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CLOSED BOUNDARY FINDING, FEATURE SELECTION AND CLASSIFICATION
' APPROACH TO MULTI-IMAGE MODELING*

by

J. N. Gupta and P, A, Wintz

Renote sensing is the science and art of acquiring information
about material objects from measurements made at a distance without
coming into physical contact with the objects, The information may be
transmitted to the ohserver through electromagnetic fields, iﬁ particular,
through the spectral, spatial, and temporal wvariations of thege fields
[1,2]. The data is gathered from sensors mounted on an aerospace plat-
form and provides information on existing conditions of physical objects.
The sensors measure target radiance in several regions of the electro-
magnetic spectrum; the data is usually called multispectral data.

In order to derive information from these data sets (Multi~images),
one must be able to relate these meagurements to those of known objects
or materials. The quantity of data is typically so large that machine
oriented analysis techniques must be devised., At the same time to en-
hance image processing activities, an understanding of the pictorial aspects
of the data to be processed 1s required. Also to further progress in
image analysis and image processing techniques such as image coding,
registration, deblurring, noise removal, etc., better ilmage models need to
be developed.

In this paper a specific multi-image analysis and processing techni-
que is studied to develop a good image model. A boundary finding algorithm
is developed involving the image characteristics such as grey level edges

and neighboring second order statistical properties of these data sets. The
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technique of boundary finding narrows the method of feature selection
te Karhunen-Loeve transformation and che evaluation of the boundaries

has been done based on test field classification.

Introduction

Natural scenes usually consist of objects with structures unless
the picture contains objects out of focus. Structure is a departure
from randomness. This structure is not usually hbmogeneous-—different
parts of a picture ugually contain different kinds of structure. The
study of this structure is called Image Modeling.

One approach to image modeling is to characterize what we see in
the image. Generally there exists structure in the relationship between
areag--an area can be defined as the largest connected set of picture
elements each of which has a property P. P can represent grey level,
texture, a statistic ete. Adjacent areas share boundaries so that the
shape of each is determined by the shape of its neighbors., For mulii-
spectral images these "areas" become 'volumes". For future reference these
will be referred to as "blobs" rather than "areas" or "volumes". Grey
level blobs can be characterized in terms of their boundaries which are
related to gray level diécontinuities.

Most methods for foundary finding reported in the literature are
baged on extensions of the claessical digital gradient and laplacian opera-
toras. Several .investigators have studied mathematical methods of defin-
ing edge detectors that are optimum in various senses. Heuckel [3] finds
the perfect step edge that best matches the given digital picture in a
ceftain disc shaped neighborhood of each point. Similar work has been
éone'recently by Griffith [4] to detect edges in simple scenes using a-

prioxrl information., Another approach to edge detection involves the use

of both coarse and fine difference operators at each poinﬁ. This approach



is suitable for detecting steps in average grey levels, Coarse operatdrs.
detect the steps, while the fine ones locaﬁe them sharply [5,6]. Some
approaches investigated at Purdue Univergity were based on the gradient
concent 7], clustering [8] and hypothesis testing based on first order
- statigtics [9)]. The gradient approach is inheréntly noisy and produceg
borders that are discontinuous of varying width and also produces epuriocus
isolated points. Clustering is more stable and less noisy but very time
consuming; and also closed boundaries are not guaranteed, The hypothesis
testing technique guarantees closure.

The boundary finding algorithm discussed here is alsc based on hy-

pothesis testing but takes into account second order statistics as well a:=

first order statistics.

Description of the Data Source

The multispectral source to be studied is shown in Figure 1. The
process a(xl,xz,x) 13 some measure of the spectral energy at wavalength
A for ground resolution point (xl,xz). The output sample space is the set
of all vectors A in RN that are obtained from the continucus stochastic
process a(xl,xz,h) by discretizing the two spatial variables (xl,xz) and
the spectral variable (15. -

The elements of_é are assumed to be jointly normal. This assumption
is made for the mathematical simplification it allows. In addition it

has been found experimentally that the normal distribution [10] is a

reascnable approximation for multispectral data for several applications

in pattern recognition,

The output vector A is then
Phdt

t
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where a, = a[xlz, Ry 11] and xlz’ Rom and 11 are the gth, mth, and i-th
szapla in (xl,xz,l)

continuous
multispectral a(xl,xz,k) Sampler .
source ¢
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Fig. 1 Model of the Multispectral Source

The Joint density function is given by
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wherejg is the N x N covariance matrix for A and'H is the mean vector.

