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ABSTRACT

The problem of reconstruction of a continuous or densely
sampled uniform grid scalar surface from track-type geophysical
surveys is discussed. The signal sources considered include
earth gamma ray radiation and magnetic fields measured at low
altitude (typically 500 ft.) along tracks spaced from a fraction
to several miles apart. The signal model investigated assumes
the geophysical surface consists of a narrow band isotropic
stochastic signal process. The sampling process is characterized
by a high sampling rate along track and a low sampling rate across
track. A reconstruction filter approach is described which
attempts to provide isotropic reconstruction to minimize the

error in representation of scene features.

This work was sponsored by the National Science Foundation
under Grant ENG-7614400.




I. INTRODUCTION

Many geophysical remote sensing surveys utilize non-imaging
sensors carried in low flying aircraft along parallel tracks
over a survey site. The survey produced by these sensors is
sampled at a high rate relative to the field of view producing
nominally an oversampled sequence. However, due to intuitive
judgements regarding the size of features and economic limitations
the spacing between tracks is many times the along track sampling
interval. Figure 1 shows an example of the sampling structure
which results. Typical sensors are gamma ray radiometers, earth
field magnitometers, gravity sensors, induced magnetism sensors,
atmospheric aerosal detectors and others.

It is desirable to carry out analysis of track type survey
data in image format to utilize the knowledge and techniques of
visual image interpretation. Contouring is also widely used to
display the data in two dimensional format. Registration of
track type data with a densely sampled image such as from Landsat
scanners is often required. 1In order to implement these image
analysis procedures a uniform closely spaced grid of points is
reguired. The filtering and interpolation method used to generate
the grid of points from the original data must reconstruct shapes
and features as they would have appeared in a uniformly sampled
case. VShould anisotropic reconstruction occur shapes and linea-

tions in images or contour plots could be distorted and result
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Example of Track-Type Survey Data Locations. Southeast

Figure 1.
Arizona Site.




in misleading interpretation with resultant waste of prospecting
investment (1).

Figures 2 and 3 show image reconstructions of uranium gamma
ray survey data from a site in southeast Arizona (2). The along
track samples are spaced at about 450 ft. and the tracks are
spaced nominally 3 miles apart. Figure 2 was created from a
500 ft. square grid obtained by interpolation across the tracks
with about 30 new samples generated between each track. Note the
striped and extremely distorted appearance of the image.

Figure 3 is an image generated by low pass filtering the along
track sequence and then across track interpolating using a cubic
spline. Note the change in shape in the image in the different
reconstructions. Clearly an isotropic filtering and interpolation
method is needed to insure good image generation under conditions
of arbitrary along the across track sampling regimes. This

report presents results of research on an approach to reconstruc-

tion of a uniform grid from a track-type survey.

ITI. DATA SET DESCRIPTION AND ASSUMPTIONS

The track-type survey used as an example in this study was
flown by Texas Instruments Co. Exploration Services Group for
the U. S. Dept. of Energy (2). The aircraft operated at a nominal
altitude of 400 ft. above terrain and collected gamma ray radiation
for three elements (uranium, thorium, potassium) and also earth
magnetic field data. The along track sample interval was nominally
450 ft. and nominal track spacing was 3 miles. Only the uranium
data was considered in this study. A graph of a segment of one

flight line is shown in Figure 4.
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Figure 2. Image Reconstruction of Track-Type Data Using Across
Track Interpolation With No Along Track Filter.
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The data structure assumed for the study is a two dimensional
planar orthégonal coordinate system with the X axis vertical
increasing downward on a graph with the X direction being the
along track direction. The Y axis is the across track direction
and positive is to the right or "east." The frequency variables
are in units of cycles per unit distance, e.g., cycles/ft., and
u is along track frequency and v is across track frequency. The
along and across track sample spacing is assumed constant with
the along track interval denoted by d and the track spacing by D.

The signal model assumption made for the current study is
that the geophysical scene is an isotropic random surface with
a negative exponential autocorrelation function. This enables
tractable analysis and the model is considered to be a reasonable
representation of the actual scene. The a.c.f. is then separable

and of the form:

| -a lu]

-a l
X Yy

¢ (T,u) = e e

where: T and u are x and y direction lags

a, and ay are correlation parameters and since

an isotropic scene is assumed ax=ay=a.

