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INTRODUCTION

This semi-annual status report covers the period from December 1, 1977
to May 31, 1978 and contains a review of the research and applications, com-
pleted or 1n progress, as funded by the Office of University Affairs, NASA
and conducted by Purdue University, Laboratory for Applications of Remote
Sensing.

This reporting period marks the second half of the fifth year of
funding for a proposal entitled "The Applications of Remote Sensing Tech-
nology to the Solution of Problems in the Management of Resources 1n Indi-
aha." As indicated 1n this title, the purpose of this work 1s to 1ntroduce
remote sensing into the user community within the state of Indiana. The
user community includes those Tocal, regional and state agencies involved
in the decision monitoring and/or managing processes of the state's re-
sources.

In order to carry out this work 1t 15 not only necessary to initiate
projects with these agencies but also 1t 1s necessary to meet with and
provide information to as many people and groups as well as agencies as
possible. During the past six months numerous meetings were held with
many different groups.

Among the groups that were contacted and received information about
th1s program were:

Area Planning Commission, Tippecanoe County
Indiana Geological Survey

U.S. Forest Service

Tipton County Commissioners and Engineers
Indiana Department of Natural Resources

a) Division of Reclamation

b) Division of Forestry

c) Division of Properties, Fish and Wildl1fe
d) Soil and Water Conservation Committee

So11 Conservation Service.
Listed below are the projects that are reported 1n this document:
Soils Inventory

Forestry Demonstration Progect
Heat Loss Determination 1n Residential Buildings.



SOIL INVENTORY PROJECT

INTRODUCTION

The acceleration of the National Soil Survey Program and the produc-
tion of useful, high quality soil surveys in Indiana are among the prime
goals of the USDA/Soil Conservation Service and the Indiana Department of
Natural Resources Soil and Water Conservation Committee. The wide use of
so0il surveys for engineering and planning purposes in addition to agricul-
tural uses has resulted in many specific questions concerning the physical
nature of the different soil units depicted on soil maps. In order to pro- .
vide the details necessary to understand the landscape composition and to
provide interpretation of soil maps for specific uses, information of a
quantitative nature is needed. To accomplish this task all avenues are
being considered, including remote sensing technology which can provide
quantitative measurements through computer analysis of Landsat multispec-
tral scanner (MSS) data.

OBJECTIVE

The overall objective of this task is to determine the applicability
of using computer analysis of Landsat multispectral scanner data in accel-
erating and improving the quality of the soil survey program in Indiana.

To evaluate the usefulness of the data the following specific studies
were initiated:

1. Evaluation of the usefulness of spectral soil maps produced from multi-
spectral scanner data using pattern recognition techniques as quality
control in soil surveys and as a means to evaluate quantitatively the
soil mapping unit composition.

2. Investigation of the possibility of producing high quality general
soil maps using false color Landsat imagery as the base map.

3. Development of a soil parent material map using multispectral resource
data.

4. Determination of the feasibility of producing a spectral soil map on a
county-wide basis with its accompanying manuscript and evaluation of the
utility of this type of soil survey report to user groups.

5. Evaluation of the usefulness of superimposing computer classification
results upon aerial photobase maps in order to gain the benefit of the
landscape perspective. '

METHODS AND MATERIALS
Remotely Sensed Data

The remote]y'sensed data were of two forms, i.e., aerial photography
and Landsat data. May 1976 aerial coverage of Jasper County, Indiana was

taken at an altitude of 2000 m creating an approximate map scale of
1:15840. The Landsat data were collected June 9, 1973 and were relatively



free of vegetative canopy, snow cover, interfering clouds and fog, and
scanner distortions.

Data Analysis

Base Map. A base map consisting of a block of 85 black and white pan-
chromatic aerial photographs (scale 1:15,840) was used in the registration
of the Jasper County Landsat data. Known north-south roads were located on
the aer1al photography and used to parallel a y coordinate axis. A three-
parameter Tinear transformation was used to block the photos to a common
coordinate system.

