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ABSTRACT

This study* investigated computer
classification performances for forest and
other cover types using Thematic Mapper
Simulator (TMS) data collected by NASA“s
NS00l scanner. Specifically, results based
on the use of a common feature selection
measure -- transformed divergence (TD) -~
were compared to those based on a princi-
pal component transformation for the pur-
pose of evaluating the capabilities of
each technique to define: (1) the optimum
dimensionality for data sets of this type,
and (2) the relative significance of the
various wavelength bands with respect to
their ability to discriminate among the
various cover classes. Expected classifi~

cation performances as indicated by a
minimum Transformed Divergence (TDmin)
criteria were compared to actual test
classification results. The eigenvectors

(i.e. principal components) and eigenva-~
lues for both the overall and the indivi-
dual class statistics used to classify the
TMS data were also used to select waveband
subsets to compare to the results from the
subsets defined by TD(min).

The results indicated that the use of
four wavelength bands will produce consid~-
erably better classification than the use
of only two or three wavelength bands.
However, when more than four wavelength
bands were wused, overall and individual
class performances increased only
slightly, thereby indicating that an
appropriate set of four wavelength bands
probably provide the “optimum” dimension-
ality. Classifications using various four
wavelength band combinations showed the
individual cover class preferences for
certain wavebands. These preferences of

* This work was supported by NASA under
Contract No. NAS9-15889.

both individual cover classes and of all
classes combined were better indicated by
a principal component analysis of the data
than by a Transformed Divergence criteria.
Further, the results support the use of
eigenvectors for identifying the optimal
or “intrinsic” dimensionality of data sets
of this type.

I. INTRODUCTION

Much of the previous work with Land-
sat MSS data has involved the use of all
four wavelength bands of the early satel-
lites for distinguishing a wide variety of
cover types. Many analysis procedures,
including methods for developing training
statistics and the development and use of
optimum classification algorithms, have
been well established through work with
Landsat MSS data from a variety of geo-
graphic locations. With the advent of the
Thematic Mapper (TM) scanner on Landsat
1v, questions involving effective and
efficient techniques for handling the
increased spatial resolution and number of
spectral bands once again confront the
remote sensing community.

Since remote sensor data often has
high interband correlations (6), there is
a redundancy of information which is
source dependent such that the “intrinsic
dimensionality” or the dimensionality
required to characterize a specific data
set is often less than the number of avai~
lable bands (4). The value of data com-
pression is evident when one considers the
cost of storage and classification of data
sets having many wavebands such as those
obtained from the Thematic Mapper.

There are two common approaches to
reduce the dimensionality or feature space
of the data. One approach that has been
used frequently involves manual selection
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of an optimum subset of the original bands
based upon either a priori knowledge
and/or upon one of a number of statistical
Separability measures., The second approach
involves a linear transformation of the
original bands to a set of uncorrelated
new orthogonal transformed components in
which a maximum amount of spectral varia-
tion is accounted for in descending order
along the transformed components; i.,e. the
maximum variation of. the data is accounted
for in both direction and magnitude by the
first component, the second - greatest
amount of variation by the second compo-
nent, and so on. One such linear trans-
formation is the Karhunen-Lodve or princi-
pal component transformation. In this
procedure, the eigenvectors or latent
roots, (X), of an NxN matrix, A, satisfy-
ing the equation,

A% = A% (1)

are found by solving the characteristic
equation

£(x) = ]a -1 | = 0. (2)

The roots of this polynomial (values of Ai
which make the polynomial 0) are the
eigenvalues of matrix A. These are ordered
such that:

> > e e >
A A2 ke AN

The eigenvectors (§) of matrix A are found
by substituting the values of A, in equa-
tion (1). In essence, the eigenvectors
define a new set of orthogonal coordinates
whose direction cosines are the normalized
characteristic vectors corresponding to
the ordered characteristic roots, x; , of
matrix A. In the case where A is an NxN
covariance matrix, the eigenvectors define
a coordinate system projected through the
directions of maximum variance of the data
in N-dimensions. The first component has
direction through the maximum variance
with 1length proportional to the square
root of the first eigenvalue. The remain-
ing characteristic roots, ) , and vec-
tors, (#.), of A determine the lengths and
orientations of the second and higher com-
ponent axes, each in the direction of the
maximum variance remaining in the data
(3,5). By compressing the data variance
or information content onto a fewer number
of coordinate axes, a principal component

transformation of multispectral . scanner
data can provide an efficient method of
dimensionality reduction. Generally, a
subset of the three or four higher ordered
eigenvectors will account for almost all
of the information contained in the entire
set of the original wavelength bands.
These components, therefore, can be used
to classify the data with a minimum number
of features and will result in approxi-
mately the same classification performance
as if all of the original wavelength bands
had been used.

One concern, however, of the use of
principal components is the potential loss
of descriptive information about the rela-
tive importance of the various wavelength
bands to the individual cover classes.
However, the coefficients or loadings, as
they are sometimes referred to, of the
eigenvectors can often provide a qualita~
tive indication of the relative importance
or contribution of the original features
to each of the eigenvectors (5). This type
of qualitative analysis has been done
using multispectral scanner data from
earth surface features to define the opti-
mum spectral bands or wavelength regions
which best characterize those surface fea-
tures (7,10). In this way the loadings
can be used to identify those bands which
best characterize a particular data set
and can therefore be used as an alterna-
tive feature selection method; i.e. to use
the loadings rather than statistical
separability measures, such as transformed
divergence, for selecting an optimum wave-
band subset. 1In addition, the eigenvalues
provide an indication of the intrinsic
dimensionality of a data set. In summary,
therefore, the optimum dimensionality of
the data set can be determined from the
eigenvalues and, in addition, the specific
wavelength bands having the greatest
information content can be defined using
the eigenvector coefficients.

I1.0BJECTIVES
The objectives of this study were:

1) to determine the intrinsic dimen-
sionality of this simulated The~
matic Mapper data set, and

2) to evaluate the effectiveness and
sensitivity of “standard” statis-
tical separability measures (i.e.
transformed divergence) in com-
parison to eigenvectors for iden-
tifying the optimum subset of the
original TMS bands for classify-
ing the various cover types.

1983 Machine Processing of Remotely Sensed Data Symposium

348




III. MATERIALS AND METHODS

Thematic Mapper Simulator (TMS) data
were collected on May 2, 1979 by NASA’s
NS00l aircraft multispectral scanner over
a bottomland forested area in South Caro-
lina near the city of Camden. Wavelength
bands on this scanner include three bands
in the visible portion of the spectrum
(CH1:0.45 - 0.52um; CH2:0.52 -~ 0.60um;
CH3:0.63 ~ 0.69%um), . two bands in the near
IR (CH4:0.76 - 0.90um; CH5:1.00 - 1.30um),
one band in the middle IR
(CH6:1.55 - 1.75um) and one band in . the
thermal IR region (CH7:10.40 - 12.50um) .
The test site is located in an area bet-
ween the Piedmont plateau and the coastal
plain. This area is characterized by
large tracts of bottomland hardwoods, but
includes smaller tracts of pine planta-
tions and of agriculatural fields at vary-
ing stages of growth. Table 1 1lists the
designated cover classes found in the Cam-
den test site.

Table 1. Descriptions of the various cover
classes in the Camden test site.

Cover Class Description
PINE Pine forest areas, primarily plantations of slash
and loblolly of varying age.

HDWD Bottomland hardwoods such as sweetgum, willow, and
bottomland oaks; mostly in dense old age stands.

TUPE Water tupelo, primarily associated with narrow ox-
bow lakes and other areas of inundated soils.

ccur Areas subjected to clearcut forestry practices;
clearcuts are in various stages of regrowth and may
include windrowed slash.

PAST Pastures and old fields.
CROP Agricultural crops at various stages of development.
SOIL Primarily areas of recently tilled agricultural

fields, but may include some minespoil and recent
clearcut areas.

WATER Water areas include the Wateree River, small lakes and
ponds, and turbid minespoil ponds.

