LARS Information Note 062874

Guide to
Multispectral

Data Analysis
Using LARSYS

by
John C. Lindenlaub

The Laboratory for Applications of Remote Sensing

Purdue University, West Lafayette, Indiana
1974




GUIDE TO MULTISPECTRAL DATA ANALYSIS

USING LARSYS
by
John C. Lindenlaub
Professor of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

Table of Contents

Section Pape
Preface to the Student....cecocscceonecoeconecesrorsss i
INtroduction..ccecesessosecssoscscoasessenrensocnssens iv
1. Examination of Data QUalityeeeecosesecncscnconcces 1l
2. Coordination of Imagery with Ground Observations.. 14
3. Selection of Candidate Training SamplesS.ccecceccocs 18

4. Refinement of Training Fields and ClasseS.seseeses 29

5. Obtaining Statistical Characteristics of the
Training Samples..............0..0'..0.00IIOOOO. 56

8. Feature Selection.........I..O.Cl......l.l."l.... 63
7. Classification.‘......l.....Q...l.l.l.‘...‘....'l. 75

8. Information Extraction - Analyzing the Results.... 87

© 197 4 Purdue Research Foundation

This work was sup?orted by the National Aeronautics and
Space Administration (NASA) under grant number NAS 9-14016
izz;g%h the Laboratory for Applications of Remote Sensing

LARSYS 3.1 Version




B

Prerequisites

PREFACE TO THE STUDENT

As indicated on the flow chart for the LARSYS
Educational Package shown on the next page, this
Guide is the last component of the formal instruc-

Instructional

Objectives

References

Student-
Instructor

Interaction

tional sequence. It is assumed that vou have
mastered the objectives of the previous units.

The analysis of a set of multispectral data
can conveniently be broken down into a sequence of
steps. By the time you finish studying this guide
and the recommended references and working the
case study (i.e. carrying out a detailed analysis
yourself), you should be able to list the steps
in the analysis sequence in their proper order.
Furthermore for each step in the analysis you
should be able to:

a. give a brief explanation of the signifi-
cance of the analysis step with respect
to the whole analysis sequence,

b. discuss what analytical and/or software
tools are available to carry out the

. analysis step, and

c. apply the analysis principles to a spe-

cific problem.

Included in this last objective is the ability to
write the control card statements, run the pro-
grams and interpret the results of the LARSYS
functions used in the analysis sequence.

Throughout this guide references will be made
to other written materials. The most commonly
referenced sources are: LARSYS User's Manual,
edited by T. L. Phillips and Pattern Recognition:
A Basis for Remote Sensing Data Anailysis by P. H.
Swain (LARS Information Note 111572).%* These refer-
ences are considered to be part of this unit of
instruction.

While this guide attempts to summarize the
experiences of a great many multispectral data
analysts, there is no real substitute for talking
to someone who is already familiar with the use of
the LARSYS programs. You will find this to be
especially true when you begin working on the

*Zubsequent references to this work appear as Swain,
1972,
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UNIT 1

UNIT 11

UNIT 111

UNIT IV

UNIT vV

UNIT VI

THe LARSYS EpucATIONAL PACKAGE

Title:
Purpose:
principl

Time est

An Introduction to Quantitative Remote Sensing
Orientation to remote sensing terminology,
es and pattern recognition.

imate: 4 hours

Title:
Purpose:

Time est

LARSYS Software System - An Overview
Summary of LARSYS data analysis capabilities.

imate: 1 hour

Title:
Purpose:
procedur

Time est

Demonstration of LARSYS on the 2780 Remote Terminal
Orientation to terminal hardware and terminal
es.

imate: 1.5 hours

v -

Title:
Purpose:

punched

The 2780 Remote Terminal: A "Hands-On" Expefience
Experience in transmitting cards, receiving

and printer output, and running a LARSYS proqram

when given the control card listings.

Time estimate: 4.5 hours

)

Title:

Purpose:

LARSYS Exercises

Practice in using the terminal, writing and

executing simple LARSYS programs.

Time estimate: 5 hours

L

Title:

Guide to Multispectral Data Analysis Using LARSYS

{(with accompanying Example and Case Study)

Purpose:

Analysis of a detailed example and a case study.

Time estimate: 40 hours




Study Time

Estimate

iii

flightline analysis case study. It is recommended
that you determine who is available for consulta-
tion while you are working on this study.

After the introduction, each section of this
guide is divided into three distinct parts: (1) a
discussion of the purpose, philosophy and analysis
techniques associated with that step in the data
analysis sequence plus an example showing computer
control cards, computer output and an interpretation
of the program results; (2) exercises designed to
test your mastery of the section's instructional
objectives and (3) problems associated with the case
study flightline analysis. It is intended that a
person wishing to become adept in the analysis of
multispectral data using LARSYS will proceed through
this guide, studying the descriptive material (which
will explain why each step is important) and the
example (which will show how each step is carried
out and working both the exercises and the case stuay
(which will provide familiarization and practice
with techniques).

in addition to its primary function as an instruc-
tional tool, the example portion of this guide will
serve as a handy reference for carrying out subse-~
quent analyses.

To assist you in planning your work, the follow-
ing time estimates are given for each step in the
analysis sequence.

Estimated time
required in hours

Text and Case

Short title Example Exercises Study®
Examination of Data Quality 1 1/2 1 1/2
Coordination with Ground

Observation 172 1/2 9
Candidate Training Samples 11/2 1/2 3
Refinement of Training

Samples 2 1l 5
Statistical Characterization 1/2 1/2 2
Feature Selection 1 1/2 3
Classification 1 0 3
Results Analysis 1/2 1/2 1 1/2

Total 8 4 28

#Total time, including punched card preparation and
on-line execution of LARSYS runs.
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INTRODUCTION

Although LARSYS is a rather sophisticated data proces-
sing system for analyzing multispectral data, the analysis
process is by no means completely automatic. LARSYS provides
a facility for machine-assisted data analysis. The quality
of the results obtained depends on the difficulty of the
1nalysis problem, the nature and quality of the data being
analyzed, and the experience and ability of the analyst.

The procedures described in’'this guide are based on
several years experience gained by a number of remote sen-
sing researchers working with relatively low altitude (3000
to 10,000 feet) data taken with a scannzr having a 3-milli-
pradian instantaneous field of view. The resultant ground
resolution is of the order of from 9 to 30 feet. The major-
ity of the experience was gained analyzing agricultural
regions in the midwestern United States.

The type of analysis described here is known as super-
vised classification. Data points corresponding to known
types of ground cover are used for training samples in the
classification algorithm. If it turns out that the several
classes of interest are also spectrally distinct, the clas-
sification will be "successful." If it turns out that two
or more classes are spectrally similar, the classification
algorithm will not do a good job of distinguishing between
these classes.

A sequel to this guide will present an approach to
unsupervised classification. 1Iu this approach, the analyst
First determines spectrally distinct classes (without regard
to the actual ground cover type), performs a classification
and hen attempts to draw a correspondence between spectrally
distinct classes and cover types.

The same set of LARSYS functions is used in both super-
vised and unsupervised classifications, but the sequence in
which the algorithms are used differs. "he experience of
LARS researchers has shown that the supervised approach is
most easily applied to data collected from relatively low
altitudes over regularly patterned terrain (agricultural areas)
whereas the unsupervised approach is often the best approach
for the data collected over terrain which has not been under

man's influence.
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As a new analyzer of remotely sensed multispectral data,
you should be aware that these two different approaches exist.
Although this guide concentrates on the supervised approach,
the understanding and insights gained should provide a basis
from which variations can be made with relative ease.

The steps in the supervised analysis are:

to examine data quality

+to coordinate imagery with ground observations

to select candidate training fields and classes

to refine training fields and classes

to obtain statistical characteristics of
training samples

to select features

to do the classification

to extract information and analyze the results.

It should be pointed out that during the course of an analysis
it is usually necessary to repeat one or more times a number

of steps. This will be illustrated later in the analysis
example.



Section 1

EXAMINATION OF DATA QUALITY

Instructional Objectives for this Section

By the time you complete the reading of this section,
work the exercises and begin the case study you should be
able to:

a) state why one needs to examine the quality of the
data being considered for analysis.

b) state at least two sources of data quality informa-
tion.

c) name at least four data idiosyncrasies which might
hinder data analysis.

d) use LARSYS processing functions to look for evidence
of a gain change in a particular set of data.

Examination of Data Quality

One of the first things a remote sensing data analyst
should do is examine the quality of the data to be analyzed.
This step serves to determine whether the data is good enough
for the analysis to continue or at least gives insights
into possible limitations that might result from less than
excellent data quality.

A good first source of data quality information is the
log book maintained at LARS by the data preprocessing and
reformatting group. Typical data log information is shown
in figures 1-1 and 1-2. The first figure is a typical log
of ERTS satellite data. The second figure is an example of
an a.rcraft data log sheet. Indications of data quality
are likely to appear in the "Run Conditions and Comments"
portion of the form. Some of the same basic information
from the data log is available from the runtable. Other
information can be requested from LARS .t Purdue.