IITI. ISOTROPIC INTERPOLATION CRITERION
The requirement for isotropic interpolation of the track
survey comes about due to interest in multivariate digital analysis
of a number of remote sensing and ancillary data types. The

problem addressed here is the reconstruction of track-type



survey data to a uniform grid so that it can be registered with
other variables at a small grid size relative to the track spacing.
The requirement for the grid size to be smaller than the track
spacing comes about from the desire to save as much of the
resolution as possible of sensors such as Landsat. For the
example in this study the Landsat has a nominal resolution of

250 ft. and the gammaray data has a track spacing of 3 miles.

A reference grid size of 500 ft. was chosen as a reasonable
compromise to maintain the image quality of Landsat and the
resolution inherent in the geology map data merged with the remote
sensing data. Thus, nominally 30 samples need to be generated
between each track of the gamma ray data.

The isotropic reconstruction requirement then becomes one
of matching the frequency response characteristics of an along
track filter to an across track interpolator to produce a result
that does not distort shapes and structures in the geophysical
"scene." Several error criterion are candidates; however, the
Tchebyshef or maximum error measure is most widely accepted for
controlling and frequency characteristics of filters (3). The
basic requirement is thus to design an across track interpolator
with frequency response Hy(v) and an along track filter with

frequency response Hx(u) such that:

is a minimum. V is the spatial frequency variable and the maxi-

mum frequency of interest is 1/2D where D is the across track
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spacing. The scene process will generally have wider bandwidth
than this and aliasing will be present due to the undersampling
resulting from the track spacing D.

The second consideration is to control the amount of aliasing
in the across track interpolated signal. To accomplish this we
define the signal-to-alias noise ratio (SANR) as the ratio of
the power in the baseband at a particular frequency to all the
alias power at other frequencies. Since we are assuming a

separable process:

Sy (0/V) = S, () S ()

The spectrum of the sampled signal in the across track dimension

is:
s (v) =L ] s (v-k/D)
Y D Y

The ratio of the power in the base band to the total alias

power from all other images of the spectrum is the SANR:

S (v)
= y -1 1
SANR(V) = k#0 55 SV < 55
B hz—oo Sy(V—k/D)
The power spectral density for the exponential a.c.f. ¢Y(T) = e—a'Tl

is:
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_ 2a
SY(V) = F7 + 41?7 v2

The SANR is plotted in Figure 5 for values of a from .1 x 27
to .5 x 21 and for values of v from 0 to .5 assuming D-1. A
threshold level can be chosen from this plot to keep the ASNR
above the threshold up to the threshold frequency. Implementing
a low pass filter cutting off at the threshold frequency will
then eliminate frequencies having SANR values below the threshold.

In the work reported here only the isotropy constraint was
used. Methods using alias control are being studied but no

results were available for this report.

TV. POLYNOMIAL INTERPOLATOR CHARACTERISTICS

A large number of polynomial interpolation methods exist
and choosing one for a particular application depends on many
factors. Low degree interpolators are simple to implement and
have a long history of use. We are concerned here with frequency
response characteristics and it becomes difficult to determine
these characteristics for high degree cases. Digital filter
theory is usually used to analyze high degree cases. For the
case at hand efficiency is of the greatest interest since a
large number of points are to be generated between each track.
In addition to low degree polynomials, snline interpolators
using polynomials possess some attractive characteristics and
are of interest in this study (4). The frequency characteristic
of interest is the power transfer function which is the magnitude

squared of the Fourier transform of the interpolating pulse for
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Figure 5. Signal to Alias Noise Ratio for Values of Parameter a
from .1 x 27 to .5 x 2m.
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polynomial interpolators. For spline interpolators it is more
complex (See Appendix). Five cases will be discussed first,
third and fifth degree polynomials and third and fifth degree
spline interpolators.

