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Abs t rac t -In this paper an Adaptive Bayesian
Contextual classification procedure that utilizes both spectral
and spatial interpixel dependency contexts in statistics
estimation and classification is proposed. Essentially, this
classifier is the constructive coupling of an adaptive
classification procedure and a Bayesian contextual classification
procedure. In this classifier, the joint prior probabilities of the
classes of each pixel and its spatial neighbors are modeled by the
Markov Random Field. Experiments with real hyperspectral
data show that, starting with a small training sample set, this
classifier can reach classification accuracies similar to that
obtained by a pixelwise maximum likelihood classifier with a
very large training sample set. Additionally, classification maps
are produced which have significantly less speckle error.

I. INTRODUCTION

Hyperspectral image data acquired by new generation
sensors contain extremely rich spectral and spatial attributes,
which offer the potential to discriminate more detailed classes
with high classification accuracy using a conventional
Maximum Likelihood Pixel (MLP) classifier. This classifier
performs classification by maximizing the class conditional
probability. However, two difficulties inhibit this potential.
First, due to the limited training sample size, the class
statistics estimated from the limited training sample sets are
less accurate and the resulting classifier performance is more
limited. Additionally, in a conventional MLP classifier, it is
explicitly assumed that the spectral properties are
independent of the properties of all other pixels.
Consequently, the MLP classifier may have difficulty
distinguishing the pixels that come from different land-cover
classes but have very similar spectral properties. The result is
often a snow-like classification map. Several studies [1] [2]
have shown that a contextual classifier that utilizes both
spectral and spatial contextual information are able to better
discriminate between the pixels with similar spectral
attributes but located in different regions, allow reduction of
the speckle error, and improve the classification performance
significantly. However, this type of classifier also faces the
problem of the small training sample size where the class
conditional probability density must be estimated in the
analysis of hyperspectral data [1][2].

In [3], it has been demonstrated that an adaptive maximum
likelihood pixel classifier (AMLP) may alleviate the small
training sample problem by including semi-labeled samples
along with the training samples during the process of
statistics estimation. Essentially, this classifier is formed by
adding a feedback loop to a conventional ML classifier such
that the loop carries additional class information generated
from semi-labeled samples (classification outputs). The key
to successful performance of this classifier is to establish a
positive feedback process so the statistics estimation and

classification can improve each other at each iteration. We
have shown in [3] that higher initial accuracy and a large
number of semi-labeled samples can allow the establishment
of this positive feedback and lead to faster convergence of
classification accuracy. However, as with a conventional
MLP classifier, performance of this adaptive MLP classifier
is limited by using just spectral information.

In this paper, an adaptive Bayesian contextual classifier
that utilizes both spectral and spatial interpixel dependency
contexts in statistics estimation and classification is proposed.
Essentially, the proposed classifier is the combination of a
Bayesian contextual classifier and an adaptive classification
procedure. In this classifier, only interpixel class dependency
context is considered, and the joint prior probabilities of the
classes of each pixel and its spatial neighbors are modeled by
the Markov Random Field. As an adaptive classification
procedure, the statistics estimation and classification are
performed in a recursive manner. Because usually a
contextual classifier achieves higher accuracy than a MLP
classifier, the proposed classifier has several advantages over
the adaptive MLP classifier. First of all, the positive feedback
may be easier to be established. Secondly, it may converge
faster. Third, the final accuracy can be higher with much less
speckle error. Compared with a conventional one-pass
contextual classifier, this approach should mitigate the small
training sample problem in the analysis of hyperspectral data.

II ADAPTIVE BAYESIAN CONTEXTUAL CLASSIFIER

In this section, the new adaptive Bayesian contextual
classifier is developed that combines the adaptive procedure
proposed in [3] with the Bayesian Contextual Iteration
Conditional Modes (ICM) [4]. In this Bayesian Contextual or
Maximum A Posterior Probability (MAP) classifier, the joint
prior probabilities of the classes of each pixel and its spatial
neighbors are modeled by the Markov Random Field. In other
words, the spatial information is utilized in the MAP
classifier. Compared to an MLP classifier, an MAP classifier
performs classification by maximizing the posterior
probability. In this new classifier, contextual information is
incorporated into the process of a weighting factor
computation and MAP classification. There are two reasons
for this operation. One is to further emphasize the positive
effect from the correctly classified semi-labeled samples and
discourage the negative influence from the misclassified
semi-labeled ones, and the second is to enhance the
classification using contextual information in addition to the
likelihood. In a manner similar to the adaptive procedure [3]
and ICM [4], this new method is also an iterative process that
achieves optimal statistics estimation and classification by
starting with the initial estimate and classification based on
training samples only, and repeating the following steps at



each iteration using training samples and semi-labeled
samples. The flow chart in Fig. 1 illustrates one complete
cycle of the adaptive contextual classifier. For notational
purposes, in the following, the MLP and MAP classifiers at
each cycle (except the first cycle) are denoted as ABC-ML
and ABC-MAP classifiers, respectively. The MLP and MAP
classifiers at the first cycle are the conventional ones because
only training samples are used to estimate statistics at this
cycle.

