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Abstract-The main purpose of this work is to find an
improved regularized covariance estimator of each class with
the advantages of LOOC, and BLOOC, which are useful for
high dimensional pattern recognition problems. The searching
ranges of LOOC and BLOOC are between the linear
combinations of three pair covariance estimators. The first
proposed covariance estimator (Mixed-LOOC1) extended the
searching range and is a general case of LOOC and BLOOC. By
observing that the optimal value of leave-one-out likelihood
function of LOOC usually occurs at near the end point of the
parameter domain, the second covariance estimator (Mixed-
LOOC2), which needs less computation, was proposed. Using
the proposed covariance estimator to improve the linear feature
extraction methods when the multivariate data is singular or
nearly so is demonstrated.

I. INTRODUCTION

Regularized Discriminant Analysis (RDA; [1]), Leave-One
-Out Covariance Estimator (LOOC; [2]) and Bayesian Leave-
One-Out Covariance Estimator (BLOOC; [3]) are proposed
for solving the singular or nearly singular condition in high
dimensional classification problem. From [4], the
performance of LOOC is better than that of RDA, and
BLOOC is only better than LOOC in a few cases. Based on
this observation, a new regularized covariance estimator with
the advantages of both LOOC and BLOOC is needed. In the
first section, the models of LOOC and BLOOC will be
discussed then in section 2 the hybrid models of LOOC and
BLOOC are proposed.

The model of LOOC is
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where Si is the ML covariance estimator of class i, and S is
the common (pooled) covariance.

The mixing parameter ai is determined by maximizing the
average leave-one-out log likelihood of each class:
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The mean of class i, without sample k, is
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where the notation /k indicates the quantity is computed
without sample k. The sample covariance of class i, without
sample k, is
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and the common covariance, without sample k from class i, is
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The model of BLOOC is
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The pooled covariance matrices are determined under a
Bayesian context and can be represented as:
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and fi=Ni-1, which represents the degree of freedom in
Wishart distributions.

The first difference between LOOC and BLOOC is that
LOOC uses the diagonal entries of covariance matrices but
BLOOC, like RDA, uses the trace of covariance matrices.
Second, in LOOC, the maximum likelihood common



covariance estimator is used, but, in BLOOC, the maximum a
posterior common covariance estimator (S p

 * ) is added. From
[5], S p

 * tends to mitigate the outlier problem, and so does
BLOOC. The choosing mixing parameter method of BLOOC
is the same as that of LOOC.

II. MIXED-LOOCS

LOOC and BLOOC are the linear combination of two of
the three matrices, and in some situations, BLOOC is better
than LOOC, elsewhere LOOC is better. The difference
between LOOC and BLOOC is in those matrices that are
used to formulate the regularized covariance estimator. So we
know that only using some of the six matrices will not get
good results in all situations. The basic idea of Mixed-LOOC
is to use all six matrices to gain the advantages of both
LOOC and BLOOC. Hence the first proposed regularized
covariance estimator, Mixed-LOOC1, is

dimensions ofnumber :            

classes ofnumber :            
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The mixing parameters are determined by maximizing the
average leave-one-out log likelihood of each class:
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 Since using Mixed-LOOC1 is computationally intensive,
finding a more simplified estimator will be more practical.
Reference [4] shows that given two known matrices, the ML
(not Leave-One-Out) estimate of mixture parameters in
LOOC and BLOOC are at the end points (ai =0, 1, 2, or 3),
and when the ML covariance estimator is singular, the
optimal choice of LOOC parameter under LOOL criteria is
around the boundary points.

The Mixed-LOOC2 is proposed as the following form:
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and B= Si or diag(S)  and a i is close to 1. B= Si or diag(S)
was chosen because if a class sample size is large, Si will be a
better choice. If total training sample size is less than the
dimensionality then the common (pooled) covariance S is
singular but has much less estimation error than Si. For
reducing estimation error and avoiding singularity, diag(S)
will be a good choice. The selection criteria is the log leave-
one-out likelihood function:
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III. EXPERIMENT DESIGN AND RESULTS

In the all experiments, the grid method is used to estimate
the mixture parameters of LOOC and Mixed-LOOC1. The
range of the parameter a  in LOOC is from 0 to 3 and the
grids are a  = [0, 0.25, 0.5,…, 2.75, 3]. There are six
parameters in Mixed-LOOC1 and the ranges of them are
from 0 to 1. The grids of Mixed-LOOC1 are [0, 0.25, 0.5,
0.75, 1]. For Mixed-LOOC2, the parameter a is set to 0.05.
In the simulation experiments, performances of all three
covariance estimators are compared. Based on computational
consideration, only the performances of LOOC and Mixed-
LOOC2 are compared for the real data experiments.

