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Chapter I

Introduction

1. General Discussion

Although still a comparatively young technology, remote sensing of
the environment has greatly extended man's perception of the world's
resources and interaction of natural and unnatural influences. Remote
sensing has grown from simple photography and photointerpretation to sa-
tellite borne sensors and sophisticated machine aided analysis. A cri-
tical portion of many modern remote sensing systems is a mul tispectral
scanner. Multispectral scanner systems employ sensors to observe por-
tions of the electromagnetic spectrum typically ranging from the visible
region to the reflective infrared regions. The thermal (or emissive)
portion of the spectrum also has important uses in remote sensing.

Thus, investigation of mul tispectral scé;;;; systems and parameters of
mul tispectral scanner systems is an important and neéessary endeavor.

Multispectral scanner systems are characterized by many parameters
interacting in complicated ways. This research develops analytical
techniques for the study of some of these parameters. Many of the
parameters tend to be dependent on the scenes'observed by the mut tispec=-
tral scanner systems. 1t is thought that consideration of scene depen-
dent parameters in the current research provides a framework for con-
sidering very special 1zed scanner systems as well as more genera! scan-

ner systems. An important example of a parameter that must be con-
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sidered for multispectral scanner systems is what portions of the elec-
tromagnetic spectrum are to be observed. It is clear that this may tend
to be a very scene dependent parameter. Indeed, under differing obser-—
vation conditions, it may be necessary to observe different portions of
the electromagnetic spectrum to obtain the desired information about a

single specialized scene type. The development of analytical techniques
to aid in the study of some of the parameters of multispectral scanner

systems is the objective of this research.

2. Previous Work

Up to the present, there has been little analytical work aimed at
general techniques for the study of parameters of multispectral scanner
systems. Most reported work has tended to be ad hoc and empirical.
This has produced detailed knowledge of various aspects of remote sen-
sing problems, but has not produced studies of of multispectral scanner
systems in an analytic context.

Studies such as those by Gates, Keegan, Schleter and Weidner [G3]
and Sinciair, Hoffer and Schreiber [S$4] are indicative of the type of
detailed knowledge that has been gained about scenes that may be obser-
ved by mul tispectral scanner systems. Examples of studies that have
been conducted for specific problems are tﬂose by Coggeshall and Hoffer
£c31, and Kumar and Silva [K51. These papers are not referenced so much
for their contents, but rather as examples of the wide variety of stu-
dies that have been carried out in an effort to understand aspects of
remote sensing problems.

An early study that considers a physical basis for remote sensor

system design is described by Holmes and MacbDonald [H4}. This paper
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gives a good exposition of many of the physical considerations for mul-
tispectral scanner system design. A more recent study by Landgrebe,
Bieht and Simmons [L2], [L4] considers in an empirical manner several
important parameters in multispectral scanner systems. Some of these
parameters are spatial resolution and spatial sampling characteristics,
spectral samp!ing and bands, and signal-to-noise characteristics. These
are important parameters and many conclusions can be drawn from empiri-
cal study. However, 1t is thought that the development of analytical

techniques to study some of these and other parameters is now appropri-

ate,

3. The Present Investigation

As previously mentioned, very little anaytical consideration of
many multispectral scanner system parameters has been done. It is the
intention of this research to develop analytical techniques to study
some of these parameters. Although the developed techniques are appli-
cable to a wide variety of scenes, this reseach uses vegetation scenes
as a vehicle for consideration of the techniques.

Consider a single type of vegetation illuminated by the sun. If
the reflected electromagnetic energy in the visible to reflective in-
frared wavelengths (approximately .4 to 3.0 micrometers, um) is measured
as a function of wavelength, 1, for several different observations of
the same vegetation type, it is observed that the spectral response ex-
hibits random variation about a mean value at each wavelength. That is,
the observations tend to be stochastic in nature. Now, if the vegeta-
tion scene is observed remotely, say from a satellite or airborne plat-

form, there are additional! disturbances of the observations. * These dis-
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turbances may be due to atmospheric noise, random disturbance of the ob-
servation ptatform, or other sources. The point is that the mul tispec-
tral scanner system receives electromagnetic energy from the scene that
exhibits random variations corrupted by disturbances that also have ran-
dom variation. Under these conditiomns, 1t is logical to suppose that
certain spectral regions (or spectral bands) may be more useful than
others for observing those features of the scene that may be of in~
terest. It is also togical to conclude that by studying the effect of
the disturbance on the observation of the scene, it may be possible to
minimize the adversé effects. Thus, in view, of the above comments, it
would be useful to characterize analytically what information the obser-
vation conveys about the scene.

This is highly reminiscent of the classical problem in communica-
tijon systems. A receiver (multispectral scanner) obtains a signal (the
electromagnetic energy from the scene) that 1s corrupted in some manner
(perhaps, by random noise). It is then desired to introduce a quantitive
measure of what the received signal conveys about the transmitted sig~-
nal. This is the special scope of the subject of information theory.
The birth of the field may be said to be, of course, in the work of
Shannon £S1]. There are voluminous references in the field with major
texts by Fano [F4] and Gallager [G1]. The relation of received signal
to transmitted signal is described in information theory by the concept
of average (mutual) information. Loosely speaking, the average informa-
tion 1n the received signal about the transmited signal may be said to
be the reduction in uncertainty about the transmitted signal that is ob-

tained from the received signal.
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Application of the .concept of average information to the study of
some parameters of multispectral scanner systems s pursued in some de-
tail in this research. It is thought that this gives insight into the
study of the relative utility of different spectral bands to be used in
scanner systems for observation of spectral scenes. Further, utlization
of information theoretic concepts can be used to study the effects of
noise disturbances on the observation of spectral scenes. The develop-
ment of the information theoretic concepts is the topic of Chapter II.

The computation of average information in spectral data received at
the mul tispectral scanner about an observed spectral scene is not
Wwithout difficulties. A method to circumvent the necessity of solwving
some rather intractable equations is described in Chapter II. Also,
methods for digital computation of average information are developed in
Chapter II. These computation procedures require that models for the
spectral response of a scene be developed.

Chapter III contains the development of the techniques used to con-
struct models for spectral scenes. Several approaches té construction
of the models could be pursued. Most of the approaches are studied in
terms of the system identification problem. Saridis has done extensive
work on stochastic approximation methods for systems jdentification
[s51, [sé61, and [S71. The stochastic approximation techniques have the
advantages of being relatively easily implemented and having great gen-
erality. Maximum likelihood identification techniques have also been
extensively used. The references by Kashyap and Rao [K33, and Kashyap
[Ké6] give good dicussions of the maximum !i1kel ihood identification tech-

nique. The maximum [ikelihood techniques are used in Chapter III to
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develop techniques for constructing models for spectral scenes. Con-
cepts from the area generally known as time series analysis are also
developed for use in construction of models for spectral scenes. Box
and Jenkins [B1], Anderson [A4], and Kashyap and Rao [K3] are good re-
ferences for time series analysis and its application to construction of
dynamic models from empirical data. Also discussed 1s a Bayesian iden-
tification techniqhe for models of spectral scenes. This technique is
an adaptation of a method described by Kashyap and Rao {K3] to the
present work.

A criterijon for selecting one of several hypothesized models for a
spectral scene is discussed in Chapter III., Further, once a candidate
model for a spectral scene has been selected, the question of the vali-
dity of the model remains. Validation techniques for testing candidate
models for spectral scenes are also discussed in Chapter III.

Chapter IV uses the model construction techniques developed in
Chapter 1II on empirical data from actual scene types that may be obser-
ved by a multispectral scanner system for remote sensing of agricultural
scenes. The empirical data consists of two vegetative scene types. To
demonstrate the model construction technique on a scene of a single
vegetation type, a wheat scene is considered. A set of empirical data
made up of several vegetation types is used to demonstrate the model
construction techniques on a more general vegetative scene. The empiri-
cal data sets are divided into several spectral bands for two reasons.
First, most multispectral scanner systems tend to be designed around
different sensors for different spectral bands. Second, it is thought

that better models of the spectra! scenes can be obtained by considering
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several bands.in the spectral region of interest than if only one model
is constructed for the entire spectral region (approximately .45 to 2.4
um for the present case) under consideration. Several models are hy-
pothesized for each band and the parameters characterizing each are
identified using the maximum likelihood technique. Candidate\mod?ls are
then selected using the selection criterion developed in Chaper III.
Finally, candidate models are validated using the techniques developed
in Chapter III.

In Chapter V a simple application of the computation of average 1n-
formation as developed in Chapter II is carried out using the models for
the spectral response developed in Chapter IV. This application is in-
tended to demonstrate how the average information computation can be
used to select a subset of spectral bands. Also it is demonstrated that
average information can be used to study such parameters as signal-to-
noise properties in different spectral bands. The relation of average
information to spectral bandwidth is implicit in the discussion.

Chapter VI is devoted to conclusions about the research and

thoughts for extension of the research.
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Chapier II

Information Theoretic Approach

1. Introduction

In this chapter, information theory concepts are developed for use
in the study of spectral scenes. The basis for this study is the manner
in which the spectral resébnse 1s considered. The spectral response for
several observations of the same variety of vegetation exhibits random
variation about a mean spectral response at each wavelength. Thus a ma-
jor consideration for representation of a spectral scene 1s the ability
to adequately model its inherent randomness. Another consideration is
analytical tractability. Hence, 1t is reasonable to consider the spec~-
tral response of a scene as a sample function of a portion of a random
process in wavelength. That is, the spectral response is given by s(}),
where s{A)eS and Xe[}1,1é]. The-ensemble of sample functions for the
spectral response is S and [}1,Aé] is the interval of wavelengths of in-
terest. It is not necessary to assume that the spectral random process
is stationary. In fact, it will be seen later that the spectral process
will, in general, not be stationary. On the basis of empirical studies
by Fu, Landgrebe and Phillips [F1], a reasonable assumption on the sta-
tistics of the spectral process can be made. The spectral random pro-
cess will be assumed to be a gaussian process. The mean and variance of
the process will be apparent when models of the spectral process are
discussed in the next chapter. The gaussian assumption can also be jus-—
tified from another point of view. When a multispectral scanner system
views a scene, it receives a signat from many sources in the field of

view. If it is assumed that the scanner system is observing many in-
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dependent and identically distributed sources, then the central limit
theorem can be invoked to justify the assumed gaussian statistics. The
gaussian assumption is 1mportant in the analytical results of this

research.

2. Definition of Average Mutua! Informations

The signal received by a multispectral scanner is assumed to con-
sist of the spectral signal for the scene, s{(i), disturbed by a statis-
tically independent additive random process (noise). This noise process
consists of the disturbances in the spectral scene not attributable to
the vegetation under observation and random disturbances in the channel
between the scene and the muitispectral scanner. 1In the present
research these disturbances are all combined into one noise random pro-
cess in wavelength, n{)). The noise is also assumed to be a gaussian
random process. This assumption is made for the same reasons as for the
signal process. It 1s further assumed that the noise process, n(i), is
white. In the present context, white noise 15 a zero mean random pro-
cess with autocovariance given by

Ng

E[Inlw)] =5 s - w,

5 A S AU, -1

where

EL*] is the expectation operator,

§(*) 1is the Dirac delta function.

Thus the spectra[ process received by the mul tispectral scanner is
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represented by

y(a)y = s(y) + n(n) , a 9[11,12] (2-2>

It is not necessary that the noise be white. However, for purposes
‘of studying the bands of a mul tispectral scanner and their information
content, this assumption is sufficient. It is still possible to allow
the white noise to have a different spectral density level in each band.
The more general problem of mutual information in t%me continuous pro-
cesses with non-white noise is considered by Huang [H1], [H2].

The problem to be considered first is to define, and later calcul a-
te, the average (mutual) information in the process y(),) about the pro-
cess s(p). First, however, it is necessary to state some basic and
well~known results from information theory concerning the average infor-
mation in one set of random varibles about another set of random varia-
bles.

The averge mutual information in a set of random variables

vs= {v1, Vo, wees VN} about the set of random variables
U= {u1, Usy ceees UM} is defined by [61]
PU (u,v)
IW,W =f IPUV (u,v) log ERMENM) dudv (2-3)
y VvV = U
where

PU V(34—> = joint density function -
= of the sets U and V.
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P (u) = density function of the set U

Pv(g) density function of the set V

and.[ and,f represent M-fald and N-fold integrals over all the possible
vaiu‘g'.s of %he members of the sets U and V.

Since the definition of average (mutual) information is known for
random variables, an intuitively pleasing approach is to represent the
spectral random processes inm terms of random variables and thus apply
the previously known definition. Thns is the approach of Shannon [S1]
for the case of band. {imited time functions and an infinite observation
interval. It has been shown rigorousiy by Gelfand and Yaglom [G2] that
this approach leads to a valid definition of mutual information for time
continuous. processes under almost al! condations.

Suppoge that there exi1sts a set of random variables.

S = {51, Sos ..%} thiat uniquely determines and is uniquely determined
by s(a). Similarly suppose that there exists a set of random variables
Y = {y1,y2,...} that uniquely determines and is uniquely determined by
the portion of y(i) that contains s(d). Under the assumption of in-
dependence of s{iA) and n(x), any portion of y{(iA) not represented by the
set Y is dirrelevant to the caltculation of the average information in
y(1) about s(x). Then it is reasonable to say that the average informa-
tion in Y about S is the same as the average information in y(1) about

s{1). Thus we make the following definition of the average mutual infor-

mation in the process y(i) about the process s(A).
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=

Its(y), yiu)) 2 1¢s,m (2-4)

That the average (mutual) information can indeed be defined in such
a manner merits some elaboration. A method to determine S and Y for
given s(a) and n()) is needed. First consider such a representation for

11

s{1). Assume that the process s(i) has a finite mean square value.

A\l

That is .

Let ¢ = [}ixx) ; 1i=1,2, ... ] be a complete orthonormal set of func-
tions for the class of square integrable functions on ["1' 12]. Then

s{a) may be represented on the interval [}1, xé] as

N
s = Lidame 20 56,00, 2, <A< (2-6)
o7 1 -7 =72

o

where l.i.m. is the limit in the mean defined by

N
Lim E[(«sm -2 s.4>.(x))‘2:| =0, 2, <2<, (2-7)
i=t 17 R

N>+«

The random variable S; is defined by

A

2
s. = sts (2-8)
TA
1

The details for such a representation may be found i1n such texts as [G1]

and CV11.
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Similarly for another set of complete orthonormal functions
91(1), ez(x), eese ON [}1, xé] the received spectral process y(1) can

be represented as

n
y() = Laiame 30 v, 00, Ay <A<y ) (2-9)
N+« 1=1
where
A
2
Yy =f y(deiddy . 2-10
A
1

It is often convenient to choose the set {ei(x) ; i=1, ... Y 'to be the
same as the set {¢i ; i=1, ... }. In particular, this is true for white
noise disturbances.

Thus, if th? sets {¢i(x) ; i=1, ... } and {ei(x) ; i=1, ... } can
be determined, we have sets of random variables {Si ; iéﬁ,?,...} and
{)/,.I ; i=1,2,...} that uniquely determine and are uniguely determined by
s(x) and y()) respectively in the manner previously discussed. The com-
plete orthonormal sets {¢i(x) ; i=1,2,...7 and {ei(a) ; 1=1,2,...2 will
be determined later "in a manner that is relevant 'to writing an expres-
sion for average information for the processes s(i) and y(a) .

Hence, if we define

Sn =_{s1, Sos sess sn} (2-11>

and
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Yn = {y1, Yor enes yn} (2-12)

we can write from the basic definition of average (mutual) information

given n (2-3),

f p(Sn,Yn) '
(s Y ) = : 4’ (S ¥2 100 ot Sart—| 9Spa, (2-13)
nn

where p(Sn,Yn), p(Sn), and p(Yn) are the appropriate joint probability
density functions.

SinQe in general n will be countably infinite we write

1¢s,Y) = lim I(sn,Yn) . (2-14)
N+

Thus we have an expression for I(s(x),y(x)). The complete mathematicai
details are given by Huang [H1] and Gelfand and Yaglom [G21.

The problem now at hand is to transliate this definition into a form
that is useful for the current problem of determining the average infor-
mation in the received spectral process ;?13 about the spectral scene

s(nx). In the next section this problem is pursued.

3. Calcutation of Average Information

In this section, appropriate sets of basis functions
G040, 6,00, ...F and {o, (1), 8,(0), ...} are defined. These basis
functions will, at lteast in principle, yield a calculation technique for

average information. First consider the representation for s(i) ,
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/

S = X s ) g <3 < 2-15)
j=p 1 -

-- Note:~ -For-notational “simplicity we have €hangeéd from'
n
t.i.ema 2: si¢i(x) to the: above:
n+w 1=1
The-covariance function of s(i) is defined as

K Gu = Els(a)su)] A, Ue [A1,12], (2-16)

and it is straightforward to show that [P1, p. 431]
2 3
K-(,w < K MK (upu) o 2=17)
s -8 s
Since we-have- restricted oursetves to.processes with finite mean square
value, 1t-follows- that
xz‘ %,2« 2 A 7 2r -2'
f’ f Ks(x,u)dxduf_ E‘:[s (x)] d\| <o (2-18)"
)‘1 A,l '

2

That 1s, the processes under consaderation: al so- have square. integrable
covariance functions: Since we are dealing-with a‘gaussian-random pro-
cess, a useful additional property that-is to be: required of the-basis-

functions is that the tefms s_ andtsji i#i, be uncorrelated: That is,
Els.s.| = a: &, 2-19
[ 15;] 3 %13

where
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The usefulneg% of this requirement will be seen later,

These are the classic requirements for the representation of a ran-
dom process in terms of a Karhunen-Loeve expansion {V1], (C1]. 1In this
expansion, the basis functions ¢j(x) are the eigenfunctions of the in-

tegral equation

A
2
aj¢j(x) =J; Ks(x,u)¢j(u)du Ry <a 5‘12 . (2-20)
1

The eigenvalues of the integral equation are the numbers

{

aj i =1, 2, «..} . O0f course, the eigenfunctions
’

{¢j(k), j =1, 2, ...} have the required orthonormality property

22

J e 0dr =6, . 2-21)
i ] 1]
M
Another property i1s that the sum of the eigenvalues is the average ener-
gy of the process s(ia). That is,
A
2 2

E S“Q)dA| = ;Z: a

. . (2-22)
x1 j=1 3

Since it is assumed that s()) is from a gaussian random process, the un—
correl ated random variables {si' i=1, 2, ...} are also statistically in-
dependent. This property is used later.