Examination of the imagery often provides clues to
overall data quality. A eries of photographs (1-3 to 1-10)
shows various kinds of data idiosyncrasies. A reference is
also given to a LARSYS run number which shows the same or
similar characteristics. You are encouraged to obtain gray
scale printouts and/or video.displays of these runs in order

to observe firsthand the various effects that can degrade
the quality of multispectral scanner data.
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RUN NUMBER:eoossccsassosse 73088100
DATE TAPE GENERATED... NOV 29,1974
TAPE NUMBER.c.... 2023 FILEaos 1
LINES CF DATAcessocscoonacesss 2320
SECONDS OF DATAceeosocoses 28441 SEC
AREA E-W 99 RM N-S 99 NM
LINE RATEsesenacsss 8l.68 LINES/SEC
TIME OATA WAS TAKEN..ses 1546 (GMT)
SUN ELEVATION.esesoseces 48 DEGREES
SUN AZIMUTHeeoosseeoaes 137 DEGREES
REVOLUTION NUMBERsseecoocscses 5702
DAY SINCE LAUNCHevsoooscssocses 409
SCENE/FRAME 1Deecassose 14091546500
FRAME IDevescsvcsccassssae 190F0CO0
STRIP IDeeccaccosscscesssssses Q000

SUN CALIBRATION DATA.ccecceocsnns
HI GAIN BAND lecoccecececsccncens
LINE LENGTH ADJUST.ceccccsccsccns *
DIRECT CATAccccosvocesocsssccscee &
CALIBRAY]ION WEDGEccssvoeconcnnces

SPECTRAL BAND LIMITS IN MICROMETERS

FLIGHTLINE IDceeeeel40915465 OHIO
DATE DATA TAKENeecossosesase 9/ 5/73
TIME DATA TAKEN.coeoseooee 0946 (LST)
PLATFORM ALTITUDEceececeese 3062000
GROUND HEADINGeesoeoesss 190 DEGREES
FIELD OF VIEW 11.43 DEG 0.1995 RAD
DATA SAMPLES/LINE/CHANNEL.es.s 3232
SAMPLE RATE 0.0617 MILLIRADIANS
LAT. AT FRAME CENTER...so 40 D 21°'N
LONG. AT FRAME CENTER... 083 D 44°'W
LAT. AT NADIRcsecescseses 40 D 18°'N
LONG. AT NADIRsesecesecsece 083 D 33'W
RUN CENTERseoe 83D 44°'W/ 40D 21°N
AQUIS{TION SITEcsecesscseses GODDARD

HI GAIN BAND 2eccecccccscacnccens
RECORNED DATAcceocescsvocveasnscce
COMPRESSED DATAcscesccscncccercce ¥
DECOMPRESSIONacseeccscasssassssce ¥
CALIBRATION.ccecoscscsccscnncccsss ¥

CHAN LOWER UPPER CHAN LOWER UPPER CHAN LOWER UPPER

1) 0.50 0.60 {2) 0.60 0.70 (3) 0.70 0.80

- - —— - - - - ——

(4) 0.80 1.10 (5) (6}
(X3 (8) (9)
(10) (11) (12)

RUN CCNDITIONS AND COMMENTS=--= LINES 1 - 2340/)1. COLUMNS 7 - 3232/1.

Figure 1-1. Log of ERTS data.
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Adlrcraft Data Storage Tape File

Run Number: 70006802

Date Tape Generated:

Tape Number:

July 10, 1972

File Number:

Lines of Data:

Seconds of Data:

Miles of Data :.

Line Rate: 12,00

Flightline Identificationpurdue rL_Lﬂ 36

bate Data Taken: _puqust 13, 1970

607 '/]005‘ Time Data Taken: 1547 hours
1 / y Adrcraft Altitude: 2000 fect
5400* Ground Heading: 22% °
450, Pieid of View: 1.4714 radians
17.3 Data Samples per Channcl Per line: 229
lines per sec. Sample Rate: £ _£218 milliradians

Spectral Bandwidth in Micrometers:

Chan Lower Upper
(1) —i0. .44
4 82 53,
) a2 _a86
(100 _.g0 .00
1y 200 260
(16) 8.00 14.00
(19) I —
(22)' — —_—
(25) e
(28) R

Data Run Conditions:
piscontinuities in data, lines 1830, 2395, 3103,

Chan
(2)

{5)

(8)

(11)
(14)
17)
(20)
(23)
(26)
(29)

Lowerx Upper Chan Lowar Upper
e 8y w30 82
L1 R L © .88 82

66 .72 9y _e72 .80
1.00 1.40 (12) _l._._Sg_ _l._._l_g_
4,50 -5.50 (15) _8.00 14,00
e (s  ___
— e vy .
— — )
I, (27) e
e a3

*0riginal data 6312 lines - tape capacity exceeded

Data Tape Comments:
Sanmpling Rate = ,37975 degreas/sanple. Thermal IR

overlay.

Run 70006801 (3 chan thexmal IR) was overlayed

on 70006800, CO for chan 16 doess not axist.

Figure 1-2.

Log of aircraft data.



Figure 1-3 shows an example of aircraft data with a geo-
metric distortion known as crabbing or skew. Notice that
roads and field boundaries appear to cross vertical roads at
an angle of about 10 degrees; however, the accompanying
photograph shows these roads to be perpendicular to the
direction of flight of the scanner aircraft. The distortion
arises in data collected by aircraft-borne scanners when
heavy cross winds require the pilot to "angle into the wind"
in order to maintain direction along the flightline. A
similar phenomenon occurs in ERTS data due to the rotation
of the earth. A rectangular image on the ground appears as a
nonrectangular parallelogram, the top edge of the image being
shifted with respect to the bottom edge by approximately 5%
of the height of the image. In addition the ERTS orbit is
not oriented due north and south. This results in a rotation
of the imagery (about 12° at 40° north latitude). While the
rotation may not be pleasing to a person used to working with
conventionally oriented maps, the rotation in itself is not
distortion in the same sense as the aircraft crabbing effect
shown in figure 1-3. Further examples of crabbing may be
observed in run 71062701, an aircraft scanner example, and
in run 72032804, an ERTS example.

Sun-angle/view-angle effects may cause "shading" in the
imagery, resulting from goniometric and/or shadowing effects.
Figure 1-4 illustrates a sun/scanner geometry which might
lead to shading effects in the scanner imagery. The severity
of the sun-angle effect depends upon time of day, time of
year, flightline direction and type of ground cover. Figure
1-5 is an example of imagery exhibiting these angle-variable
effects. Note that the right side of the picture is much
darker than the left side. Run 71062700, especially in
channel 6, also exhibits sun-angle effects.

Clouds can also degrade data quality significantly, as
shown in figure 1-6, an example of data from a satellite-
borne multispectral scanner. Heavy cloud cover can make a
particular data set useless for analysis purposes. Additional
cloud pattern effects may be observed in runs 72033000 and
72051400. In run 72033000 the segment bounded by lines 376 and
450 and columns 832 and 942 is particularly interesting to look
at.

Occasionally vyou will encounter a noisy image which may
be the result of a noisy detector, a noisy data channel, a
telemetry problem or some combination of effect. Figure 1-7
is a series of images, each progressively noisier. (These
images were produced by adding noise artifically to a good
quality data set. For further details see LARS Information
Note 102670, Random Noise in Multispectral Classification by
Steve Whitsitt.)
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Multispectral Image with Crabbing

Air Photo

Figure 1-3.Comparison of a multispectral image where
crabbing is present, and a photograph of
same area.



Left Right

Figure 1-4. Bidirectional reflectance geometry for aircraft
scanner - a cause of shading effects.

Figurel-5. Sun angle effects on imagery.
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Figure 1-6. Cloud effects.

sigma = 10 siqma = 20

Figure 1-7. Effect of noise on imagery.
(Sigma is a measure of the amount of noise added

to the original data set.)



The LARSYS system of programs provides other opportuni-
ties to examine data quality. In the airborne scanner system
the rotation of the mirror enables the detectors to look
inside the aircraft during part of the cycle. This opportunity
is used to provide calibration data. The format of the Multi-
spectral Image Storage Tapes requires the last 6 data values
of each line to contain calibration information. By using
the COLUMNGRAPH and TRANSFERDATA processing functions, you )
can examine this data and obtain some information on data quality.

As an example, figure 1-8 is a graph of the calibration
lamp output (Cl) for channel 11 of run 70003600. This par-
ticular run was one of those used during the 1971 Corn Blight
Watch Experiment. A graph of the calibration lamp output for
the whole flightline provides a mechanism for determining
whether a gain change was introduced in any of the recording
channels during the course of the flight. Also, the variance
of the CO, or dark reference sample, provides a measure of
the noiseiness of the data. An exercise is given later for
examining data quality by looking at calibration values.