Halftone acetate positives were created from the photographs. The
resulting transparencies were rectified and trimmed to field sheet size.
Rect1fying corrected for tilt and vertical aspect, which improved scale
variations and crabbing (rotation). The halftone acetate positives were
used for comparing field so1l patterns with the spectral classification of
so1ls.

Geometric Registration and Rectification. The blocked set of aerial
photographs was used as a base 1n the geometric registration and rectifica-
tion of the Landsat data. Corresponding points between the two images
(Landsat and photo block) were Tocated by either displaying the Landsat
mmage on a CRT screen or by cluster analysis of the digital data. Groups
of approximately 100 data points were clustered and specific points within
the clustered areas were located on the aerial photos. A twelve parameter
equation was used to transform the coordinates between the images.

Compatible scales between the base map and the Landsat data were
accomplished by expanding the Landsat data to a scale of 1:15840, the
mapping scale for Jasper County. For this registration a cubic convolu-
tion resampling algorithm was used to rescale the Landsat image to
1:15,840. Intermediate data values were calculated using a Lagragian
third order equation that used a 4 x 4 matrix or 16 spectral points. On
the curve of this equation intermediate data values were plotted and used
in expanding the scale. This method had the effect of smoothing the 1mage
which could contribute to a somewhat less accurate classification but pro-
vide a higher quality map image for so1]l mapping. Classes that are very
close spectrally could lose their distinctness because of these calculated
intermediate values.

Compilation of Color Map Image. Three channels (1, 2 and 4) were com-
bined to create a false color composite map, generally referred to as a
false color image, at a scale of 1:180,000. This image was generated to
aid in stratification of the county spectra. Enlarging the 1mage to
1:120,000 enabled the user to delineate or interpret finer detail.

Stratification nf the County

Geologic History. The geology of Jasper County is quite complex.
Underlying the county are tertiary and quarternary bedrock valleys formed
primarily by water erosion. These valleys, 1nitially fi1lled by quarter-
nary debris, were later covered by the early Kansan and IT11inoian glacial
deposits.




Evidence of much earlier geologic phenomena occur to the west where
coral reef domes reach within one to two meters of the surface. The
reefs are thought to be a product of the Si1lurean or NDevonian ages and
are a good source of Timestone. Material that accumulated to the side of
the domes, most Tikely water deposited, 1s generally not of good quality
which 1s why the smaller domes have been Targely left untouched by 11ime-
stone excavation.

Glacial deposits that covered all of Jasper County from the Kansan
and I11inotan were obliterated by a coalesced 1ce sheet from the Lake
Michigan and Erie glaciers of the early Wisconsin age. A thin ice extend-
ing from the Saginaw northeastern lobe covered the previous glacial activity
and appears to have truncated the Marsei11les moraine 1n the eastern portions
of the county resulting 1n belts of kettles and intervening dunes covered
by submorainic rises. Characterized by the thin 1ce sheet the Saginaw lobe
covered low lying areas, but Targely left higher elevations untouched.
Present surficial deposits in the lower areas are credited to this glacier.
The retreating glacier also Teft melt water laden with si11ts and clays
which, when the water eventually subsided, left these lacustrine deposits.

Outwash sands were blown 1nto parabolic and longitudinal dunes across
the northern part of the county. Located under these dunes are peat areas
that suggest vegetation once grew in 1ce block depressions left by the
glaciers before being covered by (aeolean) sands. Vegetation establishing
1tself on the dunes gradually caused them to stabilize. After glacial
activity subsided, geologic changes within the county have been 1n the form
of drafting outwash sands and the accumulation of peat and marl in Tow ly-
ng areas.

This complex geology was considered i1n the compilation of a parent
materials map of Jasper County. With the ai1d of Landsat data the area was
1nvestigated and parent material boundaries were delineated.