Now consider the generation of appropriate basis functions

{ei(x), i=1, 2, ...} for representation of the received spectral process

y(x). Since it is assumed that y(x) is of the form
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yd = sQ) + nl) , X <x <, (2-23)

Ve
where s(a) 'and n()) are statistically:independent, we can write the‘co-

variance function of y(i.) as

Ky(x;u) =K O + K GLu, A L AU £ (2=24)

2.
Since it is assumed also that n(i) 1s gaussian white noise, its covari-

~

ance function,

N
. y = 0 ceao -
Kn(x,u) R s(x-u) (2-25)
is not square integrable.. It'is necessary to consider the ramifications
of this for the selection of the basis functions {ei(x) 3 i=1,2,...2.

Consider first the use of Kﬁ(x;u) as a kernel for the integral'equation

(2-20).
2N,
25850 =j; > 6Q-weluddu, 1q.S2 <3, (2-26)
1
or
"o
28,00 =5 0,00 A <A<y . (2-27)

The implication 1s that equation (2-26) is satisfied for any set of
Ng

orthonormal basis functions with corresponding eigenvalues ai = 5.

This result is a direct consequence of the fact that Kn(x,u) is a delta
function. Hence, we.may just as well use eJ(x) = oj(x) to represent the

received process y(x). We need to make the following clarification

‘here. From Mercer's theorem '[V1, p. 1811 we need a complete:orthonormal
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set {¢j<x); i=1,2,...2 1o represen£ the covariance function of the white
noise. If Ks(x,u) is not positive definite, the eigenfunctions
{¢j(x), i=1,...> will not form a compiete orthonormal set LV1, p. 1811.
In this case the eigenfunctions can be augmented by a sufficient addi-
tional number of orthogonal functions to form a complete orthonormal
set. The importance of obtaining a complete orthonormal set ié that
such a set can be used to expand any deterministic square integrable
function. The necessity for assuring ourselves that {¢j(x); 1=1,2,...}
is complete Wwill be clear later. We can be content with the assurance
that eve; if KS(A,u) is not positive definite, we can still obtain a set
{¢](x); ji=1,2,...> that is complete.

Thus, the integral equation that defines the eigenfunctions and

eigenvalues for y(a) is

A2
b.¢.() =f K (i,Wé.(Wdu
1) }‘1 Y ]

A2
No
=f [Ks(x,u) t > é(x-u):l¢.(u)du
A J

Ng A2
=506, +j; KgOoWastwdu,  2q <A <hy (2728
1
If we use
No

we have the original integral equation (2-20) again. The implication is
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that we may represent the received process with the eigenfunctions
N
{¢j(x); j=1,2,...3 and the eigenvalues {ai +<§g , i=1,2,...>. That is,
we may write

YOO = 2y ), Ay <A< . (2-30)
j:1 11 - ngad

(l.r.m. is implacit here).
Hence, y(1) is represented by gaussian random variables
{y1; i=1,... . that are uncorrelated and thus statistically indepen-—

dent. The correlation of Ys and yj, i,j =1,2,... 1is given by
No
E[yiyj] = (a, + =) §.. . 2-31)

The process y(i) uniquely determines Y = {yﬁ, Yor «++r. By using the
eigenfunctions {¢j(k); j=1,...} we have a unique representation of that
portion of y(a) in the signal space of s(i). By the independence pro-
perty of average information, the portion of y(1) not in the signal spa-
ce of s(1) is irrelevant to the average information in y()) about s(i).
Thus, we-have achieved the goa! of representing the processes s(1) and
y(x) by uniquely defined sets of random variablés {Si, i=1,2,...} and

{yi i=1,2,...Y. These sets of random variables are now used to write
V4

-

an appropriate expression for average information.

The covariance matrix for the random variables (si° 1=1,2,... is a

’

diagonal matrix with the 1th diagonal etement given by E[%i] =8,

Simitarly, the covariyance matrix for the random varvables

{y1; i=1,2,...} is diagonal with the ith diagonal element given by
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N .
E[%?] = a, +-§9. Also since we noted that the noise process n{i) could
be represented by {¢1(A); i=1,2,...}, we can define a set of random
varibles for the noise that have a diagonal covariance matrix with the
1th diagonal element given by E el = NG
n_i 2_0
It is fairly easy to show that a set of gaussian random variables

{Yi =s ¥ n.» i=1,2,...}, have average information about the set of

,gaussian random variables {Si i=1,2,...} given by [S1, Theorem 161
7’

1 det Cy

where Cy and Cn are the covariance matrices of {yi; i=1,2,.«.> and
N

- 0, . . . .
{n,I =5 i i=1,2,...} respectively. Since Cy and Cn are diagonal, we

can write
@ ND
det cy = iI=I1 (a] + o) (2-33)
and ,
o NO
det C_ = I:I = . (2-34)
1=1
Thus, we can write
det C 0
— Y 2 g
geree = L arga, . (2-35)
n =1 0

Hence, the average information can be written as: -
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g2 2aj
15,0 = > ‘_2 log|1 + =2 . (2-36)
i=1 0

The average information 1s now written 1n a form such that calcula~
tion may be carried out in prainciple. Furthermore, the average informa-
tion can be approximated by using only the first n largest eigenvalues
in the summation. This 1s reminiscent of the feature selection probiem
in pattern recognition. Thus average information might be useful as a
feature setection criterion.

The present formulation of the average information offers insight
but still is not in an easily calculable form. The next section is con-
cerned with deriving a more useful formulation for the averagel(mutual)
information. This form will also offer more ‘insight into the idea of

using average information to study parameters of multispectral scanners.

4. The Relation Between Average Information and the Wiener-Hopf Optimum

Filter Problem

This section will show the relationship between the average infor-
mation 1in the received process y(i) about the spectral process s(i) and
the Wiener-Hopf optimum filtter problem. As 1s well known, the Wiener-
Hopf optimum filter gives the optimum (in the mean-square sense) | inear
estimate of a process that is corrupted by an independent, additive
noise process. In terms of the spectral processes of immediate concern,

we observe
y(x) = s + n(x) g A< xy ) (2-37)

We then pass the spectra! process ‘(i) through a linear filter to obtain
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an optimal estimate 3(x) of s(y). This estimation technique may be

described by the equation

A
5 = [ hOowyds, Ay <A<, (2-38)
A
1

where h{a,u) is the impulse response of the optimal fiiter such that
E[(s(x) - §(A))?] is minimized. It 1s straightforward to show L[V1, p.

198-2041 that under our assumptions concerning the spectral processes

y(2) and s(x) the optimum filter must satisfy

Iy
2 N0
.r Ks(u,v)h(x,v)dv + 5— hia,u) = Ks(x,u), A

> EEEE (2-39)
A

A1 <u<a

2
2

N
where Ks(x,u) 1s the covariance function of s(i) and zg-is the spectral

levet of the noise process. This above relation is a form of the famous
Wiener-Hopf equation.

It is now possible to put h{x,u) in a form that is convenient to
show its relation to average information. Since the eigenfunctions

{¢i(x), i=1,2,...> form a complete orthonormal set, it is possible to

write h(iy,u) in a series expansion of the form

h(a,u) = 2 ho (e (W, A, <x <, . (2-40)

i=1
x1 <u< 12

From Mercer's theorem L[V1, p. 1811 we can write
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L=

K Q) = ; a;0 (W W, xp <Aun, . (2-41)

Substitute (2+40) and (2-41) into (2-39) to obtain

N o

A
2 @ o0
2-0- 2. hio (40w JOS a6, (We (V) 2 hids (e, (Vv
=1 Ay =1 3=t )

0

= EZ% ai¢1(x)¢i(u) . (2-42)

Using the orthonormality property of the eigenfunctions, the above egua-

tion can be rewWritten as

™ N w
0 ~ _
; h ta + 5 4 (e () = Z a 5006, (W) . (2-43)
i=1 i=1
It is seen that if
a'l
hy = “”Ta 1=1,2,... (2-44)
a1 + -2_— .

then the equality of equation (2-43) 1s evident. Hence, expand h(x,u)

in a series as

o a.
hGLW = D, —-—‘T 308 (W, Ay <A <A, . (2745)
i=1 9] - =
a_i + >+ 11 <uX< }2
This representation of ‘h(i,u) is found to be wseful 1n relating the

Wiener filter impulse response to the average information n y(i) about
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s(y).

~

We first manipulate some of the basic equations into a useful form.

The equations to be considered are reproduced below for easy reference.

A
2 .
a.o.(\) =J~ K G,wWeé.(uddu , A, <A <A (2-20)
37 N s j 1=-—"="2
1
ALt
T2
f ¢j(x)dx = ©@=-21
11 -
£ 2a.
1Gs,Y) = % 2. loglt + 2| . (2-36)
i=1 No

Note that in (2-21), Ay = xq t 2 since our major interest is 1n the

spectral response interval & = XZ - x1. The first manipulation is the

differentiation of I1(S,Y) with respect to 2. This is

dI¢s,Y) _ 1 3~ d_ 2
el E dz[logﬁ + N-E aj)]

-

-12 %
521 0 ] N0 de

or



w | 2. da]
g1¢s,v _1 Y | Mo d?
S . (2-46)
B z 3
i=1 |1 + — a.
NO* ]
L. -

da.
from the above equation it is seen that an expression for B'fl is needed.

In-order to obtain this derivative, first multaply both sides of (2-28)

by ¢j(>\)and integrate over the interval [kv A‘I’ + 2].. This gives

A 42 AL HR ALt
a J.h ¢2(A)dx =f1 jl K. ,weé. (Wduls (AIda (2-47)
MRV T T R )
1

and using the normalization criterdion (2-21) we obtain

AL+

1 Ayth
a = K (Lwe (Wdupe . ddr . (2-48)
] k.' x.] S ] )|

Now take the derivative of (2-48) wath respect to & .

da Al he.
3=
a7 fx1 [ Ks(x,x1+z)¢j().1+9.) +

Ath 3¢](u)1
+fx Ks(x,u) ) du ] ¢j(;.)dx
1

Aqte
+Jfl1 KgOq#e,ue, G4e) +
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fl?*’!’ a¢j(x) } ,
. . 2-49
+ y Ks(x,u) D dx } ¢](u)du

This can be simplified to give

daj f11+2,
ds = 2¢j(l1+2) 11 Ks<l1+2,U)¢j(U)dU

P 2 ALt 34.(0)
1 1 3 _
+ 2f11 \:f)“] Ks()\,u)¢j(u)du] 3T dx . (2-50)

We now make the observation that equation (2-20) can be written as

A 1R

I -
aj¢j(x1+z) -J.l1 KS(A1+2,U)¢j(u)du . (2-51)

Using equations (2-51) and (2-20) in (2-50) we obtain

da,
i 2
ar Zaj¢j(11+z?

.r11+z a¢j(x)
+ L L3 - -
Za} M ¢I(A) 3T da (2-52)
A simplification of the integral expression on the right hand side of
(2-52) 1is still needed. A usefu! expression may be obtained from the

normal ization expression (2-21). Differentiate (2-21) with respect to

L.
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ALFL
d ™ 2 ) 5%
@, ¢;(dv =0 (2-53)
or
A, L 3d .. (0)
= 42 Yo j e
0 = o5Gry+e) + fo1 ;0 —L— (2-54)

The i1ntegral term in (2-54) is the same as i1n (2-52). Hence, using

(2-54) n (2-52) we obtain

daj 2 2
—3 = L) = ) F .2
) Zajcb,j(x1 %) aj¢j(x1 %) ¢2~55)
or
daj >
da
This is the expression for ail-that is needed in equation (2-46). Mak-

ing the appropriate substitution we obtain

. %faw%(x.]ﬂ)
digs,y) _ 1 3 |70 1
T ar Ly

Ng

(2-57)

Now compare this expression with the expression obtained for the Wiener
optimal filter response (2-45). It is clear that the relation between

(2-45) and (2-57) 1s

dI:(i,Y) = ;' . h(l.]"'l, X1+2) . (2'58)

Thus 1t 1s seen that since 2 varies from 0 to Ay ~ Ay We may make a sim=
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plifying change of variables and write

1G5, = %fif hGu Ay (2-59)

Thus we have a simple relationship between the average information
in y(1) about s{(i) and the Wiener optimum %1lter. The expréssion h(x,x)
1s the weighting that should be given to y(1) at wavelength A in order
to obtain the optimum mean-square estimate of s(i) at wavelength 1. It
is 1nteresting that there 1s a relationship between the mean-square es-
timation of s(x) from the observation y(a) and the expression for
average information as simple as the one given above.

There are, however, major drawbacks in the relations just derived.
The first major problem 1s that the covariance function Ks(x,u) must be
known in order to solve the Wiener-Hopf equation in an anatytical man-
ner. In general the covariance function of a spectral scene is not
known in analytical form. An estimate of the covariance function can be
made, but this estimate may not be 1n a useful analytical form and may
not be positive definite. Furthermore, estimation errors may add to the
difficuttijes of discerning a2 useful analytic form for Ks(x,u). The
second major problem lies i1n actually solving the Wiener-Hopf equation
even under the assumption that a functional form for Ks(x,u) is known.
If the spectral processes are stationary and posess rational power spec-
tral densities, then the Wiener-Hopf equation can be solved. However,
stationarity cannot ~2zassarily ke

- . - - -,
az *or 2 tra!

W

S

w
w

i t]
w

a Lot 3
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The solution of the Weiner~-Hopf equation for nonstationary covariance

functions is considerably more difficult.
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3. Computation Considerations

The above considerations indicate that a more useful fechnique for
determination of the Wiener filter impulse response 15 needed. A tech-
nique that is useful for this computation may be found by examining the
relationship between Wiener filter theory and Katman filter theory.
These two theorfies are really different viewpoints of the same probiem.
0f the two, Kalman filtering offers much more computational capability.
The relationship between Wiener and Kalman filter theory was shown by
Kalman and Bucy [K11 and Kalman [K2].

Since the purpose of this section is to study computation techni-
ques for average information, and computation 1s most easily carried out
in discrete form, we shall first recast the previous expressions in a
discrete formulation. That 1is, we shatl study the problem in terms of
discrete wavelenygths rather than continuous wavelengths. Thus, the

spectral process

Yy = sO+n(n) Ay <2< As
is written as
y(k) = s(k) + n(k) ké[}1, xé] (2-60)

where k is an integer corresponding to a discrete wavelength in the
wavelength interval of interest. The white noise process n{i) then
becomes a sequence, n{k), of independent, identically distributed zero
mean gaussian random variables with variance ;Q. Next, consider the

description of the spectral process s(A). Sihce We have assumed that

s(X) 1s a gaussian random process, a reasonable model for s(i) is a
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linear dynamic system driven by an independent gaussian random process.
That is, the process s(A) is assumed to be described by a tinear vector

state variable form. The linear vector state variable form is written

as:
s = A s(u) + Bw(y) (2-61)
where
51(1{
sz(x)
s =
sn(x)
N n

-

and 31(x), sz(x), cae, sn(x) are the state variables. More discussion
of the state variables is given later.

ﬁ’is an (n x n) matrix

4 -
-a'i' 81().)
d
E; 52()‘)
- _ d - *
s = dA~§(l) =1,
d
—d')\- Sn(l)
L J

B is an n x 1 matrix
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w{X) = an i1ndependent gaussian random process

n is order of the state variable system.

The concepts of state and state variable formulations may be reviewed in
Schwartz and Friedland [S2, Chapt. 23. Kalman [K2], and Schwartz and
Friedland [$2, p. 125-127] also indicate the manner 1in which a system
given by (2-61) may be written as a discrete-time dynamic system. By

analogy the discrete form of the spectral process s{(}) is given as:

sCk+1) = #s(k) + Tw(k) ks[l1, >2] (2-62)
where
820k+1T
stk¥1) = |,
Sn0k¥1)

¢ is an (n x n) matrix.

T s an (n x 1) vector.

w(k) = a discrete inependent gaussian random process with zero
mean and variance Vw(kﬁsﬁk-j)

k is an integer that corresponds to a discrete wavelength
er}1, ké]. With this representation for s(k) we can write the discrete

form for y(i) as
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where

ﬂfg(k) = s(k) is the relationship between the state variable for-
mul ation and the spectral response s(iA) for the ) that
corresponds to k.

This discrete form for representing the spectral processes 1S much
more amenable to digital computation than the Wiener-Hopf form. It
should be recalled that the solution of the Wizner-Hopf equation yields
the optimum (in the minimum mean-square sense) filter for the estimate

8(x) of s(x). The estimate thus may be written

300 =7 hOLwywdy, x (2-64)
1

1="="2 )
The Kalman-Bucy estimation equations can be derived from (2-64).
furthermore, the same equations can be derived using other techniques.
Thus the equivalence of the Wiener-Hopf techniques and the Kalman-Bucy
techniques have been firmly established. The reader is referred to Sage
and Melsa L[S3, Chapter 71 for details. In addition, the complete Kalman
fitter algorithm is included in Appendix I for reference. In these

derivations, it is a matter of course to obtain the equation for h(y,x)

as

hG) =Y Q) s R

s

) (2-65)

where
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SG) = s - 8V (2-66)
v o) = Var[i(x)] = Var [E(x) -l_§_(x)] (2-67)
S

and
ROV = Var[n()] . (2-68)

In-the present research,.R(X) 1s a scalar. TherKalman filter algorithms
provide a natural and efficient technique for the computation of the es-—
timation error variance y;(x). The akgorithms given above are the same

for the discrete case whe% the appropriate substitutions are made in the

relevant variables. The results are-given below

hCK,K) = Vo (R + H o+ RTT(K (2-69)

s
where

kelas ay <X < a2

are- integers correspondang to discrete wavelengths of interest.

k) = s(k) = 5K (2-70)
Vo) = Vart[is(k):‘ = Var‘[g(k) ~ g(k'):I (2-71)
S - g

and
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R(k) = var[n(k)] . (2-72)

It should be noted that h(k,k) 1s in vector form to conform with
the state variable models used in the Kalman filter algorithm. The re-
lationship between h(k, k) and h(k,k) can be discerned from the state
variable sighal model. This topic will be covered in more detai!l in
Chapter 111 which 1s concerned with modelling the spectral process.