Striping of multispectral scanner imagery can arise from
many sources. For example, Moiré patterns occur in the data
if the ground scene has a periodic component which results in
a beat frequency between the periodic sweep of the scanner
and the periodic component in the ground scene. Moiré pattern
effects are visible in figure 1-9. As another example, in
the ERTS scanner system six scan lines are swept out each time
the mirror oscillates. A separate set of detectors is used
for each of these scan lines. If these detectors and their
associated electronics are not properly matched (i.e. if
they don't have identical properties), a striping effect may
be noticeable in the imagery. A dramatic example may be
seen by examining Channel 1 of run 72044401, an ERTS frame
of the Lafayette, Indiana area (figure 1-10). The table
below shows mean and standard deviation information for the
output of each of the channel 1 ERTS detectors averaged over the
whole frame. Such information might be obtained from the
STATISTICS processing function by using a line interval of
six and successive starting lines of 1, 2, 3, 4, 5, 6.

Standard
Detector Mean Deviation
1 21.9 3.21
2 21.8 3.07
3 7.0 1.52
Yy 21.5 3.13
5 20.9 3.11
6 21.9 3.03



ssxxxx GRAPH OF CALIB VAL Cl *s**%x

RUN NUMBERscesesssess 10003600
FLIGHT LINE.. PURDUE FLT LN 40 TIMEceeoaasoascanasceassse 1130
DATA TAPEeescessascssssses 256 ALTITUDEcecooecccsvocoe 5000
REFORMATING DATE. AUG 12,1970 GROUND HEADING.... 90 DEGREES

DATEeeescssancocsanse 1/ 1/70

CHANNEL 11 SPECTRAL BAND 1.00 TO 1.40 MICROMETERS DISPLAYED AS.. 8 CALCODE = 1 Co = 26.85

DATA MAGNITUDE

32.00 72.00 112.0 152.0 192.0 232.0
LINE 1 I I I I I
NUMBER l-——-#----#--—-o----+----o----0—---0----0----0—---0—---4---—0-—--+—-—-4--—-*----o-—-—o-—--+----o----l

1 B

21

3 B

41 I I I

5

61

71

81

9

101

111

131 Note i

& .

15l ®«—" 1Gain Change

161

17

181

191 B

201

21

221

23 B

241

25 1 ]

261 !

217 I

281 1

29

301

31

321

33

341

35 !

361 I

371 B8 i

381 t

391 !
LINE -—-§+----+----0——--+—---0-—-—0----+---—%-——-f—-—-f—---#--—-;---—+---—0—-—-+—-—-I—-—-0—-—-+---—¢-———i
NUMBER 1

32.00 72.00 112.0 152.0 192.0 232.0

Figure 1-8. Graph of calibration lamp output showing a gain change near
line 14l.
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Figure 1-9. Moiré patterns.

Figure 1-10. Striping effect in imagery.

10
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Notice the mean value for detector 3 is very low compared to
that of the other detectors. Apparently a malfunction occur-

red in the detector electronics which resulted in the strip-
ing shown in figure 1-10. ,

Several examples of data idiosyncrasies have been illu-
strated to alert you to these possible degradations in data
quality. Although these examples of poor quality data have
been illustrated by showing an image of the data, it is
important to point out that data which might appear to be of
poor quality to the observer may not appear to be of poor
quality to the computer algorithms. A dramatic example of
this is illustrated and discussed in LARS Information Note
062273, Analysis Research for Earth Resource Information
Systems: Where Do We Stand? by David Landgrebe. (see page 3)

A highly recommended first step in the analysis of multi-
spectral data is to examine the data to get a general evalu-
ation of its overall quality. LARSYS processing functions
were used to produce the illustrations of data idiosyncrasies
shown above. The example and exercises that follow will give
you an opportunity to use LARSYS processing functions to

examine data quality.

References to LARSYS User's Manual

a) Section 4 (volume 1) of the LARSYS User's Manual,
pages 4-1 to 4-3, gives a general description of LARSYS Con-
trol Commands. The remaining pages in Section 4 describe
the individual Control Commands in detail. It is suggested
you review the REFERENCE RUNTABLE Control Command.

b) Section 6 (volume 2), pages 6-1 to 6-3, gives a gen-
eral description of LARSYS Processing Functions. The remain-
ing pages in Section 6 describe the individual Processing
Functions in detail. It is suggested you review the IDPRINT,
COLUMNGRAPH and PICTUREPRINT Processing Functions. In particular
note the last paragraph on page PIC-7.

¢) Read pages IV-1 to IV-4 of Appendix IV (volume 3) to
familiarize yourself with the format of Multispectral Image
Storage Tapes. Note especially that the last six data values
on each line represent respectively:

CO calibration value
Variance of CO calibration value
Cl calibration value
Variance of Cl calibration value
C2? calibration value
Variance of C2 calibration value.
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Example

The examples given in conjunction with each step of the
analysis include representative control card listings, com-
puter printouts and interpetations drawn form an anlysis
of flightline Cl, run 66000652,

To examine data quality and obtain an overall impression
of the data to be analyzed, the analyst requested the ID
record of the run. The listing includes identifying information
about the run (run number, flight line number, date recorded,
etc.) as well as a table of the spectral bands and calibration
values for all channels recorded on the tape.

The ID record printout gives the number of lines in the
run. This information can also be obtained using the REFERENCE
RUNTABLE Control Command. The analyst typed at the terminal:

reference runtable 66000652
and the computer typed back:
RUN NO. TAPE FILE LINES CHAN SAMP FLIGHTLINE ID

66000652 1001 1 850 12 228 PURDUE FLT LN Cl1

The number of lines of data is 950 and the number of columns
(or samples per line) is 228. The last six samples contain
calibration information, leaving 222 data samples per line.

If the analyst wished to check calibration for gain
changes he would use the following LARSYS run, plotting,
say, two channels at a time:

*COLUMNGRAPH

PRINT RUN(66000652), LINE(1,950,10), Cl
CHANNELS 1,12

END

To check all twelve channels he could run this six times
specifying different pairs of channels each time.
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. The analyst then wanted to obtain gray scale printouts
in those 9hannels that would give him the greatest distinction
between fields so he could outline boundaries. To do this

he requested a sample printout from each channel. The cards
needed were:

#PTCTUREPRINT

DISPLAY RUN(66000652), LINES (200, 500, 2), COL(1,222,2)
CHANNELS 1,2,3,4,5,6,7,8,9,10,11,12 T
BLOCK LINE(200.500.4), COL(1,222.4)

END

_On the basis of the sample output, the analyst decided
which channels gave best distinction to field boundaries.
He then acquired a complete run from those channels.

*PICTUREPRINT

DISPLAY RUN(66000652), LINE(1,950,2), COL(1,222,2)
CHANNELS 9,11

END

EXERCISES

1. Explain in your own words why it is important for
the analyst to examine the data quality before undertaking
any extensive analysis.

2. Name at least two techniques which are available to
the analyst of remote sensing data for examining data quality.

3. Name at least four types of data idiosyncrasies the
analyst may find.

FLIGHTLINE ANALYSIS CASE STUDY

As you progress through this guide you will be asked to
earry out an analysis of Segment 210, Migsion 43M of the 1971
Corn Blight Watch Experiment (run 71053900).* We begin by
examining the data quality of the run. )

1. Use LARSYS to graph calibration parameter Cl for run
71053900. Do any of the channels show noticeable gain changes?
2. The case study involves the analysis of only part of
the available data, lines 200 through 1055. Obtain gray
scale printouts for the .61-.70, 1.0-1.4, and 2.0-2.6 um chan-
nels. These gray scale printouts will be used in the next
step of the analysis.

#*A copy of this run has been made for your remote terminal
site. Consult your instructor for the proper tape and file
number.
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Section 2

COORDINATION OF IMAGERY AND GROUND OBSERVATIONS

Instructional Objectives for this Section

By the time you read the text material, work the exer-
cises and complete the next step in the case study you
shiould be able to:

a) give reasons for the necessity of ground observations
and for correlating multispectral imagery with ground
observations.

b) list at least two sources or techniques for obtain-
ing ground observations.

c) correlate the location of ground features apparent on
the multispectral imagery with those on an aerial
photograph of the same area.

Coordination of Imagery and Ground Observations

It is necessary to coordinate multispectral imagery with
known features on the ground in order to determine the row
and column coordinates of training data. (The need for train-
ing data is discussed in the next analysis step.) Sources of
ground observations include on-site visits, interpreted
aerial photographs and maps. The importance of ground obser-
vations is discussed in LARS Print 120371, The Importance of
Ground Truth Data in Remote Sensing, by R. M. Hoffer. This
information note should be read at this time.

