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ABSTRACT

This paper describes a covariance estimator formulated under an empirical Bayesian setting

to mitigate the problem of limited training samples in the Gaussian maximum likelihood

classification for remote sensing.  The most suitable covariance mixture is selected by

maximizing the average leave-one-out log likelihood.  Experimental results using AVIRIS

data are presented.

Index Terms: Gaussian Maximum Likelihood, regularization, covariance estimation.

INTRODUCTION

In the conventional Gaussian maximum likelihood (ML) classifier, the classification

rule can be expressed in the form of a discriminant function and a sample is assigned to the

class with the largest discriminant function value.  A multivariate Gaussian density function

is given as

f i x( ) = 2π( )− p/ 2 Σi

−1/ 2
exp −

1

2
x − µ i( )T

Σi
−1 x − µi( ) 

  
 
         1 ≤ i ≤ L

where x ∈ℜ p , µ i  and Σ i  are the i th class mean vector and covariance matrix,

respectively, and L  is the number of classes.  Assuming a [0,1] loss function, the

maximum likelihood classification rule then becomes

dˆ i 
x( ) = min

1≤i ≤ L
di x( )

where di  is the discriminant function given by
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di x( ) = x − µi( )T
Σ i

−1 x − µ i( ) + ln Σ i .

This classification rule is also called a quadratic classifier.  A special case occurs when all

of the class covariance matrices are identical. It then becomes a linear classifier:
Σ i = Σ       1 ≤ i ≤ L .

In practical situations, the true class distributions are rarely known.  Therefore, the sample

estimates are computed from the training samples.   

The quadratic classifier's performance can be degraded when the number of

dimensions is large compared to the training set size due to the instability of sample

estimates.  In particular, the sample covariance estimate becomes highly variable and may

even be singular.  One way to deal with the instability of covariance estimate is to employ

the linear classifier.  By replacing each class covariance estimate with their average, leading

to the linear classifier, the number of parameters is reduced and thus the variances of their

estimates become smaller.  Even though each class covariance matrix may differ

substantially, studies [1][2] have shown that the decrease in variances of the parameter

estimates accomplished by using the linear classifier often leads to better classification

performance than the quadratic classifier for small training sample size.

Although a linear classifier often performs better than a quadratic classifier for small

training set size, the choice between linear and quadratic classifiers is rather restrictive.

Several methods [3][4][5] have been proposed where the sample covariance estimate is

replaced by partially pooled covariance matrices of various forms.  In this formulation,

some degree of regularization is applied to reduce the number of parameters to be

estimated, thus improving classification performance with small training set size.

Therefore, regularization techniques can also be viewed as choosing an intermediate

classifier between the linear and quadratic classifiers.

In general, regularization procedures can be divided into two tasks:  1)  the choice

of covariance mixture models, and 2)  model selection.  To perform regularization, one

must first decide upon a set of appropriate covariance mixture models that represent a

"plausible" set of covariance estimates.  Normally, a covariance mixture of the following

form is assumed:

ˆ Σ i = 1 − αi( )Si + αiSp        0 ≤ αi ≤ 1.
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The regularization or mixing parameter αi  then controls the biasing of individual class

covariance sample estimate Si  to a pooled covariance matrix Sp .  However, this partially

pooled covariance estimate may not provide enough regularization even for a linear

classifier.  In the case when the total number of training samples is comparable to or is less

than the dimensionality, even the linear classifier becomes ill- or poorly-posed.  Therefore,

an alternative covariance mixture is provided by biasing the sample covariance toward some

non-singular diagonal matrix Λ :

ˆ Σ i = 1 − αi( )Si + αiΛ        0 ≤ αi ≤ 1

For given value(s) of the mixing parameter(s), the amount of bias will depend on
how closely the estimates ˆ Σ i  actually represent those true parameters Σ i .  Therefore, the

goal of model selection is to select appropriate values for the mixing parameters that can be

estimated from minimizing a loss function based on the training samples.

A popular minimization criterion is based on the cross-validated estimation of

classification error.  Although using this criterion to select the mixing parameters has the

benefit of being directly related to classification accuracy, it has some disadvantages as

well.  First of all, it is computationally intensive.  Second, the same mixing parameter has

to be used for all classes since the classification procedure requires all covariance estimates

simultaneously.  However, the same choice of mixing parameter might not be optimal for

all classes.  Furthermore, the same classification error rate might occur along a wide range

of parameter values and hence the optimal value of mixing parameter is non-unique.

