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- ABSTRACT

Two problem areas are often encountered in the use of multi-
spectral scanner data.

A. Large quantities of man and machine time are
required to analyze and store the volumes of data
gathered. i

B. The quality of the data is-usually reduced by
the introduction of unwanted random noise.

This paper will present some effects of data compression and
random noise on multispectral data, particularly as they
lapply to pattern recognition and picture quality.

Thls work was supported by the National Aeronautics and
Space Admlnlstratlon Grant Number NGL15-005- 112.



I. DATA COMPRESSION
1. TINTRODUCTION

The extremely large quantities of data produced by multispectral scanners
have generated three interrelated problems. The first is the potentially wide
bandwidth required to transmit data from a remote sensor to a data collection
center, for example, in data transmissions from an earth satellite to a ground
station. As the quantity of data transmitted in a glven amount of time increases,
so does the required bandwidth.

The second problem is the increasingly large blocks of time required for
man/machine analysis of multlspectral data. Even high-speed digital computers use
relatively large amounts of time to process the volumes of data available.

The third problem is the actual physical storage of multispectral data. The
value of gathered data never sinks to zero since one cannot always predict with
certainty the future applications of the data; thus, libraries soon become un-
reasonably large as the quantity of stored data increases.

The application of approprlate data compression techniques to the data can
significantly reduce the severity of the above three problems. Data compression
reduces the quantity’ of data to be transmitted and thereby decreases the required
transmission bandwidth. Secondly, multispectral data can be stored in the

compressed state, resulting in more efficient data storage. Thirdly, analysis can
be performed on the compressed data, or, as is more probable, the data can be
expanded to its original state (within preset error restrictions) and then analyzed.

Since it is not possible to ant1c1pate the needs of future users of the data,
it is important that any data compression technique be information preserving.
That is, the technique should not destroy more than what has been determined to be
the maximum acceptable information loss. In addition, the data compression
technique should be adaptive. It should be capable of efficient compression of
the several different kinds of data that a multispectral scanner might encounter
over changing terrain.

The extent to which multispectral data may be compressed is proportional to
the degree of correlation (redundancy) that exists between data points. Highly
correlated data may often be greatly compressed without substantlally affecting
the actual information content of the data. This is, the various users of the
data, whether man or machine, are unable, within present limits, to detect any
difference between analysis based on compressed data and that based on the original
data. This includes, for example, classification by computer of multispectral

imaged terrain.

Studies performed at the Laboratory for Applications of Remote Sensing at
Purdue University have shown that multlspectral scanner data is highly correlated
in each of the three dimensions of the data, i.e., in the two spatial dimensions
and the spectral dimension. s

2. DESCRIPTION OF THE TECHNIQUE

An attempt is made to find a suitable orthogonal basis on which to expand the
observed data. If a "good" basis is chosen, the number of dimensions required to
represent the data will be less than for the original basis on which the data were
collected. TFor time-discrete (sampled) data, one method of changing to another
basis is by matrix transformation. [1,2,3] The technique is as follows. The
original multispectral data is viewed as a vector,

X = [x i

< 12 %

93 tees Xy

in N-space relative to the original basis. The data vector is then projected on a
new, lower- dlmenSJonal (n < N) basis by the transformation T,

Y =TI [X- U]



where®

U = Elxys %Xps oves %1’}

is the mean vector of X, and T, is the n x N matrix whose n rows are the first n
eigenvectors corresponding to the n largest eigenvalues of the covariance matrix C
of X. Thus, if i)

¢ = E((X-U) (-1
then the n rows of T are the n normalized solutions to
931 = Aiyi i= 1,2,...?n < N
with

Al>k2> oo o >)\n

The covariance matrix for Y is given by

E{Y Y} = v, O

Since the covariance matrix for Y is diagonal, the elements of the transformed
data vector are uncorrelated. Edch Xi represents the variance of the i-th element

of X.
The transformed data vector Y is projected back on the original basis by the

transformation Tt,

D>

= Ty + U

It is desirable that { be a good approximation to X. A measure of the quality or
fidelity of the approkXimation is the mean square error (MSE) -

e2(n) = E(||x - R )

The eigenvector transformation Tt is the optimum inverse transformation in that it
minimizes e2(n) for a given n <“N. The resulting MSE is given by

N n N
e2(n) = 2)‘3‘. - S”‘i = 2 A
i=1 i=1 :

izn+l

Thus the error in projecting the original N-dimensional data onto the n < N
dimensional basis and then projecting back to N-dimensions is an MSE equal to the
sum of the N-n discarded A.'s. For highly correlated data the eigenvalues decrease
rapidly and the error is sfiall. The resulting data compression ratio is given by
N/n.

* E is the expectation operator



3. EXPERIMENTAL RESULTS

Multispectral data were obtained from the sampled and quantized output of a
12-channel (.4 um to 1.0 um) airborne scanner flown over predominantly agricultural
regions in Indiana. [4] Typical flight lines were approximately one mile wide and:
from five to twenty-five miles long. The number of data points available for pro-
cessing from a given flight line was on the order of 5 x 10® points.

