-

cation purposes. As it was envisioned at the beginning,

developing a parametric model provides a significant flex-

ibility in the system analysis. For example, W s can

selectively supply any entry of the output spatial matrix

desired. Here, Ws (T,n,a,b)l

	

	 can complete the output
^r-n-0

spectral covariance matrix
(a2 +b2 ) r 2

Ws (O,0,a,b) = 4e	 2	 o War 0 )Q(br0 	(3-16)

For example, when the input random process is a two spectral

band data set, the output spectral correlation matrix,

S is given in terms of 
Sf 

as follows:

a
5
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1	 s fl 
f2

^ r	 1

1	 is(0'0,al2'bl2)	
s

WO, 0,all,bll)T^s(0'0'a22'b22) flf2

5

l

(3-17)

It is clear that, depending on the particular value of

Ws , the output correlation matrices, and hence, classifica-

tion accuracies will be modified. The variations of W as a
s

function of scene correlation and scanner spatial parameters

can be very illuminating. For a Gaussian scanner PSF, Ws

is plotted vs. the sample-to-sample correlation for a fixed

line-to-line correlation. The lFOV is used as a running

parameter, Fig. 3-5 through 3-12. The adjacent sample

correlation coefficient ranges from a near white noise 0.1

to total correlation of 1 (constant signal amplitude).

The adjacent line correlation coefficient extends from 0.55

to 1. Similar plots are shown for a rectangular PSF, Fig.

3-13 through 3-15. Examination of these results reveals

several important features: (a), Since 0 iws S 1, the out-

put channel variances are always smaller than the corres-

ponding input quantity. This is an expected result due to
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the averaging operation of the scanner, (b), for a fixed

sample-to-sample correlation the spectral band variances

at the output increase with decreasing IFOV with an accom-

panying degradation in classification accuracy, (c), for

a fixed IFOV, the channel variances increase with decreas-

ing scene correlation. These observations apply to any

one of the cases with a fixed inter-line correlation.

Consider two cases in which IFOV and sample-to-sample

correlation are faxed, then a higher adjacent line

correlation produces an increase in the output band variance.

The variations of the spectral correlation coefficients

between bands are similarly determined. From (3-17),

depending on the parameters of the correlation model, the

ratio of two characteristic functions can potentially

either increase or decrease the spectral band correlation.

3.3 Noise in Multispectral Scanner System Modeling

Random noise is the ultimate limiting factor in a data

transmission and processing system. Although the per-

formance of remote sensing systems is affected-by many

other parameters, additional noise entering the system at

various stages can have a significant impact on the final

analysis of the data. Hence, no model would be complete

without the identification of the noise sources and deter-

mination of their contribution to the system performance

degradation.

k
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There are two broad categories of noise generating

sources: external and internal. External noise is primar-

ily caused by the atmosphere in the form of molecular

absorption and scattering. In the case of the MSS in Landsat

there are two major absorption bands at a wavelength of

about 0.66 um due to the present of oxygen and water vapor

which result in an attenuation of up to 100 or more for a

vertical path from the surface of the earth to the platform.

Scattering is the major cause of attenuation of the

reflected energy. It has been experimentally observed that a

combined Rayleigh and Mie scattering can cause up to 40%

transmission loss through the atmosphere at 0.4 um with a

decreasing effect at higher wavelengths [597. A designer

has little influence over these natural phenomena and

can only select appropriate windows in the atmospheric

transmission spectrum to minimize absorption and scattering.

In view of this situation consideration of external noise

sources will not be pursued further.

3.3.1

The noise generated

primarily of two types:

sors in the detection sti

and (b) the quantization

version process prior to

stations.

System Noise

within the scanner subsystem is

(a) noise introduced by the sen-

age of the incoming radiation;

noise developed it the A/D con-
transmission to the ground



a

Detectors are the most basic and crucial elements in

a scanner system. initially, thermal detectors, in which

the impinging radiation heats a sensitive element and a

temperature-dependent property is monitored, were in wide-

spread use. The advent of high speed scanning mechanisms,

requiring extremely short dwell time on a ground resolu-

tion element, required detectors with much higher sensitivity

than thermal detectors. Photodetectors, where the photon

energy in the incident radiation produces free charge

carriers, are now primarily used in visible and infrared
detection stages and provide time constants of the order of

nanoseconds. Their disadvantage, compared to thermal

detectors, is their limited spectral -7esponse and in most

cases they require cooling. The currently operational

Landsat-2 employs photomultipliers for the bands 0.5-0.63.¢[x,

0.6-0.7jim, 0.7-0.8um, and silicon photodiodes for the range

0.8-1.11im. Landsat-C will carry a thermal band, 10.4-12.6pm

using two mercury-cadmium-telluride detectors [601.

The noise generated by a detector is a combination of photon

and photomission noise. Let c<1 be the photocathode effi-

ciency of a photomultiplier with a gain Gn , the sampling

time T, the charge on an electron ge = 1.6x10
-19 coulomb and

the signal current out of the detector, is. The signal-

to-noise power ratio at the output is given by [611.

SNP. = is (G-1) T/ge (L+E:) Gn+1
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The sampling time per detector, T, for the Landsat MSS is

about 0.4 us. Assuming some typical values for other

parameters:

Is = 1 MA

G = 3

n = 10

the SNR at the detectors output is approximately

SNR ti 42 dB	 (3--19)

The next noise source is the A/D conversion process

where analog signals are sampled and quantized to 2 B Levels,

each B bits long. The performance of the quantizer can be,

evaluated in two ways. It is clear that the signal pre-

sented to the digitizer is already corrupted by detector

noise, so the signal plus noise is actually being quantized

and assigned to one of the 2B levels. Therefore, the

presence of noise makes this assignment subject to a finite

probability of error thus affecting the performance measure.

The second method simply involves the specification of

noise power introduced by a uniform quantizer and is given

by [62]

6n = Q2/12	 (3-20)

Where A is the quantization step size. Defining a balanced

system in which the detector and quantization noise are

Y7

i
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equal, the combined SNR is therefore

SNR ti 39 dB
	

(3-21)

The data generated by Landsat is quantized to one of

64 levels (6 bit per pixel) with A=1. In terms of the

first performance measure, the assumption of equality of

quantization and detector noise contribution to total

system noise, implies that at the quantizer input

(3-22)
n

where ^P is the ratio of step size to rms noise. For this

particular value of ^, the probability of the 6th bit being

incorrectly assigned is 0.12 and essentially zero for 6th

and/or the 5th bit [63,61].

Random noise in the context of multispectral remotely

sensed data takes on a particular role. In the more clas-

sical applications of pattern recognition such as an M-ary

communication channel employing one of M equally likely

and known signals, noise is identified as the primary

limiting factor in detecting the transmitted message with

zero probability of error. The distinction emerges at this

point that multispectral data is itself a realization of a

stochastic process and as such, there is an inherent finite

probability of error, regardless of noise, associated with

the testing of hypothesis. In the analysis of the data,

the noise and signal statistics will be merged and represent
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Fig. 3-16 Effect of Input Noise on Scanner Output
Class Separability.
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the Population statistics and if the additive noise has

Gaussian properties, the populations will still be normally

distributed. in fact, it is plausible for some other

hypothetical class to have identical statistics without

noise as a part of its own pro perties. Therefore, a 'noisy'

class can potentially be as separable as another 'noise-free'

population.

The additive random noise has two major impacts on the

statistics of mult.i.spectral data. The obvious one is the

broadening of the distributions, resulting in more inter-

class overlap hence a higher error rate. The second effect

is on the data spatial correlation where the adjacent pixel

correlation decreases with increasing noise power. Consider

two uni.vari.ate populations, Fig. 3-16, with equal variances

where the first class is corrupted by random additive

Gaussian noise. After transmission through the scanner,

according to the properties of Ws , w1 emerges with a

smaller variance than w 2 with corresponding classification

accuracies, 
Pclwl 

and Pcl	 Consider two other populations,
2

wl and w2 with identical variances such that

Var{wi} = `Tarfw2} = Varfw l j = Varfw2 }	 (3-23)

where neither wl or w2 are affected by random noise. There-

fore,

OglGiNAL PAGE Ib
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Pxlw
l 

> Px1W	 (3.24)
Z

and similarly for P 
Yl w	

At the scanner output, the clas-
,l

sification accuracies are 
PG mt 

and Pc 	. From the spatial
y I 1	 2

correlation properties of w l and w 2 expressed in ( 3-24)

and W it is clear thats

Pc m ' PC `	 ( 3-25)
I l	I wl

Does this mean the noisier the data the better? In terms of

intrinsic classifiability of a population maybe but the

cauestion is what is being classified. Random noise can

alter a statistics to the point that it will no longer

represent the specific class under consideration and in

fact in a multipopulation environment, the modified

statistics could approach those of another existing popu-

lation and thus increase the overall error rate not to

mention the esthetic degradation of the image caused

by it.

Another topic to be considered and defined is the term

signal-to--noise ratio. It is frequently desirable to

examine the performance of a system in a variable noise

content environment. When the subject is the actual data,

it should be noted that one is already dealing with a
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noisy signal and, therefore, any additive noise will be in

addition to the existing quantity. Let R be the noisy

data, S the signal and N the noise, then

R(x,y) = S (x,y) + N(x,Y)	 (3-26)

The artificial noise N' is added to R to produce R'

R' (X, y) = R(x,y) + N' (X, y)	 (3-27)

2	 2	 2	 2
The (SNR)' = ffR/aN r and SNR = Qs/aN , are related by

2

JSNR) ' _ -- Q- N - + SNR	 (3-28)
aN'

If the noise content of the data is considerably smaller

than the added noise, then (SNR)' ti SNR.

The way to determine the noise power to be added to

the multispeetral data for simulation purposes is , open to

discussion. Consider a frame of data, R(x,y), containing

M populations. A particular SNR can be specified and

from that the noise variance derived. The signal variance,

however, is a pooled average of all the class variances and

for that matter the given SNR does not hold for any one

of the populations. Another alternative considered in [64]

is to measure noise solely on the basis of its variance.

The definition adopted here is to base the variance

of the signal on the entire picture frame and in effect

lump the individual class variances that may be present in

i
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the particular data set. The reasoning behind this approach

is that long before any knowledge is available about the

population structure of a data set, random noise is already

added to the signal; therefore, any class -dependent defini-

tions of SNR would be unrealistic. These considerations are

primarily applicable to actual data sets. in a highly con-

trolled simulation environment, however, some or all of the

above restrictions can be relaxed. For example., noise can

be added to each class in different quantities in order to

observe its effects on the classifiability of one particular

population.

The next question to be resolved is the location, in

the MSS spatial model, at which this definition of SNR

applies. In Fig. 3-1 additive noise could enter both at

the input and the output of the scanner system. While this

is a realistic model, from a practical point of view the

input noise does not limit the system performance so much

due to the following reasons. First is the fact that other

noise sources involved; i.e., quantization and detector-

noise are generally more dominant than any other disturbance

arising from the atmosphere during normal operating condi-

tions. Second, and more importantly, is the MSS response to

a white noise random process. It has been pointed out that

the variance of the output process is proportional to the

input adjacent pixel correlation. The variation of W vs. ps

indicates that when the input scene displays little spatial 	 ^,
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correlation, the varaiance of the output process is a very

small fraction of the corresponding input quantity. 	 Let

f (x ,Y) , Nf (x ,Y) , f' (x,y) and N f ' (x,y) be the input random

process, input additive white noise, the output random

process and the noise component of the output signal

respectively, then
3
j

i

f '(x ,Y)	 = f(x,Y)*h(x,Y)	 (3-29)

Nf ' (x, y)	 = Nf (x, y) *h (x, y)	
(3-30)

i	Define	 (SNR) f 
W Var{f (x,Y))/Var{N f (x ,Y) )	 and

7

(SNR) f ' = Var{f'(x,y)} /VarfNf '(x,y)).	 The following in-

equalities hold

Var{f' (x,Y)) < Var{f (x ,Y) )	 (3-31)
J

VarfNf ' (x,Y) } << VarfNf (X,Y) )	 (3-32)

hence

(SNR)	 '	 »	 (SNR)	 (3-33)f	 f 3

It then follows that the noise component of the output pro-

cess (prior to quantization and detector noise) is quite

negligible and for all practical purposes can be neglected.

Random noise generated in the detection stage of the

+	 incoming signal is, therefore, the major disturbance factor.

Having narrowed the noise contribution to one source, the

logical definition of SNR would be the ratio of MSS output

variance (negligible noise content) to that of quantization

and detector noise (Ndq); i.e.,
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(SNR) o = Varff' (x,y) }/VarfNdq (x,Y) }	 (3-34)

Note that for a fixed noise power, (SNR) o is always smaller

than (SNR) i , the input signal-to-noise ratio

(SNR) i = Var f f (x,y) }/Varf Ndq (x,Y))	 (3-35)

Since

Varf f' (x, y) } = WSVarff (x,y) } < Var f f (x,y) }	 (3--36)

hence

( SNR) o = Ws ( SNR) i	 (3-37)

OV



CHAPTER 4

Experimental Evaluation of the Parametric

Multiclass Bayes Error Estimator

An experimental investigation was carried out to con-

firm the proper operation of the C5P error estimation

algorithm described in Chapter 2. in order to satisfactor-

ily accomplish the task, as much peripheral uncertainty

as possible must be eliminated so that any deviation from

the desired result can be traced directly to the methodology

or the computer codes. This requirement eliminates the use

of real data which is likely to have characteristics that

are highly dependent on outside and generally uncontroll-

able elements. A more satisfactory approach is the

generation of a completely synthetic data base with known

and prescribed properties. After the validation process

has been successfully completed, actual Landsat data

will be employed and the probability of correct classifi-
cation for the various populations within that set

estimated by a count estimator and the CSP estimation
technique and the results compared.
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4.1 Description of the Data Base

The generation of a synthetic data base requires con-

trol of two characteristics; spectral and spatial. Stage I

simulates M populations with N features each of which has

a specified multivariate normal density function.

Let u and E be the desired mean and covariance matrix.