Therefore, a tie-breaking technique is needed.  No studies have indicated the best method

for tie-breaking.

Another maximization criterion that has been applied is the sum of the average

leave-one-out likelihood values.  This criterion requires less computation than the leave-

one-out classification error procedure.  It also has the advantage that each class covariance

matrix can be estimated independently of the others.  Therefore, the mixing parameter can

be different for each class.  Moreover, not all classes need to be subjected to regularization,

especially those with sufficient training samples.  However, a major drawback of this

criterion is the lack of direct relationship with classification accuracy.
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PREVIOUS WORK

Friedman [3] has proposed a procedure called "regularized discriminant analysis"

(RDA) which is a two-dimensional optimization over covariance mixtures as shown in the

following:

ˆ Σ i λ ,γ( ) = 1− γ( )ˆ Σ i λ( ) + γ
tr ˆ Σ i λ( )( )

p

 

 
 
 

 

 
 
 I       0 ≤ γ ≤ 1

where

ˆ Σ i λ( ) =
1 − λ( ) Ni −1( )Si + λ N − L( )Sw

1 − λ( )Ni + λN
       0 ≤ λ ≤ 1,

I  is the identity matrix, N is the total number of training samples, and Sw  is the average of

the sample covariance estimates given as

  
Sw =

N1 −1( )S1 + N2 −1( )S2 +L + NL −1( )SL

N − L
.

The regularization parameters are given by the pair λ , γ( ) , which are obtained by

minimizing the leave-one-out cross-validation errors.  As mentioned previously, the bias

toward a diagonal matrix helps stabilize the covariance estimate even when the linear

classifier is ill- or poorly-posed.  Furthermore, choosing the diagonal form to be the

average eigenvalue times the identity matrix has the effect of decreasing the larger

eigenvalues and increasing the smaller ones, thereby counteracting the bias inherent in

sample-based estimation of eigenvalues.  This diagonal form is also advantageous when the

true covariance matrices are some multiples of the identity matrix.

In [4], the covariance matrix is determined from the following pair-wise mixtures:

diagonal sample covariance-sample covariance, sample covariance-common covariance,

and common covariance-diagonal common covariance matrices.  Thus, the estimator has

the following form:

ˆ Σ i αi( ) =
1− α i( )diag Si( ) + αiSi

2 − α i( )Si + α i −1( )S
3 − αi( )S + αi − 2( )diag S( )

 

 
 

 
 

       

0 ≤ αi ≤ 1

1 < αi ≤ 2

2 < αi ≤ 3
where
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S =
1

L
Si

i=1

L

∑ .

The variable αi  is the mixing parameter that determines which estimate or mixture of

estimates is selected so that the best fit to the training samples is achieved by maximizing

the average leave-one-out log likelihood of each class:

LOOLi =
1

N i

ln f xi,k mi\k , ˆ Σ i\k αi( )( )[ ]
k =1

Ni

∑

where sample k  from class i  is removed.  Once the appropriate value of αi  has been

estimated, the estimated covariance matrix is computed with all the training samples and is

used in the Gaussian maximum likelihood classifier.  Using an approximation on the

diagonal matrices, LOOC also requires less computation than RDA.  However, without the

approximation, LOOC is more computationally expensive than RDA.  Also, the average

leave-one-out likelihood has no direct relationship to classification accuracy.

An empirical Bayesian method [5] was suggested in which the Σ i  are modeled as

the outcomes of a common inverted Wishart prior distribution.  The form of covariance

mixtures is similar to those in RDA except for the pooled covariance estimate which is
formulated under the Bayesian context.  The optimal values for λ , γ( )  are selected by

maximizing the sum of the average leave-one-out class likelihood.

A NEW COVARIANCE ESTIMATOR

In this section, we propose a new covariance estimator based on a Bayesian

formulation.  The proposed estimator is essentially an extension of previous works in

[3][4][5].  The first form of covariance mixtures is derived by assuming that the total

number of training samples is greater than the dimensionality.  In this case, the common

covariance matrix is non-singular.

The assumption of normally distributed samples implies that the sample covariance
matrices Si  are mutually independent with Wishart distribution:

Si ~ W
1

f i

Σ i , f i

 
 
  

 
 

where f i = Ni −1, Ni  is the number of training samples for class i  and W  denotes the

central Wishart distribution with f i  degrees of freedom and parameter matrix Σ i .  Then the
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family of inverted Wishart distributions provides a convenient family of prior distributions
for the true covariance Σ i .  Assume that each Σ i  has an inverted Wishart prior distribution

so that the Σ i  are mutually independent with

Σ i ~ W−1 t − p −1( )Ψ,t( )      t > p +1

where W −1  is an inverted Wishart distribution with parameters Ψ  and t  for p  dimensions.