When you are dealing with agricultural data, the anno-
tated aerial photograph provides a convenient method for
correlating multispectral imagery with ground observations.
Figure 2-1 shows aerial photographs of Segment 210 of the 1971
Corn Blight Watch Experiment. Field and tract information has
been superimposed on the middle photograph. Each tract, i.e.,
land under the control of one operator or owner, is outlined
in blue, and fields within the tracts are outlined in red.
Tracts are designated by letters (upper and lower case) and
fields within a tract are designated by numbers. Thus a
tract-letter/field-number combination uniquely identifies each
field. For example, field U4 is near the bottom of the flight-
line; field E2 is near the top.

The right-hand photo column has ground cover information
superimposed on the fields. The key to the gtround cover anno-
tations is given in the figure caption. By comparing the center
and right-hand photos, we can determine that field E2 is a corn
field while U4 is a wheat field. The ground observation infor-
mation contained on these photographs was obtained by on-site
visits.
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Figure 2-1 Color foldout showing aerial photographs of
segment 210 of the 1971 Corn Blight Watch

Experiment follows.
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Aerial Photograph and Ground Observations for
Agricultural Area in Indiana (Seg. 210 - 1971 CBWE).
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By working with multispectral imagery, an aerial nhoto-
grgph, and ground observations, the analyst can correlate
points on the multispectral image with corresponding grounc
observation points. Comparison of the two images helps the
researcher locate specific field boundaries. When vou are
working with agricultural and other man-made scenes, it is
often useful to outline with a colored pen as many roads,
field boundaries and other recognizable features as possible
on a gray scale printout of the area. Experience will show
you that it is useful to have printouts of several channels
available; features that don't show up well in one channel
may show up better in another.

Examgle

Continuing with the example analysis of run 66000652,
the analyst used an annotated photograph of the area to draw
in field boundaries on a gray scale printout. A portion of
this printout is shown in Figure 2-2. The solid lines denote
field boundaries, and the letters denote the type of ground
cover within each field. The significance of the "candidate
training samples" will be explained in the next section.

EXERCISES

1. State in your own words the necessity for ground

observations and for correlating multispectral imagery with

ground observations.
2. State at least two sources Or techniques for obtain-

ing ground observations.

FLIGHTLINE ANALYSIS CASE STUDY

With the aid of the annotated photograph of segment 210
of the 1971 Corn Blight Watch Experiment (Figure 2-1), out-
line and annotate on a gray scale printout all of the fields
lying between lines 200 and 1055. You may do this directly
on the gray scale printouts you obtained earlier or you may
generate new printouts. You may find it desirable to
use double-width printouts, i.e., every line and column, and

tape the two halves together.
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Section 3

SELECTION OF CANDIDATL TRAINING SAMPLET

Instructional Objectives for this Section

By the time you complete reading the text, consulting
the references, studying the examples of this section ar.
completing the next step in the case study analysis, you
should be able to:

a) state in your own words why it is necessarv to selecz’
training classes and training fields.

b) name at least two considerations that might go intc
the selection of training classec.

c¢) determine the practical lower limit for the number
of training samples needed per class for a given set
of multispectral data.

d) describe the use of test fields as distinct from
training fields.

e) actually carry out the process of selecting train-
ing classes and specifying, by means of Field Descrip-
tion Cards, training fields and test fields for each
class.

Selection of Candidate Training Samples

The next step in the analysis of multispectral data is
the selection of candidate training samples. We shall begin
by explaining what training samples are and why they are
needed.

The basis of remote sensing data analysis using LARSYS
is pattern recognition (Swain, 1972). The pattern recogni-
tion algorithms require that examples of typical data from
each class of interest be supplied to the computer programs.
These data, called training samples, are used to set certain
parameters for the pattern recognition algorithms, in effect,
"training" the computer to recognize the classes. Later, when
the classification operation is being carried out by the pattern
recognition algorithms, each data point (or group of data
points in the case of sample classification) is "compared"
to the training samples, and the point (or group of points)
is assigned to the "most likely" or most similar class. The
mathematical basis for pattern recognition and the classifi-
cation algorithms have been discussed in detail by Swain
(Swain, 1972).
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i

We speak of candidate training samples because experi-
ence has shown that it is wise to examine one's first choicc
of training samples in detail to see if they truly appear tc
be representative of the desired class. As an example, an
analyst using ground observations (such as the annotated photo-
graph you used earlier) might choose a particular corn field
as a training field. It may be that early spring flooding of
one corner of the field has resulted in data points from this
area being distinctly different from those in the rest of the
field. These points should be discarded since they are not
representative of the class corn.

There are two aspects of this step in the analysis: the
selection of training classes and the selection of trainin
samples (sets of data points) representing each class. In
general there is an underlying reason for wanting to classify
the data into certain classes. The reason may reflect an
economic interest, a scientific inquiry, or a feasibility
study. The important point is that at the outset one often
can not be sure whether the classes of interest are distin-
guishable, i.e., whether they are "spectrally" distinct. The
degree to which you can actually separate the classes you are
interested in will not be known until much further along in
the analysis. It may be necessary later to redefine the
classes and to repeat the analysis steps.

When selecting training classes one should draw on one's
background and experience. lor instance, an agronomist will
know that corn and soybeans are both row crops. He might
suspect that early in the spring, when there is a good deal
of bare soil visible, the two ground covers might be difficult
to distincuigh spectrally. On the other hand, later in the
growing season when the corn has tasseled, a spectral dif-
ference would be expected. A good understanding of the
interaction between solar energy and matter can also be help-
ful in selecting training classes. For instance, Figure 3-1
shows the reflectance properties of bare soil, green vegetation
and water. From the differences shown in these spectral sig-
natures, one would strongly suspect that the separation of
earth surface types into these three classes could be done
rather successfully.

The method used to choose training classes involves
gathering together information on mission objectives, ground
observations and multispectral imagery. Then, based on the
results of the previous analysis step (coordination of ground
observations with imagery) and past knowledge and experience,
candidate training classes are designated.




Percent Reflectance

— . — Water
100 -——-—Soil

———— Vegetation

Wavelength

Figure 3-1. Typical reflectance properties of bare soil,
green vegetation and water.
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Once candidate training classes are selected, the next
step is to select training samples representative of each
class and to specify these to the computer by means of Field
Description Cards. The key word here is representative.

The aim is to select training samples which are representative
in that they must effectively tell the classification algor-
ithm what typical members of the class "look like." Without

; a good description of the classes the classification prograr
cannot be expected to do a very good job of classifying.

How can you be sure samples are representative? There
is no single answer to this question, but there are some
techniques which have proved useful. If the physical size
of the field from which you are selecting data points is
large enough, it is a good idea to stay away from the physical
boundaries of the field. Figure 3-2 shows a portion of a
gray scale printout with the physical field boundaries drawn
in with a pen. Well within these physical boundaries are
rectangular areas outlined by dotted lines. The points con-
tained within these dotted lines were used as training sam-
ples. The reason for avoiding the field edges is that these
regions may be non-typical due to fence lines, ditches, access
roads, etc. If the scale of the imagery is such that the
physical fields contain only a few resolution elements, it
may be difficult to take this precaution. Training field areas
are identified to the LARSYS processing functions by the begin-
ning and ending line and column numbers. The results is that
training fields are rectangular and oriented in the direction
of the flight path. If the natural field boundaries are not
rectangular or if they have a different orientation, it may be
necessary to define the desired training area by a number of
small rectangular fields.

If ground observations are available over much of the
flightline, a reasonable approach is to "scatter" training
fields somewhat uniformly over the flightline.* This scat-
tering would tend to minimize any effects caused by changes
in geography, agricultural practices or climatic conditions.
Figure 3-3 shows some examples of how training fields might
be selected.

How many data points are needed for training? Before giv-
ing a direct answer to that question we'll go into a little more
depth on how the training samples are used by the classifica-

tion algorithm. The algorithm is based on the assumption

#An exception to this rule would be if the objective of the
analysis were to determine the extent to which training samples
chosen from one area could be used to classify data from another
area.
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O 0o

Various ways to "scatter" training fields

Which scheme do you think
is best? Can you construct circumstances where
each scheme would be best?

along a flightline.
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that each of the classes can be characterized by a multi-
dimensional Gaussian probability density function. Each

density function is in turn specified by its mean vector and
covariance matrix. The classifier requires estimates of the
mean vector and covariance matrix for each class from the
training samples. In general, the accuracy of the estimate
tends to increase as the number of data points used for train-
ing increases. This suggests that you should use as many as
possible**, Theoretically a lower bound on the number of train-
ing data points for any class is n ¢ 1 where n is the dimen-
sionality of the data vector (number of channels) used by the
classifier. Fewer than n + 1 points leads to a singular co-
cariance matrix which the classifier cannot use. A practical
lower limit is about 10n, but 20n to 100n is desirable if

enough ground observations are available.