The simplest approach to interpolation is the linear case
in which a straight line is passed through each pair of original
samples. We assume initially that a continuous interpolated
signal is being generated. The general input output relationship

is:

(e +]

g(x) = )  f£(kD) h(x-kD)
k:—oo

where: f is the input, g is the output
h is the interpolating pulse

D is the sample interval

The h(x) for linear interpolation is a triangular pulse of width

2D and the power transfer function is:

4

2 _ |sinmuD
my ) |2 = [Si2mD)

Similarly the cubic and fifth order cases can be evaluated from
the Fourier transforms of their interpolating pulses (5). The
analytical expressions for the higher degree cases are quite

complex and direct transformation is used to evaluate these
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cases. The details of generating the transfer functions are
presented in the Appendix.

The first degree spline is the same as linear interpolation
and has the same response as given above. Cubic and fifth
degree splines fit a polynomial between each data pair and main-
tain continuity of 0-1 derivatives for a Q degree spline. Note
that even order cases are not discussed due to the nonlinear
phase characteristics of both polynomial and spline interpolators
of even order. It can be shown that the power transfer charac-

teristics of the cubic and fifth degree splines are (6):

2 8

2 _ 3 sinmuD
|H3(u)| _[(2 + cosZDuD)) [ muD ]

2
(120) 2 6 - 8 cos2muD + 2cos4muD
(2muD) ® {66 + 52 cos2muD + 2cosémuD

|Hg (u) | 2

[sinﬂuD]

muD

The linear frequency response characteristics for these five
polynomial based interpolators are plotted in Figure 6 for
frequencies from 0 to 2/D or four times the Nyquist frequency
of the sampled sequence. The responses of the increasing degree
polynomial cases improve with increasing degree as expected;
however, note that the cubic spline has significantly better
response than the cubic polynomial and the same is true for the

fifth degree spline versus the fifth degree polynomial. It is
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Figure 6. Power Transfer Functions for Polynomial and Spline
Intervolation Methods.
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also of interest to note that even if the sampled sequence is
bandlimited to 1/2D the continuous output signal has spatial
frequencies above 1/2D which can be considered aliases and if
the interpolated continuous signal is resampled at D there will
be aliasing in the resampled signal due to folding of the
response of H(v) from 1/2D to infinity. Also note that the
performance of the cubic spline is obtained at the cost of three
multiplies per new sample point plus spline generation overhead
whereas the poorer performance of the cubic interpolator costs
four multiplies per new point but with no overhead (if a table
lookup approach is used for the polynomial coefficients.) This

relationship will be explored in more detail below.

V. DIGITAL FILTER INTERPOLATORS
Windowed sinc function or optimum FIR filters can be used
to generate interpolation pulses which perform the same function
as the classical polynomial interpolators and are easier to design
for degrees higher than five. An FIR filter with bandpass of
1/2D will result in essentially the same interpolating pulse as
the polynomial for the same degree. A sinc function filter having

a cutoff frequency fc and utilizing a Hanning window has the form:

sin2nf x
c

h(x) = 2f

— [
c ZWfCX (.5 + .5 cosmx/T)

where: fc is the cutoff frequency

x is the continuous space variable

T is the width of the window
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The Fourier transform of this filter function can be expressed

as a convolution (7):

.

“C
B sin27ND (v-£§) dg
Hg(v) = f 2TND (v-¢)  1-(2ND(v-£))?
-f

C

This frequency response magnitude squared is plotted in Figure 7
for fc=1/2D and N=2. This case corresponds to the cubic polynomial
case and is the result for a filter of length 5 which for
interpolation would regquire four multiplies per new point. Also
plotted is the response for the cubic polynomial and cubic spline.
Note that the cubic spline has significantly better response up
to the Nyquist frequency than the cubic polynomial or sinc based
filter.

The evidence generated for these low order interpolators
indicated that for methods using three to four multiplies per
new point the cubic spline may be an attractive approach and was

used in the system to be discussed.

VI. AN APPROACH TO ISOTROPIC RECONSTRUCTION
A number of considerations must be made when designing a
processor for transforming a track survey into a uniform grid
not the least of which is cost. In real survey there are many
points along the tracks which do not have data due to equipment
problems and terrain or flight path factors. Often data is
present but the tracks deviate due to aircraft avoid once maneuvers

mountains due to and other obstacles.