The following linear transformation on a random vector

XuN(0,1) produces Y-vN (M,E)	 -

Y A X + p

where A is the square--root matrix associated with E, i.e.,

AAA = E

the number of samples per class is generally decided by the

examination of histograms as a check for normality of the

statistics. No attempt was :rude to incorporate the

geometrical shape as a factor in generating the random

field and any specified number of lines and columns in a

rectangular array of points can be produced. Statistically,

this data set represents an 'ideal' data set except for

the lack of any serial correlation in Y caused by the same

property in X. The almost zero pixel-to--pixel correlation
a

is immaterial due to the fact that the Bayes spectral class-

ifier and the CSP error estimators do not utilize any spa-
	 G

tial correlation information available for the data. A

schematic diagram of the entire data base simulation and
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model evaluation is shown in Fig. 4-1.
	 sy

4.2 CSP Error Estimation Model: validation and Checkout

With the probability of correct classification of the

various populations in a data set as the prime performance

index, the M-class, N-feature Bayes error estimator

developed in Chapter 2 comprises the basic tool by which the

MSS system model is analyzed. A comprehensive set of test

procedures is required to verify the proper operation of

this algorithm and to observe its response to variable

operating states.

The merits of a simulated data base were discussed in

sec. 4.1. The question raised now is how to select the

features associated with such a base. In addressing this

question, the following should be kept in mind. The main

purpose Isere is the validation of the error estimation model,

independently of other system components. Therefore, the

test populations need not and, indeed, cannot be 'representa-

tive'of the classes found in the multispectral data. Hence,

any conclusion drawn from the results serves only to

evaluate the performance of the algorithm. In generating

the simulated data, however, certain general guidelines

were followed.

1. The minimum number of populations should be 3
and the minimum number of dimensions preferably
be the same.



Fig. 4-1 The Block Diagram of the entire MSS Simulation Procedure.
w00
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2. The structure of the class statistics should lend
itself to logical and simple manipulation of its
parameters.

3. A separability measure should be defined that would
reflect the changes in population parameters.

As an initial condition, three classes arranged in a

simplex are considered, Fig. 4-2. 	 This arrangement keeps

the computation time low thus allowing the examination of

the algorithm's performance for fine sampling grids, allows

systematic parameter variation by assigning the mean vectors

to different coordinates along their respective feature axis

and maintains a geometrical insight as the population

statistical structure is varied. Two basic categories are

considered: (a) constant covariance matrices, variable

mean vectors; and (b) constant mean vectors, variable

covariance matrices. Because of the multi plicity of

parameters describing the class statistics, it would be

desirable to have a separability criterion that would lump

all of the variables together and generate a single number

after each change.

There are a number of separability mea:,sres to choose

from. Bhattacharyya distance (B-distance) and divergence

are the most notable. The former criterion will be adopted

here mainly because it provides an upper bound for the error

probability which can be compared with other error estimators

examined here. Let the two populations w 1 and w 2 be

distributed according to N ( p1, 1) and N ( p 2 , 2 ) . Then J, the

ORIGINAL PAGE LS
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Fig. 4-2 The Configuration of Test Case Mean. Vectors
Arranged in a Simplex.

I
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B-distance, and Pe , the resulting upper bound on the proba-

bility of error, are given by [411.

L+ E 
-1	

1
z ( E +E )

j = $ (41-u2)	
1-2`_Z)
	 E(ul-u2)+ ^n 	-	 Z (4--3)

Ll 1 	 i_21

P  < 
JP (to 1 )P (W2)	 e-J = CB	 (4-4)

The Chernoff bound, C B , in (4-4) applies to a binary set but

it can be generalized by a pairwise summation. The result-

ing bound, however, is not adequately tight.

The only practical reference against which the results

of the CSP error estimation algorithm can be compared is

the Monte-Carlo (MC) type simulation of the population

statistics using pseudorandom numbers, assignment of

samples to their respective categories by a Bayes classifier

and finally a count estimator to provide the classification

accuracy. A criterion however, needs to be defined if the

results of the comparison are to be meaningful. One such

measure is the equality of the total number of samples used

in the estimation process; i.e.,

number of samplesIMC = (n+1)'	 (4-5)

where the right side of (4-5) is the total number of cells

in the sampled space of 9t.
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4.2.1 Fixed Mean, Variable Scatter

In a feature space of multivariate nature the multi-

plicity of dimensions generates a vast number of possible

combinatlons of parameters to manipulate. Even for the

moderate size case proposed here there are 3 variances,

9 covariances and 3 mean values capable of taking on a

continuum of an infinite number of states. Therefore, a

certain degree of arbitrariness must be employed in select-

ing the initial values and their subsequent variations.

The approach selected here is the adoption of one variable

statistic against a fixed background in the form of two

static populations. The fixed statistic is selected after

examination of the correlation matrices obtained for dif-

ferent types of ground cover, [65]. An attempt was made

to choose correlation structures that would approximately

represent two typical cases, albeit crudely. As pointed

out before, whether this is true or not has little bearing

on the results of this validation procedure. This choice

simply displays an attempt to be as realistic as possible.

Assuming that the set of three spectral bands is composed

of two in the visible and one in the near-infrared, the

fixed correlation matrices are given by,
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1	 0.8	 0

5 f	=
2	

1	 0.1

1

(4-5)

1	 0.94 0.15

5f _	 1	 0.05
3

1

The class with the variable scatter is specified by a

choice of 4 different across-band correlation values rang-

ing from a low of 0.15, medium of 0.45, medium high of 0.75

and a high of 0.95. The permutation of these four numbers

taken 3 at a time generates 24 different cases out of

which 13 result in invalid non-positive definite matrices.

For each remaining case, an average B-distance J is com-

puted and the 11 permissible combinations are tabulated in

the order of increasing separability, Table 4-1. J% is the

value of J normalized to the highest J in the table

and sij is the channel i and j correlation coefficient.

The means are fixed at 0.7 a on each axis wi Lh Q = 1. The

grid size for the CSP error estimation technique ranged from

4 to 14 cells per axis with an increment of 1 which is

equivalent to 4 3 to 14 3 samples for the corresponding MC

estimator. For each of the 11 cases outlined in Table 4-1,

there exists 3 plots. The first two show the variation of

the CSP (MC) error estimator vs. grid (sample) size and the
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third plot shows the variance of the error estimate for the

two aforementioned techniques. Each plot is accompanied by

a table of values. Throughout sec. 4.2.1, 'case i' corre-

sponds to the particular separability of rank i (from the

top) of Table 4-1 and NBA is the number of boundary cells

as a percentage of the inside cells, and Gs , the grid size

is the number of cells per axis.

The results of the variable scatter geometry provide

the basic understanding of the potentials and operating

principles of this error estimation technique and exhibit

many Properties universal to this algorithm. The first and

probably the most important item to be explored is the

variation and dependence of the estimate on the grid size.

This relationship is particularly crucial due to the fact

that although there is a theoretical convergence estab-

lished, the rate of convergence determines the feasibility

of implementation of this technique as a viable alternative

to other data dependent algorithms. This is especially

true since the number of cells within the grid bears an

exponential relationship with the dimensionality of the

data. Examination of the CSp error estimator vs. grid site

plots quickly disposes of this concern. The pattern

exhibited throughout is one of a rapid climb to a steady

state value and oscillations of small magnitude around it.

The rapid convergence is best demonstrated in Case 6.

Where the estimate of the overall classification accuracy
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at the smallest grid size was off 7.1% from its final value,

it jumped 6.20 by incrementing the grid size by one step

to 5 cells per axis and from then on gained only 0.9% to

level off at 72.9% for 14 cells Der axis. In terms of the

total number of cells involved, the initial rise of 6.2%

was gained by an increase of 61 cells while the addition of

2619 more cells improved the estimate by only 4.90. Similar

behavior is observed in Case 2 where the one step rise of

7.80- was accompanied by a 10 step rise of 1.1%_ These ef-

fects are evident in all 11 cases with varying degrees

of intensity. On the average the initial rise of 5.140

was followed by a 1.780 increase toward the final value.

This property is remarkable in view of the performance

of various sampling techniques. For a 3 dimensional grid

with 5 cells per axis, there are a total of 125 points

involved which provide an estimate of aforementioned

quality. The performance of the MC technique with that

small a sample size is totally inadequate. In fact, gener-

ating the required Gaussian data base with 125 samples is

itself very difficult. Fig. 4-3 demonstrates the devia-

tion from normality of the statistics for small sample size

while for comparison purposes, a corresponding histogram

using 2744 (14 3 ) samples is shown in Fig. 4-'4. It is,

therefore, clear that small sample behavior of the CSP

technique is very superior to small sample size behavior

of the Monte Carlo technique. It can be argued, however,
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TABLE 4-- 1 TEST CASES ARRANG M BY INCREASING SEPERABILITY.
VARIABLE SCATTER.

1	 512 513 s 23
J J% CB%

0.75 0.15 0.45 0.50 29 39.0

0.45 0.15 0.75 0.52 30 40.6

0.75 0.45 0.15 0.54 31 41.6

0.15 0.45 0.75 0.58 34 43.9

0.45 0.75 0.15 0.59 34 44.3

0.15 0.75 0.45 0.60 35 44.7

0.45 0.15 0.95 1.48 86 69.4

0.95 0.15 0.45 1.52 88 69.5

0.45 0.95 0.15 1.58 91 Wj.6

0.15 0.95 0.45 1.58 92 70.7

0.95 0.45 0.15 1.72 100 72.1

11.0

ORIGINAL PAGE IS
Or', POOR QUALITY

l



17.1

TABLE 4- 2 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE	 I

F
c1w1

^c'W2 P
c1w3

Pc

G CSP me CSP MC CSP MC CSP MC

4 54.9 71.9 69.6 75.0 70.0 81.3 64.8 76.0

5 64.8 68.6 72.2 74.4 73.3 81.0 70.1 74.7

6 63.6 69.9 71.0 75.0 73.1 78.1 69.3 74.3

7 65.6 69.4 71.4 73.8 76.3 76.9 71.1 73.4

8 66.3 64.3 69.4 73.6 76.5 76.2 70.8 71.3

9 65.2 68.4 70.3 .76.7 75.9 75.9 71.5 73.7

10 69.3 66.6 71.7 74.4 77.7 75.3 72.9 72.1

11 65.4 69.1 72.8 73.5 76.8 75.6 72.7 72.9

12 68.8 67.6 73.7 76.9 76.6 76.4 73.0 73.6

13 65.9 69.9 74.2 74.2 76.6 77.4 73.2 73.8

14 68.6 69.3 74.3 74.1 75.9 76.7 72.9 73.4

TABLE 4-- 3 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

GS CSP MC
NBA

4 4.3 5.7 99.9

5 2.6 4.1 64.4

6 3.0 3.1 68.8

7 2.6 2.5 51.3

S 2.2 2.8 52.8

9 1.9 1.7 41.5

10 1.7 1.4 41.5

I1 1.5 1.3 34.2

12 1.4 1.1 35.3

13 1.3 1.0 30.0

14 1.2 0.9 29.8 .
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TABLE 4- 4 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE	 2

Pclm1 Pc!w2
$c, W3 Pc

G GSP m CSP MC CSI? MC CSP MC
s

4 48.7 68.8 68.5 75.0 71.4 89.1 63.0 77.6

5 67.2 67.8 71.7 71.9 73.6 80.2 70.8 73.3

6 61.1 65.3 70.9 73.5 75.8 81.6 69.3 73.5

7 65.3 66.7 71.4 74.1 77.7 78.1 71.5 72.9

8 64.7 63.4 70.3 72.5 78.4 78.1 71.2 71.3

9 65.1 65.0 70.6 76.0 78.1 77.9 71.3 73.0

10 64.3 61.6 72.1 74.0 78.5 77.7 71.7 71.1

11 63.2 66.4 72.0 73.8 75.4 77.8 71.2 72.7

12 64.1 64.7 73.1 75.1 78.3 78.0 71.8 72.6

13 64.4 66.0 73.3 73.5 78.0 79.3 71.9 72.9

14 64.5 63.6 73.4 74.1 77.8 78.5 71.9 72.1

TABLE 4- 5 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS I.

i

Gs CSP MC NBA

4 3.3 6.0 74.0

5 2.5 4.3 40.5

6 2.2 3.3 41.5

7 1.5 2.6 30.0

S 1.2 2.1 31.7

9 1.2 1.8 25.1

10 1.4 1.5 26.0

11 1.4 1.3 21.2

12 1. 1 1.1 21.2

13 0.7 1.0 18.2

14 0.8 0.9 18.2 3
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TABLE 4- 6 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE	 3

P°jw1
Pclw2

A
Pciw3 Pc

G CSP MG G5P MC C5P MC C5P MC5 _
4 62.4 73.4 65.7 73.4 72.6 82.8 6G.9 76.6

5 66.8 77.7 67.5 71.9 73.7 77.7 69.4 75.8

6 68.1 78.1 67.6 70.4 73.9 78.1 69.9 75.5

7 71.5 80.9 67.8 71.6 73.8 71.2 71.0 76.5

8 73.3 73.6 67.4 70.0 75.7 77.3 72.1 73.6

9 76.0 75.9 67.8 74.5 75.5 75.6 73.1 7S.3

10 79.4 74.0 69.0 70.4 76.5 75.2 75.1 73.2

11 78.6 75.2 70.2 71.5 76.3 76.2 75.0 74.3

12 78.3 75.0 71.1 73.8 76.3 76.9 75.2 75.2

13 78.8 77.1 71.7 71.9 76.7 77.1 75.8 75.4

14 78.0 7S.8 71.7 70.9 76.3 75.9 75.3 74.2

TABLE 4- 7 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

G^ CSP MC NBA

4 4.0 5.2 91.4

5 3.4 3.7 64.1

6 3.0 2.8 58.5

7 2.6 2.2 46.4

8 2.2 1.8 43.7

9 1.4 1.S 35.4

10 1.2 1.3 34.4

11 1.1 1.1 28.7

12 1.0 1.0 27.9

13 0.9 0.9 24.9

14 0.8 0.8 23.8

A^^A^Ep 
Fx 

Poop



1- CLASS 1
2- CLASS 2
3- CLASS 3
0- OVERALL

CHERNOFF BOUND = 41.6

C 10o
L
a
S 95
S
T

17

C

T SS

N 80

RC 75

U

A 70
c
Y
c S5
P
C
T S0
l

55
4	 G	 e	 10	 12

5	 7	 9	 11	 1s

NO OF CELLS PER nXIS

FIG. 4-11 CSP CLASSIFICATION ACCURACY ESTIMRTE VS. GRID SIZE,
VARIABLE SCATTER_ CASE 3

14

N
tlj
C3



100
L
R
S 95

i	 S
I

^
90

C

T as
I
O
N 80

R
0 75
U

A 70
C
Y
( s5
P
c
T g0
l

55

1 - CLASS 1
2- CLASS 2
3- CLASS 3
O- OVERALL

CHERNOFF BOUND= 41.G

r..