The Concept of Test Fields

As deseribed above, training fields are used by the clas-
sification program to establieh a bastis for assigning each
data point to one of the classes. To assess the success of
the classification, a second set of fields, knoun as test fields,
is used. A more detailed explanation of test fields will be
given later. Briefly they are used in the following manner:
after the elassification has been completed, the computer i8
given additional information about the actual ground cover
type for a set of test fields. The system then compares the
claseification results with the known cover type and tabulates
the number of correct and incorrect classifications. An
example of the output is shown in Figure 3-4.

The concept of a test field is brought up at this point
because the selection of test fields can conveniently be made
at the same time training fields are selected. Test fields
should also be representative of the clasgses because they are
uged to estimate the overall accuracy of the clasasification.
Working with ground observations and multispectral imagery,
the analyst usually outlines as many field boundaries as he
can, and then for each class chooses a subset for training
and another, usually larger, subset for testing. The two
subsets must be distinct in order to avoid btiased results.

#%0ne must not get carried away however. In the analysis which
you are carrying out in conjunction with this study, you have -
ground observations for all fields. It would not be reasonable
to choose data points from all fields as training samples.
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Summary

This step in the analysis logically breaks down into
two parts. First, working from your own background experi-
ence and the results of coordinating the multispectral imagery
with ground observations, you choose candidate trainin
classes. Second, you specify training fields and test fields
Tor each class and check to defermine whether a sufficient
number of data points has been included in each training class.

References

Field Description Cards are described on pages 2-27 and
2-28 (volume 1) of the LARSYS User's Manual. When reviewing
this material, pay particular attention to the second format.
This is the format usually used for specifying training and
test fields.

Examgle

Refer again to Figure 2-2 (page 17). The analyst of
flightline 66000652 designated the cover types, as obtained
from ground observations, by mean of letters in the upper
right-hand corner of each field. Five classes were chosen
as candidate training classes: Oats, Corn, Wheat, Soybeans
and Grass. Grass actually is a catch-all, including spec-
trally similar red clover, hay, rye, pasture, and diverted
acres. The analyst felt that the number of data points
available for each of these five cover types was inadequate
for specifying training and test fields; thus he combined
them into one class, Grass. The area under study also con-
tained water, roads, bare soil and towns. No classes were
designated for these items; the majority of them, if they
were spectrally dissimilar from the training classes (a
reasonable assumption), would be "thresholded" in the clas-
sification results. Thresholding will be described later.

After deciding what initial classes to use, the analyst
specified training and test fields for each class. The boun-
daries, identified with dashes on Figure 2-2, delimit the areas
used for training and test fields.

EXERCISES

1. State in your own words why it is necessary to
select training fields and training classes.

2. What is a practical lower limit on the number of
training points needed for a given class.

3. Name at least two factors that go into selecting
training classes.

4, What are test fields used for? How are they used as
compared to training fields?
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5. Assume that training classes have been selected.
Describe a technique that might be used to select training
and test fields for the classes.

FLIGHTLINE ANALYSIS CASE STUDY

1. The first step in this phase of the analysis is the
selection of candidate training classes. By now you should
have gained some familiarity with the data in run 71053900,
Examine the ground observation information given in figure
2-1 and select a set of candidate training classes.

2. Using the annotated gray scale printout you pre-
pared earlier and the set of classes decided on above, select
both candidate training and test fields for each class.
Prepare Field Description Cards for each field. Be careful
to keep your training fields separate from your test fields.

The Field Description Card format is shown in figure 3-5.



FIELD DESCRIPTION CARD CODING SHEET

Page

Run Field First | Last Line First | Last Column | Field | Additional
Number | Designation Line | Line Interval| Column | Column |Interval} Type Information
(1-8) (11-18) (21-25)](26-30)] (31-35)| (36-40))(u41-45)} (46-50) {(51-58) (59-72)
N
oo

Figure 3-5.

Field Description Card format.
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Section U

REFINEMENT OF TRAINING FIELDS AND CLASSES

Instructional Objectives for this Section

Upon finishing the reading, exercises and case study

work associated with this section you should be able to:

a) explain in your own words why refinement of train-
ing fields and classes is desirable.

b) explain in your own words the reasons for sub-
classes and the conditions under which you would
define them.

c) when given typical clustering program output:
-determine whether or not subclasses should be
defined, and if so, properly define them

-alter training field boundaries to improve
homogeneity of the training fields

-decide whether or not further clustering analysis
is required.

d) carry out the refinement of an initial set of train-
ing data.

Refinement of Training Fields and Classes

The use of the word "candidate" in the previous step in
the analysis implied that the initial selection of training
fields would be followed by additional analysis to determine
if the choices were good ones. This analysis involves the
refinement of training fields and classes.

The question of why the training samples have to be
refined needs to be answered in terms of the algorithm used
for classification. This algorithm is based on the assumption
that the data for each class can be described by a multidimen-
sional Gaussian density function. The degree to which this
assumption is true affects the accuracy of the classifier.

The purpose of the refinement step in the analysis is to check
the validity of this assumption.

Clustering

The analysis tool available for examining the statistical
characteristics of the data is the clustering program. What
clustering is and how the clustering algorithm works is des-
cribed in pages 27 through 36 of Swain, 1972, It is sugges-
ted that you now read this material. '
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Satisfying the Gaussian Assumption - The Subclass Concept

How is clustering used to refine training field selec-
tion? Recall we will be using a classification algorithm
which is based upon a Gaussian assumption, i.e., that the
data can be approximated by a Gaussian density function.
Figure u4-1 (a) shows a typical Gaussian function in one
dimension while Figure ui-1 (b) shows a two-dimensional
Gaussian density function. Clustering the training samples
for each class gives an idea of whether or not the training
samples tend to be Gaussian and, more importantly, provides
a mechanism for dividing the training classes into approxi-
mately Gaussian subclasses if the original data is non-Gaus-
sian. This latter idea is illustrated in Figure y-2.

Figure 4-2 (a) shows a multimodal non-Gaussian density func-
tion. Figure 4-2 (b) illustrates how this density may be
broken into two components each of which has a Gaussian
characteristic. The clustering program is used to determine
whether or not the training samples tend to group themselves
into distinct clusters. If they do, the original class is
divided into subclasses corresponding to these clusters.

The subclass concept is further illustrated in Figure
4-3. This flow chart shows the progression of class and
subclass formation and recombination in relation to the
total multispectral data analysis sequence. When the analyst
first selects classes, he can not be sure that these classes
will be spectrally separable. It is also not clear that
the class training samples will satisfy the Gaussian assump-
tion. The concept of subclasses and grouping of classes pro-
vides a technique for dealing with these uncertainties.

The clustering program gives an indication of whether
the training classes satisfy the Gaussian assumption. If
the original training samples are represented better by
two or three subclasses, then subclasses are specified. No
effort is made to distinguish between subclasses in either
the feature selection or classification steps of the analysis.

Illustrations of Clustering Program Output

Perhaps the best way to illustrate how the clustering
algorithm is typically used to refine training fields is by
example. Figures u-4, u-5, and 4-6 show cluster maps for
three soybean fields selected as candidate training fields.
The soybean training samples have been clustered into four
clusters. Figure 4-4 shows that all samples from field
L46 fell into cluster 4, and most samples from field
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P(x)

0 X

Figure 4-la. Gaussian density function in one dimension.

P(x{ ,X2)

AN

Figure 4-1b. Gaussian density function in two dimensions.



Px)

32

VARNS

o)

Figure 4-2a. Multimodal non-Gaussian density function.
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Figure u4-2b.
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Multimodal function decomposed into two
Gaussian components.
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Figure 4-3. Flow chart showing the progression
of class and subclass formation.
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L40 fell into cluster 1. The sample points for field 28,
Figure 4-6, fell into two clusters. Examining the separ-
ability information, Figure 4-7, it can be seen from the
quotient column that clusters 2 and 3 are spectrally
similar, that is the quotient is less than .75. Therefore,
field L28 can be used as a training field as it is. Figure
4-7 also shows that the other clusters are spectrally dis-

tinet (QUOT values > .

References

Pages 27 to 36 of Swain, 1972, have previously been
recommended as background reading on cluster analysis.

Pertinent pages in Section 6 (volume 2) of the LARSYS
User's Manual are CLU-1 to CLU-16 for a discussion of the
¢Tustering processing function and pages CLU-17 to CLU-20
for a discussion of the algorithms used in the program.

Examgle

The analyst realized that the success of the classifica-
tion depends on the careful selection and distribution of the
training fields. Frequently significant spectral variation
may be observed among fields containing the same crop. (For
example, as you will see, the analyst found three significant-
ly different subclasses of oats in this run. This could
have been due to different soils, moisture, planting dates,
crop density, and/or seed brands. To maximize accuracy the
analyst needed to divide his classes into spectrally differ-
ent subclasses.) The analyst used CLUSTER in the following
way:

®CLUSTER
OPTIONS MAXCLAS(6)
! CHANNELS 1,6,10,12
DATA
[field description cards for Oats]
J END
‘ *CLUSTER
OPTIONS MAXCLAS(6)
CHANNELS 1,6,10,12
DATA
[field description cards for Corn]
END
*CLUSTER

(continue until all classes are represented)
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The "6" in MAXCLAS(6) caused six clusters to be formed. The
analyst chose six initially by a rule-of-thumb estimate of
"twice the expected subclasses."