18

11

1.0

1 Windowed Sinc N=-2
2 Cubic Polynomial
3 Cubic Spline

Power Tran fer Function Magnitude |H(v)2|

0 2 4 [ ) 10 12 14
Frequency Relative to Sample Frequency

Figure 7. Comparison of Transfer Functions for Cubic, Cubic Spline
and Sinc, N=2, Interpolators.
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An approach was taken in the case in question in this study
in which a cubic spline was used for the across track interpolator.
This method gives better signal performance than linear, cubic
polynomial or four point sinc filter at a cost of only three
multiplies per new point plus boundary condition overhead. Also,
since the number of tracks in a survey is generally very small
compared to the number of samples along the tracks the spline can
easily be set up to use all the points across the survey and avoid
the end effects of a non-causal FIR filter approach. In the survey
used in this study there were 52 tracks with 1650 samples along
each track. The spline also allows arbitrary spacing between
tracks and of course the derivatives at the points are continuous
up to second.

The along track filtering problem then becomes one of matching
the frequency characteristics to that of the across track scheme.
The use of splines is not advisable due to the discontinuous
nature of the data and large data extent. An FIR filter was
chosen since the frequency characteristics could be easily matched
to that of the across track spline. Also, since the processor
"rolls" from top to bottom of the data set along the direction of
the tracks cyclic buffers could be ﬁsed to perform the along track
convolution prior to across track spline interpolation.

The sinc function design defined above was used for the
along track filter. The problem is to adjust fc and N to most
closely match the characteristics of the cubic spline thus pro-
ducing an isotropic reconstruction. The along track filter was

designed with the fc=l/2D or the across track Nyquist frequency.




20

With D=30d in the problem at hand the filter is of the form:

_ 1 (sinmk/30
helk) =3 [ mk/30

J (.5 + .5 coswk/N)

and the problem remains to choose N to cause the frequency response
to match that of the cubic spline. Figure 8 contains e; as a
function of the length N of the along track filter. The minimum
anisotropic filter error is observed for N=105 and this is the
optimum half length of the along track FIR filter.

The system structure for the filtering-interpolation algorithm
is presented in Figure 9. The original survey data is stored with
latitude and longitude for each sample in arbitrary locations on
tape. A reformatting program not shown places each sample in its
appropriate location in a 500 ft. planar grid precisely defined
with reference to latitude and longitude. Unfilled cells are set
to zero. This reformatted tape is then read by the reconstruction
processor and the track locator searches across each data line and
finds the data values for each track (NT=52 in this case) and
places the data in the cyclic buffers. The FIR along track filter
operations are pverformed and the current filtered line is
available in fhe center position of each buffer. The filtered
center values are sent to the snline parameter processor where
the four coefficients for a cubic polynomial for each of the
NT-1 intervals are computed. These coefficients go to the evaluator
where N new values are generated between each track (Nz30). The
full line is then written on the output tape and a new line of

track samples is read in.
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Along Track Filter.
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Figure 9. System Diagram for Cubic Spline/FIR Track-Type Data
Reconstruction Algorithm.
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For data structures such as this the mixed spline/FIR
approach appears to be attractive. The coefficient generation
process requires 4(M-2) multiplies or divides where M is the number
of tracks. Evaluation of the cubic polynomials requires 3(M-1)N
multiplies where N is the number of new points between each track.
A four point FIR or cubic interpolating‘function would require a
total of 4(M=-1)-N multiplies. For the case here this is 4743 vs.
6120 respectively. Thus, a significant savings in processing is
obtained plus the ease of implementation is improved. Figure 10
contains an isotropically reconstructed version of the data used
for Figures 2 and 3. The shapes of features in this image are
correct except for aliasing up to the bandwidth dictated by the
across track sampling and should enable analysis with a minimum

of confusion due to image reconstruction artifacts.

VIiIi. SUMMARY

Polynomial and sinc function based FIR interpolators were
evaluated for use in isotropic reconstruction of track-type
survey data. The cubic spline polynomial interpolator was shown
to have superior frequency response characteristics compared to
similar degree polynomial or FIR filter methods. A track-type
data reconstruction algorithm was presented which uses the cubic
spline for across track interpolation and FIR filter for along
track frequency matching.