4
5	

0^	 a	 10	 12	 14
7	 9	 11	 13

EDUIVRLENT MC GRID SIZE

FIG. 4-12 MC CLASSIFICATION ACCURACY ESTIMATE VS. SAMPLE SIZE.
VRRIRBLE SCATTER. CASE 3

HN



S S
T
R
N

R5
R
D

E 4
V
I
R

i
0
N
C

C 2
T
3

C.. S. P.

-- MDNTE-CRRLQ

1

C)	 4	 S	 a	 10	 12
pd	 S	 7	 9	 1 1

CI	 NO OF CELLS PER RAC I S

r j FIG. 4-15  MC RN0 CAP ERROR EST I MATE STRMDRRD DEV'rRT I DNS .
VRRIRBLE SCRTTER. CASE 5

14
1s



123

TABLE 4- 8 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE 	 4

Pclwl P0lw2 Pclw3 pc

GS CSP MC CSP MC C.SP MC CS.P MC

4 58.3 67.2 68.4 71.9 73.0 90.6 66.5 76.6

S 63.8 66.9 72.3 71.9 74.5 81.0 70.2 73.3

6 62.4 66.3 70.4 73.0 75.5 81.6 69.4 73.6

7 66.1 66.0 71.1 73.5 77.9 79.3 71.7 72.9

8 65.3 65.5 69.3 71.9 78.6 78.7 71.1 72.0

9 64.8 65.3 70.4 75.3 78.0 78.7 71.1 73.1

10 64.2 62.7 71.6 72.4 78.9 77.7 71.6 71.0

11 65.6 65.6 71.4 72.4 79.2 78.3 72.1 72.1

12 67.2 65.5 72.5 74.5 79.7 78.8 73.1 72.9

13 66.6 67.1 72.6 72.8 79.7 80.5 72.9 73.5

14 66.1 64.4 73.3 73.2 79.1 79.1 72.8 72.2

TABLE 4- 9 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

GS CSP me NBA

4 2.5 5.9 48.6

5 1.7 4.2 32.0

6 1.9 3.2 27.7

7 1.2 2.5 23.4

8 1.1 2.1 23.3

9 0.7 1.8 19.0

10 0.6 1.5 18.0

11 0.5 1.3 15.6

12 0.6 1.1 15.6

13 0.5 110 13.9

14 0.4 0.9 13.3
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TABLE 4-10 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND 1".0
ESTIMATION TECHNIQUES. CASE	 5

P
cIWJ

^
cIm2

^
clm3

P
c

G C.SP Mc C5P MC CSP MC CsP MC
s

4 60.7 65.6 66.7 73.4 74.2 85.9 67.2 75.0

S 70.3 69.4 68.9 71.1 74.6 80.2 71.3 73.6

6 71.7 75.5 67.1 73.5 73.5 81.1 70.8 76.7

7 71.9 73.5 67.3 70.7 75.4 76.5 71.5 73.6

S 73.3 70.0 67.0 72.3 75.5 78.3 71.9 73.6

9 72.6 73.3 68.1 74.3 76.8. 77.2 72.5 74.9

10 71.9 69.3 68.5 70.6 77.6 76.4 72.6 72.1

11 72.4 72.6 69.3 71.2 77.8 77.1 73.2 73.6

12 71.7 72.0 71.4 73.7 78.1 77.2 73.7 74.3

13 73.3 75.2 71.7 71.4 77.6 78.8 74.2 75.1

14 73.0 73.0 71.3 70.2 77.1 76.7 73.8 73.3

TABLE 4-11 PERCENT CSP AND IBC STANDARD DEVIA T IONS ACHIEVED BOIL CLASS 1.

GS CSP MC NBo

4 3.7 5.5 S4.S

5 3.2 4.0 43.9

6 2.6 3.0 37.0

7 2.2 2.4 30.8

8 1.6 2.0 25.3

9 1.4 1.6 24.5

'	 10 1.3 1.4 22.6

11 1.4 1.2 19.7

12 1.3 1.1 15.8

13 1.0 0.9 17.1

14 1.0 0.8 16.4

i
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TABLE 4-12 PERCENT CLASSIFICAI ION ACCURACIES OBTAINED BY CS? AND YLC
ESTIMATION TECBNIQUES. CASE	 6

Pc pc l w2 pc l w3 c

Gs CSp MS CSp MC C5p MC G9p MC

4 59.9 67.2 64.3 71.9 73.2 89.1 65.8 76.0

5 67.6 64.5 71.5 71.1 77.1 80.2 72.1 71.9

6 65.6 69.4 69.9 73.5 75.5 52.1 70.3 75.0

7 66.S 67.9 70.6 72.5 77.6 79.3 71.6 73.3

S 65.6 64.3 68.4 72.3 71.3 79.5 76.4 77.0

9 65.9 65.6 69.4 75.3 77.4 75.3 70.9 73.1

10 66.5 65.3 70.2 71.1 79.0 77.9 71.9 71.5

It 67.8 67.9 70.5 71.9 79.7 78.2 72.7 72.7

I2 66.7 67.4 72.2 73.7 79.7 78.8 72.8 73.3

13 66.6 70.2 72.0 72.0 79.1 50.6 72.5 74.3 j
14 67.8 67.9 72.6 71.2 75.3 78.9 72.9 72.7

TARI.E 4-13 PERCENT C5P AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

GS G9p MC NB%	 j

4 2.5 5.9 41.2

5 2.1 4.2 29.2

6 1.9 3.2 31.5	 f`
F

7 1.5 2.5 23.5

5 1.4 2.1 23.0

9 1.0 1.7 19.1

10 1.2 1.5 19.3

11 0.5	 _ 1.3 16.3

12 0.8 1.1 15.5

13 0.7 1.0 13.6

14 0.6 0.9 13.1
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TABLE 4-14 PERCENT CLASSIFICATION ACCURACIES OBT'AINE'D BY CS° AND DC
ESTIMATION TECHNIQUES. CASE 	 7

P^!^1

r

PclW2

A

clw3
GS CSp MC CS1? MC CSP N1C cSP MG

4 57.1 98.4 69.6 81.3 77.1 87.5 77.9 89.1

5 85.8 99.9 72.7 71.9 81.4 79.3 83.3 53.7

6 . 95.5 98.5 73.1 73.5 77.7 50.6 82.1 84.2

7 97.8 98.5 .73.3 75.3 77.4 79.3 82.8 84.4

S 97.7 98.3 71.2 74.2 78.6 77.3 82.5 83.3

9 98.8 97.7 72.4 77.0 81.1 79.4 54.1 84.7

10 98.6 98.6 73.6 74.6 81.2 77.5 54.4 83.6

11 99.0 98.2 73.7 74.4 82.2 78.5 84.9 83.7

12 98.8 98.3 75.6 75.5 50.9 79.7 85.1 84.5

13 98.9 98.4 75.1 74.9 81.0 79.6 85.0 $4.3

14 98.9 95.3 75.2 74.7 80.3 79.3 84.8 84.1

TABLE 4-15 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

Gs C5P MC NBo

4 3.3 1.2 27.0

5 2.2 0.9 23.5

6 1.2 0.7 23.0

7 1.4 0.5 19.1

8 1.4 0.4 18.5

9 0.9 0.4 16.7

16 0.9 0.3 15.9

11 0.8 0.3 14.7

12 8.5 0.2 13.9

13 0.5 0.2 13.2

14 0.5 0.2 12.5
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TABLE 4--16 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE	 8

$
c1w1 f3 lw2 0cIw3

c

G3 C5P MC CSP MC CSP MC C51? MC

4 86.6 92.2 69.6 81.3 68.5 89.1 74.7 87.5

5 95.6 97.5 74.1 87.2 75.1 70.7 81.6 81.0

6 94.2 98.0 73.4 76.6 74.6 79.6 80.7 84.5

7 97.5 97.5 74.4 76.9 79.2 76.9 83.7 83.7

8 97.4 96.3 72.5 77.1 78.8 73.6 82.9 82.3

9 97.7 97.3 73.3 79.1 80.0 77.1 83.7 84.5
10 97.8 98.1 75.0 76.7 80.5 74.8 84.4 83.2

11 98.4 97.5 75.7 76.2 78.4 76.5 84.2 83.4

12 98.3 97.5 76.6 78.4 77.7 78.2 84.2 84.7

13 98.1 96.8 76.6 76.6 78.3 78.7 84.3 84.0

14 98.3 97.0 76.9 77.1 78.1 75.9 84.4 83.3

TABLE 4-17 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

GS CSP MC 'W"
4 2.3 1.8 41.8

5 2.4 1.3 24.8

6 1.8 0.9 28.6
7 1.5 0.8 22.2

8 1.2 0.6 22.4
9 1.0 0.5 18.4

10 0.8 0.4 19.1
11 0.8 0.4 15.9
12 0.9 0.3 19.0
13 0.5 0.3 14.9
14 013 0.3 17.5
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TABLE 4-20 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSI' AND MC
ESTIMATION TECHNIQUES. CASE 10

^aP	 ' $ + CIw3
cw1 c w2

C^ CSP	 MC CSP	 MC CSP	 MC CSP MC

57.0 9^ 59.6	 75-.0 -M^3- ^ . ^ 76.7 88.5

5 96.3	 98.3 73.7	 71.1 80.9	 81.0 83.6 83.5

6 95.7	 99.5 73.3	 75.5 80.7	 83.2 83.2 86.1

7 97.7	 99.9 74.6	 72.2 81.7	 80.2 84.7 84.2

8 98.0	 99.4 72.3	 71.7 82.9	 80.8 84.4 54.0

9 99.1	 98.F 72.5	 75.9 81.9	 81.2 84.5 85.2

10 99.0	 98.9 74.0	 73.7 81.8	 81.0 84.9 84.S

it 99.0	 99.2 74.7	 73.2 80.8	 79.9 84.9 84.1

12 99.0	 98.5 75.1	 75.1 81.3	 82.4 85.1 85.3

13 99.2	 98.7 74.7	 72.6 81.8	 83.3 85.2 84.9
3

14 99.3	 98.7 74.6	 73.9 82.4	 81.6 85.4 84.7
s

TABLE 4-21 PERCENT CSP AND HC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

G CSP MC NB n
4 2.5 1.0 33.1

5 2.3 0.7 20.0

6 1.8 0.6 22.3

7 1.3 0.4 18.2

8 1.4 . 0.4 18.9

9 1.0 0.3 15.0

10 0.8 0.3 15.5

11 0.6 0.2 13.2

12 0.6 0.2 13.3

13 0.6 0.2 11.6

14 0.6 0.2 11.5 t

k
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TABLE 4-22 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP AND MC
ESTIMATION TECHNIQUES. CASE 11

cjw1	
cIW2	

pf 
w3	

c

Gs CSP MC GSP MC CSP NIC CSP MC

4 87.5 95.4 69.4 79.7 75.5 92.2 78.S 90.1

5 96.3 99.2 73.7 74.4 80.9 83.5 83.6 85.7

6 9S.9 99.5 71.6 76.0 80.5 8S.2 82.7 86.9

7 98.7 99.9 73.0 74.7 81.5 82.4 84.4 85.7

8 98.6 99.8 72.2 73.8 82.7 53.5 84.5 85.7

9 99.4 99.7 72.4 77.9 83.3 84.2 85.0 S7.3

10 99.4 99.9 73.6 75.1 34.5 82.9 85.8 86.0

11 99.6 99.5 74.3 74.1 84.2 82.5 86.1 85.4

12 99.6 99.8 75.6 76.4 84.0 84.7 56.4 87.0

13 99.7 99.7 75.7 75.2 83.9 84.9 86.5 86.6

14 99.7 99.7 7S.9 75.1 83.8 83.4 86.5 86.1

TABLE 4-23 PERCENT CSP AND MC STANDARD DEVIATIONS ACHIEVED FOR CLASS 1.

G CSP MC N o$ B

4 2.3 0.7 25.0

5 2.3 0.5 20.0

6 1.8 0.4 18.8

7 1.6 0.3 16.1

H 1.4 0.2 16.6

9 1.2 0.2 14.8

10 1.3 0.2 16.8

11 0.9 0.1 15.2

12 0.7 0.1 16.0	 f
}

13 0.3 0.1 15.1

14 0.7 9.1 15.3

iii
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Pc^^'1
Case CSP MC

1 68.6 69.3

2 64.5 53.6

3 78.0 75.8

4 66.1 64.4

5 73.0 73.0

6 67.8 67.9

7 98.9 99.3

S 98.3 97.0

9 99.3 98.8

10 99.3 98.7

It 99.7 99.7

3
i

TABLE 4-24 COMPARISON OF CSP AND SIC PERCENT CLASSIFICATION ACCURACY.
VARIABLE SCATTER.

PC 2
CSP MC

74.3 74.1

73.4 74.1

71.7 70.9

73.3 73.2

71. " 70.2

72.6 7€.2

75.2 74.7

76.9 77.1

74.5

74.6 73.9

75.9 75.1

Pc1W 3
CSP MC
75.9 76.7

77.8 75.5

76.3 75.9

79.1 79.1

77.1 76.7

78.3 78.9

59.3 79.3

78.1 75.9

82.7 81.1

82.4 81.6

83.8 83.4

P

CSP MC

72.9 73.4

71.9 72.1

75.3 74.2

72.E 72.2

73.5 73..3

72.9 72.7

84.8 84.1

84.4 83.3

85.6 84.8

85.4 54.7

86.5 86.1



156

that in any IJC simulation process such small sample sizes

are not used anyway, but it is precisely the reasons out-

lined above that makes employment of a large data base

mandatory. This requirement would not be overly restrictive

with unlimited computation time. Since this is generally

not the case, adequate performance with small sample

sizes becomes a significant property. The sufficiency

of small grid sizes for adequate performance was expected

considering the structure of the sampling grid. in sec. 2.5

this matter was discussed and it was pointed out that the

grid is a partitioned hypercube with each edge 2 /n_ a 

long. Therefore, small values of n are capable of sampling

substantial portions of the feature space.