In the following discussion each a, will be called an element and &

group of elements will be called simply a "group". The groups are sguares

containing equal number of elements on each side. The elements of carch

blob also are assumed to be Gaussian.

Hypothesis Testing

The general problem is this: we have two normal populations. Onc
with variate X which has mean'ul and variance gi and one with variate
Xy which has mean Wy and variance a%. On the basis of two samples, one

from each population, it is desired to test the hypotheses in both of the

following:
. 2
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In hypothesis i, the parameter space () is four dimensional; a joint
distribution of x, and‘x2 is specified when values are assigned to the
four quantities (ul.uz,gi.ag). The subspace  is three dimensional be -

cause values for only three quantities (Hl’Hz'Uz) need be gpecified in

order to specify completely the joint distribution under the hypothesis
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Let there be m observations ()('11’)l X12 h ""'le.h ) in the sample

that Cl'i =g

from the first population and n observations (XZI’kn 22’1” S 4 Y )

from the second. Let us also assume for this analysis that 1 is fixed
and determines the spectral band from which the samples are being con-

sldered,

The likelihoods in parameter space {1 and subspace ) are:
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So if the distribution of F, 1isknown, the distribution of R, is also

p p
known, Since Fk has F-distribution with (m-1) and (n-1) degrees of
freedom, therefore on plotting Rl as a function of Fk it is apparent
0 p
that the critical region 0<.’Rk < C corresponds to & two tailed test on F.

[}
In the second hypothesis the parameter space () becomes three dimensionsl

with co-ordinates (gl,uz,oz), while, o for the null hypothesis My =y =
{say) becomes two dimensional with co-ordinates (p,o?).
The maximum likelihood ratio in this case is
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hgs a student t-distribution‘with m+ n - 2 degrees of freedom, the iikeli-
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Its distribution is determined by the t-distribution. The test is done in

terms of tl rather than RX . This i3 also a two-tailed test. A 5 percent
P J
eritical region for ¢ 1ia t:

In ghort the first hypothesis is based on F-test and the second on

2
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student t-test.

Testing Algorithm

Let the group to be compared be called sample 1 and the group to be
compared with it sample 2, The goal is to calculate the value of Fi to
compare against a critical value to determine whether both of the sa;ples
have the same variance irrespective of their means and then finally to
calculate the value of tl to compare against another specified critical
value to determine whethez both of the samples belong to the same popula-
tion,

The boundary is assumed to exist if the null hypothesis Hy, fails for
the critical value already specified. For this purpose, standard tables
[11,12] have been used. The boundaries may be weak in some spectral bands
an§ strong in others. To take this 1nto account the first hypothesis is
tested for all values of 19, p = 1,..., number of spectral bands considered.
After the null hypothesis HOI is accepted in all the spectral bands, the

algorithm proceeds to test for the second hypothesis. Again the failure



of the null hypotheéis l-l.02 for any value of lp indicates that the two
populations are not the same and hence 2 boundary exists between them.

A block diagram of te#ting algorithm ;s shown in Figure 2. 1In this
block diagram, lp is not fixed anymore, whiie calculating the covariance
matrix,

Multivariate tests can take all the spectral bands into account
simultaneously but they are very time consumingf To cut down on process-
ing time the algoriﬁhm determines the boun&ariés in all the spectral banés
separately. Also, the experiments conducted show that for the multispec-
tral data available at the Laboratory for Application of Remote Sensing

(LARS), multispectral tests are not very advantageous.

Building of Blobs

Let us suppose g columns and g rows of digital data are from the game
distribution. The g rows of the data (one row of groups) are processed at
a time. Let there be W groups in a row and k'th group of the previous row
is designated as group kb' Let the blob to which group ke 1s assigned be
given by bk and the blob to which group kb is assigned bk .

In thecbeginning of the data to be procesged group lcpis arbitrarily
assigned to blob lc. Grﬁup 2c is compared with group 1c according to the -
Testing Algorithm, 1If they have the same digtribution, their statistics
are added and both groups 1c and Zc are assumed to be in the game blob.
Next group 3c is compared with group 2c and in general the group W is
compared with group W-1 at the end of the row. At every step an account
is kept for the number of groups in all the blobs.