Thus we are able to use Kalman filtering techniques to compute
h(k,k) and hence average 1nformation. The average information in y(i)

about s(3) is given by

1(s,Y) = % hek, k) (2-73)

The Kalman filter computation technique has several advantages over
the Wiener-Hopf approach. The most obvious advantage is the digital
computer compatibility of the Kalman filter technique. The Wiener-Hopf
equation is easily solved in only those cases for which the analytical
form of Ks(x,u) is fairly simple. For other cases, solution of the
Wiener~Hopf equation ranges from difficult to extremely difficult to
solve. The second advantage is that 1t is not necessary to have expli-
c1t knowledge of the form of Ks(x,u) in order to use Kalman filtering
techniques. This obviates the need for estimation of Ks(x,u). Another
advantage is that n(k) need not be "samples” of a white noi1se process.
It is possible to use noise models that have a 1inear dynamic structure.

Thus, noise models with nonwhite power spectra! densities may be im-—

plemented.
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The major remaining question is the method by which the signal
model‘g(k+1) is obtained. Specifically, 1t 1s necessary to obtain the
matrix ¢ and the vector I . If the spectral process s(}) is stationary
and has a rational pbwer speciral dénsity; then-g'éhd :_ﬁay Be‘aeéér-
~mined from knowledge of Ks(l,u) V1, pp. 516-526]. In many physical si-
tuations K (,u) 1s not known. The parameters ¢ and I' must then be e;-
timated from whatever empirical data 1s at hand. This is a problem
which -has been studied extensively in the ar;a of system didentification.
The use of these techniques for modelling the spectral process s(A) (and

hence s(A)) 1s the topic of concern for Chapter II1I. Thus we will leave

this problem for later consideration.

6. Further consideration of the Relation Between Average Information

13

angd Optimum Mean-Square Filtering

In this section, the relationship of optimum mean-square filtering
to average information is considered 1n a somewhaé more direct manner
than in the previous sections. The formulations are in the state varia-
ble viewpoint in order to be consistent with the final approach to
average information computation 1n the previous section. We shall
specifically be concerned with showing that the estimate 5(k) of s(k)

given by

§(K) = E[ik/vk] (2-74)

where
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—<
il

K {y(k) : ke[l‘l’ AZ]} (2-75)

3]

the observed spectral process.

3

1

1s the estimate such that the average information in §(k) about

s(k), I(s(k), 8Ck)) s maximized. Then since

U = H's(k) (2-76)
and

149

H'8Ck) (2-77)

we have the estimate §(k) of s(k) that maximizes the average information
I(sCk), 3¢k)).

The estimate $(k) 1s a natural result of the Kalman filtering tech-
nige. Thus, a by-product of the computation for I(S5,Y) is the estimate
5(k) .

In order to demonstrate the above statements, it is first necessary
to develop some intermediate resuits. We first show that the average
information between the estimate §(k) and the estimation error

Sk = s(k) ~ §Ck) is zero. That is,
1(5(k), E(k)) =0 . (2-78)

Now I(5(k), E(k)) =0 if and only if §(k) and E(k) are statistically
independent [G1, p. 241, But, based on our initial definitions and as-
sumptions, §(k) and E(k) = s(k) - 5(k) are gaussian random variables.

Hence, it is sufficient to observe that §(k) and E(k) are uncorrelated.
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This is easily seen from

E[E(k)Tg_(k)} = s[eL'sjck)T/vk:‘gk)] (2-79)
However,
E[_s_‘ck)T/Yk] = e[0T - _§_(k)T)/Yk]
. N | oaenT
= Els00 /Yk] s’ =0 .
Hence

EEE(k)Tg(k):‘ =0 .

Thus Ekk) and §(k) are uncorrelated and hence independent. Therefore,
1t 15 clear that (2-78) 1s true.

Next, some entropy relations are needed. The relations to be shown

are

H(s(K)/3(K)) = H(SM/8CK)) = HEStk) - (2-80)

First consider the random variables Z = s(k) - §(k) and W = 8(k). The

density function le(g,g) 15 to be determined in terms of the density

function Psgﬁi(k{g(k)). It is easily shown [P1, p. 2041 that

p(s(k) - 8(k), 3(k)) = Pzw(g,g) =

= Pgglzhunm) = Pog(s 8 . (2-81)

Thus, since S(k) = s(k) = §(k) we can write
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v

p(s(k),8(k)) = p(s(k) - §(k), § (k)
= p(3(k), §(K)) . (2-82)
So we have \
p(s(k)/3(k)) = p(S(k)/3(k))
and hence
H(sCKI78Ck)) = H(Z(k>/5(K)) , (2-83)

Now we have previously shown that
I(3Ck), SCk)) =0 (2-78)
Hence
0 = IG8Ck), SCk) = H(F(K)) - H(é(k) /5(k))
or
- H(EK)) = H{S (k) /5(k)) . (2-84)
Now, we can write the average information I(s(k), §(k)) as
I(sCk), §Ck)) = H(s(k)) - H(s(k)/58(k)) . (2-85)
But using (2-83) and (2-84) in (2-85) we have
I(s(k), 5¢k)) = H(s(k)) - H(5(k)) . (2-86)

This is a very useful resutt. It shows that the average information in

the estimate $(k) of the state s(k) of the spectral process is directly
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related to the entropy of the estimation error Ekk) = s(k) - 8(k). Sin-

ce for a given observation the state s(k) is fixed, it is clear that to
|

maximize I(s(k), §(k)) it is sufficient to minimize H(E(k)%.

Now since Eﬁk) 1s gaussian, it is straightforward to compute the

entropy H(S(k)) as

HEK) = = log(2me)"| (2-87)

|-

P,

where

lp, | = det[EE’(k)ET(k)]] . ‘

Hence 1t is clear that to minimize H(E(k)) it is sufficient to minimize
Ek‘ Tomita, Omatu and Soeda [T1] show directly that this is accom-
plished by the Kalman filter technique. It is sufficient for our pur-
poses to note that we already have used the Kalman filter algorithm and
it 1s known [S3, Chapter 73 that it gives the minimum error variance es-
timate for our case of assumed gaussian statistics.

Thus, it is seen that the Kalman filter algorithm produces an es-
timate §(k) of the spectral response s(k) that is optamum in terms of
average information. The optimum mean square estimate §(k) is thus a
natural by-product that is consistent with the concept of using average
information to study parameters of multispectral scanners.

In conclusion, this chapter develops the notion of average informa-
tion in the received spectral process y(A) about the reflectan;e spec-

tral process s(A). Furthermore, a technique for computation of average

information has been developed. The relationship between optimum mean

»
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square estimation and average information for the current problem is

.

also showun,
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Chapter I1I

Model Identification, Selection, and Validation Techniques

1. Introduction

This chapter is concerned with finding analytical models that ade-
quately represent the spectral response process of scenes observed by
mul tispectral scanners. A major requirement for the models is compati-
bitity with the computational techniques discussed in the previous chap-
ter.. Specifically, we are i1nterested in obtaining the necessary
parameters to represent the models in the state variable forms discussed
n Chapter II. In Chapter I, the division of the reflectance spectral
response into bands 1s discussed. The technique for constructing models
must, therefore, be sensitive to different characteristics of the spec~
tral response process in different -spectral bands. Hence, the techni-
ques developea in this chapter are motivated by the above constraints.

Very useful techniques for model construction can be drawn from the
subject area generally known as time series analysis. References for
time series analysis are numerous with major works by Anderson [A4], Box
and Jenkins [B1], and Kashyap and Rao [K33. The reference to time is
generally a misnomer in that time nerely represents an indexing varia-
ble. We shatl, of course, use wavelength as our indexing variable. We
first discuss the models that are used 1n this.research to represent

spectral response process of scenes.
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2. Models Used to Represent Spectral Scenes.

Recall that the spectral response of a scene 1s being considered as
a porf1on of a realization of a stochastic process 1n wavelength. Thus,
the form of the models used must reflect this consideraion. The models
considered 1n this research are stochastic difference equations having a

general form given by

m1 - m2
stk) = 2: a_Sck-3) + 2: b pk=3) + w(k) -1
= ] . ]
1=1 j=1
where
S(k) 1s the spectral response at the discrete wavelenth k. It
1s gaussian with mean and variance determined by the parti-
cular structure of (3-1).
wik) 1s a zeroc mean independent gaussian disturbance with vari-

ance p.

p{k-3) 15 a deterministic trend term used to account for certain
characteristics of the empirical data. An example is
p{k=12=1.0, which could be used to account for a nonzero

mean 1n w(k).
a_. and bJ are unknown constant coefficients to be determined.

m1 and m2 are constants that determine the dependence of S(k) on
preceeding values of the process.
Thus the dynamic nature of the‘sgectral process S(k) 1s expressed 1in

7
terms of 1s own values at lower wavelengths, some possible deterministic
!
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characteristics, :and a gaussian independent disturbance. This model
formulation though somewhat restricted 1s sufficient for the purposes of
this research.

For completeness, we shall now intrqoduce some asumptions on the
model given by (3-1). Since (3-1) represents a |inear system, it is
fully described by its second order stat}st1cal properties. The coeffi-
cients aj and bj are said to be 1dentifiable 1f they can be determined
from a semi-infinite set of observations {S(k); 1 < k < =} such that the
differencé equation (3-1) uniquely describes the second order properties
of the observéd process S{k). We shall now state some assumptions that
are necessary and sufficient condifioés for the identifiability of the
coefficients aj and b]. The questioé of 1dentifiabitity is covered 1In
detail by Kashyap and Rao [K3, Chap. 41. The assumptions that.are used

1 this research are listed below.

Assumptions :

1 w(k), k=1,2,... is a sequence of zero mean 1dentically distribu-
ted, independent gaussian random variables with variance p. w(k) is
independent of S(k-j) for all j > 1.

2> Define the unit delay operator D by:

Cooy(k) = y(k=1) .
then (3-1) can be written as
m1 . me
SUI[1 - 3 a0 = 3 bowtk-i) + Wl . (3-2)
1=1 1 3=1 J

The assumption is that all the zeros of the expression
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m1 .
ACDY =1 = > 4.p)
=1 )
lie outside the unit circle 1n the complex plane. This assumption
gives assurance that (3-1) is asymptotically covariance stationary.
The relation of this assumption to covariance stationarity is ex-
plored 1n detail by Box and Jenkins IB1, chap. 3].

Suppose we have several trend terms denoted by4¢i(k),i=1,2,...£.

Represent these trend terms by the vector

2R = Lo (K, ean,y (0T
. g Y T
Then the assumption 1s le Nv?é% yIYk)  exists and is positive
definite. This assumption gives assurance that the coefficients of
most trend terms can be identified. Note, however, that this as-
sumption is 1nvalid for the useful linear trend y(k)=k. Therefore,

a weaker assumption that follows from the above may be useful.

The vector of trend terms obeys

@ 9 2
2, 2 a0 = e (3-3)
k=1 1=1

for nonzero o = Ea1,a2,...a2]T . The notation used in (3-3) means
that the summation diverges. It 31s now demonstrated that (3-3) fol-

lows from assumption 3. Consider first

1 & T
RLE Zf 2Ky =
Neo " k=1

ORIGINAL PAGE IS
OF POOR QUALITY
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- N -
N N 1
1 2 1 = 3 v Ky, (K
5 1(2231 v €K N Z: Ry, (k) ,eee, N (4 P17 Y
N
N 1
1 2 — 3w (k) (k)
k=1
= lim
N+

1 2“: 2
—_ v (K)

Each of the diagonal terms in the above matrix is obviously positive.

Hence, by the assumption and the above comment,

H

7 2 -
l:[ l1m-—- 2, v (k>0

N+ i=1

and bounded. Thus for each 1, there exists a B, > 0, such that

{im
N+

Zz|=

N 2

@ 2
Now consider Z: 2: (ai¢i(k))2. There 1s at least one i such that
k=1 1=1

a1§P¢O. Hence,

= 2, %= 2 .2
3 12:1 Ca b (kD) Zk:Z% RO R

=
-

But since
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N 2
lim — 2: wi(k) = B,
N-+o k=1
we have
N 2
| 1m Z} R
N+ k=1
Hence,
2 < 2
b Z\pi(k) ze
k=1

and the desired relation is shown.

These assmptions will not be mentioned again unless specific need
arises.

We shall now list some types of models that are used in the present
research. The first type of model 1s known as the autoregressive model
of order m1. It is defined by
m1

S(k) =

a. S(k=3) + w(k) . (3-4)
=1

A second type of model 1s found to be useful for the case of

nonzero mean for w(k). This model, called the autoregressive plus con-

~

stant trend model of order m1, 1s given by

3
sy

Sk) = 3, 3, Sk + 0wl (3-5)
)=1

Note that C corresponds to the coefficient of the trend term
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pk=1) = 1.0.

The third model type 1s useful n representing a nonstationary pro-
cess [K3, Chap. 3]. This model 1s in the class of integrated autore-~
gressive models of order m1. We shall have occasion to use two cases of
this model. The first and more common case is given by

.

m1i
vSCk) = D, 2 vS(k-1) + w(k) (3-6)
i=1

where
vS(k) = S(k) - s(k-1) .

The second case of the integrated autoregressive models that will be

used is given by

1
VZS(k) = 55 a v, S(k=3) + w(k) (3-7>
= 1@

where
vzs(k) = S(k) - S(k-2) .

These models are shown in the next chapter to give good fits to the
spectral response processes under consideration. The models are also
easily placed in state variable form. It 1s recalled from the previous
chapter that this form 1s useful in the computational technique used to
obtain the average information i1n the received spectral process about
the spectral response process of the scenme. An example for placing- one

of the above models (3-4) 1n state variable form may be useful.
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Exampl e

Assume that a spectral response is modeled as a third order

autoregressive process.

S(k) = a1S(k"1) + a, S(k=2) + a3S(k-3) + wi(k)

pefine the state variables

31 (k) = S(k-2)
SZ(k) = S(k-1)
53(k) = S(k) = a1S3(k-1) + azsz(k-1) + a351(k—1) + wlk)

Then we can write in vector and matrix form

51(k~) 0 1 0 51 (k-1) ~0‘
Sk) = SZ(k) 10 0 1 Sz(k-1) _+ 101wk
a a a 1
_SS(k)_ L3 2 1 ~S3(k 1)-

0 SCk=1) + ru(k)

and

T

S(k) €0 G 11s(k) = H'S(k) .

i

We shall next consider techhiques for estimating the unknown coef-

ficients in (3-1).

3. Estimation Techniques

The estimation technigues that wil! be used for the mode! types

discussed 1n the previous section will have two main properties. First,
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the form of the estimators depends on the,assumed gaussian nature of
‘w(k). The second major property is that the estimatijon technique must
be amenable to computational procedures. That is, it is desired that
the estiqation algorithm be in a recursive computational form,

Two related estimation techniques are d1scussed: The first techni-
que is maximum {1kelihood estimation which does not depend on prior
‘knowledge of the parameters. The second technique considered is Bayesi-
an estimation in which prior knowledge about the parameters may be 1n-
corhorated. The technigues will be shown to produce similar algorithms
for computation.

We shall begin with some preliminary manipulations that are useful
in discussing both estimation techniques. Equation (3-1) 1is recast 1n

the following more compact form.

Sk = 27 (k=15 + wlk) (3-8)
where
» —‘01 N
[S(k-1) 7]
$(k-m1) ®m1
2D =y | e 2 b, .
:p(k-—mZ)_ b
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We shall assume that at wavelength k = N, we have-accumulated the fol-

lowing data.

- - XN S ND sl SE), S L LS SRTyYy T T T " (3-=9)
X1 x2

X1 1s the portion of the data set from which the estimates are construc-
ted. X2 is the portion of the data that initializes the dynamics of the
spectral response process. Furthermore, let ¢ be the true parameters of

the model and let p be the variance of w(k).

A) Maximum Likelihood Estimation

The observations X(N) contain the only empirical data from which
we can estimate the parameters g and p. The probability density func-
tion of the observations is needed to obtain the estimation scheme.

This probability deﬁsaty can be written as

PCXCND) = p(SIN) ,euen,SC-m1))
= pCSIN)/SIN=1) , ez, S(=m1)) p(S(N=1) /SAN=2) , cre ., SC-m1))

*esarp(S(D/S(D),...,5(-m1)) ep(SCD),...,SC(-m1)) 3-10

The likelihood principle states that ‘the estimates of the
__parameters_p.-andp—-are"the Values—of—the~parameters that maximize the
probability density function p{X{N)). This estimate 15 called the full
info}matﬁon maximum l1kelihood estimate (FIML) by Kasﬁyap and Rao. [K3,

Chap. 6]. However, the probability density function p(s(0),...s(:m1))
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is usually either unknown or in a %orm that renders (3-10) too complica-
ted to be useful. Thus, the density function p(sS(0),...,S(-m1)), which
represents the effects of the initial observations, will be ignored in
this estimation technique. If a large number of cbservations are,
ava1lable,‘1t is reasonable to expect that‘these initial observations
will not be of overriding influence. If the maximum likel:hood estima~
tion techniques are applied to the remaining terms of (3-10), we obtain
the estimates called conditionat maximum {ikelihood (CML) estimates by
Kashyap and Rao [K3, Chap. 63. The so-calted CML estimation techniques
are used in this research.

bue to the initial assumption of the normal ity of w(k), we can wri-

te for each of the conditional probability densities in (3-10)

. 2
PUS () /SG=1),u .0, SC-m1)) = —— exp| -5 EUIZ (G120) 3-11)
VE :
Hence, since we are now only concerned with the contributions of the
conditional probability density functions in (3-10), we can write as our

likel thood function

N
LCoy,p,XN)) = JI p(sCk)|sCk=1),...,5(-m1))
K=1
or
-5 T 2
Lo, p, X)) = (2ap) exp|:—1J 3 (S(k)‘zp(k'“")] (3-12)
k=1

Since we are considering conditional maximum |ikel ihood estimates, the
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optimum estimates gf and p* of g and , are those values that maximize
the likelihood function L(e,p,X(N)). Equivalently, the logarithm of the

l ikel ihood function may be maximized. That is, maximize

L1Qg,p,X(N)) = logl(a,p,X(N)) =

N T 2
log(2sp) % [Z (stkr-z Ck 1’9’] (3-13)

=

i

k=1 P

First obtain the estimate for ¢ by taking the partial derivative of

L1§g,p,X(N)) with respect to g to obtain

3L, (8,p,X(ND) 1 N
= -2 [-21}: (S(k)uf(k-n_e_)(s<k>-;T(k-1)£>:|

Pr=1

_e N T
= 5| 22 S0 Zk=10- 2 2¢k-1Z (k=1)g| = O
P1k=1 k=1
and equate to zero.