Several assumptions were made which simplified the problem
but which appear to be reasonable. The track spacing was assumed

to be constant and the along track samples were assumed uniformly
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Figure 10. Isotropic Image Reconstruction of Uranium Gamma Ray
Survey Data.
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spaced. In actuality gaps exist in the data and the FIR filter

smothes these intervals as if the data values were zero which is

not a good approximation and this problem is left for future

study. The SANR was introduced but not used since alias control

was not implemented in the work reported here. The along track

FIR filter had an optimum length of 105 and this is extremely

costly and not recommended for implementation especially when cost

is a prime consideration. If a 10% isotropy error is allowed

the filter length can be reduced to N=75 which results in

considerable savings. Further studies are needed to reduce

along track computation costs to the order required for across

track.
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APPENDIX

POWER TRANSFER FUNCTIONS FOR INTERPOLATING METHODS
1. Linear Interpolation (same as 1lst degree spline)

The interpolating pulse is a triangular function of width 2D:

It is assumed in all the cases that the sample interval is

D (meters, feet, etc.). The Fourier transform is then:

0 D
j (1 + %)éijdx + J (1 - x/D)el®®ax

FT
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+ éj“’D _ 1 - EJ“.)D + l/DéJwD - 1/D

(-jw) (-jw) (-jw) (-jw) ? (-jw)
_ 2/D _1/p (éij + eij) - 2 (1 - coswD)

mz w2 Dw?

. _wD 2
sin—-

2 ._2 wD = 2
= —= (2 sin® = D @D

Dw 2

The power transfer function is then:

2 _ 2 —simrud 4 W
'Hl(v), =D [——Eaa—} for u=5—_

and normalizing so the transfer functions have unity magnitude

u=0 we have:

» _ [sinmuD]*
EXCIRERE
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2. Fourier Transform of Cubic Interpolation Pulse

‘The cubic interpolation pulse has a shape as diagrammed be-
low and is expressed by four segment polynomials derived from the
Lagrange equations.

t
£(x) = £(3+x) (24x) (1+x) -2<x<-1
£(x) = (1+x) (1-x) (2+x) -1<xg< 0
£(x) = (x+1) (1-x) (2-x) 0<x< 1

£(x) = g(x-1) (2-x) (3-x)  1<x< 2

20 _"p 0 D___ 2P

These equations expand to:

£(x) = $(x® + 6x? + 11x + 6) ~2<x< -1
f(x) = %—(—x3 - 2x%2 + x + 2) -1<x< 0
f(x) = %(x3 - 2x? - x + 2) 0<x< 1
£ (x) =-%-(x3 - 6x% + 11x - 6) 1<x< 2

The main lobe will be treated as one transfofm and the two
sidelobes another to maintain symmetry. Note that the segments have
discontinuous derivatives at -1, 0, and 1 making this a more complex
transform than if only one function was involved. The Fourier

transform of the main lobe is computed as follows:
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+ +
0?2 w2 2
= 12 sin? (w/2) - 4sin’?w + 4sin?w/2 + 2sin? (w/2)
w* w* w* w?
2/3sin®w , 2/3sin? (w/2)

- +

w? w?
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_1ls6 sin? (w/2) - 4sin2w _ 2/3sin%w N 8/3sin? (w/2)
w" w" w? w?
_ sin?(w/2) _ 4sin’e _ 2 sin®w . 8 sin®(w/2)
(w/z)k U)“ 3 (1)2 12 (U.)/2)2

The square of this function for w=2mu is evaluated and used

in Figures 6 and 7.

3. Transform for Fifth Degree Polynomial Interpolation
Transforms of higher degree are clearly extremely cumbersome
and numerical methods must be used. For the fifth degree
polynomial interpolator the Lagrange interpolating pulse values
were determined and Fourier transformed to obtain the frequency
response. The samples of the interpolating pulse for five new
points to be génerated between each original data pair are

given by (5):

-1

h(i) = 17 (.2i+2) (.2i+1) (.2i-1) (.2i-2) (.2i-3) i=0,...,4
h(i) = %E (.2i+2) (.2i) (.2i-1) (.2i-2) (.2i-3) i=5,...,9
h(i) = i%ﬁ (.2i+41) (.2i) (.2i-1) (.2i-2) (.2i-3) i=10,...,14
h(-i) = h(i)

These values were Fourier transformed and the magnitude squared

plotted in Figures 6 and 7.