From second row of groups onward the following steps are followed:

Group 1c is compared to the blob- containing group lp. If they are

the same then this group is also added to b1 otherwise processing continues
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to group 2c. Group kc is compared to the blob which containg group k .,
If they are the same, group kc is added to bk and a check is made if

group k -1 is assigned to any blob. If it ispthen it continues to k +1
otherwise group k -1 is tested against blob bk . If they are different
then the processing continues to Ik +1. Herxe a%ain if group k ~«1 13 the
same it is added to blob b and a check 12 made on group k ~2 and so on.

On the other hand if gioup k and blob bk are different then group
kc is compared to group k =1, If they are thepsame groups k and kc-l
are added otherwise the processing continues to group k +1 In the end
of the second row group W is processed in the same manner as group k
eéxcept that there 1s no other group k +l to continue with,

After group WE is processed a backward scanning is done on this row,
The scanning starts with group W . Whenever the group J is encountered
which has not been assigned to any biob, group J is assigned to a new
blob and looks for group Jc -1. If group Jc-l is assigned already the

scanning continues further otherwisge group Jc-l is compared to blob bJ .
c
If they are the game the group Jc-l is added to bJ and a check is made

whether group JC-Z 1s assigned or not and so forth,

As the blob building continues to the subsequent group rows and it
is determined that no group in the current row belongs to the blob, thé
blob is said to be closed and it is assigned to one of the pattern clasges

based on pattern classification techniques,

Fidelity of Reconstruction

elements of this blob and an estimate of the percent mean square error

is calculated,
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If A is the original data and A is the reconstructed data after re-
P i~

placing the blobs by their mean values, then the mean square error is

defined as
uSE = EffA - A7

Fidelity of reconstruction can be measured by the MSE between A and
L

-~

A or by % MSE w. r. t. the variance of the data,
P

2
if oi is the data variance in the i-th channel and there are g-channals

in all considered for processing purposes then
e{la - &)’}
ol p
e 2

I o,
i=1

% MSE = * 100

% MSE has been calculated for various significance levels of student 't*

and F-tests and 2 plot is given in Fig. 3. Pictures using digital display

system taken on the original data and the reconstructed data are also given

in Fig. 4.

Classification of Data

One immediate advantage of finding blob boundaries is in classification
of the data in already known classes.

Presently the classification is usually done on the basis of a per
point classification (spectral information only) and the advantage of
spatial information is not taken into account. To use the spatial in-
formation it becomes absolutely necessary to define spatial beundaries
which separate the regions containing the classes of interest. The boundaiy

finding algorithm provides such a means.

Let {Wi} be the set of pattern classes with their distributions {Fi},
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and let the set of points {y} be all the elements of the closed blob.

To decide to which Fi they belong, a digtance measure d(Fi’ Fj) is used

23 a measure of separation between any two distributions Fi and Fj'

In a mathematical sense the term "distance" and "metric" are some-

times (incorrectly) used interchangeably. A metric on a set § i3, of course

a real valued § defined on § x S (x indicates cartesian product) such that
for arbitrary F&, Fj, Fk in §

a, a(Fi, F.)>0

37 =
b, &R, F) = 8GR, E)
c,i, 6(Fi’ Fi) =0

ii, If 6(Fi, Fj) = 0 then Fi = Fj-

G SR FD (R, R > 8(R,, F)

The distance measure in thig report should not be confused with metric.
It obeys properties a, b, and ¢, only; not property d.

Let G(y) be a distribution governing {y}. fThe magnitudes of fd(gG, Fi)}

are compared; the distribution Fi which minimizes the distance d{g, Fi) is

presumed to be the distribution which contains G(y).

In other words assign {y) to the ith class in case

d(G, F,) = min (G, F,)
U e, Lk 3

where k is the total number of classes considered.

Let F (y) and F (y) be the distributions of pattern classes Wi and w

pj(y) are their probability dengity functxar

s

respectively, and let pi(y) and

defined in Q - Then a statistical distance measure appearing in the work

of Jeffreys Matusita [ 13, 14] is defined for two distributions F (y) and F (v’

as follows.
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=
f

dz(Fi, Fj) = .Y(‘\/Ti(Y) - \/_;jﬁ(y)\)z dy

Q

For convenience, B will be referred to herein as the Bhattacharyya distance.