Thus the estimate becomes

. N T -1 N
8 N = {3 2Ck=1Z" (k=1) D 2Ck=1)8(k) . (3-14)
k=1 k=1

. . . *
Next, differentiate (3-13) with respect to p to obtain the estimate p .

_ N
ap 2

s(-21 k=1)4)% = 0

v =

+ 1 ¢
20 k=1

or
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L

N
S (s =2 (k=12)° (3-15)
k=1

p*(N) =

A

Since we wish to estimate p from the observations above, it is necessary
aL1 3L1

to solve the equations for T and PP jointly to obtain

= [

N
3ot -2T (k=1)9")2 (3-16)
k=1

I_s

o) =

=z

If the second partial derijvatives of the ii1kelihood function are taken
with respect to g and p, 1t is seen that_g* and p* satisfy the optimali1-
ty criterion.

For our purposes, 1t is sufficient that the elements of the matrix
in (3-14) be linearly ‘independent in k to insure that the inverse ex-
ists. This is true of all the mode! structures used in this research.
Kashyap and Rao LK3, Chap. 4] give a more detaited account of the condi-
tion under which the inverse in (3~14) exists. Kashyap and Rao (K3,
Chap. 41 also demonstrate the asymptotic consistency in the mean square
sense of the eét]mators 0" (N) and p (N

‘ Furthermore, Kashyap and Rao [K3, Chap. 4] show that the asymptotic

. * .
mean and covariance of the estimate g (N) are given by

* _ 1 -
ELo (N)/8,0] = 8 + OE:EE% G-17

where

O:X) + K#0as x~+ 3,

and
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. N . -1 1
CovLg (NI /8,01 = plE| 25 2Ck=12" (k=1) + ol (3-18)
k=1

ox) | g as x - 0.

It is also shown by Kashyap and Rao K3, Chap. 4] that the estimator has
asymptotically minimum variance and is asymptotically equal to the
Cramer~Rao lower bound on the estimation variance.

Next we demonstrate a recursive algorithm for the -computation of
the estimate Qf(N) in (3-14). The algorithm eliminates the necessity of
computing the inverse matrix each time a new observation is made. This

gives a large reduction 1n rcomputational load.

Let us write

N N
PIN) = | D0 Z(k=1)2"(k=1) . (3-19)

k=1

Then
- T T
PODT" = 3 2k-12' (k=1) + ZIN-DZ' (N-1)
k=1

or

1

P = po-nT -2 D (3-20)

Now apply the matrix inversion lemma (Sage and Melsa [S3, pp. 499-500]

and given in Appendix II) to (3-18) to obtain
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PN) = g(m-n-g(m-n_z_m—n|:1+;T(N—1)5<N-1 )}_(N-1)]_1_Z_T(N-1 )P (N~1)

or

P(N~1)Z(N~1)ZT (N-1)P (N=1)

P(N) = P(N-1) - 2 ‘
1427 (N=1P (N-1 ZN=1)

. (3-21)

Thus (3-21) gives a recursive expression for P(N). This expression is
useful in the derivation of a recursive algorithm for the estimate

Ef(N). First write (3-14) in the form

N
BTN = PO 3 ZCk-1S(K) . (3-22)
. k=1

s

Then

3

. N=1
8 () = PUD| D ZCk=-1ISK) + Z(N-1)SN)

k=1

N=1

PN D ZCk=1S(K) + PADZIN-DISN) .
k=1

But from the form of (3-22) we can write

0¥ () = PODPIN-1TTo*(N=1) + PO ZN-DISN) . (3-23)

Now 1inserting the expression for P(N) from (3-21) into the first term on

the right hand side of (3-23) we ohtain
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1 T

1427 (N=1)P (N=1) Z(N-1)

+ PN Z(N-1ISN)

or simplifying

PAN-T)Z(N-DZT (N=1)0* (N=1) .

8 N = gF(N-1) - -
142 (=P (N-1 Z(N-1)

+ PANIZIN-DISIN) . (3-24)

Consider the last expression on the right-hand side of (3-24). We can

write from (3-21)

PIN-1)Z(N=102" (N=T)P (N-1 Z(N-1)

PONDZN-1) = PIN-1Z(N-1) - L
1427 (N=1)P (N-1) Z(N-1)

or

PIN-DZIN-1)
(N=1)P (N=1) Z(N=1)

PCNIZ(N-1) = . (3-25)

1477

substitute (3-25) 1nto the last expression 1n (3-24) and we obtain

P(N-1)Z(N-1)

T

8 N = g (N-1) +
142 (N=1)P (N=1) Z(N=1)

[scm-_zﬁm-njm—n] .

Now 1t is clear that the coefficient of the second term is-identical to

(3-25) so that we can finally write
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o¥ () = gFN-1) E(N)_Z_(N-‘l)[S(N)—_Z_T(N-'l)&*(N-ﬂ] . (3-26)

The above equation along with

)_P(N"1)Z(N~1)ZT(N-1)P(N-1)
1427 (N=1)P (N=1) Z(N-1)

PIN) = P(N-1 (3-21)

constitute the recursive algorithm for the estimate e*(N). Ffor initié—
tion of the algorithm, one can use an arbitrary (but reasonable) vector
ﬁfco) and a positive-definite matrix P(0).

Thus we have shown the form of the maximuum !ikel ihood estimators
6" and p*- In the next section, we'shall consider an estimation techni-

que that witl allow use of prior knowledge of the parameters to be es-—

timated.

B) Bayesian Estimation

In addition to the previously mentioned abil ity to consider a
priori knowledge of the parameters, Bayesian estimation differs from
max imum likelihood techniques in another aspect. This aspect is the in-
corporation of the loss function which is a measure of the consequence
of the error in the estimate of the parameters. The optimum Bayesian
estimate minimizes the expected value of the loss function (called the

risk function). The loss function most commonly used for engineering

work is the quadratic loss function

It is well known [K3]1, £S33, Cvi1l, LR11, CF2] that the optimum estimate

of 8 under the quadratic loss criterion is given by
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9T N = EQ/XA0] . (3-27)

That is, gf(N) is the mean of the posterior density of ¢ given the ob-
servations X{(N). With a few preliminary assumptions, a form for the es-

timate‘gf(N) is derived. These assumptions are:

b1) The prior distribution of g is normal with mean 8y and covari-

ance matrix Pye-
b2) p is the variance of w(k).

b3) p{g/xz) = p(g), which insures that ¢ consists of coefficients
of a difference equation that are independent of initial con-
ditions Xz.
Using these assumptions we can derive the posterior density of g given

the observations X(NJ).

Assertion

The posterior density p(g/X(N)) 1is normal with mean
*(N) = PN ZN:Z(k-ﬂs(k) + p1 (3-28)
e - -0 0
and variance P(N)p where

N S
PIN) = k;gck—ng(k-n + Py (3-29)
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Demonstration

The assertion is demonstrated by examination and manipulation of

relevant density functions. We have by assumption

and

w(k) ~ N(O,P)

»

for all k. The posterior density of 5 given X(N) 1s

_PGaLXN) L p(XN)/2)p(s) )
PC/XINY) = —5rimyy STXN) . (3-30)

Consider the first expression in the numerator of (3-30).

p(X(N)/8) = p(S(N},...8C(1), s(0)...S(-m1)/@)

e A
e e et s™

X1 X2
This can be written as

p(X(N)/g) = p(S(N)/S(N-1),...S(1)),X2,2)°
p(S(N-1)/S(N~2),...S(1),X2,§)°

“aatp(SC1)/X,,8) e p(a/X ) p(Xy) .

But from (3-8) we can write

p(S(k)/S(k-1),...,S(?),Xahg) =
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=__3__exp[_1<s<k) zT<k-1)Q>2] i
NED 7o

The second term in the numerator of (3-30) is

ple) = L Axp[1(e )T 1(9-9 )]
- 1/2° 2
(anlfol)

The denominator of (3-30) can be written as

p(X(N)l = p(X1,X2) = p£X1/X2)p(X2)

Now 1t is noted that p(X,l/XZ) does not depend on g. It does depend on
84~ —EO' o, and ET(k~1). Therefore, p(X1/X2) can ‘only take on the signi-
ficance of a normalization factor for the posterior density. This pro-~
perty will greatly simplify the necessary manjipulations.

Hence, we can write the posterior density (3-30):from the above re-~

lations as

PCa/XN)) = 1 ;exp[il(S(k)-gT(k—?)i)z]
k1 \[Trp P

1 [1 -1
. exp ) P (8- )]
EZﬂol_EOlJ“Z ?5' 0. 89
. 1
p2x1/x2) )

Collecting all normalization factors as a single term we. can write
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Y

N
- -1 S P 2
p(g/X{N)) = K1exp[2-5|jk§=1 (§CkX=Z (k=1)9)

+ (gmg ) P (_Q-go)]j'. (3=31)

The exponent of (3-31) can be written as

N
;—1[2 (s%(k)-22" (k=1)gS (k) + g'ZCk-1)Z" (k=1)g)
k=1

§ To~t, _ 5,7 Tp-1
tefe 2-0-0_9“*2020&0]-
Rearrange and label some terms to give the exponent as

N
=1 1.7 1377 a1y 4p=]
% [3 L};yk 12 k-1)+Py ]_e_

e e et

PN

N1 To-1 -1
- z (k- * (N) [P(ND
2 k;_ 1S k) +ooPo [PN ;( 0

— N ——

N
2 T,-1
+ kz}%s (k) + 93Py Eo] .

From the expressions labeled as gﬂN)~1 and gf(N)T above, we see that in
order to "complete the square," 1t is necessary to add and subtract the

term



- 62 -
}N:znk-ﬂsmn p= e [ o™ p a0 Zst<k)z<k-1)+p‘1 ) —
s 2070 |- = i =’ - -0 9 :

<—_~._-__§_*(_N)

When the operation of "completing the square” is carfiéd out, the ex-
traneous terms- do not depend on 8. Theréfore, they also Contributeé to
the normal ization factor previously mentioned. Thesé manipul ations give

the exponent as

32-}[(5_@*<N>)Tg(m'1 <£-i*(N)):|

where
D = P ZN:S(k)Z(k-1)+P:'1 : (3-28)
8 =R & £ 0 85
and
N Y
PINY = | D Z(k=132" (k-1)+P . (3=29
- k=1 -0

Thus the exponent i5 of Gaus§ian form. THé normalizing factof Ky i3
computed from P(N) by

- I .
1 [[2«]'“;;[3(:4)[]1/2

K where m = m1 + m2 =

The determinant |P(N)| can be computed as fallows

N ‘
P! = 3o ZCk-Dzk=DT + BT
- k=1
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PIN-DTT + 2D ZN-1)T

PIN-D) 11 + £(N~1)£(N-1)£(N-1)T] .
So
PIN) = [L + PON=DZN=-DZ-D T TP-1)

It is relatively straight forward to show that [F3, p.40]

Pan| = |P(N-1) | .
- L1 + ZN=1) TPN=1) Z(N-1 >:|

We note that this is a recursive relation with

- T]-1
P = |:_1_+ Pq ymyo)] Py

and

Hence, we can write

1Pyl
[P = =0

IT O+ za-DTpk-12¢k=1))
k=1 - -

Hence, the normal ization factor K1 is given by

(3-32)

(3-33)
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172

- _ -
TT O+ 21 TPk ZCk-1))
k=1

K. = TP . (3-34)

- __L._ — - — ot e -

Thus the assertion is demonstrated.

The Bayesian eséimate gf(N) may be placed 1n a recursive form that
is similar to that formulated for the conditional maximum likelihood
(CML) estimator. In fact, the derivation of the recursive form of the
Bayesian estimator is exact!y the same as for the recursive form of the
maximumn [ 1kel 1thood estimator. The major difference 10 the two estima-
tion schemes |ies in the manner with which the initial values of the es-
timate gf are chosen. In the Bayesian. technique we can use .our
knowl edge (or assumption) of the.prior density function. Hence, logical

initial values would be

(@) (3-35)

and

PO = Py (3-36

These 1nitial values atong with equations (3-26) and (3-21) constitute
the recursive Bayesian estimation scheme. )

To summarize, we have two similar estimation schemes which give es-
timates of the parameter vector p based on the observation of the spec-
tral process S(k), k=1, ..., N. The technique presented thus far 1s
clear. The hypothesized models determane whach parameters.are to be es-
timated. These parameters are then estimated by one of the above tech-

niques.
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The guestion now arises as to what criterion 1s to be used to
select a model to represent a spectra! process. Thus, we next consider
a method for selecting a model from the hypothesized models for the

spectral response.

4. A Model Selection Criterion

We begin the discussion of the model selection criterion by de-
fining a class of models. Recall that we are dealing with models that

can be written as
(k) = 27 Ck=1Dg + wlk) (3-8)

A class of models is defined by Kashyap and Rao [K3, p. 1811 as the tri-
ple (f, H, @) where f is the stochastic difference equation (3-8), H is
the range of values for‘g and @ is the range of values for p. A member
of the class (f, H, 9) is written (f, 8, p). The parameter H is defined
such that every element of one of its members is nonzero. This means,
for example, that AR(1) models are in a different class then AR(2)
models. The classes are said to be nonoverlapping. Thus, given several
nonoverlapping classes and the empirical data set X = {S(1),....5(N)},
the problem is to select the class which most likely produced the empir-
icat data.

The decision rule for choosing a class of models selected is
derjved from statistical likel ihood concepts. These methods are develo-
ped by Kashyap and Rao [K3, p. 183-1881. A different approach that pro-
duces essentially the same decision rule is developed by Akaike [A1],

£A2], LA3]. The methods of Kashyap and Rao are followed here. The
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selection criterion is designed to select from the hypothesized classes
that class which gives the maximum likelihood of producing the given em-
pirical observations. Suppose that the empirical data X came from a
model (f, 8g- og) where by = (EO’ 5) 1s unknown. Let the probabil ity
density function of X be given by p(X’QO)' Furthermore, assume that
p(X,QO) is a known function of X and %q- Then the log-iikelihood func—

tion of p(X,$4) is given in terms of X alone by the following theorem.
49

Theorem (Kashyap and Rao)
Let if be the maximum likeli1hood estimate of 4q based on the empir—

1cal observation set X. Then

ECzn(p(X,go))léf] =
=L+ EC0C Log - 071177673 (3-37)
where
*
L=2nplX,6) - n¢ (3-38)
and
n¢ = the dimension of g

The proof of this theorem is given in Kashyap and Rao [K3, p. 184] and
will not be reproduced here. L is regarded as an approximation of
gn(p(x,io)), the tog—likelihood of the class C with the empirical data
X.

This theorem suggests the decision rule:
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’

a) For every class of models C; i=1,00. 2, find the max imum
I'd .
. . * . T
likel1hood estimate 4 of 4 . assuming 4o,€H; using the empiri-
cal data X. Compute the class of log-tikelahood functions Li

as

*
L, = anlp(X, Qq)) - n, (3-39)

where n. is the dimension of ¢ . = ).

(9917 Poi
b)Y Select the clésslwhich gives the maximum value of L_i among
(L7 =100,
This decision rule is relatively easy to use and allows the simul taneous
comparison of several classes of models.
Next, we simplify the form of L in (3-39) for the model types used

n this research. The log-likelihood function is given by

anp(X,6™) = enp(SINY, .o ST+ /S(m) , 0.0, 5C1) 4™

+ gnp(Stm1),...8(1),6™ . (3-40)

Consider the first term on the right side of (3-40). From (3-8) we can

write

-t
il

2APCS N, oo SN +1) /ST, 00, 5C1),47)

N
sn| T pCsStkI/Sk=1),...,8¢k=-n1),4™)
k=m1+1
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"
=
>
i -
—

N
S exp[-‘l;(s(k)-_zf(k-1 )i*)z]
2,,F P

N
= - mD nc2g,™ - El; k Z;1 (skr-2T (k=157 . (3-41)
p Kk=mIF

But recall from (3-15) that the maximum likelihood estimate of p is

given here by

N
* 1 T 2
= E (sCk)-2" (k-1)g) - (3-42)
p N=m1 —_
N-m k=m1+1

Hence (3=41) can be written

- (N-m1) *y_ 1
I =.--§E—- 2n(2rp") = N-m1) . (3-43)

Now consider the second term on the right side of (3-40). Let us ap-
proximate p(S(m—1),...S(1),if) by considering S(m1),...S(1) as indepen-

dent Gaussian random variables with zero mean and variance pg- Thus

np(s(m1), ..., 5019,57)

m1
Ln II p{s(k))
k=1

Si 2np(S{k))

k=1

1
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~

= nrpe) - 5% s (k)2 (3-44)
T2 MMiemng -Zp_s.k=1 :

So combining (3:43) and (3-44) we can write

L = [—%gnp*“m'i]

L, -
N mi [Ps| N L1 1 &2
+ | = = N2 = m—pn|—| = = + =|3m1 - — 5(k) ] =
[,7 z L*] Z 7[ °s K=
- Ly —_
=L 4L (3-45)

It is noted that since in general m1<<N, the term corresponding to Ly
will not vary significantly from class to class when compared to the
variation in the term corresponding to L,. Thus, for comparing. classes,
it is‘sufficient to use the simplified form La in the decision rule.

Let us now discuss the significance of the various terms in the expres-

sion

L, = .§£n<9*> - m . (3-46)

The znp* term is a measure of the goodness of fit of the model with, the
estimated parameters to the empirical data. The influence of the number
of empirical data points is reflected in N. Finally, the m1 term acts
to oppose the selection of increasingly complex models. This is a quan-

titative method of incorporating the principle of parsimony in model
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selction. Parsimoﬂ& in model construction is a reflection of the intel-
tectually appeal ing notion that a simple, but adequate, explanation of a
physical process is superior to a more complex explanation. Kashyap and
- -~ -Rao  [K3, p. 185, 214-216T, Kasfiyap [K41, and Box and Jenkins [B1, pp.
17-181 further discuss the 1dea of parsimony.
Hence, we have a model selection criterioﬁ that is analyticaly

tractable and applicable to all the model types used in this research.

Further, this selection criterion has intuitively pleasing properties.