The prior mean Ψ  represents the central location of the prior distribution of the Σ i , and t

controls the concentration of the Σ i  around Ψ .

Under squared error loss, the Bayes estimator of Σ i  is given by [5]

ˆ Σ i Ψ,t( ) =
f i

f i + t − p −1
Si +

t − p −1

f i + t − p −1
Ψ .

By letting αi =
t − p −1

f i + t − p −1
 and Ψ  be a pooled covariance estimate Sp , the Σ i  can then

be replaced by partially pooled estimates of the form:

ˆ Σ i = 1 − αi( )Si + αiSp        0 ≤ αi ≤ 1.

The value of t  can in turn be expressed in terms of αi :

t =
α i f i − p −1( ) + p +1

1 − αi

        0 ≤ α i <1.

The pooled covariance estimate is then defined by the generalized least squared estimator of
Ψ , designated as Sp

∗ t( ), for L  classes and a given t :

Sp
∗ t( ) =

f i

f i + t − p −1i =1

L

∑
 
 
  

 
 

−1
f i

f i + t − p −1i=1

L

∑ Si .

When the total number of training samples is close to or less than the number of

features, even the pooled covariance matrix becomes unstable.  In this case, biasing the

sample and common covariance estimates towards some form of diagonal matrix can avoid

the problem of singularity.  We bias the sample and common covariance estimates towards

their own diagonal elements which is advantageous when the class covariance matrix is

ellipsoidal.  The proposed covariance estimator then has the following form:

ˆ Σ i αi( ) =
1− α i( )diag Si( ) + αiSi                    0 ≤ α i <1

2 − α i( )Si + α i −1( )Sp
∗ t( )                1 ≤ α i < 2

3 − αi( )S + αi − 2( )diag S( )            2 ≤ αi ≤ 3
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where S =
1

L
Si

i=1

L

∑ .  The maximization of leave-one-out average log likelihood is used as

the criterion to select the appropriate mixture model.  Therefore, to select an appropriate
mixture, the value of αi  is fixed and the leave-one-out average likelihood is computed and

compared for each αi .  The direct implementation of the leave-one-out likelihood function

for each class with Ni  training samples would require the computation of Ni  matrix

inverses and determinants at each value of αi .  Fortunately, a more efficient

implementation can be derived using the rank-one down-date of the covariance matrix [6].

EXPERIMENTAL RESULTS

For the experiment, we use an AVIRIS data set with 145 X 145 pixels as shown in

Fig. 1.  The AVIRIS data was taken over NW Indiana's Indian Pine test site in June 1992.

The water absorption bands (104-108, 150-163, 220) have been discarded, leaving a total

of 200 channels.  This data contains 17 classes of varying sizes.  The ground truth map is

shown in Fig. 2.  The purpose of this experiment is to demonstrate the effect of covariance

estimation on classes with varying covariance structures and different training sample sizes.

The training samples are selected to be 20% of the number of labeled samples for each

class.  The labeled samples, excluding the training samples are then used as test samples.

The classes and the numbers of labeled samples are listed in Table 1.

Fig. 1. AVIRIS Data Scene (Original in Color. A color version of all figures may be
viewed at http://dynamo.ecn.purdue.edu/~landgreb/publications.html).
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Fig. 2.  AVIRIS Data Ground Truth Map (Original in Color)

Class Name No. of Labeled Samples
1. Corn-no till 1423
2. Corn-min till 834
3. Corn 234
4. Soybeans-no till 797
5. Soybeans-no till2 171
6. Soybeans-min till 2468
7. Soybeans-clean till 614
8. Alfalfa 54
9. Grass/Pasture 497
10. Grass/Trees 747
11. Grass/pasture-mowed 26
12. Hay-windrowed 489
13. Oats 20
14. Wheat 212
15. Woods 1294
16. Bldg-Grass-Tree-Drives 380
17. Stone-steel towers 95

Table 1.  Class Description of the AVIRIS Data.
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This data was obtained in June 1992 so most of the row crops in the agricultural

portion of the test site had not reached their maximum ground cover.  Therefore, the

classification of these crops becomes challenging since the spectral information comes from

a mixture of the crops, the soil variations and previous crop residues.  These crops are

listed as the first seven classes and their mean classification accuracy is computed

separately.