III. EXPERIMENTAL RESULTS AND DISCUSSION
For this experiment, the data is part of an airborne

hyperspectral data flighline over the Washington DC mall. In
this data set 191 bands in the 0.4 to 2.4 mm region of the
visible and infrared spectrum are used. Since the data has
high spatial resolution (about 5 meters), the testing samples
and training samples are manually selected. There are 11
subclasses, and about 20 training samples per class selected.
An average of 1200 test samples for each class are selected.
Even though the training and testing samples can be
identified in this case, selecting this many testing samples
was a daunting task that took about 3 hours. By comparison,
it only took about 15 minutes to select training samples. The
desired scene classes are Roof, Road, Path, Trees, and Grass.
However, two of these classes are spectrally multimodal and
must be modeled by using several subclasses. Thus, five
subclasses were used to form the class Roof, and two were
used to model Road. In addition, the class Shadow was added
so that the list of classes is suitably exhaustive.

This data set is a challenge to analyze for several reasons.
First, classes are complex. There is a large diversity in the
materials used in constructing rooftops, and consequently no
single spectral response is representative of the class Roof.
Even though some of the subclasses are spectrally quite
different, some are quite similar. Subclasses of Roof, and
Road are spectrally similar in that they may be made of
similar materials, e.g, asphalt. Third, this data was collected
during a dry season; most of lawns are not well grown and as
a result, the class Grass and Path are difficult to differentiate,
since some areas of grass are nearly bare soil, which is
spectrally similar to the gravel of Path.

The classification accuracy at each iteration is graphed in
Fig. 2. The following results may be observed: 1) The
Adaptive Bayesian Contextual (ABC) classification
procedure outperforms the Adaptive MLP classifier

significantly. 2) After just three cycles the classification
accuracy obtained by ABC-MAP converges with a net
increment of about 13% over the initial MLP. 3) At each
cycle, the ABC-MAP classifier achieves higher overall
classification accuracy than the ABC-ML classifier does, and
has less speckle errors (seen below). This indicates that
contextual information does help to reduce the speckle error
and accordingly improve classification performance. 4)
During the first cycle the classification accuracy increment
from the ABC-ML to ABC-MAP is about 3% However, the
classification accuracy increase for the ABC-ML at the
second cycle is more than twice that amount, i.e., about 8%.
This indicates that using additional contextual information
does improve the classification performance, but the
improvement is limited. Essentially, the significant
improvement of the classification performance is assumed to
stem from better statistics estimates produced by the adaptive
method.
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In addition to the classification accuracy, the segmented
images are another way to assess the quality of the
classification. Classification maps are provided in Fig. 3a
through 3d. During the initial cycle, with limited training
samples the initial statistics estimates are not very precise. It
may be seen in Fig. 3a that classification errors occur in many
places. These errors are mostly due to incorrectly estimated
statistics and, to a lesser extent, the spectral similarity
between classes. For instance, there is a great deal of
similarity in spectral response between information classes
Roof and Road, between Path and Grass, and between Tree
and Grass. This type of error is reduced by the MAP
classifier. However, errors of the first type still remain. In
some areas the MAP classifiers create additional errors
beyond those generated by the ML, leading to the loss of
details. During the third cycle, both types of error have been
greatly reduced by ABC-MAP. As a result, the objects in the
classification map are well defined, clean and visually
pleasant as indicated in Fig. 3d. On the contrary, even with
good statistics, the adaptive MLP could not completely
differentiate between the classes with similar spectral

 Fig. 1 A complete cycle of the Adaptive Bayesian Contextual Classifier
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Fig. 2. Progression of the classification accuracy



responses. As a result, there are still speckle errors in the
classification map as shown in Fig. 3c.

    

     

III CONCLUSION

In this paper, an Adaptive Bayesian Contextual
classification procedure based on Markov Random Fields is
developed. In this procedure, the adaptive classifier and the
Bayesian contextual classifier that is approximated by ICM
[4] are integrated. As a result, the advantages of both
classifiers are incorporated. The experimental results with
hyperspectral data further reveal the benefits of this
classification procedure. Starting with a limited training
sample set, this method is able to steadily raise classification
accuracy and eventually drive it close to the optimal value.
The total improvement in the classification accuracy is
significant and the convergence rate is fast even though a
simple sub-optimal contextual classifier is used. This is

significant because the classifier ICM [4] has a reputation of
slow convergence when it is used alone.
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(a) MLPC at the first cycle (b) MAPC at the first cycle

(c) Adaptive MLPC at the third cycle (d) ABC-MAP at the third cycle

Fig. 3 Classification maps generated by four classifiers