In order to achieve the stated objec-

tives, the following set of analysis
procedures were used:

(1) Supervised training statistics

were generated for the classes

listed in Table 1 using a trans-
formed divergence (TD) measure to
evaluate the spectral separabil-
ity of the cover class statistics
(8). Likewise, the selection of

optimum waveband subsets of two
and greater were based " upon a
minimum TD criterion (8). The
training areas were carefully
selected so that they would com-
prise an exhaustive and represen-
tative set of all spectral
classes within the scene.

(2) A statistical sample of test
areas was selected using a proce-
dure described previously (1).

(3) A set of eigenvectors and their
associated eigenvalues were cal-
culated both for individual cover
class training statistics and for
a combined or merged training
data set generated from all spec-
tral class training statistics.

(4) A Gaussian Maximum Likelihood
algorithm (8) was used to clas-
sify the area using the set of
defined supervised training sta-
tistics as input for each of the
various wavelength band subsets.

Certain limitations of using
ability measures such as TD have
addressed elsewhere in the literature
(8,9). If it is possible to assume that
the training statistics actually represent
an exhaustive set of all spectral vari-
ability within the scene, then these limi-
tations, to a large extent, result from
the fact that most separability measures,
including transformed divergence, only
have an indirect relationship to the prob-
ability of error. In addition, when cal-
culating such separability measures, class

separ-
been

a priori probabilities are often unknown
and are therefore assumed to be equal;
this can cause the estimation of P, to

deviate considerably from the actual Po.
Following this, one additional advantage
of a principal component analysis is that
the eigenvectors inherently incorporate a
priori probabilities in their calculation
as long as the sample covariance matrix
has been generated from a representative,
i.e. proportional, set of all cover
classes. (This can be achieved if a sta-
tistical sample of points are taken from
which the sample covariance matrix is cal-
culated.) One of the main purposes of
this study, therefore, is to evaluate the
effectiveness of such feature selection
procedures in defining optimum wavelength
band subsets, i.e. subsets which minimize

the probability of error, Pe=1-P_.

IV. RESULTS AND DISCUSSION
A. Intrinsic Dimensionality

multivariate
N-dimensional

bata sets which have
normal distribution in an
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feature space often times exhibit a
non-spherical distribution in that feature
space. That is, the variance is often not
equal, but differs widely between bands,
so that the data in N-~dimensions resembles
more of a multidimensional ellipsoid. The
eigenvectors (principal components or
latent roots) and eigenvalues of a source
covariance matrix define a set of or thogo-
nal axes which result from a rigid rota-
tion of the original coordinate axes
(variables) to an orientation determined
by the direction of maximum data variance
of this multidimensional ellipsoid. The
first component is positioned through the
maximum data spread, the second through

the next greatest amount of data spread
and so on (5). This linear transformation
of the original bands eliminates any

interband correlation and concentrates a
maximum amount of the data variance onto a
fewer number of features. If the potential
for characterizing a remote sensing data
set lies in the ability to define the dis-
tribution, i.e. variance or spread, of
the data in the feature space, then such
transformed axes theoretically allow the
data to be characterized with a minimum
number of variables or coordinate axes.
The intrinsic dimensionality of a data set
can therefore be determined by observing
when most of the total data source vari-
ance has been accounted for by a subset of
the ordered eigenvectors.

Table 2a. The ordered eigenvectors, their associated eigen-
values and the percent of total data variance they each
account for of an overall category covariance matrix.

Eigenvector (Component}

Wavelength
_.band 1 z 3 4 5 6 7

1 =02 6.22 -0.33  -0.17 0.2 -0.67 0.56

=017 0.37 -0.52  -8.29 0.3% 0.15  -0.55
-0.15 066 -0.36  0.16  -0.54 0.44 0.35
0.76 0.01  -0.26 -~0.35 -0.42 -0.20 -0.17

2
3
4
5 0,38 0.1% 0.03 0.14 0.57 0.39 0.37
6 0.6 0.49 0.13  0.68 -0.03 -0.38 -0.3)
7

-0.06  ©.57 Q.65 -0.51 -0.06 0.0l  0.02
128,00 1779.1 591.0 95.6 12.7 7.3 2.9 Eigenvalue
Ab.% 38.5 12.8 2.1 0.3 0.t 0.1 Percent Variation
Gkl Bu. & 7.4 99.5 99.8 99.9 100.0 Cumulative

Percent Variation

Tsble 2b. The ordered eigenvectors, their assoclated eigen-
values and the percent of total data variance they each
account for of a Tupelo category covariance matrix.