5. Validation of Models

The procedure for constructing models for the spectral processes
from the empirical data is straight forward. First, the parameters for
the hypothesized classes of models are estimated. Then the selection
criterion developed in the previous section 1s used to choose the best
fitting mode!l for the spectral process. The question that remains is
how well the selected model represents the empirical data. Specifical-
ly, if the model has a certain weakness, then knowledge of the we;kness
can be used to judge whether the mode! is appropriate for the empirical
data. The selected model may also be judged on the basis of whether the
initial assumptions used to formulate the class are valid. The study of
these topics constitutes the subject of model validation. If the selec-
ted model fails these tests, then perhaps another class of models should
be considered. 1f the selected ﬁodel passes the validation tests, then
it is said that the model is valid for representing the empirical data.

However, 1t is possible that a class of models other than those hy-

pothesized may give a better fit to the empirical data. Thus validation

1
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of a selecte& mode! should not be considered as an absolutely definitive
statement. Two approaches to validation are used.

The first set of validation tests check the initial assumptions
used in constructing the model. The selected model is used withthe em-
pirical da;a to implement these tests. The assumptions to be tested are

(see equation (3-8)):
1) the noise w(k) is zero mean with constant variance ,,
2) w(k) is independent of w(j) for k # j and S(k-j), § > 1,

3) periodicitics in the empirical data are adequately modeled.
To conduct these tests, we will use the residual sequence obtained from

the selected model and the empirical data. This residual sequence is
T *
X(k) = s¢k) - Z (k-Ng , k=1,...,N . (3-47)

Thus we are using the empirical data and the selected model to estimate
the noise sequence Ww(k). The tests using the data generated by (3-47)
are called residual tests.

The second set of val idation tests determines whether some relevant
staistical characteristics of simulated data generated by the model are
adequately close to the statistical characteristics of the empirical da-
ta. We will be mainly concerned with two tests:

a) Comparison of correlograms

b) Comparison of periodograms
If the selected model is to be used to produce synthetic data, then it
may be useful to affirm that the synthetic data have the same trend or

other features as the empirical data. Since we are interested in the
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model for other reasons (1.e., to aid in the computation of average in-
formation), we will be concerned only with the tests of the correlogram
and periodograms.

Next we consider in detail the tests mentioned above. We begin

with the residual tests.

A) Residual Tests

Test 1 - Zero Mean Test

The first test wilt be for the assumption that w(k), k=1, ..., N,
has zero mean. We can recast this in a hypothesis testing context. The

hypotheses can be written

Hat  X(k) = w(k)

0
Hyto XCK)

o + wik)

where w(k) is a sequence of independent identically distributed gaussian
random variables with zero mean and variance p, p > 0 . The alternate
hypothesis Hy has 8 # 0, = < g < =. It is well known {(see Roussas LR1,
pp. 292-2931) that, in this case, the uniformly most powerful test for

zero mean (as the null hypothesis) is given by

[t<xd| < ng- accept Hy (3-48)

[tx)| > ng, reject Hy

where

(3-49)
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x|

It
2l
[V]z

x (k) (3-50)
k=1
and
N
~_ 1 -2 -
b= =t %; (x(k) - 30° . (3-51)

t(x) is the Student's t-distribution with N-1 degrees of freedom and

hence pny is chosen such that
PClt(x) ]} < WOIHO) =1 -a

where ¢ is the leve!l of significance, which 1s defined as the probabili~
ty of rejecting H0 when H0 is true. The level of significance is chosen
to reflect the degree of confidence we wish to place %n the null hy-
pothesis. Thus, weshave an easily applied test for the zero mean as-

sumption.

Test 2 - Serial Independence Test

This is a test of the assumption that the sequence w(k), k=1,...,N
is serially independent. The test is discussed by Box and Jenkins [B1,
pp. 289-2931, Box and Pierce [B2], and Kashyap and Rao [K3, pp.
209-210]. The test is a goodness of fit test. Since 1t is a goodness

of fit test, only the hypothesis
HO: x(k) = w(k)

1s defined. The alternate hypothesis 1s the set of all other residual

models. Note that H0 1s the same as the null hypothesis in test 1.
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That 1s, HO 1s the class of zero mean white noise residual models of
variance p. To implement the test, we define the covariance of the
residual data at lag k as

-~

N
R > x(HxG-K) . (3-52)

_ 1
ko N=k 1=k+1

The required test statistic is then

(3-53)

where n1 1s chosen to be 0.1N to 0.01N dependang on the size of the em-
pirical data set. If the residual data set is as defined by,HO, then
n(x) is (approx1matély) chi-square (XZ) distributed with n1 degrees of

freedom. This gives the decision rule

alx) (< ng, accept Hy (3-54)
2—“0’ reject H0

vhere ng 1s computed from
Pea(x) > nglHg) =« . (3-55)

and o 1s the level of significance of the test.
Thus, we have a test which examines the goodness of fit of the co-
variances taken as a whole. Furthermore, the test is easily implemented

on the computer.
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TJest 3 - Cumu}ative Periodogram Test

The cumulative periodogram test is designed to check for the
presence of nonrandom periodic components. In our model construction
technique, 1t is assumed that deterministic periodic components in fhe
empirical data will be accounted for by an appropriate deterministic
trend term. Hence, we are 1interested in degécting any significant resi-
dual periodicities so that we can adjust our models if necessary.

This test is described by Bartlett (B3] based on arguments from
stochastic random walk theory and by Box and Jenkins [B1, pp. 294-297]
on the basis of similarity with the Koimogorov-sﬁirnov tests for distri-
bution functions (see Hoel [H3, pp. 324-3271).

We consider the equation

[N/21
x(k) = (o, cOSyw:k + 8 51Ny k) + w(t) (3-56)
i=1 ] ] ) ]
where ’
NI - . N
l:.z:l = largest integer —<-'2'
and

2nj _— N
Mj = gl Vd J "1’ ewwy [2] -

This equation obviously represents the possibility of periodic com-
ponents in the residual data. It is noted that 1f the frequencies
wj = 3ﬁl.are considered, then the frequencies oN-j T 27 (1-3)/N are

redundant if phase information is not considered. It will be seen that

phase 1nformation is not considered here. Hence, the hypotheses under
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consideration are

H0: x(k) = w(kd

at least one of the components (3-57)

. ¥
e

QJ" Bj j 3‘1, «nay [N'z] :ls nonzero

This test 1s performed differently than the' previous two"tests. First

compute

,e k=1, ..., Gﬂ (3~58)

[(=}
=
[H]

where

N 2[5 2
vox(kIcosy. k]l + = QL. x{K)sing.k . (3-59
] N 3

k=1 k=1

"
=z !

2
Y3

If x(k) = w(k), a p{ot of gkuvsm k- would: ber scattered' about™ a- straight
line"between the points. (0,0) and (0.5;-1.0). The*probability: that the
cumut ative periodogram lies'between‘liﬁgﬁ.parailel to.?he‘line between
(0,0) and (.5, 1.0) at distances‘tx‘%j}ﬁ is' given by (seec Kashyap and

Rao [K3, p. 2081)

-

T =Dlexp-2,%5% .

i

The parameter ) 1is 1.36 for 0.95 probability and 1.63 for 0.99 probabil-
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ity.

Now even if the model 1is correct, the residuals will not be exactly
white since the parameters were estimated from a finite data set.
However, the cumulative periodogram will tend to indicate those boundary
crossings that are random and those that are due to gross model defi-
ciencies. If the boundary crossing are due to model inaccuracies, the
deviations will tend to be targe and constitute a considerable portion
of the cumulative periodogram. Conversely, if the deviations are small
and occur over a small portion of the domain of the cumulative periodo-
gram, they might be attributable to randomness in the residuals.

Hence, the decision procedure is

1 plot the cumulative periodogram and the boundaries.
2) if the plot is within the boundaries accept HO.

3 if the plot crosses the boundaries either

al) reject H0

or

b) 1f the boundary crossings are not gross consider other
characteristics (i.e., examine plots of simulated and
empirical data) to determine whether to reject HO.

Thus we have a fairly easily implemented test for nonrandom periodici-
ties 1n the residual data.
This completes the descriptions of the residual tests used in this

research. The tests are all easily implemented on a computer and are

straight forward.
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B) Tests of Statistical Characteristics

r

Test 4 - Correlogram Test

. . This test is-desdigned to -compare the FGtdcovariance functions of
the empirical data and synthetic data generated from the fitted model.
Ther technique of comparison of correlorams is discussed by Kashyap and
Rao [K3, pp. 211-2121. The estimate of the autocovariance functions

that are used in this test is given by

N
RCK) = _11? 2 () - DISG-K) - B k << N (3-60)
K+1
where
1 N
=< 20 s .

i=1

This estimate is called the corel logram by Kashyap and Rao. Oppenheim
and Schafer C01, pp. 539-5411 show that the estimate is unbiased and the
variance is asymptotically zero (as N 4»). Hence, the estimate is con-
sistent in the mean square sehsé,

An estimate of the correlogram for thé fitted model can be obtained
by computing. the average of the estimat; of R(k) giver by (3-60) over
several independent sets of synthetic data. That is, the estimate of
the correlogram for the fitted model from J sets of synthetic data is

giveh by
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n(O =g 2 R0 (3-61)

where

ﬁj(k) is the estimate given by (3-60) for the jth sequence

¢ 1

of synthetic data.

The standard deviation of the estimate given by (3-61) is

142
oK) = [}— t CHOE ﬁM(k))z] (3-62)
=1

The estimate of the correlogram for the empirical data is also computed

from (3-60) and 1s denoted R(k).
Kashyap and Rao suggest that if the following relationghip is sa-

tisfied, the correlogram of empirical data can be regarded as adequately

fitting the correlogram of the synthetic data.
§M(k) - Zcm(k).g ﬁ(k)‘g ﬁm(k) + ZcM(k), k=1, «e.., N-1 (3-63)

However the variance of the estimate (3-60) becomes large as k ap-
proaches N (see Jenkins and Watts [J1, p. 181] or Oppenheim and Schafer

[01, p. 5401). Therefore, the following relation is suggested.
RM(k) - ZOM(k) < RCk) f.Rm(k) + Zoﬁ(k), k << N. (3-64)

Usually k may be chosen to be approximately 0.IN. If the relation in
(3-64) is satisfied, then the correlogram of the empirical data can be

said to adequately fit the (estimated) theoretical correlogram of the

simul ated data.
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Thus, we have a method of comparing the autocovariances of the em-—

pirical data and the synthetic data generated from the fitted model.

L e ]

Test 57= Periodogram Test’

The periodogram test is a qualitative test to compare frequency
components of empirical and synthe3ized data. The periodogra$ has been
discussed as an estimate of the power spectrum by Oppenheim and Schaffer
£01, pp. 545-55431. However, as noted by Oppenheim and Schaffer, and
Bartlett [B3, pp. 274-2881, the estimate is biased and has a standard
deviation of the same order as the mean of the estimate. Hence, without
addjtional processing, the periodogram is not a particularly good es-
timate of the power spectfum. Therefore; it is not the intention of
this test to produce an estimate of the power spectrum.

The periodogram is defined as

5 5 N 2 T, N 2 :
Sk = |& D0 s(idcosy, i + Y. S(irsing, (3-65)
N & k N £ k
3=1 3=
where vy = Zﬁk

s

S(j) 1is either the empirical spectral process or the synthetic
spectral process generated from the fitted model.
A plot of the periodogram versus oy for the empirical and the synthetic
data constitutes the test. If the periodogram of the synthetic data has
relative peaks at approximately the same frequgncies as the relative
peaks of the empirical data, then the fit 1s said to be adequate. It
must be said that this test is highly qualitative and will indicate only

gross defects 1n model ing any peribdicities in the empirical data.
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These five tests constitute ou; validation criteria for a selected
model . If a model successfdlly completes the tests, we will say that
the mode! has been validated. Once again, it must be stated that some
class of models other than those hypothesized may give a better fit to
the empirical data. Hence, the model validation cr{teria are useful

only in a relatjve sense.

6. Summary

In this chapter, we have developed some techniques for obta1ﬁ1ng
the state variabte form models for use in the Kalman filter calculations
discussed in Chapter II. These calculations are then used to determine
average information 1n spectral bands. From these computations, an op-
timum (in terms of average information) subset of spectral bands is
chosen.

The mode! construction technique developed in this chapter is

listed below in a stepwise sequence.
17 Hypothesize several classes of models.

2) Identify (or estimate) the necessary parameters for each class
of models from the empirical data using either maximum likel-

ihood or Bayesian estimation techniques.

3 Select a class of models using the likelihood selection cri-

terion.

4) Use the five validation tests to determine if the selected

model adequately fits the empirical data.
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The validation of a selected model 1s for a paticular set of empirical
data. The selected model is the best fitting model in a class of
models. The likel ihood selection criterion selects the most ikely
class of models to represent the empirical data. In terms of this
research, the above may be interpreted as meaning that we do not state
that the validated model 1s the model for, say, wheat. Instead, we have
a class of models (i.e., second order autoregressive) that represents a
wheat scene in a spectral band.

Thus, a very flexible technique for constructing models of spectral

processes has been developed.
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Chapter 1V

Application of Modeling Technigues

1. Introduction

This chapter demonstrates the application of the model ing tech-
niques developad 1n Chapter 1II to empiriczl spectral response data.
The modeling techniques are shoun for two empirical data sets for pur-
poses of comparison and demonstration that the techniques are applica-
ble to different spectral scene types.

The models develop2d are used 1n the nzxt ‘chapter to demonstrate
the use of average information to choose subsets of spectral bands.

First, however, a description of the empirical data used n this

research is given.

2. The Empirical Data

The data set for this research 1s chosen to exhibit several charac~
teristics. First, the data must be representative of the types of.
scenes observed by the multispectral scanner systems. Second, the data
set should be amenable to the techniques being pursued 1n this research.
Third, the data should be relatively free of artifacts that may be 1n-
troduced 1n the data coliection process. Such Jatz s2ts are avaitable
at the Purdue University Laboratory for Application of Remote Sensing
(LARS). All of the empirical data used 1n tﬁ1s research 1s gathered

with the Purdue/LARS Exotech 20C spactroradiometer [L1], and was col-
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lected from some test sites in Williams County, North Dakota.
Two different sets of empirical data are used to demonstrate the

techniques developed inmthls research. The first set cansists of obser-

— - n o owe -

vations of wheat scenes and wag selected primarily for two reasons.
First, it is desired to demonstrate the techniques for a scene that con-—
sists of a single type of vegetation . It 1s thought that this will
demonstrate the feasibility of using the developsd techniques to analyze
paramzters of a multispactral scanner system for observing a particular
scene type. Second, there 1s general interest 1in observing the world
‘wheat crop. Reasons for observing the world wheat crop include estimat~
ing the world food supply and detecting pathological conditions.

The second set of empirical data consists of several vegetation
scene types. Included in this second combinéd empirical data:set are
oats, barley, grass, alfa!fa and’fallow fields. Use of this second set
of data provides insight in using the techniques developed in this
research to analyze parameters of a mul taspectral scanner system for ob-
serving a more general scene. Also study of the sécond data set pro-
vides a comparison of resulis for two different data sets.

The data described above is available 1n 'the data library at the
Laboratory for Applications of -Remote Sensing at” Purdu2 Undiversity. The
specific data wsed in this study 1s stored on data tape 3990, and each
observation is identified by its run number. ' The observations (run
numbers) used for the wheat datarare i1sted 'in Table IV-1. ‘Samitarly
the-observations used for %he «combined scene 'are listed in"Table IV-2.

The empirical data is subjected to some 1nitial processing to

- render it more useful for the current study. First, the data for the



Table IV-1. Wheat Scene Data Run Numbers
Run Number Run Number Run Number Run Number Run Number
75769000 75769800 75770600 75771400 75772200
75769100 75769900 75770700 75771500 75774900
75769300 75770000 75770800 75771700 75775000
75769400 75770200 75771000 75771800 75775100
75769500 75770300 75771100 75771900 75775200
75769600 75770400 75771200 75772000 75775300
75768700 75770500 75771300 75772100 75775400
Table IV-2. Combined Scene Data Run Numbers
Run Number Run Number Run Number Run Number Run Number
75768400 75768800 75774300 75775700 75776200
75768500 75768900 75774400 75775800 75776300
75768600 75774100 75774500 75775900 75776400
75768700 75774200 75774600 75776100

_85...
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wheat is averagéd over the observations. That is, an ensemble average
for.each wavelength is taken. It is thought that the resul tant average

spectral response provides a relatively good data set to demonstrate "the

techniques of this résearch. The ;verége spectral response for the
whaat data is shown in Figure IV-1. Similarly, an average spectral
response for the combined scene is taken. This average spectral
response may be considered as an average vegetation scene for the pur-
pose of this research. The average spectral response for the combined
data 1s shown in Figure IV-2. It 1s noticed in both Figures IV-1 and
IV-2 that there are two data drop-outs at approximately 1.34 - 1.45 mi-
crometers (pm) and 1.82 - 1.96 um. These two data drop-outs are due to
atmospheric absorbtion of the incident and reflected electromagnetic
energy. Thus, these two spectral bands are not useful for the current
research.

In order that the study be carried out 1n a context that is reta-
tively realistic for mul tispectral scanners, the spectral response of
the two data sets ¥s divided into spectral bands. The division is rela-
tively arbitrary, but each spectral band must contain a sufficient num-
ber of data points to ensure fairly accurate parameter est}mation for
‘model identification as discussed in Chapter II1. The spectral bands
for the wheat data are shown in Table IV-3. It has been noted previous-
dy that the gaps betwsen bands 7 and’ 8 and between bands 8 and 9 are due
to atmospheric absorbtion of the incident and refiected spectral ener-
gy.‘ Similarly, spectral bands for the combined scene .are shown in Table
IV-4. Thus, the data sets and the spectral bands are defined for this

study. The next step is to identify models for the spectral bands de-
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Fig. lV=1. Average Spectral Response--Wheat Scene
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Fig. 1V-2, Average Spectral Response--Combined Scene
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Table IV-3. Spectral! Bands for Wheat Scene

Band Number Spectral Wavelength Interval
1 4528 - .5380 um
2 .5380 - .623% um
3 .6239 - 7097 um
4 .7097 - .8517 um
5 .8517 - .9910 um
6 L9910 - 1.130 um
7 1.130 - 1.344 um
8 1.446 - 1,821 um
9 1.959 - 2.386 um

Table IV=4. Spectral Bands for Combined Scene

Band Number Spectral Wavelength Interval
1 4565 -~ 5402 ym
2 L5402 - .6246: ym
3 6246 - 7097 um
4 L7097 - .8481°um
S .8481 - .9850 um-
6 .9850 - 1,122 um
7 1.122 - 1.307 um
8 1.451 - 1.818 um
9 1.967 - 2.386 um



fined above.

