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Abstract-In this paper, a new nonparametric feature
extraction method is proposed for high dimensional multiclass
pattern recognition problems. It is based on a nonparametric
extension of scatter matrices. There are at least two advantages
to using the proposed nonparametric scatter matrices. First,
they are generally of full rank. This provides the ability to
specify the number of extracted features desired and to reduce
the effect of the singularity problem. This is in contrast to
parametric discriminant analysis, which usually only can extract
L–1 (number of classes minus one) features. In a real situation,
this may not be enough. Second, the nonparametric nature of
scatter matrices reduces the effects of outliers and works well
even for non-normal data sets. The new method provides greater
weight to samples near the expected decision boundary. This
tends to provide for increased classification accuracy.

I. INTRODUCTION

Discriminant Analysis Feature Extraction (DAFE) is often
used for dimension reduction in classification problems. It is
also called the parametric feature extraction method in [1],
since DAFE uses the mean vector and covariance matrix of
each class. The purpose of DAFE is to find a transformation
matrix A such that the class separability of transformed data
(Y) is maximized. Usually within-class, between-class, and
mixture scatter matrices are used to formulate the criteria of
class separability. A within-class scatter matrix for L classes
is expressed by [1]:
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where Pi means the prior probability of class i, mi is the class
mean and Si is the class covariance matrix. A between-class
scatter matrix is expressed as
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The optimal features are determined by optimizing the Fisher
criteria given by
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Approximated pairwise accuracy criterion Linear
Dimension Reduction (aPAC-LDR) [2] can be seen as DAFE
weighted contributions of individual class pairs according to
the Euclidian distance of respective class means. The major
difference between DAFE and aPAC-LDR is that the Fisher

criteria is redefined as
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 The above weighted Fisher criteria is the same as (1) by
redefining the between-class scatter matrix as
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Hence the optimization problem is the same as DAFE.

The advantage of DAFE (or aPAC-LDR) is that it is
distribution-free but there are three major disadvantages in
DAFE (or aPAC-LDR). One is that it works well only if the
distributions of classes are normal-like distributions [1].
When the distributions of classes are nonnormal-like or
multi-modal mixture distributions, the performance of DAFE
is not satisfactory. The second disadvantage of DAFE is the
rank of the within-scatter matrix Sw is number of classes (L)
–1, so generally only L-1 features can be extracted. In real
situations, the data distributions are often complicated and
not normal-like, therefore only using L-1 features is not
sufficient for much real data. The third limitation is that if the
within-class covariance is singular, which often occurs in
high dimensional problems, DAFE will have a poor
performance on classification.

Nonparametric Discriminant Analysis (NDA) [1][3] was
proposed to solve the problems of DAFE. In NDA, the
between-class scatter matrix is redefined as a new
nonparametric between-class scatter matrix (for the 2 classes
problem), 

bS denoted, as
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jNNx  is the jth nearest neighborhood (NN) from class i (wi) to

the sample xl, and x(i) refers to samples from class i . The



parametric Sw was still suggested to be used in NDA by the
authors.

The disadvantages of NDA are: 1.Parameters k and a are
usually decided by rules of thumb. So the better result usually
comes after several trails. 2. Sw is still with a parametric form.
When the training set size is small, NDA will have the
singularity problem.

II. NONPARAMETRIC WEIGHTED FEATURE EXTRACTION

Nonparametric weighted feature extraction (NWFE) [4]
is proposed for improving DAFE and NDA In NWFE, the
nonparametric between-class scatter matrix for L classes is
defined as
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where xk
(i) refers to the k-th sample from class i. Basically, (3)

is similar to (2). The differences are in the definitions of
weights and local means. The scatter matrix weight lk

(i,j) is a
function of xk

(i) and Mj(xk
(i)), and defined as:
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where dist(a,b) means the distance from a to b. If the distance
between xk

(i) and Mj(xk
(i)) is small then its weight lk

(i,j) will be
close to 1; otherwise, lk

(i,j) will be close to 0 and sum of total
lk

(i,j) for class i is 1. Mj(xk
(i)) is the local mean of xk

(i) in the
class j and defined as:
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The weight ),( ji
klw  for computing local means is a function of

xk
(i) and xk

(j). If the distance between xk
(i) and Mj(xk

(i)) is small
then its weight lk

(i,j) will be close to 1; otherwise, lk
(i,j) will be

close to 0 and sum of total l k
(i,j) for class i  is 1. The

nonparametric within-class scatter matrix is defined as
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III. EXPERIMENT DESIGN AND RESULTS

The simulated and real data set performances of five
methods, DAFE, aPAC-LDR, NWFE, and NDA using 1NN
and 5NN based on the a=2 , were compared under
experiment 1, 2, 3 and 4. Table 1 and 2 are the designs of
simulated data experiment 1, 2, and 3 including training,

testing samples and the dimensionality of data sets. The
Washington, DC Mall image data was used for real data
experiment. There are 7 classes in it and 40 training samples
in each class.