Eigenvector (Component)

Wavelength
B 3 2 3 4 s s g
1 -0.02 0.30 0.10 0.18 0.80 a.39 -0.29
2 -0.08 0.71 0.23 -0.40 -0.26 -0.19 -0.42
3 -0.07 046 0.16 -0.09 0.04 0.20 0.84
4 n.79 0.04 ~0.06 -0.26 0.32 -0.44 .12
5 0.59 0.06 0.12 0.15 -0.41 0.65 ~0.12
& 0.07 0.23 0.3t 0.82 -0.10 -0.41 0.0!
? 008 -0.38  0.90 022 0.08 0.0 0.0
305.2 23.3 17.7 2.0 1.2 1.0 0.5 Edgenvalue
B7.0% 6.8 5.0 0.6 0.3 0.3 0.2 Percent Variaticn

87.00 o3 98.6  99.2  99.5 99.8  100.0  Cumulative
Percent Variation

Tahle 2c. The ordered efgenvectors, their associated efgen-
vaiues and the percent of total data variance they each
account for of a Crop category covariance matrix.

Eigenvector (Component)

Wavelength

Band _r 2 3 e s e 1.
1 0.07 -0.05 0.26 0.27 =0.42 0.82 0.08
2 ~0.0¢ 0.09 0.60 0.22 0.27 -G.18 0.68
3 ~0.11 0.17 0.55 0.23 0.30 G.00 -0.71
4 0.87 0.16 0.26 ~0.28 -0.20 -C.15 -0.07
5 6.37 0.36 -0.42 0.38 0.57 0.28 0.07
6 0.01 0.29 -0.13 Q.67 -0.52 ~0.47 ~0.04
’ 02 085 0.02 -8.39 -0 043 0.07
1036.2 69.9 19.1 9.3 2.7 1.8 0.8 Eigenvalue
90.9% 6.1 1.7 0.8 0.3 0.1 0.1 Percent Variation

90.97 97.0 98.7 99.5 29.8 99.9 100.0 Cumulative
Percent Variation

Table 2a lists the eigenvectors (i.e.
principal compontents) defined for the
covariance matrix of the combined super-
vised statistics, and Tables 2b and 2¢
show the covariance matrices defined for
two of the individual cover class statis-
tics (Tupelo and Crop, respectively).
Figure 1 shows graphically the amount of
information associated with each of the
ordered eigenvectors or components for the
combined supervised statistics; i.e. it
graphically depicts the eigenvalues listed
in Table 2a. In examining the cumulative
percent variation indicated in Tables
2a,b, and c, it is evident that the
intrinsic dimensionality of this data set,
as described by the eigenvalues of the
ordered eigenvectors, appears to be
approximately four; in other words, the
majority of the data variance has been
accounted for by the first four eigenvec-
tors of each of these sample covariance
matrices.

461 846 974 995 998 999 1000 Cumulative Total

50 Variance 1%}
[‘ 461
40}
©
= 30} FicURE 1, INFORMATION CONTENT OR PERCENT
8 TOVAL SOURCE VARIANCE ACCOUNTED FOR BY
£ THE ORDERED COMPONENTS (EIGENVECTORS) OF
2 THE OVERALL CATEGORY COVARIANCE MATRIX,
g 20}
g
10
21
0 NN

N O
st 2nd  3rd 4th 5th 6th 7th
Ordered Components

Table 3 lists the optimum waveband
subsets as selected by a minimum trans-
formed divergence criteria, TD(min). Fig-
ures 2 and 3 show the overall and indivi-
dual class performances, respectively, for
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each of these waveband subsets. Actual
classification performance values for
these are given in Table 4. ,

Table 3. Optimum waveband subsets by combination
level as determined by a TD(min) criterion.