3. Identified Models for the Empirical Data

This section discusses the models identified for the specral baﬂds
of the two empirical data sets described in the preceding section . The
particutar identification technige used 1s the maximum likelihood tech-
nigue discussed n Chapter II1l. This technique obviates the need for
assumptions about the prior density functions of the parameters. In-
stead, some arbitary (but reasonable) assumptions are made on the neces-
sary parameters needed to initiate the estimation (identification) al-
gorithm. A samplte copy of a computer program that implements the ideﬁ—
tification algorithm in FORTRAN can be found in Appendix III.

The discussion of the models identified for the two empirical data
sets is ordered by bands. It 1s thought that aside from being a logical
method of proceeding, this will provide a simpie comparison of

corresponding spectral bands for the two empirical data sets.

A. Band 1

—

From Tables IV-3 and IV~4 it is seen that this spectral band is in
the wavelength region of .4528 to .5402 um for the wheat data and .4565
to .5402 ym for the combined scene data. The model types identified for
the wheat scene are the autoregressive, autoregressive plus constant
trend, and the integrated autoregressive models. Hypothesized models up
to tenth order were identified. The results are tabulated in terms of
order and selection criterion as defined by (3-46) in Table IV-5. On
the basis of the selection criterion, it is clear that the sixth order

autoregressive model is chosen. The residual variance is defined as the

L
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variance of x(k) in equation (3-47) and can ge considered as a measure
of the goodness of fit of the model. The residual variance for the
selected sixth order autoregressive model is 1.26 x 10_3. Hence, the
model is judged to be a good fit to the empirical data. The estimated
coefficients for the sixth order autoregressive model are given in Table
Iv-6.

There was some difficulty in validation of a model for band 1 of
the combined scene. Hence, the integrated autoregressivee model of the
second kind discussed in Chapter III was identified in addition to the
three model types identified for the wheat scene. Also higher order
models were identified for the combined scene. It is thought that the
more complicated models for band 1 of the combined scene are necessitat-
ed by the higher variability of the empirical data as seen in Figure
IV-2. The 1dentified hypothesized models are tabulated in terms of ord-
er and selection criterion in Table IV-7. The model with the highest
selection criterion that also passes all the validation tests is the
eleventh order integrated autoregressive model of the second kind. The
other models with higher selection criterion values could not pass the
serial independance test. Hence, we have an example of the ease with
which the systematic approach to identification of hypothesized models
developed in this research allows the examination of alternate models in
the event of the inadequacy of a candidate model. The residual variance
of the selected model 1s 1.46 x 10“3 which is evidence of a good fit to
the empirical data for this model. The estimated coefficients for the
el eventh order integrated autoregressive model of the second kind are

given in Table IV-8.
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Table IV~5. Identified Models for Band 1 of Wheat Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Model plus constant Autoregressive
trend
1 366.2 351.7 264.3
2 374.0 367.5 362.5
3 376.9 373.6 363.9
4 379.6 376.4 366.6
5 377.5 377.3 367.9
6 381.2 379.4 368.7
7 380.9 380.6 369.3
8 379.5 377.8 367.1
9 377.1 376.5 364.9
10 377.0 375.8 364.4

Table iv-6. Coefficients for Band 1 Selected Wheat Scene Model
Coefficient Estimated Value

.20828
- 16650
- 16368
« 16533
14243
16945

L oo W
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Table IV-7
Order of Autoregressive
Model
1 270.1
2 332.7
3 -350.7
oky 351.2
5 350.4
6 346.6
7 342.9
8 340.5
9 339.7
10 346.5
1 354 .4
‘12 352.5
13 3914
14 354.1
15 354 .4
16 353.8
17 352.2°
18 351.6
19 349.8
20 348.8

—92_

. Identified Models for Band 1 of Combined Scene

Selection Lriterion

Autoregressive

plus constant

srend- — - -
289.2
343.8
350.0
351.5
351.6
347.9
346.5
343.5
348.2
356.4
354.3
352.5
754.,1
352.8
353.5

Integrated
autoregressive

- first-kind-

374.1
330.5
331.9
331.1
331.9
330.6
330.7
329.0
350.2
348.5
349, 4
350.2
349.7
358.2
356.6

Integrated
autoregressive
-second kind™ ~
2046.7
315.0
325.3
326.0
328.7
330.5
328.3
334.3
352.2
352.0
353.1
356.0
357.5
358.0
355.7
352.9
350.3
349.4
349.3

Table IV~8. Coefficients for Band 1 Selected Combined Scene Model

Coeffici
:1
\az
3
34
aS
6
:7
a8
a9
a10
1

ent

Estimated Vaiue

.0315%94
037784
-13395
.089051
084141
10954
.10055
.075585
.12725
-033931
064937
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B) Band 2

This spectral band encompasses the wavelengths .5380 - .6239 um for
the wheat scene and .5402 - .6246 um for the combined scene. The iden-
tifieq models for the wheat scene are the same types identified for’band
1 of thé wheat scene. It is thought that since the empirical data is
fairly well behaved in this spectral band, the more complicatéd in-
tegrated autoregressive model of the second kind is not needed. The hy-
pothesized models are tabulated in terms of order and selection cri-
terion in Table IV-9. It 1s clear that on the basis of the selection
criterion, the second order autoregressive model 1s to be chosen to
represent band 2 of the wheat scene. The residual variance for this
model is 6.19 x 10“S indicating a good fit to the empirical data. The
estimated coefficients for this model are given in Table IV-10.

The combined scene empirical data is also fairly smooth in this
spectral band. Hence, only the three basic models are identified for
this band. The hypothesized models are listed in terms of order and
selection criterion in Table IV-11. It is clear from the table that
the model selected is the second order autoregressive model. The resi-
dual variance for this model is 1.72 x 107 thus indicating a good fit
to the empirical data. The estimated coefficients for this model are
given in Table Iv-12.

-

¢) Band 3

The spectral intervals 1n band 3 are .6239 = .7097 um for the wheat
scene and .6246 - .7097 ym for the combined scene. The three basic

models were identified for the wheat scene. The identified models are



Tebie IV-9.
Selection Criterion
Order of Autoregressive Autoregressive
Model plus constant
trend

1 541.8 L62.4

2 560.0 513.3

3 553:3 530.1

4 542.9 535.5

5 534.0 537.9

6 526.5 539.2

7 518.7 541.3

3 511.0 541.1

9 505.5 540.1

10 493.8 538.2

Table IV-10.

- g4 -

Identified HModels for Band 2 of Wheat Scene

Integratéd
autoregressive

490.7
499.4
507.9
513.6
520.0
525.9
530.1
538.0
540.6
539.4

Coefficients for Band 2 Seiected Wheat Stene Model

Coefficients

a
a

1
2

Estimated Value

.50360
.50189
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Table I1V-11. Identified Models for Band 2 of {ombined Scene

Selection Criterdion

grder of Autoregressive  Autoregressive  Integrated
hadel plus constant autoregressive
trend
1 491.6 439.8 473.9
2 492.0 469.4 CA7h .4
3 499.9 4791 < b77.4
4 484.0 47B.3 477.6
5 473.0 475.9 478.0
6 474 4 4744 478.9
7 471.2 472.3 477.6
3 468.% 472.3 479.0
9 468.1 471.6 479.3
19 463.7 470.3 473.3
11 462.8 4694 477.3
12 459.6 467.9 474,8
13 4556.6 467.72 472.1
14 453.9 466.0 469.0
15 §57.4 465.1 L8654

Table JV-12. ({oefficients for Band 2 Setected Combined Scene Modet
Coefficients Estimated Value

ay .50475
a5 49393
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listed in terms of order and selection c¢riterion in Table IV-13. It is
clear that according to the selection criterion the eleventh order in-,
tegrated autoregressive model is to be chossn. The residual variance
for this model is 6.00 x TO’S, thus indacating a good fit to the empiri-
cal data. It 1s interesting that a higher order integrated autoregres-
sive model gives a better fit than the best (and iower order) autore-
gressive models. This may be an indication of nonstationarity of the
spectral process 1n this band. The estimated coefficients for the
selected eleventh order integrated autoregressive model are given in
Table IV-14.

The combined scene hypothesized models were the same as for the
wheat scene. The identified models are listed according to order and
selection criterion in Table IV-15. As seen from the selection cri-
terion either the tenth or eleventh order integrated autoregressive
mode! 1s to be chosen. The eleventh .order model is chosen here since it
has lower residual variance and has a sightly better selection criterion
(if computed to more decimal places). The residual variance for the
selected model 1s 1.15 x 10-4'which is indicative of a good fit between
the model and the empirical data. The estimated coefficients for the
selected eleventh order integrated autoregressive praocess are listed in

Table IV-16.

D) Band 4

The spectral bands consist of the wavelength interval .7097 - .8317
um for the wheat scene and .7097 - .8481 um for the combined scene. The
same three basic model types were hypothesized for this band of the

wheat scene. The identified models are given in terms of order and
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Table EV-13. Identified Models for Band 3 of Wheat Scene

Order Selection Criterion
of Autoregressive  Autoregressive Integrated
Model plus censtant autoregressive
trend -
1 532.9 464.3 465.5
2 511.8 484.3 478.3
3 489.1 481.9 489.5
4 470.2 474.3 501.5
5 453.9 464 .9 513.0
6 440.5 456.0 523.3
7 429.7 447.9 531.8
8 420.8 440.6 S540.4
9 414 .1 434.8 549.4
10 408.8 429.3 551.5
11 552.8
12 549.9
13 546.4
14 538.7
15 532.4

Table Iv-14. Coefficients for Band 3 Selected Wheat Scene Model

Coefficient Estimated Value

.093225
.099291
.099302
. 10021
.098787
-099604
.099389
-10044
. 10047
.099348
.10040
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Taple IV-15. Identified Models for Band 3 of Combined Scene

order Selection Criterion

of Autoregressive Autoregressive Integrated

todel plus constant autoregressive

trend

1 489.3 436.8 452.7
2 462.8 447 .0 460.9
3 440.5 440,64 470.3
4 421.7 431.0 480.8
5 406.9 420.9 488.8
é 396.0 412.7 493.2
7 388.6 ' 405.9 499.8
8 384.0 401.0 505.1
9 381.4 397.5 504.6
10 380.3 394.7 505.9
11 380.2 392.7 505.9
12 380.6 391.6 504.6
13 381.5 391.0 502.6
14 383.3 391.6 500.5
158 386.3 392.5 497.3

Table IV~16. Coefficients for Band T Selected Combined Scenz Model
Coefficient Esstimated Valus

099769
-093600
-10137
-10010
. 10057
.097140
.1M23
.10080
-097301
-098323
-10038
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selection eriterion 1n Table IV-17. The model chosen on the basis of
the selection criterion is the first order autoregressive plus constant
trend term. The constant trend term here accounts for a mean valye in
the driving noise which is not adequately modeled 1n the initial condi-
tions taken from_the‘empirical data. The residual variance %or the.
first order autoregressive plus constant trend model 1s 4.43 X 10“4 thus
indicating a good fit to the empirical data. The estimated coefficients
for this model are given in Table IV-18. ‘
The three basic model types were also identified for band 4 of the
combined scene. The identified models are 1i1sted according to order and
selection criterion in Table IV-19. It is clear that on the basis of
the selection criteria, the first order autoregressive plus constant
trend model is to be chosen. The model is a good fit to the empirical

data as is exhibited by the 1.20 x 10-3 residual variance. The estimat-

ed coefficients for this model are listed n Table IVv-20.

¢

E) Band 3

The wavelength intervals for band 5 are .8517 - ~9910 um for the
wheat scene and .8481 - .9850 um for the combined scene. The three
basic modet types were identified for the wheat scene. The identified
models are listed according to order and selection criterion in Table
IV-21. 1t is clear from the vaiue of the selection criterion that the
first order autoregressive model 1s to be chosen. It 1s also noted that
the other two model types have selection criterion very close to the
one chosen. Hasnce, if there is any difficulty in validation of the
selected model , two alternative mode! types are available. It is in-

teresting to note that all three model types have a first order modet
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Table 1v-17. Identified Models for Band & .of Wheat Scene

Order Selection Criterion
of autoregressive autoregressive 1integrated
Model plus constant autoregressive
“trend
1 469 .4 493.3 281
2 439.2 471.3 450.0
E 417.2 454 .3 459.3
4 403.8 442 .1 468.0
5 396.7 433.6 473.6
6 394.7 428.7 477 .4
7 395.3 425.4 480.2
8 393.0 423 .6 481.1
9 400.2 422.9 481.8
10 £03.6 £23.4 482.0
11 406.9 423.8 480.8
12 410.2 425.6 477 .0
13 411.9 425.8 474.5
14 412.7 426.7 472 .4
15 412:5 426.1 469.1
16 411.4 426.5 465.9
17 410.2 424.9 464 1
18 408.3 423.4 661.2
19 £07.7 421.5 4581
20 £046.7 419.4 455.1

Table IV-13. Coefficrents.for Band 4 Selected Wheat Scene Model
Coefficrent Estimated value

a, .9359%
c 139569
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Table IV-19. Identified Models for Bund 4 of Combined Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
flodet plus constant autoregressive
trend
1 402.5 418.% 57.2
2 379.3 403, 6 394.8
3 364.8 390.9 400.8
4 358.8 232.9 403.7%
5 358.3 379.1 404.7
6 359.0 . 376.9 408.3
7 362.3 3746.R8 407.8
8 364.6 376.7 408.6
9 366.6 376.4 408.4
10 268.4 376.4 40A4.8
" 368.6 376.6 406.5
12 268.8 375.7 495.0
13 267.9 374.8 402.6
14 366.0 372.4 401.7
15 364.2 371.2 400.0

s

Table IV-20. Coefficients for Band 4 Selected Combined Scene Model
Coefficient Estimated Valu=

a, .93382
c .15938
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Table 1V-21. Identified Models for Band 5 of Wheat Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend

1 339.9 339.7 278.4

2 T34 .1 232.6 236.3

3 330.6 R20.0 334.3

4 328.4 227.7 272.1

5 327.4 327.7 331.7

6 326.3 325.2 329.7

7 326.5 325.7 329.2

3 326.2 325.0 328.4

9 324.8 322.9 329.3

10 322.6 i21.7 327.0

Table Iv-22. Coefficients for Band 5 Selected Wheat Scene Model
Cosfficient Estimated Value

a 1.00055

1

A
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With the best selction criterion. This indicates that the empirical
data 1n this band is fairly well behaved and that simple models of the
spectral response suffice for purposes of representetion . The residual
variance of the first order autoregressive model is 2.80 x 10-3, thus
indicating & good fi1t to the empirical data. The estimated coefficient
of the selected model 1s given in Table IV-22.

For the combined scenz, the three basic ~odels were 1dentified.
The 1dentified models are tabulated accordiny to order and sslection
criterion 1n Table 1V-23. According to the s2lection criterion, the
third order autoregressive model 1s to be chosen. The residual variance
for this model 1s 3.86 x 10*3, an indication of a good fit to the empir-
1cal data. The estimated coefficrents for the selected third order au-

toregressive model are listed in Table IV-24.

F) Band é_

The spectral intervals aincluded 1n band 6 are .99210 - 1.130 uym for
the whzat scene and .9350 - 1.122 um for the combined scene. The three
basic models were identified for the wheat scene and are listed accord-
ing to order and selction criterion 1n Yabte IV-25. It 1s seen from
the table that the second order autoregressive plus constant trend model
is to be chosen on the basis of th2 selection criterion. This model has
a residual variance of 1.44 x 10_3 which 1s an indication of a good fit
to the empirical data. The estimated coefficients for the selected
model are given 1n Table IV-26.

The mode! types identi1fied for band 6 of thz combined scene are the
same three basic types identified for band 5 of the whe2at scene. The

identified models are tabulated according to order and selection cri-
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Table Iv-23. Identified Models for Band 5 of Combined Scene

Selection Criterion

Order of Autoregressive  Autoregressive  Integrated i
lodel plus constant autoregressive
. trend

1 307.2 307.3 308.3

2 310.3 309.7 306.7

3 313.8 313.0 307.5

4 309.5 308.7 305.7

5 306.5 " 305.9 304.1

6 306.2 205.5 303.3

7 304.3 304.0 302.3

8 302.3 301.8 300.5

9 301.0 300.5 299.9

10 299.0 298.6 298.4

Table IV-24. Coefficients for Band 5 Selected Combined Scene Model

Coefficients Estimated Value
3, .38814
as . 28995
a3 .32304
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Table Iv-25. 1dentified Model's for Band é of Wheat Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend

1 374 .4 274.9 3270.0

2 375.8 376.7 368.9

3 370.5 371.9 366.2

4 369.3 371.6 369.1
© 5 364.0 366.3 367.7

6 359.0 362.5 367.1

7 355.4 359.3 365.3

8 351.4 356.2 267.4

9 348.2 352.1 265.2
10 343.5 345.2 364.2

Table 1v-26. Coefficients for Band 6 Selected Wheat Scene Model

Coefficient Estimated Valué
a, .51004
aé A7772

c 14773
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terion in Table IV-27. Based on the selection criterion, the first
order autoregressive model is chosen. It has only a ;i1ghty bgtter
selection criterion than the first order asutoregressive plus constant
trend model. Thus a competitive alternate mode! is available. The
residual variance of the selected model is 1.91 x 1(].-3 thus indicating a
good fit to the empirical data. The estimated coefficient for the

selected model is given in Table IV-28.

G) Band 7

Band 7 consists of the spectral intervals 1.130 - 1.344 ym for the
wheat scene and 1.122 - 1.307 um for the combined scene. The three
basic model types identified for the preceeding spectral bands' were also
identified for band 7 of the wheat scene. The identified models are
l 1sted according to order and selection craterion 1n Table 19-29. Ac-
cording to the selection criterion, the eighth order integrated autore-
gressive model 1s to be chosen. However, the model w1Fh the best selec-
tion criterion that also passes all of the validation tests is the fifth
order integrated autoregressive model. The residual variance of the
selected fifth order integrated autoregressive model is 2.42 x 10”3
which indicates a good fit to the empirical data for band 7 of the wheat
scene. The estimated coefficients for the selected model are given in
Table 1IV-30.