The next systematic feature in the variation of the

CSP estimator is a periodic oscillations for each increment

of the grid size. This phenomenon, like most other proper-

ties of this estimator, is the product of the geometry of

the problem. As described before, the rule governing the

assignment of sampling cells to a particular domain can

potentially exclude (include)the entire cell even though

on?y a portion of it lies outside (inside). The grid, being

a dynamic structure, interacts with the fixed boundaries to

produce the oscillatory character of the estimate Lhe manner

and intensity of which depends on the shape of the boundaries

involved. Among all the cells that are located around the

contours of r  there are always some °axcluded from the
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inside domain but the centers of which are close enough to

the boundary such that one increment in the grid size would

move them to the inside. This outside-to-inside shift would

turn an underestimating grid to an overestimating one.

The size of this step depends on the number of cells capable

of making this shift. it is not hard to see chat with a

grid composed of elements with linear features, the worst

case occurs when the boundaries themselves are linearly

structured. In fact, when the feature space is div-1ded

by a set of hyperplanes, this periodic cycle can take on

substantial amplitude and hence provide a worst case

situation for this algorithm. This is in general a very

minor limitation due to the fact that actual remotely

sensed data, and most data in general where the information

itself is a realization of a stochastic process, are

unlikely to be optimally classified into region bounded 	 j

by hyperplanes. Estimation of the numerical values of the

estimates for various cases here shows that after a i

steady state value has been reached, the magnitude of the

oscillation peaks are well within 1 percent.

The variation of the MC estimate with the sample size

exhibits less recognizable features mainly due to the under-

lying randomness of the process. What is particularly

different is the absence of the initial rise of the

classification accuracy estimate. This observation should

be viewed with caution, however, due to the small san_ple

i



sizes involved. in order to use the results of these

estimates in a conclusive manner, any comparisons made

should be restricted to samples of greater than 1000

(equivalent to 10 cells per axis) which in that range the

estimate exhibits an adequately small variance.

One topic yet unexplored is how close is the CSP

e"simate of the classification accuracy to the Bayes

estimate. In the general case under study, the availabil-

ity of such reference is quite limited and in fact count

estimators are the only alternative. Therefore, the

availability of the MC estimation results makes the

required comparison feasible. Table 4-24 lists 4 classi-

fication accuracy estimates obtained via CSP (MC) techniques

for the highest grid size (sample size). Throughout this

table, the values of the two estimates are quite close and

in two cases (P^ Pc w1 Case 5 and P c1	
Case 4) the results

2
are idential to one significant figure. The differential. for

Pc ranges from a low of 0.2% for Case 2 and 6 to a high of

1.10- for Case 3 and S. Averaged over all the cases, this

difference amounts to 0.6a.

One of the most desirable properties of any estimator

is consistency. The error variance is calculated using

(2-37) and is plotted for all the 11 cases. Examination of

these plots clearly shows that the variances of the CSP

estimates are monotonically decreasing as the number of

cells per axis increases. This is particularly



Var { eT } = E (N e )

t
(4-8)

159.

significant because as discussed in sec. 2.4.1 (2-37)

does not concl.usiveiv indicate that lim Var{e T } -^ D
n}oo

although it strongly suggests that. This property is

brought about by the fact that the total number of the

points on the boundary, NB , as a percentage of the points

inside, monotonically decreases with increasing grid size.

This observation is consistent with the assertion that

the boundary cells are the only error causing elements

in the CSP algorithm. Comparing the ^'SP and MC error

variances for different cases, several properties are

distinguished. The CSP error variance, for the medium

recognition rates, is generally below that of the MC tech-

nique. The rate at ,'.?.Lch the MC variance falls, however,

is faster and thus if their initial values are close a

crossover takes place for large sample sizes. This

difference in the rate of decay is evident from the

expression for CSP error variance. Rewriting (2-37)

n 
NB

Var {eT } = 12 (n )	 f1	 (4-7)
i=l

The corresponding variance for a MC estimator is given by

9
s

i

,d

where a is the Bayes probability of error. Noting that

Nt = nN , it is clear that both estimators fall off at a

ORIGINAL PAGE I5
GE PoOF. QUA UM

.. 	 .
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rate of 11Nt • The CSP error variance, however, has another

sample dependent term, £f. , which steadily increases with

increasing Nt and thus cancels 11Nt term to some extent,

hence slower convergence. lay the high classification

accuracy bracket both estimators have small variances with

that of MC slightly below CSP. This property is due to

the fact that s(l-e) is the dominant factor for small Nt.

Once the initial value of the MC error variance is smaller,

its faster fall off would keep it below that of CSP. The

differences involved, however, are small. Selecting a

medium size grid, the absolute value of standard deviation

differential ranges from a high of 1.160- for Case 11 to a

low of 0.130 for Cases 3 and 5.

4.2.2 Fixed Scatter, Variable Mean

In order to observe the variation of the probability

of misclassification with changes in the mean of a popula-

tion, the simplex arrangement of Fig. 4-2 was maintained

along with the fixed statistics of w 2 and w 3 . Case 1 of

sec. 4.2.1, the smallest separability, was selected as an

initial starting point and the nonzero component of u1'

Mi . was incremented by 0.1a step each time. A total

of 7 cases ranging from J =.55  to J =0.96  were co •„ ,, -;. ed and

are listed in Table 4-25. Similar to the variable scatter

case, the classification error estimate is obtained using

CSP and MC techniques. In order tc avoid duplication



TABLE 4--2s TEST CASES ARRANGED BY I1 "MEASING SEPERABILITY.VARIABLE MEAN.

ml	, f	 J°o
CB°

0.8 0.ss 57 41.8
0.9 0.60 62 44.7
1.9 0.66 68 47.s
1.1 0.73 76 51.4
1.2 Mi 7 53.2
1.3 0.58 55.9
1.4 0.96 110 58.4

i
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,a

FABLE 4-26 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSI'
ESTIMATION TECHNIQUE. CASE 12

G3
Pc I w,

Pc I W2
FC

P,c3
4 57.6 69.6 71.2 66.2

5 66.8 72.3 75.5 71.5

6 67.0 71.0 74.S 70.8

7 71.6 71.4 76.2 72.9

8 72.3 69.6 76.5 72.8

9 72.9 70.4 77.0 73.4

10 73.2 72.6 77.4 74.4

11 72.7 73.2 77.4 74.4

12 72.1 74.2 76.8 74.4

13 72.7 74.3 77.6 74.9

14 72.1 74.4 76.9 74.5

.j

P .G-p
()TaG 0aOF P
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TABLE 4-27 PER EN
I C SSIIFI ATE N

CAC^3CIES OBTAINED BY CSP

GS Pc1w,
pc1W

^clm3 pc

4 60.1 69.6 73.7 67.5

5 '74.1 72.3 76.9 74.5

6 74.3 71.0 75.6 73.7

7 76.9 71.6 75.6 74.7

8 76.1 69.5 76.5 74.3

9 75.9 71.3 77.0 74.7

10 75.4 73.8 78.1 75.5

11 75.0 73.5 77.3 75.3

12 75.3 74.4 75.2 76.0

13 75.1 74.4 75.0 75.8

14 75.0 74.5 77.4 75.6

d
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TABLE 4--28 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSP
ESTIMATION TECHNIQUE. CASE 14

G
s

5

6

7

S

9

I@

fI

12

13

14

PCIw CIW2 PCIw3
PC

69.0 68.6 73.7 70.8

79.5 72.3 77.2 76.4

76.4 71.0 75.6 74.4

79.0 71.6 75.8 75.5

77.3 70.2 77.6 75.0

77.5 71.6 77.8 75.6

77.4 73.2 78.4 76.4

77.8 73.5 78.8 76.7

77.9 74.4 78.8 77.1

79.1 74.4 78.9 77.5

79.6 74.6 78.4 77.5
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TABLE 4-29 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSF
ESTIMATION TECHNIQUE. CASE 15

G s "	 II
pc+Wl

I
c 1 W2 CIW c

4 74.7 69.6 75,1 73.1
5 80.9 72.3 77.2 76.8
6 77.5 71.2 76.4 7S.0
7 80.0 72.1 75.9 76.0
8 78.5 71.9 78.3 75.9
9 80.3 71.8 78.5 76.9

10 80.8 73.3 79.4 77.8
11 81.7 73.6 79.6 78.3
12 82.8 74.5 79.7 79.0
13 82.6 74.5 7943 78.8
14 82.3 74.7 79.2 78.7

4
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TABLE 4-30 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY C5P
ESTIMATION TECHNIQUE. CASE 16

Gs	
pckw1	 pclw2	

clw3	
Pc

^- 5.5 69.8 77.8 74.3

5 81.4 72.3 77.5 77.0

6 79.2 71.2 76.4 75.6

7 81.8 72.3 77.4 77.2

8 82.5 71.8 78.5 77.6

9 85.2 71.8 79.0 78.7

10 85.4 73.3 80.3 79.7

11 85.2 73.6 80.3 79.7

12 84.5 74.5 79.9 79.7

13 84.2 74.7 80.0 79.6

14 84.0 75.0 79.5 79.5
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TABLE 4-31 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSI'
ESTIMATION TECHNIQUE. CASE 17

G
Fowl Fclw2 pclw3 c

4 75.8 69.6 77.8 74.4

5 81.8 72.3 77.9 77.3

6 80.8 71.4 76.8 76.3

7 84.9 74.0 77.8 78.9

8 87.2 71.8 79.4 79.4

9 87.7 72.8 80.2 79.9

10 86.5 73.3 80.8 80.2

if 86.0 73.6 50.9 50.2

12 86.0 74.6 80.6 80.4

13 86.1 74.9 80.3 80.4

14 86.1 75.3 80.0 80.5

;o 
lll
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TABLE 4-32 PERCENT CLASSIFICATION ACCURACIES OBTAINED BY CSI'
ESTIMATION TECHNIQUE. CASE 18

Gs
clw1 CIW2

Pclw C

--4-- 75-S --	 -m 77 M 74.4-

5 83.2 72.4 78.5 78.0

6 83.6 71.7 77.7 77.7

7 89.6 74.0 78.6 50.7

8 88.6 71.8 79.4 79.9

9 58.2 71.9 50.2 80.1

10 87.0 73.3 81.9 80.8

11 87.8 73.7 81.3 81.0

12 88.0 74.9 81.0 81.3

13 89.8 75.3 80.8 82.0

14 89.9 75.9 81.0 52.3



S 95
Z
F
I
C go

T
I
N 85

R
C 80
u
R
A
C 75

t
P
T 70
1 CHERNOFF BOUND- SG-4

1- CLASS 1
z- CLRGG 2
5- CLASS
O- OVERALL

C 100
L

5

CS -f'

4
	

6	 e	 10	 12	 14
S	 7	 9	 11	 i5

NO OF CELLS PER AXIS

FIG. 4-44 CSP CLASSIFICATION ACCURACY ESTINRTE VS. GR'I'D SIZE.
VARIABLE MEAN. CASE 18 s-^

.l

:, 1



176

of the results, however, the Monte Carlo error estimate is

reported only for one sample size of about 6000. A large

sample was chosen to assure a small bias and variance.

Table 4-33 compares the CSP error estimates for the largest

grid size with the corresponding MC estimation results.

Cases 12 through 18 refer to the 7 cases listed in Table

4-25 with increasing variability. In examination of the

results related to the variable mean case, all the CSP

estimate properties are observed again; particularly evident

is the generally rapid rise to a steady state value followed

by a small magnitude oscillation. The curve corresponding

to the Class 1 classification accuracy generally moves as

expected. The separability increase by translation of µl

along x  also improves Pc 
2 
and Pc1 but the improvement3

is not as great. PcjW increased 180 from Case 12 to Case
1

18 while in the same range Pc 
w
2 and PC

1 3
w 

improved 1.5%

and 4.10, respectively. 	 The comparison of CSP and MC

estimation results reveals that the differential between

them is again small. For Pc , the difference ranges from a

high of 0.90 for Case 6 to a low of 00 for Case 4, Table

4-33.

4.2.3 Classification Error Estimation When

the Bayes Rate is Known

Throughout this validation process the missing element

has always been a fixed reference point in the form of a

ORIGFN AL PP—' y , .,
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TABLE 4-33 COMPARISON OF CSP AND MC PERCENT CLASSIFICATION ACCURACY.
VARIABLE HEAN.

pC Ito Pc Iw2 p c I w
f^c

I
3

Case CSP MC CsP MC CSP MC CSP MC

1 72.1 72.5 74.4 74.4 76.9 76.9 74.5 74.6

2 75.0 76.2 74.5 74.6 77.4 75.3 75.6 76.3

3 79.6 78.5 74.6 76.4 75.4 75.7 77.5 78.0

4 82.3 81.3 74.7 74.8 79.2 50.1 78.7 78.7

5 84.0 84.9 75.0 75.7 79.5 80.1 79.S 80.7

6 86.1 87.1 75.3 74.9 75.0 80.1 79.8 80.7

7 89.9 899.0 75.9 76.0 81.0 80.9 82.3 82.0
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known Bayes error. When only two classes are present in the

data set, however, the desired quantity has been computed

for up to an eight dimensional feature space [33]- The

availability of this result provides two significant

properties: (a) the reference error is sample-independent;

(b) by working in a two dimensional subspace large grid

sizes, impractical in higher dimensions, can be employed to

observe the limiting behavior of the CSP algorithm and more

importantly considerable insight to the geometry of the grad
i

dynamics can be gained by actually displaying the domains

of integration.

The variation of the probability of correct classifi-

cation vs. grid size using the CSP estimation technique for

a two dimensional feature space is shown in Fig. 4-45.

The reported Bayes classification accuracies are super-

imposed on the plot and serve as asymptotes;

PC	= 97.2%
1

PclW2 = 90.70	 (4-9)

P	 94.00c

The grid size ranges from a coarse 5 cells per axis to a

very fine 75 cells per axis.