Defining

2}
1]

J\ Af—oi‘(y) -A[;;;G) dy
Q

2 -
d°(F 5 F,) = 2(1-P)

In multispectral data one is concerned with multivariate distributions snd
as already stated that the blobs have multivariate Gaussian distributicas,

p for two such densities {pi(y) = N(u;> Z,;), i=1,2} can be reduced to the

following expressions [15)

P = exp[-a]

vhere

1 gy
b 4T, -1 det(— (z. 4%
1 177 1 2 \Eqh4)
o =g (u-u,) 5 J Wy hay) + 5 I

Jaer @) et @)

Then for whichever class P is maximum, the vector {y} is declided tgo be a
member of that class.

The multispectral data used for classification is taken from 1%71
Corn Blight Watch Experiment [16], It has eleven spectral bands
in the wavelength region of 0.4 to 3 micrometers and one thermal infrared
band from 9.7 to 11.3 micrometers. The strip of terrain observed is
represented by‘222 samples across track and 176 samples per mile along
track taken at a 5000 foot altitude.

A set of training fields was obtained representing 5 classes namely
corn, forage, soybeans, forest and water. On the basis of these 5 pattern

classes, all the 222 samples across track and 400 samples along the track
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were classified using the boundary finding algorithm defining blob bound
and the above mentioned distance measure.

Note that 5 in B-distance involves the inversion of a covariance matxix
and for some of the blobs the determinant of the covariance matrix is very
insignificant. Such blobs are clagsified accordiﬁg to the Euclidean dig-
tance to the mean of the pattern clasges. |

The classified data is written on a separate data storage tape and is
evaluated on the basis of glven test fields.

Presently the same data at LARS is being classified on the point clasus
fication basis using Gaussian Maximum likelihood Ratio decision rule [1]
and 18 getting 95.9% overall clagsification accuracy as compared 2 G§%

sbtained by this algorithm. A summaxy of the results is presented in Fhomar
5.

Feature Selection

The number of spectral bands {channels) poses a problem in the g208a
that the computation time and computer memory requirementas are increased
£5 the number of chamnels increases. Aiso, to minimize the overali proha-
bility of misclassification the best set of featurce should be szlected,

The results ﬂbtained'in ﬁhe previcug section were obtained by using
m subeet chosen on the basis of minfmum transformed divergence. The mini-
mun transformed divergence between any two training classes was larger

for this particular set of channels than all other combination of three

channels. The transformed divergence is a measure of class separability in

feature space [177.
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Per point classification results (Based on test fields)

dlass
Corn
Forage
Soybeans
Forest

Water

No. of
Points

5950
3151
4770

680

37

Channels (7,8,12)

Percent
Correct

95.6
97.3
96.0
92.6

97.3

Corn
5686
78
59

3

0

Classified as
Forage Soybeans Forest

203 38 23
3065 0 8
95 4578 38
i3 32 630

1 0 0

Overall performance (13995/14588) = 95.9% correct

Classification results obtained by Boundary Finding Algorithm

Class
Corn
Forage
Soybeans
Forest

Water

No. of
Points

5950
3151
4770

680

37

Channels (7,8,12)

Percent
Correct

99.0
96.1
97.9
99.1

97.3

Corn

5888
111
63

2

0

Classified as

Forage Soybeans Fcrest
50 4 8
3027 4 9
30 4669 8

4 0 674

1 0 0

Overall performance (14294/14588) = 98% correct

Figure 5 Classification Results Using 3 Best Features

Selected according to the Minimum Transformed
Divergence Method of Feature Selection

Hater

3é
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36
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The boundary finding algorithm is based on variance analysis there fore
the important consideration in selecting such a feature set should be such
that it contains the maximum varianée in it.

To overcome these problems, the Karhunen-Loeve (K-L transformatien
technique of selecting the best feature can be implemented.

K-L or Eigenvector transformation is an NxN transformation matris 1:
(reconstruction transformation matrix EF) and is used to map ﬁ down to
n<N dimensions, It is shown in [ 18] than n rows of T are the first n

orthonormal solutions to the characteristic equation

Tt=Xx¢t
~ ~
corresponding to the n largest eigenvalues k1> l2>'...> kn of the NyN
covariance matrix E.of ﬁ_. The transformation to n<N dimensions is given
by

=14

vhere '£= [t., Ly wens .En]

Tt is also shown in [ 18] that the elements of Y are uncorrelated and the
P
variance of the n elements of z are given by the n xi's, that is

