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ABSTRACT

A focused research program has been under way for several years to discover optimally effective means for analysis of
multispectral and hyperspectral data. The methods pursued are based upon fundamental principals of signal theory and signal
processing. The basic approach revolves around viewing N spectral bands of data from a pixel as a single point in N
dimensional space, thus, an important aspect of the work has been to discover unique aspects of higher dimensional spaces
which can be exploited for their information-bearing aspects.

Substantial progress on this problem has been made in the last several years, with several key algorithms having been
defined. Among these are algorithms for transforms which define optimal case-specific features, and which improve the ability
of the classifier to generalize. A more fundamental finding has been to understand the characteristics of high dimensional space
and the significance of design samples and their use in defining the classifier.

These results have been published in separate papers over the last several years. The purpose of this paper is to survey these
results and to show how they relate to one another in achieving an effective overall analysis procedure for analyzing a
hyperspectral image data set.
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BACKGROUND

The multispectral approach to the mapping of land surface cover has been a key approach for three decades1. A principal
motivation for it is that it makes possible identification and mapping of cover types without the need to use very high spatial
resolution, thus greatly reducing the cost of the sensor systems and the volume of data that results. However, until recent
years, land remote sensing has been substantially limited by the relatively small numbers of spectral bands that could be built
into spaceborne sensor systems. A principle factor causing this limitation in the early days was the state of solid state device
development which necessitated that one or a small number of detectors had to be scanned across the scene for each spectral
band, usually by mechanical means.

In recent years, advances in solid state detector technology has made possible two dimensional arrays of considerable size, thus
allowing for many scene pixels to be viewed in parallel, greatly increasing the dwell time per pixel and thus allowing for both
large increases in the number of spectral bands possible and the signal-to-noise ratio present in each. It should be possible to
derive information from such data of much greater detail and to higher accuracy than was previously possible.

However, increasing the number of bands available from four or seven, as is the case with Landsat data, to several hundred as
now possible, and increasing the detail of measurement from that provided by 6 or 8 bit data systems to those of 10 or 12 bits
due to the improved signal-to-noise ratios means that the measurement complexity for each pixel has increased by several
orders of magnitude. It seems clear, then, that previously successful data analysis processes, though they might still be useful
in some cases, will not yield the full potential that such new data provides. Whole new approaches to data analysis,
specifically designed for the remote sensing context and this high dimensional data, must be devised. Unfortunately, to
achieve the full potential of such data calls for procedures which are less intuitive that those simpler ones of the past. They
must be based upon theoretically sound principles of signal theory and yet they must be made acceptable to Earth scientists
and remote sensing practitioners who are not signal processing engineers.
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Anticipating this situation, a research program was begun several years ago to meet this need. The basic approach has as its
origin the technology that has grown out of the communication engineering field of the last three quarters of a century. More
specifically, it has been to seek a more fundamental understanding of high dimensional signal spaces in the context of the
remote sensing problem, and then to use that knowledge to extend the methods of conventional multispectral analysis to the
hyperspectral domain in an optimal or near optimal fashion. In what follows, we shall outline what has been learned to this
point.

THE APPROACH

One must begin with the understanding that the subject matter, the Earth's surface, is quite complex. Not only is the spatial
frequency of land scenes very high, much higher that of water or cloud scenes, but the pattern of reflected light is very
dynamic in time, changing the wavelength distribution of energy emanating from the surface with time constants often of the
order of minutes or seconds, especially over vegetated areas.

The matter of how the variations are represented mathematically and conceptually is an important first step in defining how
the analysis process should proceed. There have been three principal ways in which multispectral data are represented
quantitatively and visualized. See Figure 1.

• In image form, i. e., pixels displayed in geometric relationship to one another,
• As spectra, i. e., variations within pixels as a function of wavelength, and
• In feature space, i. e., pixels displayed as points in an N-dimensional space.

Image Space Spectral Space Feature Space

Figure 1. Three forms for representing multispectral data.