The behavior of the classification accuracy is some-.	 _

what different than the previous test cases. Two notice-
3

able features are slower convergence and oscillations around

i
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the assymptotes. The slower convergence can be traced to

the property that the error estimate's variance is inversely

proportional to the per axis cell number and exponentially

to the dimensionality f the feature space. For example, onY	 P	 P	 ^

the basis of the total number of cells within the grid, 12

cells per axis in 2 dimensions wherePc ^ w has its highest
i

surge, corresponds to somewhere between 3 and 4 cells per

axis in 4 dimensional space and the corres ponding numbers

are only 8 and 9 for 75 two dimensional cells per axis.

Another property not observed in the variable scatter or

variable mean cases it the dissimilarity between the func-

tional form of PcJWi	 c^w2
and P	 In the 3 dimensional feature

space examined before, all the estimates showed similar var-

iational form with the grid size. in this case P c ^	 ex-
2

hibits periodic overshoots at 11-12,15-16, 26-27, 43--44,

etc. cells per axis. These oscillations are of the same

nature as described in sec. 4.2.1. In this case, however,

it is possible to get a close up of the actual estimation

process. Consider the 15-16 jump. The two dimensional areas

of integration are shown in Fig. 4-46. Take one scan line

going through the w 1 domain (dotted region). This line is

marked with cell centers for three different grid sizes

Gs = 15,16,17, Fig. 4-47. Denote two of these boundary cells

by x  and xb and let us follow their movement as grid size

increases. For Gs = 15, xb = . 54, and xb = 2.7 are located

inside and outside of the w 2 domain. Recall that this

domainis multiply. connected. Therefore, the estimated
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locations of the boundaries are in the intervals

0 <x Sxb=.54

(4-10)
2.14 <<x Sxb =2.7

For Gs = 16, xb and xb have moved to .52 and 2.58 respec-

tively, and the boundary location is now narrowed to the

domain

	

0	 x xb = .52
(4-11)

	

2.14	 x S xb = 2.58

x  and xb are still one outside and one inside respectively,

The next grid size GS = 17 is where$cI	takes on a rapid
2

jump. Now the boundary is determined to lie in the
y

interval s

.5 `x -< 1	 '
(4-12)

2.5 S x < 3.0

Comparing (4-12) with (4-11) establishes that the boundary

	

	 }y

must lie in the narrow interval

	

.5	 x	 .52

(4-13)
2.5 < x < 2.6

in this step, however, xb = .5 has moved from outside to

inside and xb = 2.5 made a similar move to outside of the

integration domaiA. Recalling the discussion on the

estimator's bias in sec. 2.4.1, shows that in this

transition a net positive gain has occurred in the
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estimation of the volume under f(Xim 2 ), hence the surge

in PC1  .
2

The comparison of the estimation results in 4 dimension

with the one just obtained can shed some light on the effect

of data dimensionality on the performance of the CSP algo-

rithm. Using 4 features, the reported Hayes classification

accuracies are [333

Pc	
- 97.40

1

PCIW 2 = 95.0% (4-14)

P	 = 96.20
c

The results are shown in Fig. 4-48. Note that the func-

tional form of this estimate is much more like the cases

studied in a 3 dimensional feature space and the oscillation

property is considerably less pronounced than its two

dimensional counterpart due to a higher feature space

dimensionality. The final values are all within0.1% of

the reported classification accuracy. In. fact, consider-

ing that (4-14) is shown up to only 1 significant digit,

the differential can be attributed to the round off factor

and the estimates and their asymptote may.well be identical.

4.3 Classification Accuracy Estimates Using

Landsat and Aircraft MSS Data

The performance of the CSP estimation technique has

been extensively investigated using simulated data. That
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study was intended to verify the proper operation of the

algorithm. The actual application of this technique, how-

ever is the estimation of the probability of error in the

classification of various cover types present in multi--

spectral remotely sensed data. The currently operational

Landsat-2 gathers information in g spectral bands. There-

fore, the feature space is a moderate 4 dimensional domain

where the CSP algorithm can effectively operate. In cer-

tain conditions some of the bands may be deemed redundant

and thus a subset of the available 4 may be used. Three

test regions were selected providing different numbers

of cover types and classification error rates: Ogle county

Illinois; Grant Couty Kansas; and Graham County Kansas.

The results of the parametric error estimator are

compared with those of LARSYS, a data anlysis and classifi-

cation technique developed at the Purdue University Labora-

tory for Applications of Remote Sensing. According to this

algorithm a set of training fields is selected for each

cover type based on ground truth information. These fields

are then used to provide the necessary statistical input

to an optimal Bayes classification such as (2-7). The

entire frame of data is then classified by testing each pixel.

using (2-7). In order to obtain an estimate of the classi-

..fication accuracy, a set of test fields is chosen and follow-

ing the completion of the classification process, a count

estimate such as (2-1) is computed for the misclassi.fied

ORZG]NAL PAGE ja
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Table 4--34 Percent Classification Accuracies
Obtained by CSP and LARSYS Algorithms,
Ogle County, IL

Class	 No. of Samples LARSYS% CSP%

Corn 411 87.3 91.7

Soybean 224 90.6 91.3

Othere 217 94.0 90.6

Overall 852 90.7 91.2

Table 4-35 Percent Classification Accuracies
Obtained by CSP and LARSYS Algorithms,
Graham County, RAN

Class	 No. of Samples	 LARSYS%	 CSPti

Baresoil r	 443 65.9 78.3

Corn 99 89.9 91.0

Pasture 1376 98.4 95.1

Wheat 459 94.8 93.9

Overall 2377 87.2 89.6



Table 4-36 Percent Classification Accuracies
Obtained by CSP and LARSYS Algorithms,
Grant County, KAN

Class	 No. of Samples LARSYS% CSP%

AG1 793 52.3 59.3

AG2 445 75.8 73.3

AG3 134 90.3 88.8

Nonfarm 762 94.9 90.5

Wheat 930 82.7 79.7

Overall 3065 79.2 78.3

Table 4--37 Comparison of Percent Classification
Accuracies Obta-.iled by CSP and LARSYS
Algorithms for Graham County Simulated data

Class	 LARSYS%	 CSP%	 Difference

3aresoil 77.8 78.3 0.5

Corn 91.2 91.0 0.2

Pasture 95.3 95.1 0.2

Wheat 94.2 93.9 0.3

overall 89.6 89.6 0.0
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Table 4-38 LARSYS Classification Accuracies for
Three Realization of Graham County
Simulated Data.

Class

Baresoil

Corr.

Pasture

Wheat

overall

Random

Start #1

77.0

91.2

94.8

94.0

89.2
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samples. Frequently the training fields themselves are

used in the performance calculations.

4.3.1 Ogle County, Illinois

This data is a portion of Landsat scene 1017--16093

acquired August 9, 1972, and has a LARS runtable entry of

72037806. Three training classes were used and classifi-

cation was performed using 4 spectral lands; viz., channels

1 through 4. Table 4--34 shows both the classification

accuracies obtained using the LARSYS point classifier and

the CSP error estimation technique.

4.3.2 Graham County, Kansas

This data set is LACIE SRS segment 1018 and has a LARS

rentable entry of 74078500. Channels 9 through 12 which

are the acquisition corresponding to Landsat scene 1672-

1644, were used. Four training classes were developed

from 229 training fields. Results are tabulated in Table

4-35.

4.3.3 Grant County, Kansas

This data set is LACIE SRS segment 1036 and has a LARS

rentable entry of 74027600. Channels 5 through 8 which are

the acquisition corresponding to Landsat scene 1655-16512,

were used in the classification study. Five training
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classes were developed from 388 training fields. Results

are tabulated in Table 4-36.

4.3.4 Discussion of the Results
I

Examining the results obtained here reveals that the

performance of the CSP error estimator is consistent with

f'^at of sec. 4.2 using simulated data and closely matches

MC classifier's output. As close as the CSP and LARSYS

results may look, the differential in some cases is greater
i

than the ones observed using artificial data. For.example,

in Graham County, bare soil is classified with 65.9%

accuracy while the indicated theoretical value is 78.3,

pasture is classified with 94.8% accuracy vs. the expected

result of 95.10. Similarly, in Grant County, AG1 is clas-

sified with 52.50 accuracy vs. 59.30. A possible explana-

tion, initiated by examining the histogram of the actual

data (Fig. 4-49), may lie in the validity of the assumption

about the normality of the data under study or much more

likely, the normality of the statistics of the training

areas. In order to remove this element of uncertainty,

artificial data was generated using the Graham County

statistics. The simulated data was then reclassified using
V

LARSYS. No attempt was made to keep the field sizes in	
y

the simultaed data equal to those in the original set since

the purpose of this step was to generate data having

statistics as close to normal as possible. The new 	
a



194

classification accuracies are tabulated in Table 4-37.

The results are illuminating. While the bare soil was

classified with a 65.9% accuracy in the actual data, in the

simulated data this rate has risen to 77.80-, a gain of

almost 12%, to put it within 0.50- of the result predicted

by the CSP algorithm, similar observations can be made about

other classes. The simulated data set being one realization

of a stochastic process, makes the LARSYS results a random

quantity. in order to make sure that Table 4-37 is not

just one special case, the simulated data was re-generated

three times using a different starting point for the pseudo-

random number generator. The results shown in Table 4-38

confirm the preceding observations since the same close

match exhibited before is repeated.

The results of the CSP error estimator are grid size

dependent. Since variations in performance as a function

of grid size were studied before, the classification

accuracies reported here for the actual data are for a

single Gs , usually around 12. For illustration purpose,

the Graham County data was analyzed using a step wise

grid employed before and the results are shown in Fig. 4-50.

Note that the estimator exhibits the same properties ob-

served repeatedly in the earlier studies.

4.4 Concluding Remarks

The performance of a multiclass multidimensional

parametric Bayes classifier has been tested under widely
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different conditions. In all cases, the results matched

whatever reference point available. When that reference

was the equivalent MC estimators, the CSP estimate was

within 10 of it. Considering that an MC estimate is a

random quantity, repeating the error estimation with another

sample function of the process produces a different realiza-

tion of the classification accuracy estimate. Therefore,

an averaged MC estimator is well within the 1% maximum

deviation from the CSP results. In Table 4-38 where three

realizations of the MC estimator are computed, the overall

classification accuracy estimates are 89.20, 90.50, and

90.0 06. This compares with the fixed CSP estimate of 89.6%.

Whereas the individual differences are 0.4 00, 0.5%, and 0.4%,

the averaged MC estimate, 89.9%, is 0.3% off. In fact,

this difference may be reduced even further, if the number

of MC estimates that are averaged is increased.

When the exact Bayes error rates were available, sec.

4.2.3, the CSP estimator provided essentially identical

results. It has been shown that this algorithm has uniform

performance with consistent systematic features throughout

the test cases. One possible limitation emerged in that

when hyperplanes parallel to the coordinate axes forming
5

the boundaries of the feature space the CSP estimation

technique performs poorly due to periodic high amplitude

overshoots when there is a total shift of a considerable

number of boundary cells from the outside to the inside
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of integration domain and vice versa. However, this is

expected to be an unlikely occurrence with real data.

In conclusion, it should be kept in mind that the class-

ification error estimation algorithm developed here was not

intended to provide a higher quality estimate than various

random sampling techniques. The fact that it does so in

many cases is only incidental but justifiable. The orig-

inal goal was the development of an estimation algorithm

dependent on the parameters of the problem alone. To

that end the CSP estimation procedure has met the

objectives.
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CHAPTER 5

Experimental Evaluation of the MSS Spatial Model

This chapter is aimed at the validation and analysis

of the scanner spatial model developed in chapter 3.

Successful accomplishment of this task enables the inte-

gration of this model and the parametric Bayes error

estimator as a complete set of tools for the evaluation 	 . .: 7

cf the performance of a MSS for any set of specified

parameters. From Fig. 4--1 where the entire simulation pro-

cess is depicted, it is seen that there are three phases

involved. (i) Validation of the scanner characteristic

function by comparing the output spectral covariance matrix

of a convolution operator with that of the scanner linear

systeir. model. The input to the former is a simulated or

real data set and to the latter is the statistical and

spatial parameters of such a set. The results should

closely match. (ii) Introduction of additive random

Gaussian noise at the scanner input and output. (iii) com-

parison of the probability of correct classification at the

input to that of various output stages with noise power,

scanner IFOV and data spatial structure as variables.

Before embarking on the experiment, it is necessary to

develop a suitable simulated data set.

d
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5.1 Description of the Data Base

Stage 11 of the test data base simulation starts here.

The checkout of the CSP error estimator required specifica-

tion of the spectral characteristics of the data alone due
to the fact that the spatial information is transparent

to the Bayes spectral classification algorithm. The

validation of the scanner model requires further condition--

•	 ing of the stage I simulation output.

The 'white noise' property of the available test data

although insignificant previously, would no longer be a

realistic assumption about the multispectral data. In

particular, the scanner's response is quite sensitive to

the spatial structure of the input process (Fig. 35 through

3-12) . It has been shown in sec. 3.3.2 that a Markov model

closely approximates the spatial correlation of the multi-

spectral data. Therefore, stage II of the simulation pro-

cess consists of an additional transformation on the

existing data base as a means of creating an exponential

correlation property with any desired parameters. The

technique to accomplish this task is formulated in the

discrete domain in Appendix B. it is shown that filtering

of a white noise process where the filter's PSF is a two

dimensional one sided exponential,

-xlr -y/r
h(x,Y) = c 2 e	 x e	 y	 x,y ? 0	 (5-1)
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generates a two dimensional random field with the adjacent

sample and line correlation given by

-1/rxp x = e	
(5-2)

-1/r
py=e	 y

respectively. In addition to the correlation generating

property, (5-1) inevitably alters the spectral structure

of the input process. From (B--1') the output variance

associated with any spectral band is given by

2 2	
(--2

x2No -1 p -20- 1 2

ag - w (0'0) 	
-2	 f(5-3)

x - l	
p 
	 - J_

where No is the filter's PSF length in pixels, o f is the

variance of the input process, ag the corresponding output

quantity and W(0,0) a quantity depending on 
rx,ry 

and o

(5-3) approaches its continuous version for large 
o 

which

is

Qg /a	 = 1/4_r ry	(5-4)

In chapter 3 it was pointed out that the magnitude of the

variance reduction is Large when a white noise process is

transmitted through a MSS. Since the exponential filter

is basically a linear system, the same property is observed

in (5-4). For exanple, in order to generate a data set

with the following somewhat typical correlation structure]
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p x = 0.85

P = 0.75y

it requires that

r = 6.15
x

r = 3.47
y

From (5-4)

csg /crf _ .012

(5-5)

(5-6)

(5-7)

and thus, the output variance is slightly over 1% of the

input variance. This small fraction causes practical prob-

lems in generating the desired data set due to the finite

dynamic range of the digital data on the storage medium.