Combination Level Waveband Subset

(2,5)
(1,3,6)
(2,4,5,7)
(2,3,4,6,7)
(1,2,4,5,6,7)
(1,2,3,4,5,6,7)

N e W N

These response surfaces further corrobo-
rate that the intrinsic dimensionality is
approximately four; i.e. any dimensional-
ity greater than four does not result in a
significant increase in either the indivi-
dual class or overall classification per—
formances.

1004
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§
\
\
\
\
§
\
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©
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@
[
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60

Classification Performance (%correct]

Waveband Combination
Level

FIGURE 2. OVERALL CLASSIFICATION PERFORMANCE OF THE "BEST” 2
THROUGH ALL 7 WAVEBAND SUBSETS AS SELECTED BY A TD(MiN) CRITERION.

Some individual <class performances actu-
ally decrease, slightly, due to their spe-
cific preferences for certain wavebands.
It should be noted, however, that the use
of transformed divergence measures do not
provide as effective an indication of the
intrinsic dimensionality of the data as is
the case with a principal component analy-
sis.

B. Waveband Analysis
Since four TM bands appear to be “op-

timum” for both individual and overall
classification for this data set, a wave-

band analysis with various four band
subsets was performed in order to_ evaluate
the impact of certain wavelength bands on
individual cover classes. The results of
both the individual cover class and ove-
rall classification performances are shown
in Figures 4 and 5. Actual classification
performance values for these are given in
Table 5.

:

Classification Performance (%correct)

A B [ D

Waveband Subset

FIGURE 8. OVERALL CLASSIFICATION PERFORMANCE OF VARIOUS
FOUR WAVEBAND SUBSETS."

"SUBSET WAVERANDS
A (3,5,6,7)
B 2,4,6,7)
o @,4,5,7)  ("Best” s seLecTep By TD)
D 2,3,4,9

Although a TD(min) criterion selected
the four band subset (2,4,5,7) as the best
(see Table 3), overall classification per-
formance increased slightly and many indi-
vidual class performances increased signi-
ficantly with the use of bands (2,3,4,5)
as shown in Figures 4 and 5. Transformed
divergence measures between all possible
combinations of spectral class pairs for
each of the four band subsets contained
only one or two class pairs which had TD
values less than 1800, while all other
class pairs in all of the four band sub-
sets were greater than 1900%*, These
results therefore suggest that TD is a
relatively insensitive measure for esti-
mating the probability of error and, sub-
sequently, the probability of correct
classification, for a given data set.

Further analysis involved the use of
the loadings of the eigenvectors of both
individual cover class and overall or com-~
bined class covariance matrices for iden-
tifying important (significant) wavelength

* Transformed divergence (TD) values range
from zero (identical spectral classes) to
2000 (completely separable spectral
classes).
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Combhination Level

Classification Performance (% correct]

T 1 T 2

4 4
Pine Hdwd Soil  Watr Crop Past Ccut  Tupe

Cover Class

FIGURE 3.  INDIVIDUAL covER CLASS PERFORMANCES OF THE "BEST” 2 THROUGH ALL 7 WAVEBAND SUBSETS
AS SELECTED BY A TD(MIN) CRITERION,

Classification Performance [%correctl

Waveband
Subset
| r — y Y . y —
Pine Hdwd Soil Watr Crop Past Ccut Tupe
Cover Class
Fieure 5. Inprvipuac COVER CLASS PERFORMANCES OF VARIOUS FOUR WAVEBAND SUBSETS,

bands. The loadings of the first four portray the values listed in Tables 2a-2c.
eigenvectors for the covariance matrices As shown in Figure 6, the first eigenvec-
of the combined category, the Tupelo cate- tor of the combined category weighted
gory and Crop category, respectively, are bands 4 and 5 as the highest, and the sec-
shown in Figures 6-8. These graphically ond eigenvector weighted bands 2,3,6 and 7
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Figure 6. The eigenvector coefficients or loadings of the
first four ordered eigenvectors (printipal romponents) from
the overall category covariance matrix.
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Tigure 7. The eigenvector coefficients or loadings of the
first four ordered eigenvectors (principal components) from
the Tupelo category covariance matrix,

1 2 3 4 5 6 7 Waveband

1 2 3 o H 6 7 Wavehand

1 2 3 o 5 6 7 Waveband

relatively high. Comparing these. values
with the overall classification per for-
mances, it is apparent that although the
subset of bands (2,3,4,5) performed
slightly better than bands (2,4,5,7), both
subsets suggest the importance of bands 4
and 5 which were both heavily weighted in
the first eigenvector. The other two bands
included in each of these subsets were all
fairly significant in the second eigenvec-
tor.