Image Space. Though the image form is perhaps the first form one thinks of when first considering remote sensing as a
source of information, its principal value has been somewhat ancillary to the central question of deriving thematic
information from the data. Data in image form serve as the human/data interface in that image space helps the user to make
the connection between individual pixel areas and the surface cover class they represent. It also provides for supporting area
mensuration activities usually associated with use of remote sensing techniques. Thus, it becomes very important as to how
accurately the true geometry of the scene is portrayed in the data. However, it is the latter two of the three means for
representing data that have been the point of departure for most multispectral data analysis techniques.

Spectral Space. Here, attention is focused on individual pixels, showing how reflected or emitted energy varies with
wavelength. Many analysis algorithms which appear in the literature begin with a representation of a response function as a
function of wavelength. Early in the work, the term "spectral matching" was often used, implying that the approach was to
compare an unknown spectrum with a series of pre-labeled spectra to determine a match, and thereby to identify the unknown.
This line of thinking has led, at various times, to attempts to construct a "signature bank," a dictionary of candidate spectra
whose identity had been pre-established. Such an approach then places a heavy reliance upon calibration of each newly
collected data set.

A second example of the use of spectral space is the "imaging spectrometer" concept, whereby identifiable features within a
spectral response function, such as absorption bands due to resonances at the molecular level, can be used to identify a
material associated with a given spectrum. This approach, arising from the concepts of chemical spectroscopy which has long
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been used in the laboratory for molecular identification, is perhaps one of the most fundamentally cause/effect based
approaches to multispectral analysis.

Feature Space. The third basis for data representation also begins with a spectral focus, i.e., that energy or reflectance vs.
wavelength contains the desired information, but it is related to vector spaces rather than pictures or graphs. It began by
noting that the function of the sensor system inherently samples the continuous function of emitted and reflected energy vs.
wavelength and converts it to a set of measurements associated with a pixel which constitute a vector, i.e., a point in an N-
dimensional vector space. This conversion of the information from a continuous function of wavelength to a discrete point in
a vector space is not only inherent in the operation of a multispectral sensor, it is very convenient if the data are to be
analyzed by a machine-implemented algorithm. It, too, is quite fundamentally based, being one of the most basic concepts of
signal theory. Further, it is a convenient form if a more general form of feature extraction is to precede the analysis step,
itself. As will be seen below, of the three data representations, the feature space provides the most powerful one from the
standpoint of information extraction.

Another key characteristic which is fundamental to the engineering task of optimally designing a data analysis system is the
basis for the mathematical representation of the data. A number of approaches have been considered for multispectral data over
the years. The following are some examples.

• Deterministic Approaches
• Stochastic Models
• Fuzzy Set Theory
• Dempster-Shafer Theory of Evidence
• Robust Methods, Theory of Capacities, Interval Valued Probabilities
• Chaos Theory and Fractal Geometry
• AI Techniques, Neural Networks

All of these approaches have been examined to varying degrees, and each has certain facets which are attractive. Deterministic
approaches, for example, tend to be the most intuitive. This is important in a multidisciplinary field such as remote sensing,
where different workers have different backgrounds. However, deterministic methods tend not to be as powerful, and may have
other disadvantages such as being more sensitive to noise than is necessary.

Having investigated each, we have based our work on the stochastic or random process approach2,3. This approach has the
advantage of rigor and power, and, due to its maturity, has a large stable of tools that prove of pivotal usefulness in the work.

ON THE SIGNIFICANCE OF SECOND ORDER STATISTICS

Use of a stochastic process approach for modeling the spectral response of a ground scene requires determining the class
probability distributions for each given data set. Using a parametric model for such modeling, this reduces the problem to that
of accurately determining the mean vector and the covariance matrix in N-dimensional feature space for each class of ground
cover to be identified.

As previously indicated, one of the advantages of the stochastic process approach is the wealth of mathematical tools available
using this method. For example, it is frequently the case that one would like to calculate the degree of separability of two
spectral classes in order to project the accuracy it is possible to achieve in discriminating between them. There are available in
the literature a number of "statistical distance" measures for this purpose. They measure the statistical distance between two
distributions of points in N-dimensional space. One with particularly good characteristics for this purpose is the
Bhattacharyya Distance. In parametric form it is expressed as follows.