The representation of the problem in the discrete domain,

however, provides the length of the filter as another

variable to control the ratio expressed in (5-4). Let

D15= 5 and r  and r  be as specified in (5-6). Then from

(5-3)

Qg /a^ = 0.048	 (5-8)

The resulting intersample and line correlations are now

0.65 and 0.53, respectively. The exponentially correlated

	

data base is generated with adequate N/rx and N/ry ratio	
y

to closely approximate the continuously derived results.

,)RIGINA ; PAGE M
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5.2 Evaluation of the Scanner Characteristic Function

The scanner characteristic function, the transfer func-

tion that establishes a parametric/analytical relationship

between the input and output of a multiband MSS, is the pri-

mary means by which various interactive processes within the

scanner are studied. Like every other model developed so

far, it is desirable to establish that near identical results

are obtained using empirical techniques. In Fig. 4-1, this

validation process is laid out. A white noise process

with some prescribed statistics is generated and then con-

ditioned to exhibit a specified pixel-to--pixel correlation.

The actual data is transformed by a convolution operator

having the PSF of the desired scanner and then the output

statistics estimated. The statistics of the same input

process are operated on by the scanner characteristic func-

tion and the output statistics directly computed_ The

comparision of the two resulting covariance and correlation

matrices will produce the required result.

For this test the particular choice of t,.Le input

statistics is relatively unimportant. Therefore, in order

to use the data already available, Class 1 in Case 1

listed in Table 4-1 is selected as test data;

1.0	 0.75	 0.15

Sf =	 1.0	 0.45	 (5-9)
1

1.0
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The channel standard deviations are set at a large

^i 	30	 i = 1, 2, 3	 (5-10)

to cope with two successive variance reducing linear trans-

formations. The variables of the problem are the scene

correlation and the scanner IFOV. The 1FOV is defined

as the angle at the scanner subtended by a resolution

element on the ground; e.g., 87 urad for the Landsat

MSS. This definition when based on a Gaussian PSF is not

unique. One convention that has been used 131 defines

the TFOV as the angle between points where the PSF has

dropped to half its peak amplitude, Fig. 5-1. Throughout.

this chapter the definition adopted is such that ZFOV

and characteristic length, ro , are identical..

Scanner systems with different resolution capabilities 	 t

and different signal sampling intervals produce images

with different adjacent pixel separation. In order to

eliminate the dependency of the problem formation on the

ac=tual physical distance between each resolution element,

the spatial parameters are normalized to that quantity

and thus many of the results are on a per pixel basis.

Later in the experiment alternate conventions are defined

based on the particular problem under study. According

to this definition, pixel separation in effect is unity.

This assumption is particularly relevant in the simulation
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stages of the experiment since data is artificially

generated and one can assign any desired quantity to the

samples and lines separation interval.

In order to experimentally verify the theoretical

variations of the scanner characteristic function a test

data set is required. The adjacent sample correlation is

scanned from 0.6 to ' 0.9 with do increment of 0.05 while

the adjacent line correlation is kept at 0.7 for the first

set and 0.8 for the second. For test purposes two sets of

scanner PSF's with r  = 1 and 4 pixels are selected. The

particular choice of these parameters are again somewhat

arbitrary. An attempt was made, however, to make the

selections realistic in terms of practical systems.

For each adjacent sample correlation, adjacent line corre-

lation and the scanner IFOV, the ratio of the output

variance to the input variance is experimentally deter-

mined and the results superimposed on the theoretical

plot of the characteristic function vs. scene correlation.

This is done for one spectral band and the results are

shown.in Fig . . 5-2 and 5-3. The percent difference between

the theoretical and experimental characteristic functions,

W. and W is expressed in Tables 5-1 through 5-4, where W.

is the functional value for the ith sample-to-sample

correlation in the corresponding table.

Examination of the error terms and the accompanying

figures indicates a relatively close match . between the two
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TABLE 5- 1 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC
FUNCTION. IFOV= 1,ADJACENT LINE CORRELATION=O.70

YY. W. e. G1
x 1 Z I

0.60 0.56 0.54 3.70

0.65 0.58 0.56 3.60

0.70 0.60 0.59 1.70

0.75 0.62 0.62 0.0

0.50 0.63 0.65 3.10

0.55 0.55 0.68 4.40

0.90 0.65 0.70 7.10

TABLE S- 2 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC
FUNCTION. IFOV= 4,ADJACENT LINE CORRELATION=0.70

p w e %I
0.60 0.12 0.14 14.30

0.65 0.13 8.16 18.70

0.70 0.15 0.15 16.60

0.75 0.15 0.20 10.00

0.80 0.20 0.23 13.00
0.85 0.23 0.27 14.50

0.90 0.25 0.31 9.70
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TABLE 5- 3 EXPERIMENTAL AND THEORETICAL SCANNED CHARACTERISTIC
FUNCTION. IEOV= 1,ADJACENT LINE CORRELATION=0.80

pX T i W. W o

0.60 0.61 0.56 5.30

0.65 0.62 0.62 0.0

0.70 0.65 0.65 0.0

X1.75 0.66 0.68 2.90

0.80 0.68 0.71 4.20

0.85 0.68 0.74 8.10

0.90 0.70 0.78 10.20

i

3

1i

3,	 3

I

TABLE 5- 4 EXPERIMENTAL AND THEORETICAL SCANNER CHARACTERISTIC
FUNCTION. IFOV= 4,AD.IACENT LINE CORRELATION=0.80

p W W. oe.
0.60 0.15 0.18 16.60

0.65 0.17 0.21 15.00

0.70 0.20 0.24 16.60

0.75 0.23 0.27 14.80

0.80 0.26 0.31 16.10

0.85 0.31 0.35 11.40

0.90 0.37 0.41 9.70
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independently derived functions. When p  = 0.7 and ro =1

pixel., the percent error ranged from a high of 7.1

at Px =0.9 to 0 00- at 
Fx =0.75 for an average of 3.4%. For

ro =4 pixels the percent error ranged from a high of 18.7%

at p x = 0.65 to 9.7% at p x = 0.9 for an average of 13.9%.

The explcination for a higher discrepancy between the

theoretical and experimental values of the latter case

can be attributed to the inherent error of a discrete

testing of an essentially continuous phenomenon. Thile

this error is always present, under certain unfavorable

conditions may become significant. In this case a large

IFOV dictates the choice of PSP with a considerably

greater nunber of samples in order to satisfactorily

approximate its continuous counterpart. This in turn

requires a larger size data base and accompanying increase

in computation time. The last factor was the main con-

straint that limited the PSP's length and contributed

to the increase in deviation from the theoretical result.

This factor notwithstanding, Fig. 5-°2 and 5-3 show a very

acceptable harmony between the two results and provide

substantial evidence for the validity of the analytic

scanner characteristic function.

This validation was accomplished in the context of

variances alone. That this is not a special case is

easily concluded from the property that the output cross--

channel spectral correlation coefficients are simply ratios
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of one or several appropriate characteristic functions.

Having tested its building block, the experimental verifi-

cation of the entire spectral correlation matrix is

implicitly accomplished .

By means of the above evaluation the parametric models

deve-l oped for the analysis of the MSS performance is

accomplished. Therefore, unless stated otherwise, all the

results obtained hereafter will be based entirely on the

statistical properties of the populations, scanner parameters

etc. and no data bases, simulated or measured, will be

employed.

5.3 MSS and Classifiability of the Multispectral Data

A major application of the various parametric models

and methods developed during this study is in determining

the interactions among the MSS system parameters on a

data-independent basis. Having experimentally verified

the validity of the models , such evaluation of the

performance of a multispectral scanner is feasible. in

any system analysis the definition of an index of performance

is a basic requirement. When the system is a MSS in a

remote sensing data gathering package, the accuracy by

which various populations present in the final data set

are classified primarily determines the degree of success

of the initial design. Therefore, throughout this chapter

the objective is to observe the probability of current

classification at various stages of the MSS, Fig. 5-4,

1
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Fig.	 5--4 A Statistical. Illustration of the
MSS Model..
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and monitor its variations with the SNR, scanner IFOV

and spatial correlation of the scene. A Gaussian PSF

is employed unless stated otherwise.

5.3.1 Classif ication Accuracies at the MSS Output: No Noise

The test statistics is Case 1 in Table 4-1

containing 3 classes with 3 features. The input to the

scanner is a spatially correlated data set with an adjacent

sample correlation ranging from 0.5 to 0.95 in steps of

0.05. For each P  a corresponding p  is computed on the

following basis. The sampling of the analog Landsat data

is such that the ratio of the ground distance between the

cross-track pixels to that of along-track is about 0.7.

Since the adjacent pixel correlations along these two

directions are equal in a continuous model, it follows

that if

PT W 
e-aT	 (5-11)

x
T,n = 0, 1, 2, ..

py	
e-b r,	

(5-12)

then

a = 0.7b	 (5-13)

therefore

P  = P n(10/7)	 (5-14)
y	 x

With the input statistics defined as above, 10 cases are

obtained and for each case r  is varied from 1 to 8 pixels

.	 :1

a
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and an output classification accuracy is estimated for

each combination of the scene correlation and scanner IFOV.

Fig. 5--5 through 5--14 and Tables 5--5 through 5-14 show

the variation of the output probabilities of correct

classification as a function of IFOV. 13 cells per axis

are used in the CSP error estimation algorithm.

The variations of the output probabilities of correct

classification are in complete agreement with those projected

by the characteristic function. The most notable feature

is the inverse relationship between the scene spatial cor-

relation and the slope of Pc 	 vs. IFOV at the output.i
When the scene is spatially highly uncorrelated such as

Fig. 5-5, Pc gained 16.20 by increasing the IFOV from 1

to 2 pixels wide, whereas, the same increase in IFOV

produced a gain of 9.70 for px = 0.6, 6.70 for p x =0.7,

3.3% for p x =0.8 and only 0.90 when p x = 0.95. This

behavior can be predicted from the variations of Ws vs

p x .	 Referring to Fig. 3--5 through 3-12 where W s is plotted,

it is observed that the one step reduction in input

variance gets progressively smaller toward higher .scene

correlations. For the test case under study where any

reduction of the class variances along a feature axis can

contribute to increased separability, the aforementioned

property of Ws accounts for the changing slope of Pclw

over the ensemble of the scene spatial correlations.

a
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TABLE 5- 5 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=0.50

IFUV p
Cl^'z pG lw2

p 'w3 c
1 68.9 74.2 76.6 73.2
2 82.4 86.0 84.9 54.4
13 91.5 94.3 92.7 92.5
4 96.5 97.8 97.0 97.1
S 95.7 99.2 98.9 99.0
6 99.6 99.8 99.7 99.7
7 99.9 99.9 99.9 99.9
$ 99.9 99.9 99.9 99.9
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TABLE S- 6 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=O.SS

TFW	 1?	 PClw1	 clw2	 clw3	
Pc

1 66.5 70.6 75.6
2 78.3 83.7 82.6 81.6
3 87.7 91.6 89.8 89.7
4 94.2 95.9 94.8 95.0
5 97.3 98.4 97.7 97.8
6 98.9 99.4 99.I 99.1
7 99.6 99.8 99.7 99.7
8 99.8 99.9 99.9 99.9
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TABLE 5- 7 SCANNER 0UTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=0.60

TFOV c1w, Pcjw2 Pciw3 Pc

1 64.4 68.5 74.7 69.2

2 75.3 81.2 80.2 78.9

3 84.2 87.7 86.8 86.2

4 91.2 93.7 92.3 92.4

5 95.2 96.8 95.8 95.9

6 97.5 98.6 95.0 95.0

7 98.9 99.4 99.1 99.1

8 99.5 99.7 99.6 99.6
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TABLE 5-- 8 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION-0.65

XFOST
PccIws

pCiw2 pclw3
1 63.1 66.8 73.5 67.8
2 72.3 78.6 77.9 76.3
3 80.5 84.8 83.8 83.0

4 86.7 90.4 89.0 88.7
5 92.1 94.6 93.1 93.3
6 95.4 96.9 95.9 96.1
7 97.5 98.5 97.7 97.9
8 98.7 99.2 98.9 98.9
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TABLE 5- 9 SCANNER OUTPUT CLASSIFICATION ACCURACIES V'S. IFOV
ADJACENT SAMPLE CORRELATION=0.70

iov	
PCIW,	 PC wo	 PCIW,	

pc

1 61.5 b3.b 75.b bb.J

2 69.4 75.0 76.6 73.7

3 75.5 82.9 81.2 79.9

4 83.0 86.7 85.7 85.1

5 87.6 91.6 89.8 89.7

6 91.9 94.6 92.9 93.1

7 94.6 96.2 9S.5 95.4

$ 96.7 98.1 97.2 97.3

F

By
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TABLE 5-10 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRM- ATI0N=0.75

IFov	 Pc1W	
PC 1^	 Pc

I W
Pc

^,	 2	 3 i

1	 59.5	 64.2	 73.2 65.7

2	 66.4	 69.9	 75.7 70.7

3	 72.3	 78.6	 77.9 76.3

4	 78.0	 83.2	 81.7 51.0

5	 53.0	 86.7	 S5.9 85.2

6	 37.2	 90.4	 89.2 89.0

7	 91.0	 93.6	 92.2 92.2

8	 93.3	 95.3	 94.2 94.3
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TABLE 5--11 SCANNER OUTPUT CLASSIFICATION ACCURACIES 4S. IFO'V
ADJACENT SAMPLE C0RRELATiON=6.80

lr()V	
pc 1 ml Pc l w2 Pc j 

.3
"c

f 5S.2 63.1	 -7 5

2 63.4 66.8 73.5 67.9

3 68.5 73.3 76.6 72.8

4 72.4 78.6 78.7 76.6

5 77.9 83.0 81.4 80.8

6 82.4 85.6 84.7 84.2

7 84.9 88.2 87.1 86.7
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TABLE 5-12 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SMIPLE CORRELATION=8.85