Four channels were chosen for the clustering analysis.
This number is a compromise dictated by the constraints of
computer storage capacity and computation time. The processor
can cluster slightly less than 40,000/n vectors, where n is
the number of channels used. (See page CLU-6 of LARSYS User's
Manual.) When choosing a subset of channels to use for
clustering, it is usually a good idea to choose the channels
so as to obtain a good representation of the spectral range
covered by the multispectral scanner.

Figure 4-8 illustrates the output for the initial clus-
tering of each of four oats training fields. (For the pres-
ent, ignore the markings on the fields.) One way of deter-
mining subclasses is shown in figure 4-9. The analyst wrote
the numbers 1 through 6 in a circle.. He then connected the
pairs of numbers that have small separability quotients (less
than 0.8 in this case). The separability quotients between
clusters 1 and 2, 2 and 3, and 1 and 3 are all less than 0.8.
However the quotients between clusters 1, 2, and 3 and the
remaining clusters are all larger than .9. Thus the analyst
decided to lump clusters 1, 2, and 3 into one subclass. He
then looked closely at the clusters 4, 5, and 6. The distance
between clusters 4 and 6 is .55. The distance between 4 and
5 is .81 but the distance between 5 and 6 is .93. Clusters
4, 5, and 6 could be grouped as a second subclass but the
analyst decided to be more cautious and make 4 and 6 the second
subclass and 5 a third subclass. This procedure for grouping
cluster is included in the CLUSTER processing function and
the last page of CLUSTER output provides a table of suggested
groupings. You should read the pages on CLUSTER in Volume 2
of the LARSYS User's Manual for more information.

The analyst went back to the clustered field printouts
shown in figure 4-8., He marked representative fields for
each of his subclasses and made new Field Description Cards.
Just to see how "solid" his subclasses were, he reran the
clustering for oats using the new Field Description Cards and
MAXCLAS(4). The analyst might have chosen MAXCLAS(3) because
the previous analysis had resulted in three distinct clusters
but he was curious to see if requesting four clustérs would
still result in three distinct clusters. The resulting output
is shown in figure 4-10 and 4-11. The subclasses were divided
into different, highly separable clusters except for Oats 3
which combined two clusters. The two clusters, 1 and 2, are
close to each other (separability quotient = 0.62) and as a
pair are highly separable from the other two clusters. Thus
three separable subclasses are maintained. Note the calcula-
tions on figure 4-11 to determine the approximate number of
data points in each subclass. All subclasses contained suf-
ficient data points for, say, a Y-channel classification (nz=4),
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Figure 4-8a. Initial cluster map for field 25. Markings indicate analyst's interpre-

tation of the output. . £
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Figure 4-8c. Initial cluster map for field 28. Refinement of boundaries for
eliminating cluster 4 points is shown.
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Figure 4-10b. Cluster map for refined OATS training field.
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but if the analyst had been planning to use all 12 available
channels (n=12), then the 126 points in subclass 3 would
have been at best marginally adequate.

The analyst did a similar analysis on the other candi-
date training classes and arrived at a total of 17 subclas-
ses for the entire run.

Note that in the card setup used by the analyst the
IPNUMBER.card was not used. Because of the number of itera-
tlons.whlch are often required when refining training classes
and fields, it is recommended that you use an IDNUMBER card
to help identify your output.

Comment: The clustering algorithm is easily the least under-
stood of the LARSYS analysis algorithms. The details of

its use are sometimes very much problem and data-dependent.
For instance, in the example above, clustering into "twice
the expected subclasses" and use of 0.75 as the breakpoint for
cluster separability are strictly rules of thumb, although
they have been pretty well established for crop classifica-
tion problems by extensive experience with agricultural data.
The analyst may use these suggestions as a starting point

for his work, but he is encouraged to be flexible and to
experiment with the use of this algorithm as applied to his
particular problem.

EXERCISES

1. Write a brief statement explaining why it is desir-
able to refine the training samples.

2. Prepare an outline from which you could give a
three or four minute talk explaining the concept of subclas-
ses and why they are used.

3. Figures u4-12, 4-13, 4-1h and 4-15 show clustering
output for a corn training class. Analyze this output show-
ing how you would refine field boundaries and select sub-
classes.

FLIGHTLINE ANALYSIS CASE STUDY

Use the clustering program to refine the training sam-
ples you selected earlier for run 71053900. Assume initi-
ally five or six clusters for each class. Analyze the
cluster maps and separability information for each class and
divide the training classes into subclasses where appropriate.
Refine training field boundaries as needed. You may wish to
take advantage of your instructor's experience at this point
in the analysis. Consult him after you get your initial

cluster maps and discuss refinement alternatives.
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Section 5§

OBTAINING STATISTICAL CHARACTERISTICS

OF THE TRAINING SAMPLES

Instructional Objectives for this Section

After you have read this section, examined the LARSYS
User's Manual references, worked the exercises and completed
The next part of the case study, you should be able to:

a) state what is meant by the statistics of a training
class

b) explain why statistics are needed

c) be able to use the LARSYS processing functions to
obtain the training statistics when you have been
given the Field Description Cards for a set of
training classes.

Obtaining Statistical Characteristics for the Training Samples

Once the training samples have been selected and refined,
the next step in the analysis is to obtain the training sam-
ple statistics. Recall our earlier mention of the fact that
the classification algorithm is based on the assumption that
the various classes (and subclasses) can each be characterized
by a multivariate Gaussian probability density function. These
density functions are defined in terms of their mean vectors
and covariance matrices. The training samples are used to
estimate the class mean vector and covariance matrices.

The LARSYS statistics processing function is used to

\ compute the training statistics. The analyst usually obtains

! the statistics in punched card form. The "statistics deck"
will be used in later steps in the analysis. In addition to
the mean and covariance information, the statistics processor
can produce histograms of the data for the training fields

and classes. Examples of histograms from channels 5, 8 and

12 are shown in figure 5-1. Typically the multispectral data
analyst will request histograms for a representative set of
channels for each class. A glance at these histograms serves
as a partial check on whether the training samples are dis-
tributed in an approximately Gaussian manner. (This is only

a partial check because the marginal density functions rep-
resented by the histograms do not necessarilv reflect the
nature of the multidimensional density function.) If a multi-
modal density function (two or more maximum points) appears,
it is an indication of an non-Gaussian situation. Examination
of the histograms for individual fields might reveal the reason
for this condition.
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References

Pages STA-1 to STA-22 of the LARSYS User's Manual describe
the STATISTICS processing function. A general description of
the processing function is followed by a detailed discussion
of the input control cards and examples of the printed output
are given.

Examgle

After examining the candidate training fields and clas-
ses, selecting field boundaries and defining subclasses, the
analyst was ready to obtain the statistical characteristics
of the training samples. A necessary output at this stage is
a punched statistics deck, needed later in the analysis. The
analyst wanted to look at some histograms of his subclasses
for a partial check on whether they were Gaussian in nature.
The control card deck used was:

*STATISTICS
OPTIONS HIST(1,6,10)
PRINT HIST(C)
PUNCH
CHANNELS 1,2,3,4,5,6,7,8,9,10,11,12
DATA
CLASS OATS 1
(Field Description Cards for Oats 1)
CLASS OATS 2
(Field Description Cards for Oats 2)

(continued until all 17 subclasses were listed with appro-
priate Field Description Cards)
END

If the class histograms had been seriously multimodal,
the analyst would have looked at his clustered output again to
refine his fields further. He may have decided to rerun the
clustering program with his refined fields to check for uni-
form subclass representation. For example, figures 5-2, 5-3
5-4 show the histograms of the subclasses Oats 1, Oats 2,
and Oats 3. Since there were no seriously multimodal histo-
grams, the analyst decided not to change his training fields
further. He then moved on to the next step.

EXERCISE

State in your own words what is meant by the phrase
"training class statistics" and why the statistics are required.
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FLIGHTLINE ANALYSIS CASE STUDY

Using the training field description cards obtained in
the refinement step of your analysis of run 71053900, use the
statistics processing function to obtain a punched statistics
deck for your training classes. Also obtain histograms for
each class in a representative set of channels.
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Section 6

FEATURE SELECTION

Instructional Objectives for this Section

Study of this section and its associated references,
exercises and case study step should enable you to:

a) state, upon being shown two pairs of one-dimensional
density functions, for which pair the statistical
distance between the density functions is largest.
Your choice should be supported by one or two reasons
for making the decision you did.

b) state the general (not exact functional) relationship
between statistical distance and probability of cor-
rect classification. ,

c) examine the output of a separability run and, based
on this examination, select a subset of channels for
use in the classification program, supporting your
choice of channels with some sound reasons.

d) use the SEPARABILITY processing function of LARSYS to
select a subset of channels for use by the classifica-
tion algorithm when you have been given the statistics
deck.