The two sources of data redundancy, spectral and spatial correlations, are
examined separately.

3.1. SPECTRAL REDUNDANCY

The eigenvector transformation is applied to the 12 spectral channels by
arranging the data into 12-element vectors for each ground resolution point. The
twelve elements of the data vector are the 12 spectral channel intensities for that
point. The covariance matrix for the 1l2-vector is then estimated, and the result-
ing eigenvectors and eigenvalues computed using the LARS IBM Model 67 digital
computer. Since the required dimension of the new basis is proportional to the
number of significant eigenvalues, Figure 1 indicates that only three dimensions
are necessary for flight line Cl. The reconstruction error in projecting the
3-vector Y back to 12 dimensions is 2%, as shown in Figure 2. Since MSE is closely
related td subjective picture quality, [5] a reconstructed flight line having only
a 2% MSE is practically indistinguishable from the original (see Figure 3).

The other error criteria, computer classification accuracy, is investigated by
classifying flight lines subjected to several different compression ratios. The :
results for flight line Cl, as shown in Figure 2, agree with results based on MSE.
Compression ratios up to 12/3 are acceptable. This means that a typical flight
line of 5 x 10° data points can be.compressed using the above technique to a set of
1.25 x 10°® points. When desired, the original data can be reconstructed from these
stored points with negligible picture and classification degradation. If the
analyst is interested only in classification of the flight line, it is not necessary
to peconstruct the original data points. Each ground resolution point is now
represented by the 3-vector Y rather than the original 1l2-vector X. Essentially
all of the information (variince) regarding the particular point &n the ground
contained in X is now contained in Y. Thus classification using the elements of
the 3-vector ¥ as features yields résults similar to classifications based on any
combination of the original 12-channels. [6] "This has been tested on two flight
lines, and the results are shown in Table I.

3.2. SPATIAL REDUNDANCY

The second source of data redundancy, spatial correlations, arises from the
fact that adjacent ground resolution points are often quite similar. Two methods
are used to take advantage of this correlation. :

In the first method, the data from each spectral channel are arranged into a
set of 100-element vectors consisting of sequences of 100 horizontal scan line
resolution elements. The covariance matrix for this 100-element vector and the
resulting eigenvalues and eigenvectors are computed. Results for flight line Cl
indicate that the first 25 eigenvalues account for 96% of the total variance in the
data. A compression ratio of 100/25 is then expected to yield little distortion.
Classification results for this compression ratio were found to be identical to
those obtained using the original data (90.1%).

The second method of spatial data compression is superior to the method just
discussed in that it takes advantage of correlations existing in both the horizon-
tal and the vertical directions. In this method, data from each spectral channel
are read in as a data matrix, ten resolution points by ten resolution points. The
data matrix is then converted into a 1l00-element vector, the first ten elements
being the first row of the data matrix, the second ten elements the second row of
the data matrix, and so on through 100 points. The covariance matrix and re-
sulting eigenvectors and eigenvalues are computed, with the results for flight line
'Cl shown in Figure 4. Figure 5 demonstrates the correspondence between significant
eigenvalues and resulting classification and picture quality, by showing the same



flight line subjected to four different compression ratios. For the extreme case of
100/1 compression, the ten-by-ten data blocks are easily distinguishable.¥

4, PICTURE ENHANCEMENT

If the analyst is interested in visually observing a multispectrally scanned
area, he is limited to looking at one spectral channel at a time; however, some
areas may not produce significant response in the particular channel he has chosen.
Thus, he must compromise and select a channel that is good on the average for the
chosen area he is interested in. Some areas will then be less detailed than if he
had chosen the most responsive channel for that area.

This problem is reduced significantly in the following way. Since the trans-
formed data vector Y is of smaller dimension than the original data vector X, most
of the information In the N channels of X has been compressed into the n <
"channels" of Y. The variances of the elements of Y are arranged in decreasing
order, Al > Az > ecee > An. Thus, the first element of Y, yqo has the largest

variance, and if the original 12 channels are at all correlated, A1 is greater than
the variance of any of the original 12 channels. The analyst can then observe the
area of interest through "channel" yj. The effects of this enhancement are shown
in Figure 6.

5. CONCLUSIONS ON DATA COMPRESSION

In order to provide the analyst with large amounts of good quality multi-
spectral data, some means of efficiently encoding the data for transmission,
analysis, and storage must be found. The eigenvector transformation discussed in
this paper represents the optimum linear transformation when MSE is used as the
reconstruction fidelity criteria. The transformation is ideally suited to the
digital computer, and significant (100/10 spatial, 12/4 spectral) compression
ratios with negligible classification and picture degradation have been achieved
‘with LARS multispectral scanner data.

II. RANDOM NOISE

An important parameter in the design and use of remote sensing systems is the
data-signal-to-noise ratio. The effects of a common type of noise on the classifi-
cation of multispectral data are examined in this part of the paper. Some general
problems and considerations in the classification of "noisy" data are discussed.