Var (Yl) = ll

Var (Yz) = 12
Var (Yn) =X,

In other words this transformation rotates the source output A in the
~
N-space to a favorable orientation with respect to the coordinate systems.
The favorable orientation is so-called because the average energy (variance)

o< the source is re-distributed over the coerdinaresd such thar s lavger
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percentage of the source variance ig distributed over fewer coordinates.
This packing of the source variance provides a heans of reducing the cc.
ordinates to determine blob boundaries and implement sample classification.
The 12 x 12 spectral covariance matrix’z;was estimated for a Corn

Blight Watch Experiment flight by averaging over the entire flight lize.
The number of data points available for processing were 2.5 x 105. The
resulting covariance matrix is shown in Figure 6. The eigenvectors and
normalized eigenvectors for;;*were computed using the IBM Scientific Sub-

routine Package subroutine "EIGEN'. Figure 7 lists the eigenvalues ranked

such that

LR PRI W

The eigenvector transformationﬁ? is constructed from the first 3 eigenvectors
ofﬁg. The first Principal components contain 93.9% of the total variance
contained in all the twelve features, The blob boundaries were located in
the transformed data and then the blobs were classifled using already
mentioned pattern classification techniques. The overall classification
accuracy is 98.27% as compared to 98% using minimum transformed divergence
method of feature selection. The blobs data was replaced by their mean
values and then an inverse transformation operation was performed on this
data. An estimate of mean square error was determined between the recon-
structed Principal components and original Principal components and also
b:tween the inverse transformed reconstructed Principal components and the
original data. These values are also plotted in Figure 3. The digital
display pictures of first three principal components and the reconstructed
Principal components are given in Figure 8. The summary of the classifi-

cation resulis is detgiled in Figure 9.
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CHANNEL

434.3
338.9
320.4
391.7
447.5
466.6
539.7
~71.6
-27.0
295,7
337.3

4431.0

Eig

46
9
5

.
L

259.9
265.0
325.0
375.1
411.8
459.8
-59.8
-22.3
250.1
289.7

374.2

-01-

3 4 5 6 7 8
266.1
327.9 487.2

366.2 491.2 '552.3

370.1 497.0 559.3 678.9

421.3 528.9 622.3 688.4 791.7

-27.7 21.8  -37.7 <112.9 .1477 382.1
-3.1 37.3 1.0 -38.6 -53.5 257.0
249.7 370.7 385.0 406.2 454.5 159.2
270.1 376.2 408.4 465.0 S513.9 66.5

337.1 430.8 516.3 631.4 707.8 -294,3

The Total Variance is 6531.,66

envalue

40,70
40.85
54.47
12.28
75.93
61.00
49,26
26,72
26.51
15.79
12.42

8.77

9 10 11 12
231.3
203.2  694.5

136.6 602.1 651.1

-88.8 527.2 590.0 10§13

Fig. 6. Spectral Covariance Matrix for Data for

Corn Blight Watch Experiment Flight

Percent of Variance

71.05
14,40
8.49
1.72
1.22
0.93
0.75
0.45
0.41
0.24
0.19
0.13

Cumulative percent

71.05
85.45
93.94
95.66
96.89
97.82
98.57
99.03
99,43
99.68
$9.87
100.00

Fig. 7. 12 Spectral Eigenvalues for CBWE Flight
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Figure 10 shoﬁs the block diagram ﬁf the different operations invoi-
to calculate the mean square error between the inverse transformed recon-
structed Principal components and the original data.

The boundariesg of tﬁe classified biobs were printed on a line printer
of IBM 360/67 and is presented in Figure 1l1. Ar aerigl photograph related

to the ground truth is alse presented for comparison purposes.

No. Percent : Classified as
Class Points Correct Corn Forage Soybeans Forest Water
Corn 5950 99.7 5932 14 4 0 o
Forage it 9.6 160 2980 2 9 0
Soybeans 4770 98.7 21 40 4709 0 D
Forest 680 98.2 12 0 0 668 0
Water 37 97.3 0 1 0 0 3b

Overall performance (14325/14588) = 98.2% correct

Fig. 9 Classification Results Baged on First Three Principal Componentsg

Summary

In this paper it has been shown that spatial information can be extracteg
from a multispectral data image by machine and effectively used in the
classification process. The degree of improvement in classification accuracy
depends upon the amount of spatial information contained in the data. Aan
experiment was conducted on data from the Earth Resources Technology Satelliia
(ERTS).