The classification procedures for testing the data are shown in Table 2.  Since the

Euclidean distance classifier does not utilize the covariance information, its performance

would indicate whether the second order statistics are useful for the classification of high

dimensional data with limited training samples.  The use of the common covariance

estimate for all classes is equivalent to a linear classifier.  The leave-one-out covariance

estimator (LOOC) [4] is implemented to compare with the proposed Bayesian leave-one-out
covariance estimator (bLOOC).  The mixing parameter αi  is set at 0, 0.25, 0.5, 0.75, 1,

1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75 and 3.  In addition to using the covariance estimator to

help increase the stability of covariance estimate, feature extraction can also help reduce the

number of features to cope with small training set sizes.  We perform Discriminant

Analysis Feature Extraction [8] (DAFE) which only utilizes mean information and is

therefore less sensitive to small training sample size.  The sample covariance estimate is not

tested in this experiment since the numbers of training samples for some classes are

extremely small.  Two types of classifiers, namely, the quadratic classifier (QC) and the

spatial-spectral classifier ECHO [9] (Extraction and Classification of Homogeneous

Objects) are then applied and compared.  While the quadratic classifier assigns individual

pixels to one of the classes, the ECHO classifier first divides the image into groups of

contiguous pixels and classifies each group to one of the classes.  The results of

classification are shown in Table 2 and Fig. 3.  The highest accuracy is highlighted in bold

letters.  

Procedures Classes 1-17 (%) Classes 1-7 (%)
1.  Euclidean Distance 48.2 31.8
2.  Common Cov+DAFE+QC 74.8 70.2
3.  Common Cov+DAFE+ECHO 76.8 74.9
4.  LOOC+DAFE+QC 75.3 70.7
5.  LOOC+DAFE+ECHO 80.4 82.7
6.  bLOOC+DAFE+QC 75.5 72.6
7.  bLOOC+DAFE+ECHO 82.9 89.1

Table 2.  Classification Accuracy for the AVIRIS Data.
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Fig. 3.  Mean Classification Accuracy

DISCUSSION

The performance of the Euclidean distance classifier is significantly lower than the

other classifiers.  This shows that the second order statistics are useful for classifying these

high dimensional data even though the training samples are limited.  Although the class

covariance matrices differ substantially, the use of common covariance matrix and hence

the linear classifier improves the performance substantially compared to the Euclidean

distance classifier.  The table shows that the best performance is achieved by using

bLOOC, DAFE and the ECHO classifier.  The classification accuracy increases

substantially for the row crops 1-7.  Compared with the second best result obtained from

the classifier LOOC+DAFE+ECHO, the accuracy increases from 82.7% to 89.1%.  The

mean accuracy for all classes improves from 80.4% to 82.9% as well.  It should be

mentioned that when all classes have equal number of training samples, bLOOC has the

same form as LOOC.  Therefore, the proposed Bayesian estimator is beneficial when the

sample sizes are unequal and the training set size reflects the true priors.  The classification

maps for LOOC+DAFE+ECHO and bLOOC+DAFE+ECHO are shown in Fig. 4 and 5,

respectively.
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Fig. 4.  Classification Map for Method: LOOC+DAFE+ECHO (Original in Color)

Fig. 5.  Classification Map for Method: bLOOC+DAFE+ECHO (Original in Color)
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CONCLUSION

The inverse of a covariance matrix becomes ill- or poorly-posed if the training set

size is small compared to the dimensionality.  Conventionally, the stabilization of the

covariance estimate has been accomplished by regularization, which tends to reduce the

variance of the estimate at the expense of increased bias.  This method can also be viewed

as a compromise between the linear and quadratic classifiers.  In this paper, a regularization

method under the Bayesian setting has been proposed.  The proposed Bayesian leave-one-

out covariance (bLOOC) estimation method was shown to have better performance than

other methods when the training set size reflects the true priors of the classes.  This is

particularly true for remote sensing applications since more training samples are usually

selected for larger classes.  When used in conjunction with discriminant analysis feature

extraction (DAFE), the proposed covariance estimation was demonstrated to circumvent the

limited training set size problem.  However, since the leave-one-out likelihood is used as

the criterion for the estimator, it has the drawback of not being directly related to class

separability, and subsequently the classification accuracy.  Therefore, some smooth loss

function derived from the class separability is recommended for future work.  Also, since

DAFE does not work well when the classes have similar mean values, alternative feature

extraction or classification methods need to be explored.
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