1. INTRODUCTION

Flight line Cl was remotely sensed by an airborne scanner optically linked to
twelve sensors corresponding to twelve adjacent wavelength bands in the visible
and near-infrared portions of the electromagnetic spectrum. The responses of the
sensors were amplified and recorded on board as continuous waveforms. These wave-
forms were then sampled and uniformly quantized to 256 levels.

A signal processed in this manner is subject to the addition of noise at a
number of times. For instance, thermal noise is added in the sensors, amplifiers,
and ground A/D system. The effects of this noise in multispectral classification
are difficult to predict.

In order to obtain a qualitative and quantitative assessment of the effects of
one common type of noise in a typical classification problem, samples from Cl were
perturbed by various levels of simulated, uncorrelated Gaussian noise. These
"noisy" samples were then classified using a scheme described in [7] and [8]. 1In
this procedure the samples are assumed to belong to one of M classes. Each sample
is classified using a maximum likelihood decision rule assuming equal class a
priori probabilities. The distribution of samples from each class is assumed to be
multivariate normal.

#The gray scale computer printouts shown in Figures 3,5, and 6 include every
other line and every other column of the flight line data.
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2. EXPERIMENT

Flight line Cl covers a primarily agricultural area. Eight classes were
chosen which represent bare soil and most of the crop types present: wheat, soy-
‘beans, alfalfa, corn, oats, rye, red clover. Class statistics were estimated
using samples from preselected fields.

The random samples used as noise are actually random numbers generated by a
power residue method on a digital computer. A typical histogram and finite-record
. autocorrelation (using the method of Blackman and Tukey [9]) for 15,000 samples are
presented in Figure 7. The lack of any significant correlation is apparent.

The level of noise is given in terms of the number of units in one standard
deviation (sigma). Six new sets of data were generated by adding noise with sigma
equal to 2,5,7,10,15, and 20 units. The new data sets were. quantized again with
no scale changes. Clagsification was performed and accuracy obtained by comparing
the results with known crop cover.

The best subset of four channels (wavelength bands) out of the twelve available
was used. Previous experience ([81,[10]) and theoretical evidence [11] have shown
that using a smaller set than the whole set of features is often desirable in terms
of accuracy. The saving in processing time is apparent.

Histograms and gray-scale printouts were generated for portions of the flight
line.

3. RESULTS

A photograph of one portion of Cl and the matching gray-scale printout of un-
perturbed data are shown in Figure 8. Figure 9 shows gray-scale printouts for the
same area with noise present. Note that it is not difficult to discern visually
the field patterns, even for sigma equal to fifteen units. The digitized scan line
(horizontal) in the middle of this area is plotted in Figure 10 for both no noise
present and sigma equal to fifteen. It seems to be much harder to pick out any
general patterns in the noisy scan line. : :

The effects of the addition of noise on the distribution of field samples is
given in Figure 11. The data spreads out for higher noise levels, as expected.
The histograms are ragged due to.the relatively small number of samples in one
field (wheat, in this case). i

Approximately 4000 samples were used in training and 13,000 in testing the
classifier. The results for these samples as well as results for the two specific
test classes are given in Figure 12. All of the curves have a smaller slope at
aither end than at the middle. Schemes designed to reduce noise by small amounts
(one or two units) would tend to make little difference near the extremes of noise

level.

. The results for wheat and soybéans show that the effects of increasing noise
will be different for each class even though performance with no noise is about the
same for all classes. This is, of course, a function of the individual class
distributions. This selective effect may be manipulated by the choice of features,
an important point in the design of systems with a fixed set of features subject to
varying levels of noise.

Figure 13 contains a printout of a portion of those samples classified as
wheat for both no noise and sigma equal to fifteen.

4, CONCLUSION ON RANDOM NOISE

It is reasonable to assume that the type of data described will not be linear-
ly separable. This implies that freedom from noise will not automatically result
in good classification. Nature has a certain amount of variability of her own to
spread the data out over the feature space. Hence the term "signal" in signal-to-
noise ratio is difficult to define in terms meaningful for classification purposes.
One would probably lump signal and noise into the class statistics and predict
performance based on some "distance" measure (divergence, Bhattacharyya distance,
etc.). :
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TABLE I. A COMPARISON OF CORRECT CLASSIFICATION RESULTS

BASED ON  ORIGINAL AND TRANSFOFMED DATA

Optimum combination of The elements of
four original. spectral Y with'n.= 3
channels :

Flight line C1 90.1% : 89.5%
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Twelve Eigenvalues of the Spectral Covariance
Matrix for Flightline C1
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Figure 7. Random Sample Statistics
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Figure 8. Data with No Added "Noise"

Figure 8a. Agricultural Scene from Cl
(B & W Photograph)

Figure 8b. Scanner Output of the Same Scene in the
0.80 to 1.00 Micrometer Band Run 66000600
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Figure 9. Scanner Data from Flight Line Cl with Noise Added
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Figure 10. Plot of one scan line from flight line Cl
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Figure 11. Histogram of One Wheat Field in the
0.40 to 0.44 Micrometer Band.
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Figure 12. Classification Performance vs Noise
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Classification Results for Flight Line Cl

Figure 13.
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