Experiments 1 to 12 are based on simulated data sets.
Experiments 1 to 6 and experiments 7 to 12 are generated
from the same normal distributions respectively. The mean
vectors and covariance matrices of experiments 1 to 6 (and 7
to 12) are the same as those six experiments in [1]. The only
difference between these two set experiments is that
experiment 1 to 6 are with equal training sample sizes in each
class but experiments 7 to 12 are with different sample sizes
in each class. Training and testing sample sizes of these
experiments are in Table 2. There are three different
dimensionalities, p=10, 30, 60, in every experiment. At each
situation, 10 random training and testing data sets are
generated for computing the accuracies of algorithms, and the
standard deviations of the accuracies.

Table 1 The Design of Sample Size
Experiments 1 ~ 6 Experiments 7 ~ 12

Sample Size Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Training 10 10 10 30 10 5
Testing 200 200 200 600 200 100

There are four different real data sets, the Cuprite site,
which is an area of geologic interest, Jasper Ridge, an
ecological site, Indian Pine, an agricultural/forestry site, and
DC Mall, an urban site, in experiment 13 to 16 respectively.
All real data sets have 191 bands. There are 8, 6, 6, and 7
classes used in the Cuprite Site, Jasper Ridge Site, Indian
Pine Site, and DC Mall, respectively. There are 20 training
samples in each class. At each experiment, 10 training and
testing data sets are selected for computing the accuracies of
algorithms, and the standard deviations of the accuracies.

The simulated data results are displayed in Table 2(a), 2(b),
and 2(c). The real data results are displayed in Table 2(d).
The shadowed parts indicate that the differences of
performances of LOOC and Mixed-LOOC2 are larger than
the standard deviation of Mixed-LOOC2. If the difference is
smaller than the standard deviation, we assume that the



performances of these methods have no significant
difference. All the experiments with significant differences
indicate that Mixed-LOOC outperformed LOOC. Significant
differences most often occurred in experiments 2, 7, and 8.
Those are the situations in which BLOOC has better
performances than LOOC. Since the Mixed-LOOCs are the
union version of LOOC and BLOOC, based on these
findings, we conclude that the Mixed-LOOCs have
advantages over LOOC and BLOOC.

Table 2(a) The Accuracy of Simulated Data Sets (p=10)
Experiment LOOC Mixed-LOOC1 Mixed-LOOC2

1 0.8630 (0.0425) 0.8632 (0.0243) 0.8602 (0.0466)
2 0.7753 (0.0481) 0.8373 (0.0180) 0.8450 (0.0224)
3 0.8948 (0.0241) 0.8915 (0.0251) 0.8992 (0.0265)
4 0.8875 (0.0309) 0.8893 (0.0263) 0.8837 (0.0386)
5 0.9860 (0.0283) 0.9822 (0.0361) 0.9858 (0.0282)
6 0.9885 (0.0033) 0.9833 (0.0085) 0.9885 (0.0036)
7 0.8500 (0.0286) 0.8622 (0.0252) 0.8641 (0.0249)
8 0.8433 (0.0410) 0.8750 (0.0289) 0.8792 (0.0250)
9 0.9021 (0.0230) 0.9041 (0.0183) 0.9041 (0.0203)
10 0.8928 (0.0247) 0.8948 (0.0204) 0.8940 (0.0245)
11 0.9883 (0.0064) 0.9920 (0.0041) 0.9872 (0.0065)
12 0.9841 (0.0076) 0.9830 (0.0075) 0.9827 (0.0116)

Table 2(b)  The Accuracy of Simulated Data Sets (p=30)
Experiment LOOC Mixed-LOOC1 Mixed-LOOC2

1 0.8317 (0.0227) 0.8285 (0.0196) 0.8267 (0.0213)
2 0.7263 (0.0510) 0.8700 (0.0205) 0.8813 (0.0204)
3 0.8162 (0.0220) 0.8142 (0.0223) 0.8152 (0.0237)
4 0.7978 (0.0619) 0.7955 (0.0609) 0.7972 (0.0612)
5 0.9993 (0.0014) 0.9975 (0.0037) 0.9993 (0.0014)
6 0.9990 (0.0021) 0.9945 (0.0087) 0.9992 (0.0016)
7 0.8239 (0.0345) 0.8469 (0.0154) 0.8504 (0.0171)
8 0.8718 (0.0311) 0.9210 (0.0130) 0.9189 (0.0118)
9 0.8228 (0.0274) 0.8343 (0.0206) 0.8241 (0.0268)
10 0.8326 (0.0162) 0.8370 (0.0186) 0.8313 (0.0156)
11 0.9976 (0.0021) 0.9994 (0.0008) 0.9984 (0.0018)
12 0.9953 (0.0059) 0.9991 (0.0007) 0.9978 (0.0047)