1 (Eigenvector 1)

Eigenvector
Coefficient

7}

1 H 3 4 5 6 7 Wavehand

(Eigenvector 2)

—— NN VZl%Z

Eigenvector
Coefficient
o

1 2 3 4 s 3 7 Waveband

(Eigenvector 3)

Efgenvector
Coefficient
o

i 2 3 4 5 5 7 Maveband

mmw%%%

) 2 3 4 5 6 7 Waveband

Eigenvector
Coefficient
o

Figure 8. The eigenvector coeff{cients or Inadings of the
[irst four ordered eigenvectors (principal components) from
the Crop category covariance matrix.

A more sensitive analysis can be seen
with the individual cover class results.
In the case of the Tupelo category, bands
4 and 5 in the first eigenvector and bands
2 and 3 in the second eigenvector have the
highest loadings. All other bands in these
first two eigenvectors had much smaller
loadings. This preference for bands 2,3,4
and 5 is reflected in the significant
increase in classification performance for

Tupelo with bands (2,3,4,5) over any of
the other wavelength bands. Further, the
first two eigenvectors of the Tupelo
covariance matrix account for 94% of the

total variance of the Tupelo statistics,
so that most of the information is con-
tained in the first two eigenvectors.

Therefore, even if a band had a high load-
ing in the third or lower ordered eigen-
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vector, it would not contribute
significantly to the total variance of the
Tupelo class.

Table 4. Overall and individual cover class performances
for the waveband subsets selected by ID(min).

Waveband Combination Level

Cover
Class

Pine 87.02 94.7% 91.0% 93.8% 93.0% 95.0%

Hardwood 85.9 77.8 91.1 90.9 92.7 93.2
Tupelo 41.5 21.2 58.5 66.1 57.6 67.8
Clearcut 47.3 68.1 60.5 61.6 59.2 64.9
Pasture 44,6 62.3 82.6 80.6 85.7 83.4
Crop 73.7 61.5 79.7 79.9 78.9 81.0
Soil 66.1 89.8 85.6 86.2 90.4 90.6
Water 86.3 88.0 78.7 80.7 81.3 81.7

Overall 80.5% 78.4 88.1 88.3 89.9 90.7

The eigenvectors of the Crop class
covariance matrix have the highest load-
ings from band 4 and, to a lesser extent,
band 5 in the first eigenvector and from
band 7 and, again to a lesser degree, band
5 in the second eigenvector. Again this
preference of these bands is reflected in
the performance of the Crop category: the
subset of bands (2,4,5,7) had the highest
individual class performance, followed by
the subset (2,3,4,5). One reason that sub-
set (2,4,6,7) didn“t perform nearly as
well for Crop as with the previous two
subsets might be that although band 5 is
not weighted as heavily in the first
eigenvector as band 7 is on the second,
band 5 may actually account for more spec-
tral data variance since the first eigen-
vector accounts for almost 91% of the
total data variance alone. Hence, bands 4
and 5 may be the most significant with
band 7 providing some additional informa-
tion, and thus a subset of bands including
both bands 4 and 5 would provide optimum
classification of the Crop category.

Finally, the coefficients of the
eigenvectors from the combined cover class
covariance matrix shows the highest load-
ing from bands 4 and 5 in the first compo-
nent (46.1% of the total data variance)
and from bands 2,3,6, and 7 in the second
component (38% of the total wvariance).
Here again the overall performance was the
best when both bands 4 and 5 were
included, thereby indicating the impor-
tance of the near infrared portion of the
spectrum. Although subsets (2,4,6,7) and
(3,5,6,7) included all wavelength regions,
(i.e. wvisible, near IR, middle IR and
thermal IR), they did not perform as well
overall as either of the subsets (2,4,5,7)
or (2,3,4,5) which were the waveband com-

binations defined by one of the feature
selection techniques being evaluated.