Stratification of Parent Materials. Training statistics are created
by sampling data points and calculating mean and covariance matrix for
each unique spectral range. This set of means and covariances was used
to "train" a classi1fier by providing a data base for calculating probabil-
ities of remaining data points belongino to certain distributions.

Prior work 1n Indiana revealed uniqueness of spectral classes to be
lost as training statistics were combined over a large area such as a
county. As spectral classes were combined, distributions became Targer
and closer together. To avoild this problem, in Jasper County, a parent
material map was created so that training statistics could be generated
and used 1n specific parent materials, thus eliminating the need to extend
training statistics over broad areas. Parent material delineations also
provided a means of separating spectrally simlar but genetically dif-
ferent so1l classes within Jasper County.

Image interpretation of the false color composite map, single band
gray scale images, county and township road maps and knowledge of the
geological history of the area were used to create the parent materials map
of Jasper County. Initially, spectral stratification was noted on the



1mage and investigated through field observations. The soil profile was
sampled to determine underiying parent materials and characterize the
profile. Munsell color charts were used to identify color boundaries for
Alfisols, Moll1sols and drainage characteristics. Textural boundaries
were made and refined as the investigation progressed.

The completed parent materials map is shown in Figure 1. These
boundaries were digitized and overlaid onto the Landsat data. By assign-
1ng unique values to the spectral data in a parent material and recording
that data 1n a channel, that 1nformation could be used to discriminate
statistical distributions created in each parent material. For classifi-
cation four channels 6f Landsat data rescaled to 1:15,840 by a cubic con-
volution interpolation and precision registered to the 85 aerial photo-
graphs were used.

Digital Analysis of Remotely Sensed Data

Data Sampling and Analysis Techniques. Differentiating parent material
boundaries made 1t possible to develop unique statistical distributions of
the data within each delineation. Unique and subtle differences were hy-
pothesized to be more distinct in parent material delineations than distri-
butions developed across a whole county. Based on this hypothesis and the
need to develop a better point sampling method, four techniques were devised.
These techniques were designed to test the significance of parent material
delineations within a statistical classification and to determine 1f differ-
ing sample point selections would change classification accuracies. A
summary of these techniques 1s Tisted in Figure 2.

Two methods of sampling data points were used to determine which would
most represent responses within the specified classification area. Subjec-
tive sampling of blocks of data was compared to systematically sampling
points at specific T1ne and column coordinates across the entire classifi-
cation area. It was hypothesized that systematic sampiing would more ade-
quat$}y represent the spectral variability of a scene rather than subjective
sampling.

Another variability within the design was to Timit the si1ze of area
classified. The importance of parent material delineations was tested by
classifying only within parent materials as opposed to classifying the
entire county without regard to delineated boundaries.

A method was devised to evaluate the final spectral classes as to
countywide performance and accuracy within specific parent materials. Com~
pitation of so1ls at selected locations was hypothesized to be an adequate
means of testing performance. Due to time 1imitations the number of test
s1tes was Timited. Quarter sections within the county were selected as
test sites because they were easy to locate and randomly selected. Quarter
sections were numbered across the southern part of the county within each
of three major parent material areas (outwash, lacustrine, ti11). Numbers
were then randomly selected within each parent material area and correspond-
1ng quarter sections were noted on a Jasper County sections map. The 72-
hectare quarter sections were then located on aerial photographs which were
reproduced at 3 cm to 1 km to allow for mapping deta1l not generally mapped.
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Data Point Selection

Clustering

Classification

Subjective sampling of
representative blocks of
data within each parent
material

Each block of data
clustered requesting
13 cluster classes

18 spectral distribu-
tions used to train

the Gaussian maximum
likelihood classifier

Systematic selection of
data points from across
the entire county (every
eleventh line and column)

Clustering the entire
county selecting data
points every eleventh
line and column. 18
cluster classes re-
quested

18 spectral distribu-
tions used to train

the Gaussian maximum
likelihood classifier

Subjective sampling used
in classification one

Same cluster group-
ing used but group-
ings within parent
materials kept as
unique