TFOV
p jwl FcIm2 pcIW3 pc

1 56.9 62.2 72.5 63.5
2 60.9 65.5 73.4 66.6
3 64.4 65.2 74.8 68.9

4 67.9 73.1 76:3 72.4

5 71.5 78.1 77.1 75.6

6 74.9 80.6 79.5 75.3

.7 77.9 53.1 81.5 88.8

8 80.7 54.8 83.9 53.1

228



1- CLASS 1
2- CLASS 2
3- CLASS 3
O- OVERALL

C 1.00

L
A
S 95
S
I
F
190
C
A
T
I 85
O
N
A SID
C
C

R 75
A
C
Y 70
i
P
C
T S5
7

so
1	 3	 5	 7

2	 4	 C	 8

SCANNER IFOV IN HIGH RESOLUTION PIXELS

FIG. 5-12 SCANNER OUTPUT CLASSIFICATION ACCURACY VS_ IFOV 	 N
AOJACENT SAMPLE CORRELATION .S5



3

23 0

TABLE 5-13 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=0.90

IFOV clw pcjw pc IW
pc

bto. u ^ ... 73.E 63.1-

2 58.2 63.1 72.7 64.7

3 60.8 65.0 73.3 66.4

4 61.9 66.5 73.S 67.3

5 65.4 68.9 74.7 69.7

6 67.7 71.1 76.3 71.7

7 69.4 75.0 76.8 73.8

8 72.3 75.6 77.8 76.2

I

3

{

j
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TABLE S-14 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
ADJACENT SAMPLE CORRELATION=0.95

TFOV
$clwl

Fclw2 pclw3 p 

1 54.1 60.3 72.1 62.1

2 55.0 61.0 73.0 63.0

3 56.2 62.2 72.5 63.6

4 57.9 62.9 72.7 64.5

5 58.7 63.3 72.9 65.0

6 59.7 64.4 73.3 65.8

7 61.5 65.6 73.6 66.9

S 61.9 66.2 73.5 67.2

ORIGVAL P kGF' lb
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The second property universally observed is the expon-

ential type rise of PC , W precipitated by the changing
i

slope of the curves for a fixed pX and py. This property
is brought about by the nonlinear weighting feature of Ws

as the IFOV is varied. Let

A l = W(px,py,r1)

A  = W(P x r p y r r2 )	 (5-15)

A3 = W(pxrPyrY3)

where r l , r2 and r3 are three different IFOV's increasing

order. Then,

A 3 - A2 < A 2 - A l	(5-16)

Therefore, the classification accuracy improvement must

necessarily taper off as IFOV increases. This last property

is probably best demonstrated in Fig. 5-14 where the input

process has a high degree of spatial correlation. The

plots of PcjWi vs. IFOV are nearly flat with an overall

classification improvement of 5.1%. This compares with

13.2% for P
x 
= 0.9, 25.1% for p x = 0.8 and 26.7% for p x

 =0.5.

For a degenerate case where p x = p y =1, the characteristic

function indicates that input and output classification

accuracies are identical. This of course is predictable 	 -

:ince total spatial correlation is tantamount to a process

with only a DC value.

DRIGVUAL 	 v';
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5.3.2 Classification Accuracies at the MSS Output:
Additive Gaussian Noise

In this subsection the definitions and conventions

adopted in sec. 3.3 will be adhered to throughout. In

order to study the effect of additive random noise in the

classifiability of remotely sensed data, the scanner

output class conditional statistics undergo the following

linear transformation

E g , = Eg + EN	(5-17)

where E is the noise free output statistics and E is

the covariance matrix of a white noise process and as

such it is also diagonal. The SNR in this case is

defined on a class conditioned basis. However, the classes

in the test case all have equal channel variances with

equal spatial correlation parameters, therefore, the

class conditional SNR is identical for all three populations.

A fixed spatial correlation model with p x =0.85 and p y = 0.79

is chosen and the output probability of correct classifation

vs. 1FOV is estimated for SNR = 10,20 and 30 dB. The noise

enters the system at the MSS output and models the quanti-

zation and detector noise. Fig. 5-15 through 5--17 and

Tables 5-15 through 5-17 show the interaction of noise

and scanner 1FOV and their effects on the output

classification accuracy, Fig. 5--18 shows-the

dependence of$ c on ZFOV with SNR as a running parameter.
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Note that a fixed output SNR implies a variable noise

power environment.

The functional variation of the classification

accuracies vs. IFOV is essentially identical for dif-

ferent noise levels. Pctw increases monotonically with
I i

increasing IFOV for a fixed SNR. Compared to the noise

free case of Fig. 5-12, the slopes of $c1Wi in the noise

added case are relatively close. The classification

accuracies, Pc1W , PclW 2 , PcjW 3 and Pc increased 23.90,
1 

22.6%, 11.4% and 19.3% respectively where the corresponding

numbers for SNR = 10 dB are 20.70, 19.90, 14.3% and 18.3%

as IFOV ranged from 1 to 8 pixels. The percent improvement

of the output classification accuracy vs. IFOV therefore

is not heavily dependent on the output SNR in this case.

The deterioration of the classification accuracies as noise

power is increased is greater for larger scanner IFOV's.

This is due to the fact that the coarse resolution output

with a smaller variance is more susceptible to random

disturbances than a process that already has an appreciable

variance. This property is illustrated in Fig. 5-18

where the SNR =10 dB curve diverges from the rest of the

plots for higher IFOV's.

The tradeoff between the SNR and IFOV is also illus-

trated in Fig. 5-18 by observing that Pc is multiple

valued, i.e. -.e combination of SNR and IFOV that result

in a particular Pc is not unique. In the case under study

ORIGINAL PAGE IS
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TABLE 5--15 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
SNR=10 DB ADJACENT SAMPLE CORRELATION=0.85

IFOV	 Pc w pc w Pc w pc
l 2 3

1 53.5 59.3 57.8 56.9

2 56.1 64.6 59.4 60.0

3 58.7 66.3 60.3 61.8

4 60.9 68.3 62.4 63.9

5 66.5 71.2 64.5 67.5

6 70.5 74.1 65.6 70.1.

7 72.5 76.8 70.0 73.1

8 74.2 79.2 72.2 75.Z
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TABLE 5- 16 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
SNR=20 DB ADJACENT SAMPLE CORRELATION=0.85

IF^T

T Pc1w,
S5.1

PcIw2

--6s7F

PGlW3

70. 9r

c

-	 ^

2 58.9 65.7 71.0 65.2

3 62.1 67.7 73.3 67.7

4 66.7 70.6 75.1 70.8

5 70.9 75.1 76.6 74.2

6 74.3 80.2 78.5 77.7

7 77.0 8313 79.7 80.0

8 79.9 84.9 82.1 82.3 ti
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TABLE 5--17 SCANNER OUTPUT CLASSIFICATION ACCURACIES VS. IFOV
SNR=30 DB ADJACENT SAMPLE CORRE-LAT I ON-0.85

xFOV	 C wl	 Pr_Iw2	
PCIw3	 c

1 56.2 63.5 71.7 63.8

2 60.2 65.7 73.0 66.3

3 62.9 67.9 75.5 68.8

4 68.3 70.8 76.3 71.8

5 71.5 76.2 77.8 75.2

6 74.4 80.3 79.5 78.1

7 77.1 83.5 81.6 80.7

8 80.2 85.1 83.4 82.9
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a 70 0u- classification accuracy can be achieved when IFOV =6

pixels, SNR = 10 dB or IFOV = 3.8 pixels, SNR = 20 dB or

IFOV = 3.5 pixels and SNR = 30 dB . Equivalent if the

system noise level is such that the SNR is at a low 10 dB,

to achieve a prescribed minimum classification performance,

The resulting data spatial resolution will suffer. The same

classification accuracy can be obtained with a 60%

improvement in spatial resolution if the MSS is operating

at a 30 dB SNF.

5.4 Summary and Conclusions

The objective of this chapter was to employ the CSP

error estimation technique and MSS model in an integrated

parametric package that would produce the theoretical

response of the MSS in a fully controllable environment.

The results presented are not intended to be exhaustive

but rather to demonstrate the method and to illustrate

general trends in the system response. It is constructive

to compare the patterns observed with those obtained by

other nimulation techniques.

A parallel study aimed at the same objectives is

reported in [3]. High resolution (6 m) aircraft MSS data

was considered with a cascade of simulated scanner PSF`s

to produce data sets with 30 m, 40 m, 50 m and 60 m ground
resolutions and the classification performance was estimated

for each case. The results provided less than conclusive

tl

E



245

evidence on the monotonic realtionship between classifica-

tion performance and the IFOV due to the very small rise

in Pc as IFOV was enlarged. This conclusion can be

fully understood from the theoretical curves of Pc vs.

IFOV. The significant parameter, data spatial correlations,

is what determine how strongly classification performance

and IFOV are interrelated. As for a real data set, its

spatial correlation structure is a fixed parameter. In

case of high resolution aircraft data, pixel-to-pixel

correlation can be as high as 0.9 or 0.95. Fig. 5-13

and 5-14 with px =0.9 or 0.95 respectively clearly illus-

trate that'Pc and IFOV are inded weakly coupled. Had

the data under investigation in [3] been less spatially

correlated, this coupling would manifest itself more

strongly. For satellite data having a p Y of about

0.75-0.8, Pc shows considerably stronger sensitivity to

variations of IFOV.

The following conclusions emerge from the theoretical

simulation of MSS s patial characteristics.

1. The achievable classification performance monoton-
ically increases with increasing IFOV, at the
expense of spatial resolution.

2. The degree of such dependence is directly related
to the extent of spatial correlation of the random
processes at the scanner input. M process with
a DC value alone will have identical classification
performance at the MSS input and output regardless
Of IFOV.



a

24 6

3. Additive noise, by reducing the class separabilities
produces a degradation of the classification per-
formance. For any fixed SNR, however, P c still
increases with increasing SFOV.

4. When a minimum classification performance is a
design parameter, Fig. 5--18 determines the required
operating states. For the test case under study,
given that minfPc} =70o, the lower bounds on 1FOV
are 6, 3.75 and 3 low resolution pixels for SNR,
10 dB, 20 dB and 30 dB respectively.
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CHAPTER 6

Conclusions and Observations

in this bhapter we provide a broad evaluation of the re-

sults of the study and the degree which it has satisfied

the objectives put forth initially. The performance of

CSP Bayes error estimator was, by far, the most signifi-

cant result. The transformation of ideas from abstract to

practical more often than not is limited by the finiteness

of the available resources; hence, it is often irrelevant

whether a method is theoretically sound. in this case with

the exponential rise in the number of sampling cells due

to the dimensional effect, a requirement for more cells
	 3

per axis would have nut the usefulness of the algorithm

in grave doubt. That this was not to be the case has been

amply demonstrated in the experimental results of chapter 4.

Admittedly the feature spaces considered can,iot be

classified as being of high dimensionality but within the

scope of the present and near future MSS data gathered by

satellites will consist of four or five bands of visible

and infrared radiation. In fact even that may be reduced

if some of the bands prove to be redundant in the prepro-

cessing stages of data analysis. The systematic behavior

of the estimate vs. grid size is a characteristic that

s
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.provides some degree of a posteriori information. Knowing

that the estimator almost universally approaches the

Bayes error with a decreasing negative bias and the fact

that at about 8 cells per axis the estimate is within 1% of

its final value, one may select a small grid size and choose

to project the final value by heuristic or other numerical

techniques. This approach may be useful when the data is

of unusually high dimensionality.

There are undoubtedly a number of refinements that

could accelerate the rate of convergence even further. It

has been mentioned frequently that the boundary cells are

the primary source of the estimation error. By adopting

a larger grid, the measurement s pace is divided into finer

partitions indiscriminantly. The optimum strategy should

sample the interior of r  as coarsely as possible and the

boundary rergion as finely as possible. One such technique

is to first 'det.ect' the boundary by a coarse grid and then

perform the partitioning by working around that segment

while leaving the interior grid intact. In implementing this

modification, however, close attention should be paid to

the theoretical convergence property of the modified esti-

mator. The choice of sampling grids other than binomial

may be considered although one such grid with variable

cell size was employed with no discernible im provement in

performance.
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The evaluation of the scanner spatial model provided

the first application of the CSP error estimator. Compared

to simulation techniques using a large data base, manipu-

lation of the MSS parameters proved to be much simpler.

The problem was simplified somewhat by the availability of

closed form relationships governing the input-output statis-

tical dependencies. This was possible because of the par-

ticular approximating function and for the scanner's PSF.

The spatial characteristic function is by no means bound

by such an assumption. The technique employed in Appendix A

can be carried out for any specified PSF in which case the

results in general are not in closed form. The observed

response of the MSS was in close agreement with the reported

results based on Monte-Carlo techniques_ The primary

difference was a far greater flexibility provided by the

scanner model in examining the response to various parameter

manipulations.

The number and kind of potential applications of the

analysis package developed here are far greater than

there was space to elaborate. The spatial model can be

expanded to include a greater range of noise levels and

sources. It is possible to accumulate a catalogue of

system response curves corresponding to combinations of

different scanner and ground scene parameters. A set of

desired system parameters can be specified and the remaining

set determined from the theoretical response characteristics.

ii
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The availability of several different sets of parameters

Lo achieve a certain performance index underlines the inher--

ant tradeoffs in designing a multispectral scanner system.
Uhe fundamental function of this parametric package, there-

-ore, is to provide for an easily implementable technique
:o evaluate the system's performance with maximum flexi-

!ility and minimum input information.
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Appendix A

Multispectral Scanner Output Statistics

In order to determine the effects of different scanner

IFOV i s and their interaction with classification accuracy
of a data set, it is essential that the required output

covariance matrices be parametrically represented in

terms of known input quantities. In sec. 3.2.2 it was

noted that the entire spectral covariance matrix is speci-

fied if the approporiate spatial correlation functions

are known. Let f(x,y), g(x,y) and h(x,y) denote the input

and output random processes associated with any two matching

bands and the scanner PSF, respectively. It is well known

that the above quantities are related by a convolution

integral.

g ( x , y ) = fl f(x- a l y"a 2 )h(a l ,a 2 )da ldA 2 	(A-1)
J

In order to derive specific results, two different scanner

PSF's are considered: (a) a spherically symmetric Gaussian

PSF; and (b) a rectangular PSF. The spatial correlation

matrix describing the scene is a two sided exponential.
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A.l Gaussian Scanner PSF 7

1

The PSF and spatial correlation model are given by 	 y

Rff (T, n) = PI TI I n I

X2 - y2 	
(A-2)

h(x,y) = cl er02 er02

where Po = e-a is the adjacent pixel correlation assumed

equal along the horizontal and vertical directions. This

assumption is not in contradition with the fact that in a

digital data set sample -»to -sample correlation is higher

than line-to-line correlation because of the closer

physical distance between the samples. In continuous

domain, such as this formulation, where theoretically

equally spaced lines and columns can exist, there is little

reason for assuming different pixel--to-pixel correlation

along each direction. Two quantities, c 1 and r  specify

the PSF where c 1 is a normalizing constant providing unity

gain and r  is the filter's characteristic length, closely

related to the IFOV.