Table 5. Overall and individual cover class performances for
selected four waveband subsets.

Yaveband Subset

Cover

Class A(3,5,6,7)  B(2,4,6,7) €(2,4,5,7) D(2,3,4,5)
Pine 89.5% $2.3% 91.0% 92.6%
Hardwood 85.7 90.7 91.1 91.8
Tupelo 46.6 42.4 58.5 78.0
Clearcut 63.0 58.6 60.5 51.4
Pasture 74.9 82.3 82.6 71.1
Crop 73.7 71.5 79.7 79.1
Soil 84.2 81.0 85.6 920.3
Water 86.3 81.0 78.7 86.3
Overall 83.4% 87.0% 88.1% 88.9%
In summary, the eigenvectors and

eigenvalues of a covariance matrix from an
MSS data set can be obtained without hav-
ing to actually transform the data, and
will provide descriptive information about
the data including the relative importance
of the wavebands and also the intrinsic
dimensionality of +the data set. There-
fore, this type of analysis can provide an
additional or alternative feature selec-
tion procedure which the analyst can use
with the original data set. It may ke that
the user will want to actually transform
the data set using a principal component
transformation and then subseguently clas-
sify this transformed data set using a
subset of the higher ordered components.
However, since such data transformations
usually require significant amounts of
computer (CPU) time, this approach may not
necessarily be desirable. 1In addition, it
should be pointed out that the sensitivity
of a principal component analysis 1is
highly dependent upon the structure of the
data set. As discussed by Jenson and Waltz
(2), the effectiveness of orthogonal
transformations such as canonical analysis
and principal components lies, to a great
extent, in the degree of the correlations
among the bands for a given data set;
thus, the greater the interband correla-
tion, the more effective the transforma-
tion in dimensionality reduction. Further,
it is possible to envision situations in
which the maximum dJdata spread might be
defined by two or more relatively unimpor-
tant and/or infrequent spectral classes.
In this case, the first eigenvector may be
projected through this “unimportant” data
spread and actually cause other, more
important spectral classes to lose some
distinguishing spectral information as a
result of the transformation. Therefore, a
principal component analysis, as with
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other feature selection procedures, can
only provide the analyst with a descrip~
tive tool with which to analyze his data.
Familiarity of the analyst with the char-
acteristics of his particular data set,
€.g9. spectral variance and data structure,
cannot be overemphasized.

V. CONCLUSIONS

The intrinsic dimensionality of data
sets of this type appears to be about
four; at any dimensionality greater than
four, overall classification performance
as well as performances for individual
cover classes do not increase signifi-
cantly. This dimensionality generally can
not be inferred from separability measures
such as transformed divergence, but can
only be determined in such cases by per-
forming a series of classifications using
“optimum” two and greater waveband combi-
nations and comparing the resulting clas-
sification performances; i.e. finding
where classification performance begins to

level off. However, the sum of the eigen-
values of the ordered eigenvectors of a
data set can provide insight into the

amount of significant spectral ~“informa-
tion” within that data set, and hence give

an indication as to the number of bands
required to achieve a leveling off of
classification performance; i.e. the

intrinsic dimensionality of the data.

In addition, from this study there
appears to be a correlation between the
coefficients of a set of ordered eigenvec~
tors or principal components and the rela-
tive importance of the original wavelength
bands in a set of multispectral scanner
data. This seems to be true both for a
general, multiclass situation and for
individual cover classes. 1In other words,
if the sample from which the covariance
matrix is calculated is from a particular
cover class, then the coefficients of the
eigenvectors will indicate which original
bands may best characterize that cover
class. 1If, on the other hand, the sample
includes many cover classes of varying a
priori probabilities, then the eigenvector
coefficients will indicate the overall
relative importance of the original wave-
bands for the entire data set. The indivi-
dual cover classes in this case may or may
not be optimally represented in the eigen-

vectors, since those having high a priori
probabilities and/or relatively large

Spectral variance may exert more influence
on the calculation of the covariance
matrix and, hence, the resulting eigenvec-
tors.

10.
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