For ERTS data there are relatively few elements per blob. Since there
is less spatial information to take advantage of, the boundary finder pro-

vides only a small degree of improvement over the per point classifier asg

illustrated by figure 12,
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‘The concept of boundary finding seems to be a fairly robust one. #p¢
the aircraft data [167] any three spectral bands were chosen at random and
the boundary findef in conjunction with the sample classifier was implementecd
to evaluate the clasgsification results. These results are presented in
Figure 13 and 14. It is evident that though this procedure involves wmore
complex computations but it produces consistently better results than the
pexr point classifier.

The variance analysig used in boundary finding in a way restricts our
choice to the Karhunen Loeve Transformation technique of feature selection.
From figures 5 and 9 we note that the Maximum likelihood Decision Rule clasg—
ifies the data with an error rate of 4.1%. The boundary finder in conjunc-
tion with Minimum Transformed Divergence method of feature selection reduces
the rate of 2% while the boundary finder implemented on the transformed data
according to k-L Transformation reduces this rate even further to 1.8%.

The identification of boundaries is important for other reasons also.
If the boundaries are easily defined and show a repetitive pattern, the posJ
sibility of data compression exists (19). This will help ia storing the
data without losing much of information by storing the field boundaries and
their clagssification. A measure of mean square error was estimated and it
is found in Figure 3 that the k-I, Transformation technique of feature selec-
tion reduces the percent mean square error quite gignificantly over the

Minimum Transformed Divergence method of feature selection.
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Per point classification results

(0.5-0.6, 0.6-0.7, 0.7-0.8 Micrometer bands)

Classified as

Class No. of Points Percent Correct Corn Soybeans
Corn 3315 88.7 2941 128
Seybeans 593 - 83.8 28 497
Others ‘ 680 41.2 230 170

Overall performance (3718/4588) = 81.0 correct

Classification results based on boundary finding algorithms

(0.5-0.6, 0.6-0.7, 0.7-0.8 Micrometer bands)

Classgified as

Clasa No. of Points Percent Correct Corm Soybeans
Corn 3315 91.2 3023 - 1z8
Soybeans 593 83.6 43 496
Others 680 ‘ 35.4 285 154

Overall performance (3760/4588) = 82% correct

Figure 12 Classification Results of the ERTS Data

246
68

280

Otheré

164



Per point classification reeults (Based on test fields)

Class
Corn
Forage
Seybeens
Forest

Water

No. of
Samples

5950
3151
4770

680

37

-26-

Channels (1,2,3)

Percent
Correct

60.1
69.7
63.5
65.0

94.6

Corn
3577
570
635
30

0

Classified as

Forage
654
2195
112
1

1

Soybeans
762
319
3628
181

1

Overall performance (9277/14588) = 63.6% correct

Forest
0
1
648
442

Classification results based on Boundary finding algorithms

Glass
Corn
Forage
Soybeans
Foreat

Water

Figure 13 Classification results using 3 original spectral

No, of
Samples

5950
3151
4766

680

37

Chatnels (1,2,3)

Peyrcent
Correct

68.6
78.4
65.6
42.4
97.3

Corn
4078
639
1556
139
0

Classified as

Forage
1740
2471

76
0

1

Soybeans
36
41
3132
253

0

Overall Performance (1005/14588) = 68.6% correct

bands of the aircraft data.

Forest
4
0
0

288

wuter
957
66
347

BB

Water

94



-29-

Per point classification results (Based on test fields)

Channels (5,7,9)

No. Percent Classified as
Class Points Correct Corn Forage Savbeans Tores: Water
Corn 5950 7.0 4700 1170 - 2 71 )]
Forage 3151 87.1 403 2744 0 4 y]
Soybeans 4770 90.7 g 157 4325 2830 o
Forest 680 96 5 4 6 8 656 b
Water 37 100 0 0 0 0 37

Overall performance = (12462/14588) = 85.47%

Classification results based on Boundary finding algovrithm
Channels (5,7,9)

No. Parcent Classified as
Class Points Correct Corn Forage Soybeans Forest water
Torn 5050 97.1 5775 167 4] 8 0
Forage 3151 80.7 607 2542 g 2 0
Soyheans 4770 94 .7 23 44 4516 187 ¥
Forest 630 99 . 4 4 0 0 K76 0
Watsr 37 97.3 0 1 0 # 36

Overall performance = (13545/14588)

Figure 14 Classification results using 3 original spectral

bands of the alverafr dos dm
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