With the parameters of the problem defined, the scanner

output correlation function can be expressed as;

Sgg (u, v) = S f f (u, V) 
l 
H (u, v) 1 2	 (A-3)

where S(u,v) is Spectral density. Let Pl(u,v) = IH(u,v)1 2 ,	 .

then

ORIGINAL PARE
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Rgg (T,n)	 Rff(Tr	 n)	 (A-4)

2
2	 2

2 -	 T	 -- 2	 (A-5)r	 2	
2m(T, n) - ^rcl 2 

o	 e2ro	
2ro

Using the separability property of the functions involved,

Rgg(T
► TI) -	 R^(T-x)m(x)dx R (n-'y)m(y)dy

= pxg	 (A-6)

2
V/-7rc rm

A = l °	 e
-a

l T-XIe 2ro dx
V -2	 f- 00

2

FIT c r T	 - x^	 l o	 e-a(T-x) e 2ro  dx +	 (A-7)
co

2

^r,^ c r	 _ Xo f

Te

a(T-x) a2ro2 dx

V2 

Combining the exponentials and completing the squares,

a 2ro	 (x-ara ) 2
J^rc r	 aT T-	 2

A- l° e 2	 e 2r0	 Ix+

a r 
2	 (x+ar } 2
00 o

e 2	
T

 Fe	 2r02	 dx	 (A--8)
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The individual integrals can now be represented in terms of

the Q function

	

a2r2	 T-aro x2
- T

A = 7rclralea 2
	 L ro e- 2 dx +

a ro
2	

x2
+aT	 - 2

e	 f	 2 e	 dx
0

r 

	

ar t	 art2° - a-:	 ar -T	 ° + aT	 ar 2+ T

_ 7rc lr0 e 2	 Q( r° ) +e 2	 Q( r	 )

	

0	 0

(A-9)

The constant c 1 is the solution to the following equation

	

x2	 2

IL 	 r	
_ Y

 i e r°2 dx	 I	 e rod dy = 1

Therefore,

l
cl =	 2

'rr0

Noting that B is similarly evaluated, the spatial correla-

tion function at the scanner output is given by

2 2	 2 2	 2

	

ar	 ar

	

0	 0

	R gg(T,n) = e ? - aT Q(ar0	o
) +e 2 

+aT 

Q (ar + - )
0	 0

(A-11)
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The above relationship can be easily modified to cover

the case of unequal pixel--to-pixel correlation along cross

track and down track directions. if R ff (T,n) is given by

Rff(T,n) = e_a J T J 
a
-b1nJ

Then it follows that

a2r 2	 art

	

o -aT	 °+aT
R(T,n) = e 2	 Q(aro -	 ) +e 2	 S?(aro+--I-)) xgg

0	 0J

 b2r2

	

bn	 o+bn

[,I?r.2

	

 o -)+ e 2	 Q (br o +)
0	 0

(A-12)

Note that since the input process f(x,y) has a unity vari-

ance Rgg (0,0) is in effect a weighting by which any input

variance will be multiplied to produce the corresponding

output spectral variance. The right hand side of (A--9),

therefore, can be considered as a weighting function associ-

ated with any multiband scanner to relate input and output

statistics. Denote this function by Ws(T,n,a,b).

The next item of interest is the output crosscorrela-

tion among channels. This quantity, designated by R 	 (T, n),
gig?

is a straight forward extension of the method just de-

scribed. Again assuming a Markov or exponential structure
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governing the crosscorrelation function between channels

-a	
iTl	 -b
	 ^n

	

Rff.	
i(Trn) - rff.af.af .e1]	

ai'	
(A-13)

	

i 3	 1 3. 7

where r.. is the spectral crosscorrelation coefficient at

the input such that Irf.f.1 < 1. aid and b ij are defined

similar to a and b. Since the crosscorrelation function

between a pair of outputs of a linear system is related to

the input cross correlation of the same pair in a form

similar to (A-3) [ 6 61, i.e.

Sg, g . (u,v) = S f. f . (u,v) I H (u,v) 
12	

(A-14)

	

1 7	 ^- 7

the same technique used previously provides the acrossband

correlation function at the MSS output.

R gig 
i ( T . n ) = r f i f, a fiaf' Ws (z r T1 

ail 
. b id ) (A-15)

From (A-13), the crosscorrelation coefficient between any

two channels at the scanner output is

g (0,0)
^

r	 - 

R 
9

- ^' j

	

(A-16)

	

gigs	 agiagi
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og = CY	 W$ (O,O,aii,bii)

also

From (A-15)

R	 (0,0) = r	 a a W (O,O,a.. 
i

,b. )	 (A--17)
gigJ	

fife fi f^ s	
^^	

^

hence

r	 Ws"0,O,a• -,b • .)	 r
gicjj .	 Wh(O,O,a..,b..} W2(O,O,aij,b 	

f. f
j^)	 i J (A-19)

s	 ii a^	 s

Therefore, the band-to-band correlation coefficients

are identical at scanner input and output provided

spatial auto and crosscorrelation functions at the

input are equivalent, i.e., aii 
7-- aij , bii = bid.

3
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A.2 Rectangular Scanner PSF

A rectangular point spread function is defined here

by

r
1/ra ^xy `- 2

h(x, y ) = 	(A-20)

0	 otherwise

Similarly to (A-4);

Rgg (T,n) = Rff(T,n)m(T,n)

where

m(T,n) = r- -(1-^-	 ) (1- iD 	oi ^T^,(nI -` r	 (A-21)

0

Emplying (A-6) to (A-21)

A = 1 ^^ - ' -x1 aT 	 (1- Lxl) dx
r	 ^	 o0

^ 1°	 a
- a (T -x) (1 + X ) dx + l T e

-a (T^--x) (1- X ) dx
^ roIf-ro	 ro	 o	 ro

+fro ea (T--x) (1 -) dx.
T	

r0

(A-22)

Designating the three terms in the bracket as I, II and III,

routine integration techniques yield the following

results
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-ar

	

T- 1
	 U -- I- e	 0) a -a J r I	 (A-23a)

	

ar	 aro
0

TT W	 x	 (1 - 1-ea l T I ) a-a (,r I	 (A-23b)
are	 ^-

-	 -	
_aIT^

III T ar—!—((1-1-e  W
	

ar 0
ro..._ _) "" (^. - 1 aeT ^--? )e-a ^` 	 (A-23c)

0

A similar expression is obtained for B by substituting

n and b for T and a in (A-23a) thru (A-23c). The scanner

characteristic function, WS (0,0,a,b) is evaluated by

equating T = n = 0 in I, II and III;
-ar

0

	

W ( 0 , 0 , a , b ) =	 2 (l - 
1- e	 ) x

	

s	 ar	 aro
0

-br
2 {1 - l'-

be	 0)	 (A--24)
bro	0

(A-24) is plotted in sec. 3.2.2 for different values of

a, b and ro.
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Appendix B

Exponential Spatial Correlation Function Simu:1ator

As a part of utilizing a completely simulated data

base, access to one with a Markov-structured spatial

correlation is requi-:.-ed. In order to obtain such a set a

white noise process can be transmitted through an

appropriate filter.

Let f(x,y), g(x,y) and h(x,y) be the input, the output

and the desired filter, then

S 9 (u`v) = Sff (u,v) J H (u,v) j 2	 (B-1)

Since S ff (u,v) = l for white noise and the desired spectral

density function, S gg (u,v) =	 2a	 2b2	 2 2	 2 , thereforea +u b +v

H(u,v)Hk(u,v)	 2 ab	 2 ab	 (B^2)
(a+ju) (b+ju) (b-v i ) (b+jv)

It then follows that the desired PSF is a one sided

exponential i.e.

h (x,y) W c e-ax a-by	
(B-3)

let rx = a and ry = b be the filters characteristic length

along x and y directions. Then
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x _ Y
h(x, y) = c e rx a ry x ,y ? 0 (B-4)

where c is a normalizing constant providing unity filter

gain. Since this filter operates exclusively on digital

data, formulation of the problem will be entirely in

the discrete domain. Let the filter's length, in pixels,

be No . In order to solve for c, the following should

hold

N-1N-Z	 m	 n

I	 I h (m, n) -	 c e rx e ry = 1
m=o n=o 	m n

m	 n

cl e - rx ) (E c2 e ^ ry )	 (B-5)
m	 m

By equating the individual terms to 1, unity gain will exist

along the individual axis as well.

N I	 m	 1	 2	 N-1

c l e- rx = c l (1 + e^ rx + e^ rx + ... + e^ rx )
m=o

_ 1

let px =. e rx , the adjacent sample correlation, then

N
N-1	 - m	 o

ro _ c p 1
M=O	 p x

therefore

p -1

px 1
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1

similarly, defining p y =e r  as the adjacent line corre-

lation,

c2 = N	 (B-7)
pyo-,

F	 but

C = c1c2

then

-1	 --1
C = ( 

P
— ) ( pND )

px 1 Py 1
(B-8)

Since the e:^ponential filter in addition to generating
3

a pixel--to-pixel correlation alters the statistical proper-

ties of the input as well, a knowledge of that effect is

necessary. Let the input to this Filter consist of N

random processes corresponding to N spectral bands. The	 r

input and output are related by the following discrete con- s

volution.;

g(m,n) _	 f(i+m,j+n)W(i,j)	 (B-9a)
1

i=o j=o a

where
i

W ( i ,J) = h(N 0- 1-i,N  D -1-j)	 (B-9b)

and no subscript on g(m,n) and f(m,n) designates any two

AA	
corresponding bands. The output spatial correlation is

a
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then given by

Rgg (T,n) = E(g(m+T,n+n) g(m,n)}

No 1. NC;-1 Nv I NO-1

_ I	 I	 I	 I f(i+m+T,j+n+n) x
i=o j=o k=o t=o

f(k+m,k+n)W(i,j)W(k,Q,)l	 (B-10)

Moving the expectation inside;

E( f(z+m+T,3+n+n) f(k+m, 9, +n)} = Rff (i-k+T,, — Q+i (B-ll)

Since f(x,y) is a white noise process:

0	 Ti n	 0

Rff(T,n) =	 (B -12)

6f	 nT, = 0

Therefore, Rgg (T,n) is non-zero if the following is satis-

fied

i-k+T = 0 ---'x i = k-T
(B-l3)

Lj_Q+n

substituting (B-13) in

N
^? 
1

Rgg ( T ,n} - a	 1
k=i

0 —> j = Q-- n

(B-l0)

No-1

X W(k,Q)W(k- T,I — n) 	(B-14)
Q=n

 rV

P
4

i

4

a
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From (B-9b)
k- (N0 --1)	 -(N 0-1)

W (k, Q) = c e	 rx	 a	 ry

= W(0,0) 
pxk 

P-z

where
N -1 N -1o	 _ o

W(0,0) = c e- rx a ry

N -I	 No I0
R9g (T,^1) = W2(0,0)	

pX2k^T	 E py2QFn Cr

k= T 	R= n

(B-15a)

(B-15b)

	

P
-2 ( No ^T) _I	

P
-2 (N -n)_1

	

` w2 (Or0)p T P n 
P
-2T X	 p_2n ^,	 2

x y x	 P-2 -	 y	 Py2 - I

_ -n -2 (N -T)-	 py	 2
x	

p 2 (No 	 -1
= W2 (0,0 ) 

p Tpy	
x P

-2 _ 1	 P--2 _ 1	 ^f

	

x	 y

(13-16)

The variance of the outpu^ process is therefore given by

P -2N 0
 - I	 P -2No - 1

^
9
2 = W2(0,0) x2 -2 Q^	 (B-17)

px -I	 (Py ~I
r

This result approaches the continuous version for large No,

rx and ry i.e. o-2No » 1 and p x2 -1 = r and similarly for
x
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P	 Under these conditions
y

a^ / of ^ 1/4 rxry	(B-18)

since the primary purpose of this filter is the generation

of a pixel-to-pixel correlation of some prescribed value,

the following should hold

Rgg (l TO = p x af	 (B-19)
	 i

Rgg (T,1? = p y ag	 (B-20)

let z = land Ti= 0 in (13-16). Using the approximation
p _2(No-1) _1 = P -2(No-1) it immediately follows that

	

Rgg(1,n) = P x a f	 (B--21)

and similarly for Rgg (T,l) .

The next topic is the across--band statistical and spa-

tial effects the exponential filter might have had an the

multispectral white noise. Following an exact analog of

the derivation presented so far, the crosscorrelation

function for any two bands at the output, g i and gj is given

by

-2 (N~ r)	 -2 (No- n )

	

_ _ p	 o	 -1 p
R 

g i 
9 h , ri) = W2 (0,0) px^pYn x p

-2 _ 1	
Yp

-2 - 1 rl r ij a f i a fj	 -

X	 y

(B-22)
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where the input crosscorrelation function is defined

0	 T,n = 0

RfrfJ (T, TI) _	 (B-23)

ri.°f.Qf.	 T 	 = 0	
a

The band-to-band correlation coefficient at the output is

given by

r
gigj	 gigj	 gi 5j

= R	 (010)la a	 (B-24)

It then immediately follows that

r
gigj	 i

= rffj	(B-25)

i.e. the correlation coefficients has undergone no change

under this transformation
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