The three basic models were identified for band 7 of the combined
scene. The identified models for the combined scene are given according
to order and selection criterion in Table IV-31. According to the
selection criterion, the fifteenth order integrated autoregressive model

is to be chosen. However, the fifteenth order Integrated autoregressive
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Table‘IV—27. Identified Modeif.s for Band 6 6f Combined Scene

Selection Criterion

Order of Autoregressive Autoregressive Integrated
Modet plus constant autoregressive
trend
1 355.9 355.8 253.9
2 347.8 246.7 252.1
K 338.5 *337.5 251.8
4 332.2 332.5 351.3
5, 329.1 328.5 349.2 5,
6 326.2 327.7 348.7
7 325.7 328.2 347.8
8 352.6 326.4 347.5
9 323.7 325.4 245.4
10 322.5 32?.4 345.4

Table Iv-28. C(oefficients for Band 6 Selected Combined Scene Model
\éoefficients‘ Estimated Value

ay 1.00091
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Table IV-29. Identified Models for Band 7 of Wheat Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend
1 456.6 454 .3 457.3
2 437.3 435.6 457.4
3 429.0 427.0 450.2
& 425.0 424.8 461.6
5 425.5 4242 464 .8
6 425.9 424.2 462.5
7 425.2 423.3 464 .1
8 424.8 423.1 469.3
9 427.1 427.5 469.1
10 429.5 427.2 467.2

Table I1V-30. C(oefficients. for Band 7 Seiected Wheat Scene Model

Coefficient Estimated value
a, . 14802
a2 .061559
az . 10349
a, 11204
ag .10538.
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Table IV-31. 1Identified Modéls for Band 7 of Combined Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend
1 231.2 231.4 231.5
2 229.7 229.8 230.3
3 228.4 228.3 229.0
4 227.1 227.0 227.8
5 225.8 225.7 227.6
. 6 225.6 225.9 226.1
7 224.1 261.5 259.2
8 257.5 265.0 260.2
9 259.1 267.0 259.9
10 259.4 265.5 258.¢2
11 258.2 265.0 258.9
12 258.4 264.7 260.7
13 259.5 263.4 259.2
14 258.0 i 261.8 258.7
15 257.3 261.4 253.8

Table 1V-32. Coefficients for Band 7 Selected Combined Scene Model
Coefficients Estimated value

. 64063
L7721
11417
.088031
. 10856
-.058380
-.038789
~-.061748
-.017016
49218
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model fails the correlogram validation test. Hence, the next alternate
model is chosen according to Table IV-31. This 1s the ninth order au-
toregressive plus constant trend model. This mode! passes the valida-

tion tests and the residual variance is 3.27 x 10—2

. Hence the fit to
the empirical data is good. The estimated coefficients for this model

are given in Table IV-32.

H) Band 8

— ——

The spectral intervals included in band 8 a}e 1.446 - 1.821 ym for
the wheat scene and 1.451 - 1.818 um for the combined scene. The three
basic models 1dentified for the other spectral bands are also identified
for band 8. The 1dentified models for this spectral band of the wheat
scene are tabulated according to order and selection c¢riterijon 1n Table
IV-33. On the basis of the selection criterion, the ninth order in-
tegerated autoregressive model is to be selected. Unfortunately, this
model does not pass the cumulative periodogram val idation test. The
model selected as an alternative is the eighth order integrated autore-
gressive model. This model passes alil the validation tests. The resi~
dual variance for the selected model is 3.18 x 10“4 which indicates a
good f1t to the empirical data for this band of the wheat scene. Table
IV-34 gives the estimated coefficients for the selected eighth order in-
tegraated autoregressive model.

The three basic models were also identified for band 8 of the com-
bined scene and are listed according to order and selection criterion
in Table IV-35. The eighth order integrated autoregressive model is

chosen on the basis of the selection criterion. The residual variance
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Table 1v-33., Identified Mode!s for Band 8 of Wheat Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated
Model plus constant autoregressive
trend
1 469.9 494 .7 495.7
2 447.8 457.8 506.8
3 427.8 436.0 519.4
4 422.1 429.9 526.4
5 426.1 4342 530.2
6 433.1 441.3 540.5
7 444.9 455.2 538.5
8 448.1 463 .1 555.8
9 453.8 470.7 556.9
10 457.7 475.9 554.5
11 460.0 477.5 548.3
12 457.3 477.5 547.2
13 455.5 476.2 S44.4
14 454.8 477.3 546.2
15 457.4 480.3 547.2

Table IV-34. Coefficients for Band 8 Selected Combined Scene Model

Coefficients Estimated Value

11977
-10839
- 10895
.10525
.10025
11203
. 10458
.093896
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Table 1v-35. Identified Models for Band 8 of Combined Scene

Selection Criterion

Order of Autoregressive  Autoregressive  Integrated
todel plus constant autoregressive
trend

1 275.6 279.6 277.2

2 _271.9 274.6 276.5

3 270.7 273.9 275.8

4 270.2 273.2 274.5

5 268.9 272.2 273.0

6 267.4 271.3 272.7

7 266.6 270.4 271.4

8 265.0 308.7 319.7

9 310.2 308.3 318.8
10 210.3 308.7 717.4
11 309.7 309.5 319.4
12 310.0 209.6 318.4
13 309.7 208.3 316.7
14 308.4 306.7 315.1
15 306.9 305.3 313.4

Table IV~-346. Coefficients for Band 8 Setcted Combined Scene Model
Coefficients 'Estimated Value

074048
.054155
-10216

.058484
.080674
.090834
.083258
. 11358

5
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of the selected model is 9.58 x 10~ thus njicating a 3004 fit to the

empirical data for band 8 of the combined scene., Table IV-3%6 gives the

~

estimated coefficients for the selected model.

1) Band 9

The spectral intervals for this band are 1.959 - 2.386 ym for the
wheat scene and 1.967 — 2.28%6 um for the combined scene. The three
basic model types were ijdentified for this band of the wheat scene and
are tabulated according to order and selection criterion in Table IV-37.
According to the selection criterion, the sixth order integrated au-
toregressive model 1s selected. The residua! variance for the selected

model is 8.00 x 107%

thus indicating a good fit to the empirical data
for band 9 of the wheat scene. Table IV-38 gives the estimated coeffi-
cients for the selected model.

The three basic models were also i1dentified for band 9 of the com-
bined scene. féble Iv-39 lists the identified models according to order
and selction criterion. According to the selection criterion, the first
order integraked autoregressive model should be chosen. However, this
model 1is judged not to pass the qual itative periodogram validation
test. Therefore, the alternative selected mode! 1s the first order au-
toregressive model. This model passes the validation tests. The resi-
dual variance for the first order autoregressive model! is 1.18 x 10-‘2
thus indicating a8 good fit to the empirical data for band 9 of the com-
bined scene. Table IV-40 gives the estimated coefficient for the
selected first order autoregressive model.

We now have'selected models for all the defined bands of both the

vwheat scene and the combined scene. Next we validate the selected
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Table IV~-37. Identified Models for Band 9 of Wheat Scene

Selection Craiterion

Order of Autoregressive Autoregressive integrated
Model plus constant autoregressive
trend
1 546.3 535.9 551.2
2 516.3 518.5 559.0
3 504.4 501.5 265.3
4 495.7 494.9 569.4
5 495.9 495.3 572.6
6 501.0 499.6 575.2
7 508.5 507.4 573.9
8 514.8 514.4 572.1
9 517.8 518.3 571.6
10 519.4 520.4 570.1

Table I1V-38. Coefficients for Band 9 Selected Wheat Scene Model

-

Coefficient Estimated Value

.10952
.096485
.10262
. 110464
-11506
. 11766
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Table IV-39. 1Identified Modgls for Band 9 of Combined Scene

Selection Criterion

Order of Autoregressive  Autoregressive Integrated

Model plus constant autoregressive
' trend

1 356.1 355.3 356.5

2 348.7 348.3 355.1

3 346.5 346.5 354.0

4 345.4 345.6 353.0

5 344.0 344.0 351.5

6 342.3 242.5 349.9

7 341.1 341.2 352.5

8 342.1 341.3 351.2

9 341.4 340.5 350.1

10 340.3 339.0 248.5

Table IV-40. Coefficients for Band 9 Selected Combined Scena Modetl
Coefficient Estimated Value

a .99759

1
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models. Finally, these models are used for average information calcula-

tions in Chapter V.

4. Validation gj_ldentified Modals.

In this section validation of the i1dentified models for each band
of both scene types is carried out. The validaion techniques used here
are those developed in Chapter III. We consider the validation of the
selected models by bands as in the previous section of this chapter.
The vatidation tests are implemented wih computer programs written 1in

FORTRAN and 1nciuded in Appendix III.

A) Band 1

We first consider val idation of the sele¢ted sixth order autore-

gressive model for band 1 of the wheat scene.

1) Zero Mean Test

This test will be carried out foé all bands of both scene types at
a significance level of .01 so that there 1s a standard basis of compar-
ison for alt selected models. The value of ng at this level of signifi-
cance for thé number of samples in this research (approximately 115 to
160 samples) is ng = 2.62 [AS].

The vatue of the test statistic given by the selected model for the

wheat scene 1s
lt¢x) ] = 1.431 x-107 (4.2)

Hence, the selected sixth order autoregressive model easily passes-this

test.
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2) Serial Independence Test

This test is conducted on all bands of both scene types at a signi-
ficance tevel of .01 so that there is a standard basis of comparison
for all selected models. The critical value, ngr 18 dependent on the
value of n1 used for this test. In this study n1 = .IN (N is the number
of empirical data points) for all models tested. The critical values
are listed for several values of n1 in Table IV-41 [AS5].

The test statistic for the selected sixth order autoregressive

model for band 1 of the wheat scene is

1

n{x) = 1.515 x 10 (4-3)

for n1 = 10. It is clear from Table IV-41 that the selected model

passes the serial independence test.

Table IV-41. Critical Values for Serial Independence Test

nl Critical value, ng
9 21.6660

10 23.2093

1 24,7250

12 26.2170

13 27.6883

14 29.1413

15 30.5779
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3) Cumulative Periodogram Test

This test is carried out on at! bands of both scene types at a pro-
babil1ty level of .99, thus giving a standard basis of comparison for
all setected models. In all! cumulative periodogram plots, the boun-
daries that determine the success of the test are, of course, the two
parallel {ines.

The selected model for band 1 of the wheat scene passes this test

as 1s seen from Figure IV-3.

4) Correlogram Test

It 1s seen from Figure IV-4 that the selected sixth order autore-
gressive model passes this test.

In the correlogram plots, the test boundaries are shown as dashed

lines.

5) Periodogram Test

As seen in Figure ILV-5, the selected model for band 1 of the wheat
scene may be judged to pass this qualitative test. ‘

In the periodogram plots, the periodogram for the empirical data is
plotted as a solid line and the periodogram for the synthetic data gen-
erated from the candidate model 1s plotted as a dashed tine. For most
cases, the two plots are so nearly coincident as to be indistinguish-
able.

Next we consider the validation of the selected eleventh order in-

‘tegrated autoregressive model of the second kind for band 1 of the com-

bined scene.

6) Zero Mean Test
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] The test statistic for the selected model is

ltGo| = 2.18x 107, =Y

Hence, the'selected model easily passes this test.

~

7) *Serial Independence Test
As noted previously, several of the i1dentified models with higher
selection criterion do not pass this test. As an- example, the

fifteenth order autoregressive model gives the test statistac

1

n(x) = 72434 x 10 {4-5)

for n1 = 9., Thus the model clearly fails the test. Other .models with
higher selection criterion similarly failed this.test. The selected

model has the test statistac

1

n{x) = 2.009 x 10 (4-6)

for n1 = 10. Thus, the eleventh order integrated autoregressive model

of the second kind passes this test.

8) Other Tests

Figures IV-6, IV-7, ad 'IV-8 show that the .selected model for band 1
of the combined- scene passes the cumulative periodogram, correlogram,
and periodogram tests.

Hence, we have validated -models for band 1 of both scene:types.



8) .Band 2

——

The val idation of the selected second order autoregressive model

for this band of the wheat scene is considered first.

1) Zero Mean Test

The test statistic for the selected modet is
Jt(x)| = 1.955 (4-6)
Thus the selected model passes this test.

2) Serial Independance Test

The test statistic for the second order sutoregressive mode! is

alx) = 1.869 x 10" (4=7)

-—

for n1 = 11. Hence, the selected model passes the serial independance

test.

3) Other Tests

It is seen from Figures IV-9, IV-10, and IV-11 that the selected
model for band 2 of the wheat scene passes the cumulative periodogram,
correlogram, and per1odogrém tests.

Next, we discuss the validation of the selected second order au-

toregressive model for band 2 of the combined scene.

4) Zero Mean Test

The test statistic for the selected model is



R 2
1 AN .2 -F Y
.15 4
.8 =+
.10 -
g. T
.25 +

-. 5T a. 1 ) t
") 2 2
2 1 3
Fig. |v-7. Correlogram, Band 1, Fig. V-8, Periodogram, Band 1,
Combined Scene Combined Scene
1 S—"g 1. «--R
1 T AN
> N\
N
5 7T 2. +
N
o f t — ; I .
. -.5 1 T 1
@ . 2 = @ 40
20 247:)
Fig. 1V-9, Cumulative Periodogram, Fig. tV-10. Correlogram, Band 2,_

Band 2, Wheat Scene \Vlheat Scene



- 123 -
ft(x)| = 1.055 (4-8)
Hence, the selected model easily passes this test.

5) Serial Independance Test

The selected model gives the test 'statistic

1

néx) = 1.365 x 10" (4-9)
for n1 = 11. Hence, the selected model also passes this test.

6) Other Tests
The selected model for band 2 of the combined scene passes the cu-

mulative periodogram, correlogram, and periodogram tests as is seen from

Figures IV-12, 1v-13, and IV-14.

¢) Band 3

Val idation of the selected eleventh order integrated autoregres-

sive model for band 3 of the wheat scene is considered first.

1) Zero Mean Test

The test statistics for the zero mean test is
[t(0] = 3.616 x 1071 . (4-10)
Hence, the 'setected model easily passes this test.

2) Serial Independence Test

The selected model gives the test statistic
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n(x) = 1.153 x 100 (4-11)

for n1 = 10. Thus, the selected model easily passes this test.

3) Other Tests

Figures IV-15, IV-16, and IV-17 show that the selected model for
band 3 of the wheat scene passes the cumulative periodogram, correlo-
gram, and periodogram tests.

The selected eleventh order integrated autoregressive model for

band 3 of the combined scene is considered next.

4) Zero Mean Test

The test statistic for the selected model is
fteo] = 1.871 x 107 . 4-12)
Thus, the setected model easily passes this test.
5) Serial Independance Test

The selected model gives the test statistic

a(x) = 2.125 x 10 (4=13)

for n1 = 10. Thus, the selected model. passes this test.

6) Other Tests

It is seen from Figures Iv-18, 1IV-19, and IV-20 that the selected
model for band 3 of the combined scene piasses the cumulative periodo-
gram, correlogram, and periodogram tests. -

Hence, we have val idated models for band 3 of both scene types.
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D) Band 4

Val idation of the selected first order autoregressive plus constant

trend model for bac:d 4 oif the wheat scens 1s considered first.

1) Zero Mean Test

Tne test statistic for the selectsd modsi 13
leCx)] = 1.753 x 1070 . 4-14)

Hence, the selected model easily passes this test.

A

2) Serial Independence Test

The selected model gives the test statistic

nCx) = 2.00 x 107 (4=15)

fo n1 = 12. Therefore, the selected model also passes this test.

3) Other Tests

Figures Iv-21, 1v-22, and IV-23 show that the selected model passes
the cumulative pertodogram, correlograem, and periodogram tests.
We next consider vatidaztion of the selected first order autore-

gressive plus constant trend model for band 4 of the combined scene.:

4) Zero Mean Test

The test statistic for the selected model 1s
i [t [ =1.593 x 1070 . (4-16)
Hence, the selected model easily passes this test.

5) Serial Independence Test
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The selected model gives the test statistic

’

n(x) = 2.1250 x 107 : (4=17)
fo; n1 = 12. Hence, the s2lected model also passes this test.

6) Other Tests
It is seen from Figures IV-24, IV-25, ani Iv-26 that the selected
model passes the cumulative periodogram, correlogram, and pariodogram

tests.

Hance, we have validated models for both scen2 types of band 4.

E) Band 5

First, validation of the selected first order autoregressive model

for band 5 of the wheat scene is considered.

1) Zero Mean Test

The test statistic for the s2lected modetl 1s
[t(x)| = 2.495 x 1071 . (4-18)
Hence, the selected model easily passes this test.

2) Serial Correlation Test

The selected model yields the test statistic

n(x) = 1.787 x 107 (4~19)

for n1 = 11. Therefore, the selected model pases this test.

3) Other Tests
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Figures 1V-27, IV-28, and 1V-29 show that the selected model passes
the cumulative pariodogram, correlogram, and periodogram tests.
Next, vaidation oi the setected third order autoregressive model

for band S of the combined scene s considered.

4) Zero Mean Test

The test statistic for the selected model 1s
lt(x)| = 3.622 x 1072 . (4-20)
Thus, the selectd model easily passes this test.

5) Serial Independence Test

The selected model gives the test statistic

n(x) = 1.628 x 10 (4~21)
for n1 = 11. Hence, the selected model passes this test.

6) Other Tests
Fagures Iv-30, 1v-31, and IV-32 show that the selected model passes
the cumulative periodoqram, correloqram, and periodogram tests.

Thus we have validated models for band 5 of both scene types.

F) Band é

———,

Val idation of the selected s2cond order autoregressive plus con-

stant trend model for band 6 of the wheat scen:s 1s considered first.

1) Zero Mean Test
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The test statistic for the selected model is
[t ] = 1.299 x 1077 . (4-22)
Thus, the selected model easly passes this test.

2) Serial Independence Test

The selected model gives the test statistic

n(x) = 2.345 x 10 (4~23)

for n1 = 11. Hence, the selected model passes this test.

3) Other Tests
The selected model passes the cumulative periodogram, correlogram,
and periodogram tests as is seen from Figures IV-33, IV-34, and IV-35.
Next, validation of the selected first order autoregressive model

for band 6 of the combined scene is considered.

5) Zero Mean Test
The test statistic for the selected model is
[t(x)| = 2.861 x 1071 (4-24)

Hence, the selected modeil easly passes this test.

5) Serial Independence Test

The selected model-yields the test statistic
n(x) = 8.322 (4-25)

for n1 =.11. Hence, the selected model also easily passes this test.
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6) Other Tests

It is seen from Figures IV-36, IV-37, and IV-38 that the selected
model passes the cumulative periodogram,.correlogram, and periodogram
teStS- i

Thus, we have val idated models for band 4 of both scene types.