Feature Selection

The Introduction (pages 1 to 3) of Swain, 1972, provides
a brief discussion of the role of feature selection in the
overall sequence of multispectral data analysis. You should
read this material at this time.

Swain points out that the feature selection operation in
LARSYS may be described as the selection of a subset of the
components of the measurement vector. One might ask the
question, "Why not use all of the measurement vector compon-
ents?" On the surface it would appear that the more features
available, the better job one could do. A closer examination
of the problem reveals that the computation time goes up
substantially as more features are used. Furthermore, Marill
and Greene* give examples which show that in some cases fewer
features can be more effective than a larger number. The
important point to recognize is that trade-offs exist between
classification accuracy, computation time and the number of
features. The purpose of the feature selection step in multi-
spectral data analysis is to help optimize the trade-off

between classification accuracy and computation time. For

#Marill, T., and Greene, D. M., "On the Effectiveness of Receptors
in Recognition Systems," IEEE Transcations on Information Theory,
January, 1963.
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12-channel aircraft scanner data, studies have shown that as
few as four or five channels can be used without seriously
affecting classification accuracy. Thus, in the analysis of
a typical aircraft scanner mission, the feature selection
algorithm is used to determine the best subset of four chan-

nels.

In order to interpret the output of the feature selec-
tion program, one needs an understanding of the concept of
"statistical distance." Recall that the classification
algorithm is based on representing the classes in terms of
multidimensional probability density functions. Two cases of
two-dimensional density functions are shown in figure 6-1.

It is obvious that the "distance" between the density func-
tions in case b) is greater than in case a). One would also
expect that the greater the statistical distance between
density functions, the better the classification accuracy.
This statement is true, but the functional relationship be-
tween accuracy and statistical distance is very complicated
(see Swain, 1972 and LARS Information Note 020871, Comparison
of the Divergence and B-Distance in Feature Selection by
Swain, Robertson and Wacker).

A number of statistical distance measures exist. We
need not concern ourselves here with the mathematical defini-
tions but should recognize that the distance between two
probability density functions depends not only on the
Fuclidean distance between the mean values but also on the
"spread" of the data. Figure 6-2 jllustrates this point.

In parts a) and b) of the figure, the Euclidean distance
between the mean values are equal, but in part b) the smaller
variances result in a larger statistical distance between the
two density functions.

The statistical distance concept is defined for a pair of
distributions, but remote sensing applications usually involve
more than two classes. Two methods of handling this situation
are available in LARSYS. The first is to rank the feature
subsets in terms of the average distance between all pairs of
classes. The program provides the capability of weighting
different pairs of classes differently in computing the average
distance. This is a useful option because it allows the assign-
ment of priorities according to the need to correctly distin-
guish certain pairs of classes. To illustrate this point
assume a Situation in which four training classes have been
defined:

Bare soil BSOIL
Water WATER
Vegetation 1 VEG1
Vegetation 2 VEG2
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(Fipure 6-1a)
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(Figure 6-1Db)

Density functions which vary in "distance"

Figure 6-1.
from each other.
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(Figure 6-2a)

Py (\) Ry (N)

Figure 6-2.

(Figure 6-2b)

Each pair of the above distribution functions
has equidistant means. But the smaller variance
in Ps()) and P, (A) cause them to have a larger
statistical distance.
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Further assume that the initial desire was to classify the
region into three classes: bare soil, water and green vege-
tation. Refinement of the training samples by means of the
clustering program revealed that two vegetation subclasses
existed, perhaps row crops and sown crops. In two-dimensional
space the data might look like that shown in figure 6-3.
Since the original analysis objective was to map three
classes, a large separation between the subclasses VEGl and
VEG? is unnecessary. A classification mistake between
subclasses VEGl and VEG2 is immaterial since both belong to
the same class, green vegetation. 1In such a case the
distance between these subclasses would be given a lower
weight. A reasonable weighting scheme between the various
subclasses is shown in figure 6-U.

One difficulty with just looking at the average separation
is that one large term in the average can overshadow the
other terms. As an example look at figure 6-5. Part a) shows
a situation which would result in a larger average separation
than figure 6-5 b), and yet better overall separation is pos-
sible in b). This suggests looking at the minimum pairwise
separation as well as the average separation. We shall see
in a moment how this may be accomplished with the separability

processing functions.

~To get a feeling for typical numerical values of separ-
ability we'll examine some processing output. The output from
a typical run is shown in figure 6-6. Various combinations of
four channels are listed along the left. These combinations
have begn.listed according to decreasing order of average
separability. The weighting coefficient for the various class
pairs are given at the right, in parentheses below the symbols
(letters) for each class pair. (In this case, the weight is
ten for every pair.)

Notice that the largest separability appearing in the
table is 2000. The statistical distance measure employed has
the functional form shown in figure 6-7. The program has been
yrlt?en so that the saturation value is 2000. Generally speak-
ing it has been observed that reasonably good classification
accuracies will be obtained if the statistical distance is on
the order of 1700 or larpger.

References

Section 6 (volume 2) of the LARSYS User's Manual gives an
extensive description of the SEPARABILITY processing function.
Skim this mgterial in order to familiarize yourself with what
is covereq in these pages. As you proceed through the example
and exercises you may wish to study portions of the User's
Manual in more detail.




Figure 6-3.

Figure 6-4,
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Data distributed into four clusters.
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Weighting scheme for computing average
separability.
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(Figure 6-5a)

(Figure 6-5b)

Figure 6-5. Although the average separation is larger in
figure 6-5a, the distribution in figure 6-5b is
more desirable from the standpoint of separating
all three classes.
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Examgle

The analyst was now ready to determine which combination
of four channels out of the twelve available would give the
best classification results. To do this he used his statis-
tics deck and the SEPARABILITY processing function. The
control cards used were:

*SEPARABILITY
COMBINATIONS 4
SYMBOLS A,B,C,D,E,F,G,H,I
WEIGHTS ABC(0), DEFG(0),
CARDS READSTATS
OPTIONS SORT
DATA
STATISTICS deck with twelve-channel statistics from
previous STATISTICS run
END

> NOPQ(0)

The weights card was used to assign zero weights to subclasses
of the same basic cover type.

The processor looks at all combinations of four channels
out of the possible 12 and lists the top 30 combinations,
ordered such that the first combination listed has the largest
minimum divergence between classes (since OPTION SORT was
specified). Based on the output of this run, a portion of
which is shown in figure 6-8, the analyst chose channels 1,

6, 8, 12 to use in the classification program.

EXERCISES

1. Examine figure 1, page SEP-4, volume 2, of the
LARSYS User's Manual and select the subset of three channels
you would recommend for use with the classification program.
Give reasons for your choice.

2. State the general relationship between statistical
distance and probability of correct classification.

FLIGHTLINE ANALYSIS CASE STUDY

The statistics deck you obtained from the statistics
processor may by used as input to the separability program.
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Write out the control cards and run the SEPARABILITY proces-
sing function to find the best combination of four channels
for the segment of flightline 210 which you are analyzing.
You should note that when you ran the STATISTICS processing
functions an order was established for your classes and sub-
classes. When the statistics deck is used with the separ-
ability program, this same class order is preserved. Keep
this in mind when preparing the SYMBOLS card.
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Section 7

CLASSIFICATION

Instructional Objectives for this Section

After finishing this section and its associated exer-
cises and case study work you should be able to:

a) name two classification algorithms implemented in
LARSYS and give at least one distinction between
them.

b) carry out a classification analysis (write control
card statements, run the processors and interpret
the results) when given the statistics deck and
output from the feature selection step of the analy-
sis.

Classification

In many respects this step in the analysis is the cli-
mactic step. Previous steps have been directed toward obtain-
ing classification results, a substantial achievement in the
process of reducing remote sensing data to useful information.
It is possible that the first machine classification for a
particular analysis task will not be satisfactory. It may be
necessary to revise some decisions made in previous steps,
perhaps even as far back as the selection of training classes.
While this might seem to be a drastic revision, bear in mind
that initial training classes are usually based upon what you
would like to separate or distinguish. The classification
prorcess may reveal that some of the initially chosen classes
are not spectrally distinct and that a revised set of classes
needs to be defined in order to get maximally useful results.
(As your analysis skill improves, you may be able to recognize
this kind of difficulty earlier in the analysis sequence -
perhags in the training field and training class refinement
step.

Two classification algorithms are available in LARSYS.
They are known as "point classification" and "sample clas-
sification." The distinction between these two approaches
is illustrated in figure 7-1 for a two-class, two-feature
analysis. In the case of point classification, each data
point is classified individually. The likelihood function
is calculated and the point is assigned to the most likely
training class. In sample classification a group of data
points (a statistical sample) all assumed to represent the
same type of ground cover is classified as a group. Clas-
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sification is based on using the group of data points to
estimate the mean vector and covariance matrix of a Gaussian
density function associated with the group and comparing the
statistical distance between this density function and the
density functions of each training class. The group of data
points is assigned (classified) to the class which is closest.