4. Power Transfer Functions of Spline Interpolators
The spline polynomials are specified by data and continuity

conditions at each of the joints between polynomials. A derivation
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by Horowitz (6) starts with a piecewise linear expression for the
0-kth derivative for a Q degree spline and integrates this expres-
sion 0-1 times to get an expression for the polynomial values in
terms of 0-1 constants for each interval. Applying value and
derivative continuity conditions at all interior joints a system
of OR + 2 - Q equations is generated (where R is the number of
intervals) which yield a difference equation for the Q-1lth
derivative at each joint (data point) in terms of the data value

at each point. For the cubic and fifth degree splines these are:

. 1 _ - 1
Cubic: % (yk+l + 4yk + Yk—l) = (xk+1 2xk + xk—l) 55
. 1 _
Fifth: 150 (yk+1 + 26yk + 66yk_l + 26yk_2 + yk_3) =
1
(xk+l 4xk + 6xk_1 4xk__2 + Xk—3) Bz

where: Xy is the data value at the kth joint

Yy is the Q0-1th derivative at the kth point.

(0=3 and 5 respectively.)?®

The Z transform of these expression are then computed:

-1
z+4+z ‘D

* pevarture from the previous convention where x and y are inde-
pendent variables is made here to maintain the notation of
Horowitz.
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_ z—4+62'_1—4z—2+z—3 120
Hg(2) = 3

2 +26+662 T4262 242 p?

These relate the Q-1 derivative to the input data H(z) = X(2)

The Fourier transform of the sampled sequence is expressed:

) X(v-k/D)

k==

ol

*
X (v) =
Where: X is the FT of the input.

The z transforms are then converted to functions of frequency:

(2+cos2mvD)

H3(e]2ﬂvD) - (cos2mvD-1) [j%]
5]

j2ﬂvD) _ (6-8cos2mvD+2cos4nvD) 120

(66+52cos2nmvD+2cos4dnvD) 2

H. (e
5 D

The Fourier transform of the sequence of Q-1lth derivative

samples is then available as:

Y(ejszD) - X(e321er) H(eJZﬂVD)

The spline intervolated signal is obtained by linearly interpola-
ting the Q-1th derivative samples and integrating Q-1 times.

This results in:
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0-1 : 2 . oo
F(p(t)) = (5355 (BIRIED) " g (ed2TVD) I x(vk/p)

where: p(t) is the spline reconstructed signal with t being
used as the independent variable as taken from
Horowitz.

This development is valid for an infinite sequence of spline inter-
vals and the derministic signal case. The power transfer function
for this case would be the magnitude squared of the terms not

depending on X in the above expression which for the two cases at

hand are:
,H (V)|2 _ 3 2 sinmvD 8
3 = {2+cos27vD mvD
H_(v) 2 - (120)2 6-8cos2n7vD+2cos4nvD 2 sinmvD 4
'5 (2ﬂvD)8 66+52cos2ntvD+2cos4dnvD mvD

Thus the transfer function for the infinite data set appears
to be valid without making the further assumption that the input
is a white random process. The substitution is made by Horowitz

that:

X (v) = Sxx(v)

2
S,y (V) = DX (V) |
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and D/2
X_(v) =-1D-f x(t)
-D/2

e-jZﬂvtdt

in the limit as D — «, A white bandlimited input process is
assumed with bandwidth limited to 1/2D which produces a constant
sampled spectrum: Sxx(v) =1, » < v < o, The result for purposes
of comparison of interpolators is the same as assuming X is
deterministic and using the |H(v)|? as derived above. The
spectral density assumption; however, appears to be incorrect.
The transform XD(v) does not converge to the power spectrum as
shown in Davenport and Root. The correct approach is to use an
ensemble expectation to get the nonstationary power spectral
density then take a time average to get the time independent
density.

The question which remains is the effect of finite data sets
on the spline transfer function results. This is left for

further study.