Table 1 Experiment Design of Experiment 1 and 2
Dim=60 class 1 class 2 class 3 class 4 class 5 class 6

Mean [0,…,0][1,0,…,0][0,1,0,…,0] [0,0,1,0,…,0] [1,1,0,…,0] [1,0,1,0,…,0]
Exp1 0.1I

Cov
Exp2 0.1I 0.2I 0.3I

Training 40 40 40 40 40 40
Testing 400 400 400 400 400 400

Table 2 Experiment Design of Experiment 3
Dim=60 class 1 class 2 class 3

comp 1 comp 2 comp 1 comp 2 comp 1 comp 2
Mean [2,2,0,…,0] [0,0,…,0] [2,4,…,0] [4,-2,0,…,0] [-2,0,…,0] [6,0,…,0]
Cov 0.1I

Training 20 20 20 20 20 20
Testing 200 200 200 200 200 200

class 4 class 5 class 6
comp 1 comp 2 comp 1 comp 2 comp 1 comp 2

Mean [-2, 2,0,…,0] [0,6,…,0] [2,-4,…,0][-4,2,0,…,0] [2,0,…,0] [-6,0,…,0]
Cov 0.1I

Traininge 20 20 20 20 20 20
Testing 200 200 200 200 200 200

Fig. 1, and 2 show the mean of accuracies of 10
simulated data sets for experiment 1, and 3. Fig. 3 show the
mean of accuracies of 10 real data sets selected from the DC
Mall image data with 191 bands. All figures show that
NWFE performs better than the other methods in all
experiments. For mixture distribution data, NWFE performs
significantly better than the DAFE, aPAC-LDR, and NDA
whether the dimensionality is large or not. Fig. 4 shows a
color IR image of a portion of the DC Mall area for reference.
Fig. 5, and 6 are the classified DC Mall maps for DAFE and
NWFE respectively. Obviously, the result of NWFE is better
than that of DAFE.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Features

A
cc

u
ra

cy

NWFE

DAFE

aPAC

NDA_1NN

NDA_5NN

Fig. 1. Mean of accuracies of Experiment 1
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Fig. 2. Mean of accuracies of Experiment 3
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Fig. 3. Mean of accuracies of Experiment 4

Fig. 4. A color IR image of a portion of the DC data set.

Fig. 5. The thematic map resulting from the classification of the area of
Fig. 4 using DAFE features.

Fig. 6. The thematic map resulting from the classification of the area of
Fig. 4 using NWFE features

IV. CONCLUDING COMMENTS

The NWFE algorithm presented here is intended to take
advantage of the desirable characteristics of DAFE, aPAC-
LDR, and NDA, while avoiding their shortcomings. DAFE is
fast and easy to apply, but its limitation of L-1 features, its
reduced performance particularly when the difference in
mean values of classes is small, and the fact that it is based
on the statistical description of the entire training set, making
it sensitive to outliers, limit its performance in many cases.
NDA does not have these limitations and focuses the
attention on training samples near the needed decision
boundary. NDA does not perform well on unequal covariance
or complexly distributed data.

NWFE does not have any of these limitations. It
appears to have improved performance in a broad set of
circumstances, making possible substantially better
classification accuracy in the data sets tested, which included
sets of agricultural, geological, ecological and urban
significance. This improved performance is perhaps due to
the fact that, like NDA, attention is focused upon training
samples that are near to the eventual decision boundary,
rather than equally weighted on all training pixels as with
DAFE. It also appears to provide feature sets which are
relatively insensitive to the precise choice of feature set size,
since the accuracy versus dimensionality curves are relatively
flat beyond the initial knee of the curve. This characteristic
would appear to be significant for the circumstance when this
technology begins to be used by general remote sensing
practitioners who are not otherwise highly versed in signal
processing principles and thus might not realize how to
choose the right dimensionality to use.
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