Layered tree design
used with Gaussian
maximum likelihood
classifier (60 classes)

Systematic selection of
data points of every
fifth line and column
within parent materials

Clustering within
each parent material
every fifth line and
column, 13 classes
requested per cluster

Layered tree design
used with Gaussian
maximum likelihood
classifier (60 classes)

Figure 2. Data Point Selections and Subsequent Classifications.
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General Analysis Procedure. A general procedure was followed for each
of the four analysis techniques. Initially, a clustering algorithm was
used that established a group of spectral classes consisting of means and
covariance matrices which through an interpretive process was used in sta-
tistically classifying the county. Figure 3 shows the process involved in
creating training statistics for the area.

Association of Cluster Classes to Specific Cover Types.

Plotting Mean Response Values. Classes derived from clustering were
evaluated as to their spectral properties. Identification of broad cate-
gories of vegetation, soil and water could be made by observing the mean
relative responses across the four channels (Figure 4). Characteristic
curves of soil, water and vegetation make them easily identifiable.

Ratioing. Differences between vegetation and soil can also be detected
by summing reflectances in the visible bands (.5-.6 um and .6-.7 um) and
dividing by the sum of the two near infrared bands (.7-.8 ym and .8-1.1 um) .
A high response in channel three and low response in channel two yield a
ratio between channels of less than one that would indicate a vegetation
response. Water is more responsive in the visible bands and therefore
maintains ratio values over one. Response curves associated with soils
generally follow an even pattern which displays values of one or more.

Magnitude of Response. MWhen soils curves are identified, further sepa-
rations between the soils can also be made by consideration of their rela-
tive magnitude. The relative response across all four channels is summed
and these magnitudes are compared in order to identify such soils as a high
spectral response of a well drained soil or Tow responding poorly drained
soil. Drainage classes and their differing responses are shown in Figure 4.

Refinement of Cluster Classes.

Merging Function. Clustering statistics developed from more than one
clustering can be combined into a set of calculated means and covariances.
A merging function takes all statistical classes requested and compiles
classes with new calculated means and covariance matrices. Combined classes
were measured for divergence and pairs of classes with low divergence values
were merged into one spectral group. The processor used to merge classes
together calculated a new mean of all points contained in the original
classes merged and a resulting covariance matrix.

Some classes were encountered that had a spectral response representa-
tive of both soil and vegetation (Figure 4). These classes were combined
with a vegetation if they were spectrally similar or left to represent a
soil if the influence of vegetation was not too great.

Separability of Classes. Divergence of these cluster groupings was
calculated to obtain a measure of the similarity between the classes.
Divergence indicated the similarity of pair groupings. All possible
combinations of classes provide information necessary for combining,
remaining as distinct or eliminating classes.
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Final Training Class Selection. Information obtained from divergence
measurements, ratioing, plotting, and notation of relative reflectance
responses was used to define a statistical set of data points representing
the area to be classified. Creation of statistical distributions most
representative of the overall response 1s of crucial importance to correct
classification. When spectral distributions are confused, the classifier
wi1ll fai1l to separate accurately the data. Well defined separable dis-
tributions must be established 1f an accurate classification is the de-
sired result. The classifier also assumes classes are normally distributed
with mean and variance which further necessitates closely analyzing the
final training statistics.

Classification. A Gaussian maximum 1ikelthood ctassifier was used in
all four analysis procedures. The results of the classification were
written on a magnetic data tape which could then be accessed for display-
ing part or all of the area. The data tape can be read to produce the
classification 1n the form of an alphanumeric map 1mage, a gray scale
image and/or tabular output.

The specific classification procedures deviated in the method of
selecting training points for statistical analysis and 1n their appiication
to the area. A description of the variations within each analysis proce-
dure follows.

Classification One.

Training sites consisting of approximately 1% of the data were chosen
within each parent material with at least one training site located within
each parent material. By previous field inspection and notation of transi-
tions on the false color image training sites were selected that appeared
most representative of the area. Training areas were located by a coordi-
nate system of 1ines and columns which designated the appropriate data
points within the county.