B = 
1
8
 [µ 1-µ 2]T[

Σ1+Σ2
2

]-1[µ 1-µ 2] + 
1
2
 Ln 

| 
1
2
[Σ1+Σ2] |

|Σ1| |Σ2|
(1)

where µ i is the mean vector for class i and Σi is the corresponding class covariance matrix. This distance measure bears a
nearly linear, nearly one-to-one relationship with classification accuracy. Examining this equation, one sees that the first term
on the right indicates the part of the net class separability due to the difference in mean values of the two classes, while the
second term indicates the portion of the total separability due to the class covariances. This makes clear from a quantitative
point of view what the relationship is between first order variations (the first term on the right) and second order variations
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(the second term on the right). This illustrates, for example, that two classes can have the same mean value, and still be quite
separable. Note that methods which are deterministically based only can make use of separability measured by the first term.

An example classification from a recent paper will further illuminate the matter4. For this experiment, a multispectral data set
with a large number of spectral bands was analyzed using standard pattern recognition techniques. The data were classified
using first a single spectral feature, then two, and continuing on with greater and greater numbers of features. Three different
classification schemes were used, (a) a standard maximum likelihood Gaussian scheme, in which both the means and the
covariance matrices, i.e., both first and second order variations, were used, (b) the same except with the mean values of all
classes adjusted to be the same, so that the classes differed only in their covariances, and (c) using a minimum distance to
means scheme such that mean differences are used, but covariances are ignored. It is seen from the results shown in Figure 11
below that case (a) produced clearly the best result, as would be expected.
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Figure 2. Performance comparison of the Gaussian ML classifier, the Gaussian ML classifier with
zero mean data, and the minimum distance classifier.

In comparing the latter two, though, it is seen that, at first in low dimensional space, the classifier using mean differences
performed best. However, as the number of features was increased, this performance soon saturated, and improved no further.
On the other hand, while the classifier of case (b) which used only second order effects, was at first the poorest, it soon
outperformed the one of case (c) and its performance continued to improve as greater and greater numbers of features were
used. Thus it is seen that second order effects, in this case represented by the class covariances, are not particularly significant
at low dimensionality, but they become so as the number of features grows, to the point that they become much more
significant than the mean differences between classes at any dimensionality. It is, of course, also possible to show other
example classifications where the mean vector dominates over the covariance5.

However, the potential advantage of second order effects can be easily lost if increased precision in determining the class
distributions is not achieved. This is what is dealt with in the following section.

ANCILLARY INFORMATION AND CLASSIFIER SUPERVISION.

From the vantage point of the above, it is clear that analysis methods which utilize both first and second order statistics can
provide superior performance compared to those which utilize only first order effects. However, in many cases, this is not
what is observed in practice. The explanation for this becomes apparent from the following.

With regard to the ability to discriminate between a pair of classes, an illuminating theoretical result appeared in the literature
some years ago6. In this paper, the result shown in Figure 3 was derived. The ordinate for the curves in this figure is the
mean recognition accuracy for the two class case, averaged over the ensemble of classifiers. The abscissa is measurement
complexity, which in the case of multispectral data, is directly related to the number of bands and the number of gray values
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per bands. The parameter for the different curves of the graph is m, the number of training samples. It is seen that each curve
(except for the m → ∞ case) has a maximum, indicating that there is a best measurement complexity. It depends upon how
many training samples one has, and thus how precise is the estimate of the class distributions.
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Figure 3. Mean Recognition Accuracy vs. Measurement Complexity for
the finite training case.

It is important to note that the maximum of the curves moves upward and to the right as m increases, indicating that one can
expect, on the average, to see improved performance as one increases the measurement complexity, but to achieve it, one will
need increased precision in estimating the class distributions. The curve also shows that, given a complex enough
measurement (enough features and enough values per feature) and enough training samples, one can expect to achieve
arbitrarily high accuracy.

ON CLASSIFIER COMPLEXITY

In practical terms, the result of Figure 3 reduces to the following. The means for quantitatively describing a class distribution
from a finite number of training samples commonly comes down to estimating the elements of the class mean vector and
covariance matrix. When the number of training samples is limited, as it nearly always is in remote sensing, and the
dimensionality of the data becomes large, the needed relationship between the training set size and the number of matrix
elements that must be estimated quickly becomes strained even in the parametric case. This is especially true with regard to
the covariance matrix, whose element population grows very rapidly with dimensionality. For example, the following table
illustrates the number of elements in the various covariance matrix forms which must be estimated for the case of 5 classes
and several different numbers of features, p.