Figure 7-2 summarizes the important features of the two
classification algorithms which are available in LARSYS. While
both algorithms assume that the training classes may be rep-
resented by multidimensional Gaussian probability density
functions, the philosophy of each approach is quite different.

Both programs require a statistics deck as part of the
input to the program. The statistics deck, obtained from a
previous step in the analysis, specifies the mean vector and
covariance matrix of each training class. Both classification
programs also require that the channels to be used for clas-
sification be specified. The choice of channels is based on the
results of the feature selection step in the analysis.

The area to be classified by the point classifier is
specified on one of the input control cards. Test fields are
used to estimate the performance of the classifier. You will
recall that two sets of fields were specified using ground
observation information. One set, designated "training fields,"
is used to train the classifier. The other set is called
"test fields." After classification of the data points, the
computer is given additional ground observation information
about the test areas. The computer emamines and tabulates
the classification decisions for each test field and each
test class. These tabulated results assist the analyst in
assessing the reliability of the classification results. The
point classifier also produces a classification map with each
class represented by a different symbol.

The areas (fields) to be classified by the sample clas-
sifier are supplied to the computer by means of Field Descrip-
tion Cards. When ground observations are available, these
same fields can serve as test fields for evaluating the per-
formance of the classifier. Tables are printed to indicate
how each field was classified. The sample classifier does
not produce a classification map.

Point classification requires the use of two LARSYS
processing functions. CLASSIFYPOINTS carries out the clas-
sification of each data point in the area specified and stores
the results on the tape or disk file. PRINTRESULTS produces
a classification map from the results file and tabulates train-
ing and test performance. Sample classification is accomplished
by using the SAMPLECLASSIFY processing function alone.




Control Function
Name

Basjic Philosophy

Assumptions

Basic
Program Inputs
Required

Output

feference

Point Classification

*CLASSIFYPOINTS and
*PRINTRESULTS

Each data point to be classified
is compared to the training sam-
ple statistics. The data point

is assighed to the "most likely"
class. Each data point is clas-
sified individually.

Each class can be represented
by a multidimensional Gaussian
probability density function.

Statisties Deck

Channels to be used
Area to be classified
Test field specification

Classification map
Tabulation of training and
test fields and/or class
performances
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Sample Classification
*SAMPLECLASSIFY

A group of data points (a
statistical sample) to be
classified is compared to the
training samples of each
class. The entire group
(sample) is assigned to the
class whose statistics "most
nearly resemble" the statis-
tics of the sample to be
classified.

Each class can be represen-
ted by a multidimensional

Gaussian probability densit
function. .

Statistics deck
Channels to be used
Test field specification

Tables showing test and
training field performance

For more precise explanation of the phrases "most likely"
and "most nearly resemble" see Swain (LARS Information Note

111572).

Figure 7-2. Summary of important features of the two LARSYS
classification programs.
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References

Swain, 1972, gives a deeper treatment of the theory
behind both point and sample classification. Point classifi-
cation is covered in pages 3 through 20; sample classification
in pages 36 through 39. Consult this reference for a more
detailed discussion of the LARSYS classification algorithms.

Three processing functions CLASSIFYPOINTS, PRINTRESULTS,
and SAMPLECLASSIFY are used in the classification step of
the analysis. The appropriate parts of section 6 (volume 2)
of the LARSYS User's Manual should be consulted as required.

Examgle

After deciding which four channels to use, the analyst
was ready to classify the data. In this example he used
point classification, using the CLASSIFYPOINTS and PRINTRESULTS
processing functions. The programs were run "back-to-back"
with the following deck:

*CLASSIFYPOINTS
RESULTS DISK
CARDS READSTATS
CHANNELS 1,6,8,12
DATA

STAT deck from previous STATISTICS run
DATA
RUN(66000652), LINES(1,950,2), COL(1,222,2)
END
*PRINTRESULTS
RESULTS DISK
PRINT OUTLINE(TRAIN,TEST), TRAIN(F,C), TEST(F,C,P)
SYMBOLS 0,0,0,C,C,C,C,W,W,W,S,5,5,G,6,G,6
THRESHOLD 17%* 0.1
GROUP 0ATS(1/1,2,3/), CORN(2/4,5,6,7/), WHEAT(3/8,9,10/)
GROUP SOYB(4/11,12,13/), GRASS(5/14,15,16,17/)
BLOCK RUN(66000652), LINES(1,950,2), COL(1,222,2)
DATA
TEST 1

(Field Description Cards for Oats test fields.)
TEST 2

(Field Description Cards for Corn test fields.)

TEST §
(Field Description Cards for Grass test fields.)

END
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There is a considerable amount of information given in
the output of these processors. Samples follow.

Figure 7-3 is a section of the classified map. Each
point has either been classified into one of the five major
classes or thresholded (represented by a blank) as being very
unlike any of the classes. The test fields and training
fields have been outlined. Figure 7-4 tabulates the training
field performance; figure 7-5 the test field performance;
Tigure 7-6 the training class performance; and figure 7-7 the
test class performance.

Although the results were generally good the analyst
examined the weak areas. For example in figure 7-4 the
field L6 (corn) was classified only 53% correct: 19 samples
were classified as corn, 16 as grass and 1 as oats.. The
analyst then looked at L6 in the cluster program output. All
the points in the field were from the same cluster. The other
corn training fields were about 80% correct and all the test
fields were above 80% correct. The relatively poor classifi-
cation result of field L6 led the analyst to check his ground
observation data to see if an error had been made in desig-~
nating L6 as a corn field. No error was found. Had a mis-
take been made it would have been reasonable to delete L6
from the corn training data.

It is not uncommon to repeat the analysis sequence in
order to refine a classification. In general there are
several ways one may work to improve performance. One way
is to further refine the, training class definition by elimina-
ing nonrepresentative, nonessential fields. A field is
"nonessential™ if,after it is eliminated, all training sub-
classes are still representated by at least 10n sample points,
(where n is the number of channels used in the classification).
Another way is to substitute new training fields for ones that
are felt to be nonrepresentative. A third would be to add
cards to either form new subclasses oOr give more sample repre-
sentation to existing ones. In all these cases the STATISTICS,
SEPARABILITY, CLASSIFYPOINTS and PRINTRESULTS processing :
functions would need to be rerun. The second and third approa-
ches would also require use of the clustering algorithm.

FLIGHTLINE ANALYSIS CASE STUDY

1. Using products from previous steps, classify run
71053900 using the point classification algorithm. Set up
the control cards so that you will get as output a classifi-
cation map and tables showing the performance for all fields
and classes, both training and test.
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2. Use the sample classifier to classify the same set
of test fields as used in 1 above.
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Section 8

INFORMATION EXTRACTION - ANALYZING THE RESULTS

Instructional Objectives for this Section

Upon completion of this section you should be able to
list at least three types of information that can be extrac-
ted from the results of a classification analysis. You
should also, by studying some of the references listed, be
able to gain insights into information extraction techniques
for particular application areas.

Information Extraction - Results Analysis

The last, and in some respects the most important step,
is results analysis. What useful information can be extrac-
ted from the classification program output? The success of
this final step is, at this point in time, very much dependent
upon the background and training of the analyst. While a
soil scientist may be able to extract useful soils mapping
information from a multispectral data classification map, he
is not likely to be expert at deriving watershed management
information. Similarily a geologist analyzing multispectral
data is not likely to be proficient in extracting crop yield
information.

It is important to emphazise the point that classifica-
tion results are seldom an end in themselves. Their useful-
ness is primarily dependent on whether or not the analyst can
extract useful information from them. As research continues
it is expected that some information extraction techniques
will lend themselves to machine implementation.

Insight into information extraction and results analysis
for some specific applications may be obtained 1y reading
remote sensing articles in the journals listed below.

References

Examples of results analysis and the extraction of useful
information from multispectral data classifications may be
found in journals such as:

Remote Sensing of the Environment

IEEE Transactions on Geoscience Electronics
Remote Sensing in Ecology

Journal of Soil and Water Conservation
Photogrammetric Engineering

Agronomy Journal

Applied Optics

as well as in a number of LARS Information Notes, published
proceedings of remote sensing conferences, etc.
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EXERCISES

Check with your instructor on the availability of the
above references at your location. Skim through one or more
of these references.

FLIGHTLINE ANALYSIS CASE STUDY

Study your classification analysis results. What infor-
mation can you glean from the results? Based on your results,
are the cover type classes you initially selected sufficiently
distinct spectrally to provide adequate classification accuracy?
Would you consider it worthwhile to use these classes as the
basis for a "real life" application of remote sensing?