Eleven blocks were clustered within the outwash area; seven blocks
were clustered n the rolling moraine t111, seven 1n the outwash over till,
four in the lacustrine, two in the till (Alfisol) and one in the till
(Mo11is61). Approximately 7,000 total points were clustered in all the
areas. Ten to thirteen cluster classes were specified per block, depend-
ing on the apparent spectral variabiiity within each area.

The resulting cluster classes were 1dentified as vegetation, soil,
water or some combination of cover types based on the previously described
analysis procedures. Urban classes and related spectral responses were
largely ignored because they were of minimal area in the county and were
not of interest in soi1l characterization.

Spectral classes from all parent materials were merged together 1nto
one set of means and covariances. Through a process of merging and diver-
gent measurements, a distinct set of spectral classes resulted. Ignoring
the parent material delineations the classifier categorized each data point
from the county 1nto one spectral class developed from countywide sampling.
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Classification Two.

A systematic sampling of data points for compilation of training sta-

tistics characterized the second classification procedure. Systematic
samples 1ndicate all ranges of responses 1f they are sigmficantly large

enough or the sampling 1ncrement 1s high enough.

A one percent sampling (eleventh 1ine and column) approximated the
s1ze of the first sampling and produced a set of eighteen means and their
associated covariances. Increments of si1x lines were avoided because of
the possibil1ty of error due to scanner noise, as previously described.
Parent materials were not considered in the systematic sampling of data
points nor in the resulting classification. Parent materials were dis-
regarded to test 1f a significant increase in accuracy would occur when
the areas were delineated in classification.

Classification Three.

Spectral samples clustered in classification one were again used 1n
class1fication three. Data points selected for training were combined
only within parent material areas. These numbers of points varied with
s1ze of the area, therefore, a larger area would be represented by a
larger number of points. Similar spectral classes were combined if they
represented the same cover type. Soil responses from other parent mate-
rial areas in some cases were quite similar, but the property of the clas-
sifier made it possible to retain those classes as unique within the same
classification algorithm.

By the use of a decision tree design each data point was not tested
against all other data points 1n all other spectral classes but rather was
tested against only those classes formed from spectral information within
a particular parent material area. Sixty statistical classes were con-
tained at the root node from which 6 stem nodes each representing a parent
material projected. These nodes were equidistant from the root node, there-
fore, they constituted one layer within the decision tree design. Consist-
ing of a set of spectral classes each node was used to discriminate which
classes would be used within a designated parent material area. A Gaussian
maxtmum 11kelthood rule was st111 used to classify points although the tree
design was used to discriminate the number of classes used in each unique
area.

One channel or a combination of channels could be used in the layered
approach for either discriminating parent material or classifying data
points. Of the 60 sets of means and covariances six classes consisted
only of a fifth channel which was used as a designator of parent materials.
These six classes were previously mentioned as the first layer 1n the clas-
s1fication scheme. Remaining classes of Landsat data contained 1n the root
node were compared to each of the stem nodes. Each parent material desig-
nator specified a unique set of statistical classes to be used in classify-
ing only that parent material. The process by which the classifier pro-
ceedad is shown 1n Figure 5. Stem nodes and their respective classes were
prespeci1fied in the classification program.
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Channel 5 Area 1 Outw§§§

Channel 1-4
Classification 3 Classification 4
1-9 soil classes 1-8 soil classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 2 Rolling moraine till

Channel 1-4
Classification 3 Classification 4
1-10 soil classes 1-8 soil classes

3 vegetation classes 2 vegetation classes

Ehannel 5 Area 3 Outw..sh over till

Channel 1-4
Classification 3 Classification 4
1-8 soil classes 1-8 so0il classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 4 Lacustrine

60 Class Statistics
(Classification 3,4)

Channel 1-4
Classification 3 Classification 4
1-9 soil classes 1-8 so0il classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 5 Alfisols (Till)