No. of
Features p

Class Covar.

5{p2 – [(p-1)2 +(p-1)]/2}

Diagonal Class
Common Covar.

5p

Common
Covar.

{p2 – [(p-1)2 +(p-1)]/2}

Diagonal Common
Covar.

p

5 75 25 15 5
10 275 50 55 10
20 1050 100 210 20
50 6375 250 1275 50

200 100,500 1000 20,100 200

Table 1. Number of elements in various covariance matrix forms to be
estimated. A case for 5 classes is assumed.

A training set of 1000 samples may sound large, and it is for a 5-dimensional problem. However, it is not so large for a 10-
dimensional case, and definitely inadequate for a 20-dimensional problem. It is well known that one must have at least one
more sample than the number of dimensions in order for a covariance estimate to not be singular. But just barely exceeding
this amount still will not provide good results, if the separation between classes is at all dependent upon second order effects.
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The relationship between training set size and dimensionality has been examined quantitatively7, and it has been found that,
as the dimensionality goes up (or the number of labeled samples available goes down), it may be advantageous to reduce the
number of elements that must be estimated by reducing the algorithm complexity, i.e., by deciding between using individual
class covariance matrices, a common covariance matrix, and a diagonal common covariance matrix. This allows for a more
precise estimation of the parameters needed. The tradeoff of gaining precision by reducing complexity when the training sets
are limited, can result in improved accuracy of classification. It has been codified into a scheme referred to as LOOC (Leave
One Out Covariance) estimation which can be relatively transparent to the user. The scheme is as follows. The quantity to be
estimated is Ci(αi), where,

C i α i( ) =

1 −α i( )diag Σ i( ) +α i Σi          0 ≤ αi ≤ 1

2 −α i( )Σ i + αi − 1( )S            1 <α i ≤ 2

3 −α i( )S + αi − 2( )diag(S)   2 <α i ≤ 3

 

 
 

  
 (2)

Σ i  is the sample covariance matrix for class i, estimated from the training samples. The common covariance is defined by

the average sample covariance matrix S =
1

L
Σ i

i =1

L

∑  where a total of L classes are assumed. The variable αi  is a mixing

parameter that determines which estimate or mixture of estimates is selected. If αi = 0 , the diagonal sample covariance is

used. If αi = 1, the estimator returns the sample covariance estimate. If αi = 2 , the common covariance is selected, and if

αi = 3  the diagonal common covariance results. Other values of αi  lead to mixtures of two estimates. Projected accuracy is

estimated a priori by the well-known leave-one-out method using the available training samples.

In addition to these methods, additional aspects of classifier design have been investigated, including more complex decision
logic8,9 and ways to speed the classification computation10 ,11 . With the rapid increase of computational processor speeds in
recent years, processing speed has turned out not to be the pressing problem it once was, and until the more pressing
problems of the analysis process are solved, complex decision logic potentials can also reasonably be postponed. Thus these
aspects are being pursued at a lower priority.

One additional aspect of classifier design which appears to have significant utility has also been investigated. It has been
shown12 ,13  that by adding unlabeled samples to the classifier design process, better estimates for the discriminant functions
can be obtained. This has resulted in an algorithm referred to as "Statistics Enhancement." The algorithm iterates between the
labeled (training) samples and unlabeled samples from the data set to modify the class statistics so that a better fit to the
overall data distribution is obtained. In this way, the ability of the classifier to generalize beyond its training samples is
improved.

GEOMETRICAL, STATISTICAL AND ASYMPTOTICAL PROPERTIES
OF HIGH DIMENSIONAL SPACES

The previous sections of this paper apply equally well to conventional multispectral data. In this section14 , we will describe
some of the unique or unusual aspects of hyperspectral data, in order to illuminate some of the circumstances which must be
accounted for in dealing with hyperspectral data in an optimal fashion.