G) Baend 3:

Val idation of the selected fifth order integrated autoregressive

model for band 7 of the wheat scene.

1) Zero Mean Test

The selected mode! gives the test statistic
[t(x)] = 1.853 (4-26)
Hence, the selected model easily passes this test.

2) Serial Independence Test

The test statistic for the selected model is
n(x) = 1.807 x 101 (4-27)

for n1 = 14. Hence, this test is passed by the selected model.

3) -0Other Tests
Figures IV-39, IV-40, and IV-41 show that the selected mode! passes
the cumulative periodogram, correlogram, and periocdogram tests.

We next consider validation of the selected ninth order autoregres-

sive plus constant trend model.
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4) Zero Mean Test

The selected model gives the test statistic

[t | = 1.208 x 107" (4-28)
Thus, the selected model easily passes this test.
5) Serial Independence Test
The test statistic for the selected model is
n{x) = 5.568 (4-29)

for n1 = 15. Therefore, the selected nodel easily passes this test.

6) Other Tests

Figures IV=42, IV-43, and IV-44 show that the selected model passes
the cumulative periodogram, correlogram, and periodogram tests.

Hence, the selected models are validated for band 7 of both scene

types.

H) Band 8

—— —

Val idation of the selected eighth order integrated autoregressive

model for band 8 of the wheat scene is considered first.

1) Zero Mean Test

The test statistic for the selected model is
lt¢xd| = 7.217 x 107 (4-30)

Thus, the selected model passes this test.
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2) Serial Independence Test

The selected model gives the test statistics
n(x) = 2.516 x 10 4-31)
for n1 = 13. Hence, the selected model passes the test.

3) Other Tests
The selected model passes the cumulative periodogram, correlogram,
and periodogram tests as is seen from Figures IV-45, IV-~46, and IV-47.
Next, validation of the selected eighth order integrated autore-

gressive model or band 8 of the combined scene is considered.

4) Zero Mean Test

The selected mode! gives the test statistic
Jt(x)| = 1.083 (4-32)
Thus, the seiected model easily passes this test.

5) Serial Independence Test

The test statistic for the selected model 1s
n{x) = 3.141 (4-33)

for n1 = 13. Therefore, the selected mode! passes this test.

6) Other Tests
Figures 1v-48, IV-49, and IV-50 show that the selected model passes

the cumul ative periodogram, correlogram, and periodogram tests.
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Hence, we have validated models for band 8 of both scene types.

Nt

Band 2:,.

val idation of the selected sixth order'integrated autoregressive

model for band 9 of the wheat scens is considered first.

1) Zero Mean Test

The selected model gives the test statistic
[t | = 8,142 x 107 (4=34)
Thus, the selected model easily passes this test.

2) Serial Independence Test

The test statistic for the selected model 1is
al{x) = 9,915 (4-35)
for n1 = 15. Therefore, this test is .passed by the selected modet.

3) Other Tests
The selected model passes the cumulative periodogram, correlogram,
and periodogram tests as isggeen in Figures IV-51, IV-52, and IV-53.
Next, validation of the selected first order autoregressive model

for band 9 of the combined scene is considefed.

4) Zero Mean Test

The test statistic for the selected mode! is
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l[t(x) ] = 9.326 x 107" (4-36)
Thus, the selected model easily passes this test.

5) Serial Independence Test

The setected model gives the test statistic
n(x) = 1.362 x 107 =37
for n1 = 15. Therefore, the selected model passes this test.

6) Other Tests

Figures IV-54, IV-55, and IV-56 show that the selected model passes
the cumulative periodogram, correlogram, and periodogram validation
tests.

Hence, we have validated models for band 9 of both scene types.

5. Conclusion
Models of nine spectral bands for two empirical data sets have been
1dentified, selected and val idated. The validated models of the two

scene types are given in Table IV-42 for easy reference.
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Table IV~42. Validated Models

Band Wheat Scene Combined Scene-
{ AR(6) LAR,(11)

2 AR(2) AR(2)

3 IAR(11) IAR(TY)

4 ARC(1) ARC(1)

5 AR(1) AR(3)

6 ARC(2) AR(1)

7 IAR(5) ARC(D)

8 IAR(B) IAR(E)

9 IAR(6) AR(T)
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Chapter Vv

An Application of Information Theoretic Techniques

1. Introduction

This chapter demonstrates an application of the information
theoretic techniques developad in Chapte; II to studying some parameters
of mul tispectral scanner systems. In particular, the techniques are ap-
plied to the models constructed in Chapter IV for the two spzctral scene
types under consideration in this research. The average information
criterion is used to select a subset of spactral bands. An zttempt at
estimation of classification accuracy for the hypothetical multispectral

scanner is discussed.

2. Average Information Studies

The average 1nformation computation techniques developed in Chapter
I1 are used to study average information n the received spectral pro-
cess about the spectral response process of the scene under observation.
Recall that we are representing the spectral process received by the

mul tispectral scanner by
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y(k) = sC{k)Y + ntk) , ke[11,x23 (5-1)
where

SGk) 1is the spectral response process of the scene

and

n{k) 1is the disturbance or noise process.
The models constructed in Chapter IV are used for representing the spec-
tral response process S(k) 1in each spectral band. As discussed in
Chapter II, n(k) is assumed to be white noise with possibly different
power spectral density levels in different spectral bands.
: The first computation is average mnformation in y(k) about S(k) as
a functaon of spectral bandwidth for each spectral band of both scene
types. The average information is computed for several values of the
variance of the noise disturbanmce, og. Since the noise d1stu;banoe is
assumed- to be of constant power spectral density level for each spectrat
band, considering sevenal'vahues of og'has the effect of al.lowing the
study of average information for several signal—-to-noise ratio (SNR)
conditions. {Thus, the objective of studying the effects of spectral
bandwidth and signal-to-noise ratios as parameters of multispectral
scanners is achieved 1n these computations. The average information
computations are made with the use of a computer program written i1n FOR-
TRAN. A copy of the computer program is included in Appendrx III for
reference. The results of these computations are d1sﬁlayed graphical ly
in Figures V-1 to V-18. It 1s noted that these figures have curves

2

plotted wWith on as a running parameter. Also, the curves are plotted as

a function of the number of points in the spectral nterval. .Thas has
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the advantage of making the curves applicable to the same modeils for
diffe;ent spactral idintervals.

Table V-1 gives the total average information for the defined spec-
tral bands.of the wheat scene foi several values of the noise variance
Gi’ Table V~2 gives similtar data for the combined scene. When consid-
ering the results 1n Tabltes V-1 and V~2, 1t must be remembered that the
spectral bands are of different spectral bandwidths. Hence, the average
information in spectral bands of approximately the same spectral
bandwidth may be more useful in selecting subsets of bands.

Thus the technique considered in this research is used to compute
average mnformation using the spectral models constructed for the de-

fined spectral bands.

3. Selection of a Subset of Spectral Bands

We now demonstrate a simpte application of using average informa-—
tion to select a subset of spazctral bands for inclusion on a mul tispec~
tral scanner. For the purpose of this demonstration we make the follow=-
ing assumptions.. First assume that a subset of six of the defined spec~
trat bands is derived. This 1s not an unusual number of spectral bands
to be used in an application (i.e. scene classification). The second
assumption concerns the amount of observation noise to inciude in each
spectral band. For the purposes of this simple example, we assume that

the variance of the observation noise is os =3

n

10 ~ for alt the defined
spectral bands. This is clearly not a realistic assumption, but is suf-
ficient for our simple demonstration. Third, 1t 1s assumed we are in-

terested in ordering the preference of spectral bands on the basis of
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the sverage information each band would have in an equal spectral

bandwidth. This tends to amel jorate the effect of wider spectral bands

having more average information due only to their larger spectral
bandwidth. It is thought that this method of comparison will tend to '
select the subset of spectral bands with the highest amount of average
information with each band competing on a more equal basis. Based on

these assumptions, the spectral bands are ranked in order of preference

in Table V-3,

URIGINAL PAGE IS
OF POOR QUALITYi
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Table Vv-1. Average Information for Wheat Scene Bands

Band Noise Variance, og

10> 1™ 107 107 107"
1 57.07 53.49 34,50 11.43 3.95
2 50.05 28.09 10.52 4,45 2.75
3 51.02 34..59 20.35 12.65 8.28
4 61.64 52.92 320.00 11.69 4.15
5 57.30 55.58 44,96 23.55 9.31
6 57.11 53.90 37.20 14.81 5.12
7 77.19 74.63 60.31 34.59 16.6
8 67.56 56.77 34.80 18.96 10.48
9 80.04 73.23 50.10 26.53 13.10

Note: The information values are given in nats here.

Table V-2. Average Information for Combined Scene Bands

Band No1ise Variance, oi

107 107 107> 1072 107"
1 56.19 53.70 41.37 23.09 12.23
2 53.51 38.54 16.17 6.10 3.05
3 52.73 39.10 22.98 13.73 8.72
4 61.49 57.54 40.08 17.71 6.24
5 56.36 55.11 45.73 21.44 7.09
& 56.21 53.81 40,96 20.05 7.83
7 80.48 8N.2% 78.25 6%.9% 30.54
8 69.93 69.31 64.15 44 .38 22.46
9 79.93 79.33 74.19 51.72 23.28
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Table V-3. Order J? Preference of Spectral Bands for the Wheat
and Combined Scenes

Rank Wheat Scene Band Combined Scene Band
1 5 7
2 7 9
3 6 8
4 9 5
5 1 1
6 8 6
7 4 4
8 3 3
9 2 2

It is noted in Table V-3 that although the ordering is different,
the six highest ranking bands are the same for both the wheat scene and
the combined scene. Band-1 is in the visible region of the spectrum tor
both scene types (see Tables IV-3 and IV-~4). The other five preferred
bands are all in the infrared portion of the spectrum. Thus relative to
our averge information criterdion, the {nfrared portion of the spectrum
is generally preferred to the visible portion of the spectrum since

bands 2 and 3 are ranked lowest for both the wheat scene and the com~-
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bined scene. This tends to indicate that fyuture mul tispectral scanners
systems should have moré spectral bands wn the infrared portion of the
spectrum, Indeed this is the case with the'thematic mapper to be placed
on LANDSAT-D (see, for example, reference CL21).

0f course, 1f there were different levels of noise disturbance in
different spectral bands, the order of preference could be entirely dif-
ferent. This research‘does, however, provide a systematic method for
deat 1ng with such circumstances. A more realistic application of t;is
technique would require such an approach.

One of the major uses of data obtained with mul tispectral” scanner
systems is classification of the observed scenes. Thus it is felt that
estimation of classification performance gives an important measure of
the usefulness of a proposed subset of spectral bands. The estimation
of classification errdér is an mportant and complicated topic 1n itself.
Whitsitt and Landgrebe [W1] have recently spent considerable effort on
this topic. A technique, used in this research, to estimate classifica-
tion performance was developad by Lissack and Fu (L3]. This technique
assumes a Bayesian classification technique and provides a computational
technique for estimating classification performance. An attempt was
made to u%e,the Lissack-Fu technique to estimate the cl;ssif1cation per-
formance of the six selecéed spectral bands for the two scene types stu-
died in this research. The empirical data, ﬁowevér, had the unfor-
tunate property of producing covariance matrices that were singutar to
the numerical accuraty of the (IBM 370) computer system used in the
researchys Hence, a meaningful estimate of the classification perfor=~

mance was not possible with the present data set. Therefore, the clas-
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sification performance characteristics of the selected spectral bands

are left for future investigation.

4. Conclusions
This chapter has demonstrated the application of information
theoretic technigques for the study of some parameters of mqltispectral
scanner systems. First, average information in a received spectral band
was calculated for several power spectral density ievels‘of observation
noise. This coﬁputation allowad the study of such parameters as spec-~
tral bandwidth and signal-to-noise effects on average information.
Secondly, a simple demoﬁstration of the use of average information as a
techniﬁue for selection of a subset of spectral bands was given. Final-
ly, an attempt~at studying the classification performance of the sclect-

ed subset of spectrat bands indicated that a more detairled investigation

of the problem was necessary. This was left for future investigation.
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Chapter 6

Conclusions

1. Discussion

This thesis is devoted to development of techniques for analysis of
some paramete}s of multispectral scanner systems. These techniques
represent an 1nitial effort to provide an analytical framework for what
heretofore has been approached mainly in an empirical and ad hoc manner.
The information theoretic techniques developed in Chapter II are suffi-
ciently general that they can be used to explore many different practi-
cal questions in the study of parameters of multispectral scanner sys-
tems for remote sensing. The modeling techniques developed in Chapter
111 are applicable to almost any scene type of interest in remote sens-
ing. Furthermore, models developed in such a manner could, of course,
be used for other research on spectral scenes. Chapters IV and V are an
extendéd study on empirical data using the techniques develop2d in
Chapters II and III. Chapter IV demonstrates the advantages of a sys-
tematic approach to model construction by examination of severa! hy-
pothesized models. Thus several alternative models are constructed for
each spectral scene. Chapter V demonstrates that, for the empirical
data studied, the infrared portion of the spectrum deserves increased

attention in mul tispectral scanner system design.
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2. Further Research

There are several aspects of this research that merit further ex-—
ploration. Some of the more obvious topics are mentioned.

(1) 1t may be of considerable practical interest to extend the in-
formation theoretic results in Chapter II to the case of nonwhite obser-
vation noise. Though more complicated, an expression for average infor-
mation can again be related to the optimum Wiener-Hopf filter mpulse
response [H1J. The-state varisble formulation of this problem would
prove to be very useful for handling observation noise that could be
described by a dynamic model. An application of this extension might be
to study the effects of an extraneous spectral signal such as produced
by bare soi1l surrounding a vegetation scene of actual jinterest.

(2) Another extension of this rescach might be to consider other
models for spectral scenes. 1In particular, 1t may be fruitful to con—-
sider moving average models or combined autoregressive-moving average
models [B1J. Such an extension may result in lower order models for
spectral scenes. Howaver, 1deqtification of such models is more comp!i~-
cated than the cases considered 1n this thesis [K3].

(3) Extension of the scalar models to the vector model case might
be interesting. This could have an application in temporal studies of
spectral scenes. That 1s, models of the spectral response of vegetation
scenes and their change over the growing season would be very useful
when considering mul tispectral scanner system design.

(4) An important extension of this research 1s the comsideration
of the relationship between the information theoretic methods for

selecting a subset of spectral bands and the accuracy of scene classifi-
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cation using these bands. A simple expariment of this nature was at-
tempted 1n Chapter V and met with difficulties in estimation of some re-
quired covariance matrices. Nevertheless, 1t would be extremely useful
to study the efficacy of the infcimation theoretic band selction appli-
cation in relation to the classification problem. It 1s expected that
such things a; types of models used for the spectral scenes and, indeed,
the particular spectral scenes considered, would cause this to be a wide
ranging and complicated study. Different classification tecniques might
be expected to produce widely differing results when using a set of
bands selected by the information theoretic criterion. Indeed, proper
consideration of the many .variables in such a study has been [W11 and

should continuz to be an area of fruitful research.
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Appendix I
Kalman Filter Algoritha
The Kalman filter algorithm 1s inctuded as a reference for Chapter
II. Deravation of the algorithm 1s fully exploained by Sage and Melsa
£53] and Meditch [M1J. The algorithm is stated here in the manner of
Sage and M2lsa ESB,-Chapter 77.

The system model 1is given as
x(k+1) = o(k+1, KIx(k) + T(kIwlk) )
and
2(k) = HUOx(k) + v(k) (2)

where
x(k) 1s the state vector
2(k+1,k) is the state transition matrix
I(k) is a matrix
w(k) is the driving noise vector
2(k) 1s the observation vector
H(k) 1s 2 matrix
v(k) is thes observation noise vector .

The assumad prior statistics z2re given &s
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EL:()] =0 = e[ SN ")
Efx60)] = 5 (O %)
cov [u(k), w(1] =y (Os¢-k) (5)
cov [v(ky, v(i)] = IRGIISES 6)
covfuk). v(jiy] = cov [x(0), u(k)]

= cov[x(D), v(k)] = 9 (7)

where
§(3-k) = 1. 1 =k ] (3)
9, 3 #k

These assumptions give the Kalman filter ~lgorithm for ths estimate,

x(k), of x(k). The estimate 1§

200 = 80 k-DxR(K=1) + r\_(k)[i(k) - g(k)g(k:k—ngck—n‘ o)
wher ¢
Ko = v G- Go oy Gk o sy |
X - X
_ Ty
= v don' v i (10)
- - —v

X
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*

Voky = [1 - KGOHGIIV (4 /k=1) (1)
X ¥
x L ORIGny
OF Pogp graSE IS
J
Y (RHT7K) = 0 (R 1.0V (04 (k1,10
X X
+ TOOY, ol @) 12
%) = xCk) - %K) )

Tne eas2 with which this algorithm can be wmplenented on 2 digital com-
puter is evident from the above equations. S2ge and Melsa [SI, Chapter

71 give a good discussion of all the terms used above.
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Apoondax 11
Matrax Inversion Lemms
The matrax nversion temmi 1s ncluded here for reference since 1t
1s used n some of th2 derivations 1in Chapter 1II. The formulation and
jemonstration given hare 1s the sam= 3s th.t g9iv-n by Sige and Melss

233, p. 499-5291.

Matrix Inversion Lemma

If for any N x N nonsingular matrix A and any two N x M matraices

B and C, the two matrices (A + QET) ond (I + E'ﬂflg) are nonsingular,

— —

then the-matrix identity
SAB@E AT CA )
1s valid.

Proof

Dafine

D=a+3BC . )

O 'p=1I=p A+ D 'BC . (3)

1

Now postmul taply (3) by A" ' to obtzin



_]75..

T Y (&)

Next pcstmultnply each side of €4) by B to obtain

a3 =078+ p7lacTaTe
=08+ AT . s

oW by essumption (I + ET&?IE} 13 nonsanguler. Hancz, w2 can write from
(5)

o'g = Ao+ AT 6)

T,-1 :

Postmul tiply by C'A ~ to obtain

pse’a = a7 ¢ AT T 1)

But 1t 1s seen from (4) that we can write
TTacat . (8)

Hence using (%) in (7) w2 can write

At - =T s Tt )
and using (2) we can finally write
O A LN WL 1o T P aom

Thas 1s the desired result.
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