Table 2c)  The Accuracy of Simulated Data Sets (p=60)
Experiment LOOC Mixed-LOOC1 Mixed-LOOC2

1 0.7378 (0.0540) 0.7607 (0.0259) 0.7605 (0.0287)
2 0.6578 (0.0631) 0.8792 (0.0213) 0.8882 (0.0175)
3 0.7632 (0.0265) 0.7615 (0.0235) 0.7583 (0.0281)
4 0.7483 (0.0324) 0.7473 (0.0308) 0.7435 (0.0288)
5 1.0000 (0.0000) 0.9998 (0.0005) 1.0000 (0.0000)
6 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
7 0.7820 (0.0327) 0.8098 (0.0229) 0.8120 (0.0192)
8 0.8876 (0.0219) 0.9401 (0.0075) 0.9400 (0.0073)
9 0.7947 (0.0216) 0.8024 (0.0150) 0.7958 (0.0203)
10 0.7802 (0.0302) 0.7932 (0.0277) 0.7837 (0.0275)
11 0.9988 (0.0021) 0.9997 (0.0011) 0.9997 (0.0011)
12 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

Table 2(d)  The Accuracy of Real Data Sets (p=191)
Real Data LOOC Mixed-LOOC2
Cuprite 0.7743 (0.1372) 0.9524 (0.0117)

Jasper Ridge 0.9864 (0.0042) 0.9849 (0.0019)
Indian Pine 0.7612 (0.0127) 0.7625 (0.0144)

DC Mall 0.7831 (0.0455) 0.7858 (0.0431)

IV. DAFE BASED ON MIXED-LOOC

Usually Discriminant Analysis Feature Extraction (DAFE)
uses the ML covariance estimator of each class. When
singular or nearly singular situations occur, ML covariance
estimator could be replaced by regularized covariance
estimator.

For convenience, denote DAFE based on ML estimators as

DAFE and DAFE based on Mixed-LOOC2 as DAFE-Mix2,
Gaussian classifier based on ML estimators as GC, and
Gaussian classifier based on Mixed-LOOC2 estimators as
GC-Mix2. Experiments 17 to 19 are for determining the
performances of DAFE-Mix2. The classification process in
experiment 17 is to use DAFE then GC, in experiment 18 use
DAFE-Mix2 then GC, and in experiment 19 use DAFE-Mix2
then GC-Mix2. The class sample sizes of experiment 18 and
19 are the same as those of experiments 13 to 16 (Ni=20).
Since using those sample sizes in DAFE will cause very poor
results, we increase the sample size of each class in Cuprite,
Jasper Ridge, Indian Pine, and DC Mall data sets up to 40.
The number of features extracted from the original space is
set to L-1. The results of those experiments are shown in Fig.
1.
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Fig.1. The Mean Accuracies of Experiments 17 to 19

V. COMMENTS

The singularity or near-singularity problem often occurs in
the case of high dimensional classification. From the above
discussion, we know that finding a suitable regularized
covariance estimator is a way to mitigate this problem.
Further, Mixed-LOOC2 has advantages over LOOC and
BLOOC and needs less computation than those two. Usually
DAFE cannot be used when the training sample size is less
than dimensionality. The new procedure, DAFE-Mix2,
overcomes this shortcoming, and can provide higher accuracy
when the sample size is limited.

VI. REFERENCE
[1] J.H. Friedman, “ Regularized Discriminant Analysis,” Journal of the

American Statistical Association, vol. 84, pp. 165-175, March 1989
[2] J. P. Hoffbeck and D.A. Landgrebe, “ Covariance matrix estimation and

classification with limited training data” IEEE Transactions on Pattern
Analysis & Machine Intelligence, vol 18, No. 7, pp. 763-767, July 1996.

[3] S. Tadjudin and D.A. Landgrebe, Classification of High Dimensional
Data with Limited Training Samples, Purdue University, West Lafayette,
IN., TR-EE 98-8, April, 1998, pp35-82.

[4] B-C. Kuo, Improved Statistics Estimation and Feature Extraction for
Hyperspectral Data Classification. Ph.D. thesis. Purdue University,
December 2001

[5] W. Rayens and T. Greene, “ Covariance pooling and stabilization for
classification.” Computational Statistics and Data Analysis, vol. 11, pp.
17-42, 1991