For a high dimensional space, as dimensionality increases:

A. The volume of a hypercube concentrates in the corners15

It has been shown16  that the volume of a hypersphere of radius r and dimension d is given by the equation:

Vs r( ) =  volume of a hypersphere =
2r d

d

π
d

2

Γ d
2

 
 

 
 

(3)
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and that the volume of a hypercube in [-r, r]d is given by the equation:

V c r( ) =  volume of a hypercube = 2r( )d
(4)

The fraction of the volume of a hypersphere inscribed in a hypercube is:

f d1 =
Vs (r)
VC (r) = π

d
2

d2d−1 Γ d
2( ) (5)

where d is the number of dimensions. It can be readily verified that fd1 decreases rapidly as the dimensionality increases. For
example, while nearly 80% of the volume of the cube is contained in the hypersphere for d = 2, the percentage is reduced to
less than 5% by d = 7. Note that lim d→∞ f d1 = 0  which implies that the volume of the hypercube is increasingly

concentrated in the corners as d increases.

B. The volume of a hypersphere concentrates in an outside shell17 ,18

The fraction of the volume in a shell defined by a sphere of radius r-ε inscribed inside a sphere of radius r is:

f d2 =
V d(r) − Vd (r −ε )

V d(r) = rd − (r −ε )d

rd =1 − 1− ε
r

 
 

 
 

d

 
(6)

For the case ε = r/5, as the dimension increases the volume in the outside shell increases from about 35% for d = 2 to nearly
90% for d = 10. Note that lim d→∞ f d2 = 1,∀ε > 0 , implying that most of the volume of a hypersphere is concentrated in

an outside shell.

These characteristics have several important consequences for high dimensional data that appear immediately.

• High dimensional space is mostly empty, which implies that multivariate data in a high dimensional feature
space is usually in a lower dimensional structure. As a consequence high dimensional data can be projected to a
lower dimensional subspace without losing significant information in terms of separability among the different
statistical classes.

• Normally distributed data will have a tendency to concentrate in the tails.

Similarly,

• Uniformly distributed data will be more likely to be collected in the corners,

making density estimation more difficult. Local neighborhoods are almost surely empty, requiring the bandwidth of
estimation to be large and producing the effect of losing detailed density estimation.

C. The diagonals are nearly orthogonal to all coordinate axes19 ,20

The cosine of the angle between any diagonal vector and a Euclidean coordinate axis is:

cos θd( ) =± 1
d

 , (7)

Note that lim d→∞ cos θd( ) = 0 , which implies that in high dimensional space the diagonals have a tendency to become

orthogonal to the Euclidean coordinates.
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This result is important because,

• The projection of any cluster onto any diagonal, e.g., by averaging features, could destroy information contained
in multispectral data.

D. The required number of labeled samples for supervised classification increases as a function of
dimensionality, and more rapidly so for more complex classification algorithms.

Fukunaga21 , for example, in a given circumstance, proves that the required number of training samples is linearly related to
the dimensionality for a linear classifier and to the square of the dimensionality for a quadratic classifier. That fact is very
relevant, especially since experiments have demonstrated that there are circumstances where second order statistics are more
relevant than first order statistics in discriminating among classes in high dimensional data22 . In terms of nonparametric
classifiers the situation is even more severe. It has been estimated that as the number of dimensions increases, the sample size
needs to increase exponentially in order to have an effective estimate of multivariate densities23 ,24 .

It is reasonable to expect that high dimensional data contains more information in the sense of a capability to detect more
classes with more accuracy. As a matter of fact, since the curve of Figure 3 for the m → ∞ case is montonically increasing,
ultimately one can expect 100% accuracy, on the average. At the same time the above characteristics tell us that current
techniques, which are usually based on computations at full dimensionality, may not deliver this advantage unless the
available labeled data is substantial.

E. For most high dimensional data sets, low dimensional linear projections have the tendency to
be normal, or a combination of normal distributions, as the dimension increases.

That is a significant characteristic of high dimensional data that is quite relevant to its analysis. It has been proved25,26 that,
as the dimensionality tends to infinity, lower dimensional linear projections will approach a normal (Gaussian) distribution
with probability approaching one. Normality in this case implies a normal or a combination of normal distributions. This
lends credence to using Gaussian classifiers after having reduced the dimensionality via feature extraction and indeed, to using
class mean vectors and covariance matrices in evaluating the separability of classes. Properly used, parametric classifiers
should provide good performance, and nonparametric schemes, with their higher demands for training data, should not be
needed.

FEATURE EXTRACTION.

The findings above point to the importance of finding the lowest dimensional subspace to use for classification purposes.
Thus, feature extraction becomes an important tool in the analysis process for hyperspectral data. As a result, feature
extraction methods already existing in the literature were studied relative to the remote sensing context. The most suitable
appeared to be Discriminate Analysis Feature Extraction (DAFE). Even so, it has several significant shortcomings for this
environment, among them being that it does not perform well for cases where there is little difference in class mean vectors.
It also only generates reliable features up to one less than the number of classes for the given problem. For use in problems
where these shortcomings would be serious, Decision Boundary Feature Extraction (DBFE) was created27 ,28 ,29 .

However, both DAFE and DBFE calculations begin with computation in the full dimensional space in order to find the
optimal transformation to a lower dimensional space, thus these calculations may, too, suffer from small training set
limitations. To deal with this limitation, a Class-Conditional Pre-Processing algorithm was designed based upon a method
known as projection pursuit30 ,31 . This algorithm does the necessary calculations in the projected space, rather than the
original, high dimensional space.

Figure 20 then shows the overall scheme. The data at point Φ might be 200 or more dimensional. Through projection
pursuit, a subspace of perhaps 20 dimensions might be determined, and in this case, all calculations are done at a
dimensionality of 20. This can then more optimally be followed by DAFE or DBFE to find a subspace of perhaps 10
dimensions in which to do the classification. In this way, maximal advantage can be taken of a training set of limited size.
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Figure 20. Classification of high dimensional data including reprocessing of high dimensional data.

SUMMARY AND CONCLUSIONS

What is sought are powerful, general analysis procedures that approach the optimum in information extraction capabilities and
yet are within the reach of and practical for a broad range of Earth scientists. The techniques must be 1) powerful in terms of
accuracy and detail with respect to the classes which can be discriminated, 2) objective in their performance, 3) robust with
regard to the breadth of discipline problems which can be successfully approached, and yet 4) must appear sound and practical
to scientists with any of a broad set of discipline backgrounds. They must be derived with appropriate mathematical rigor, but
in the end, they must meet the practical conditions of the randomness of the scene, noise introduced by the atmosphere, the
scene, and the sensor, and the varied skills and expectations of the users.

Summarizing, key conclusions expressed above are,

• The fact that hyperspace is mostly empty and that the data structure is in a lower dimensional subspace points to
the importance of feature extraction algorithms that are able to find the optimal subspace.

• In the hyperspectral case, second order statistics, which define the shape of the class distribution in hyperspace,
take on added significance.

• Training sets, by which to describe quantitatively the distributions of the classes of interest, are usually quite
limited in size, in the face of the importance of second order statistics, which are quite sensitive to training set
size especially as the dimensionality goes up. This means that it is especially important to use the combination
of estimation procedures and the dimensionality appropriately, lest the advantages that the dimensionality should
provide be lost.

• If the training set size is quite limited, it may be appropriate to reduce the classifier complexity by reducing the
number of parameters that must be estimated.

• It is possible to use unlabeled samples in conjunction with the labeled ones to improve the generalization
capability of a classifier.

And finally, it is recognized that a key problem is to deliver the knowledge and algorithms derived during this research to the
potential users. To aid in this process, an application program for personal computers has been created with a basic
multispectral data analysis capability and made available to the community without charge. Then as new algorithms emerge
from the research, they are incorporated into the program and new versions of it issued. In this way, new algorithms, which
may be quite complex to implement may be tried by users with a minimum of effort on their part. The program, called
MultiSpec, together with substantial documentation is available for anyone interested to download from the world wide web.
The URL for the web site is http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/. Some of the algorithms mentioned above
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which it now contains are, Discriminate Analysis Feature Extraction (DAFE), Decision Boundary Feature Extraction (DBFE),
and Statistics Enhancement. Additional ones resulting from the research but not described here are included as well.

A longer and more complete report of the work summarized in this paper, in the form of a white paper, is available for
downloading from the Documentation of the MultiSpec web site referred to above. Further, several of the referenced published
papers, which contain details of the individual algorithms mentioned above, may be downloaded from that site as well.
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