Channel 1-4
Classification 3 Classification 4
1-8 soil classes 1-11 soil classes

3 vegetation classes 2 vegetation classes

Channel 5 Area 6 Mollisols (Till)

Channel 1-4

e e S o e i o et e

Classification 3 Classification 4
1-10 soil classes 1-8 soil classes

3 vepgetation classes 2 vegetation classes

Figure 5. Tree design used in classification procedure of Jasper
County spectral soil maps.
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The ability of the classifier to use only 60 classes limited complete
freedom 1n spectral definition. Soils were of primary mportance in the in-
vestigation, thus, 1t was decided to combine vegetation from all areas and
classify using only three vegetation classes grouped from across the county.
Again the classifier used approximately 1% of the data within the county to
train the classifier.

¥

Classification Four.

Consideration of parent materials was integrated into the last analysis
and classification. Irregular boundaries of the six parent material delinea-
tions made 1t extremely difficult to record all points manually within each
area; therefore, a FORTRAN program was devised to locate every fifth 1ine and
column coordinate point within each parent material area. This sampling tech-
nique involved approximately a four percent sample of the county. An incre-
ment of five was used to insure adequate sampling and avoid six Tine noise.
These Tine and column coordinates were used to cluster each entire parent ma-
terial area. It was decided that thirteen cluster classes would be the maxi-
mum number asked for A smaller number would not adequately represent the
ground scene, and a larger number may leave some spectral classes with too
few points to be considered a good statistical sampling. A separate set of
means and covariances was generated for each parent mater1al. Vegetation
classes, so1l and scattered vegetation classes were 1denti1fied by the same
process described in the previous classifications. The four percent sampiing
was used in the layered design to produce a county spectral classification
based on spectral probabilities from six different sets of statistical dis-
tributions. The design of the decision tree was identical to classification
three except different spectral classes were used to compile the tree.

Evaluation.

Field Observation. Evaluation of classifications was accomplished by com-
parison of completed classifications to the mapped quarter sections. Three
soil scientists comprised of one SCS so1l scientist and two soil science grad-
uate students mapped the quarter sections with the specific objective of mapping
.45 ha delineations or larger. Normal mapping procedures were used to investi-
gate the quarter sections. Each quarter section was Tocated and position noted
on the photograph. By traversing the Tand and taking sufficient borings to
ident1fy drainage patterns and textures, map units were delineated on the aerial
photographs. Underlying calcarious t111 was 1dentified by applying acid and
observing 1f any reaction were present. The color chart was used to determine
Mollic or Alfisol horizon colors. After investigation of surface and horizons,
map units of .45 hectares or more were noted on the field sheets. Each quarter
section was arbitrarily divided into three sections and mapped by one of the
investigators. After the quarter section was traversed, soi1l characteristics
were discussed and questionable areas were revisited. The final soil map was
a combination of observations from all individuals. The northern part of the
county was not chosen for evaluation because the distance was prohibitive 1n
the investigation. Mapping of these quarter sections was done prior to com-
puter analysis so bias in so11l mapping could be avoided. The completed so1l
maps were used to evaluate the spectral classification.

Correlation to Map Units at Randomly Selected Sites. An electrostatic dot
matrix plotter was used to produce individual plots of the mapped quarter sec-
tions that would be used 1n the evaluative procedures. Copies of these clas-
s1fications were also reproduced on acetate to enable overlaying on the photo-
graph. All spectral classes were graphed as to their relative spectral response
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across the four Landsat spectral bands, and copies were provided for each
analyst. Analysts were asked to compare each classification to the so11 maps
and rate the classifications as to their correspondence to the maps. The two
most representative classifications would be used in field checking and from
this the most representative classification would be chosen.

RESULTS AND DISCUSSION

The four classifications were completed and evaluated by comparison to
previously determined randomly selected sites within Jasper County. The fol-
Towing is a summary of the results of the methodology used in the Jasper
County classification procedures.

Result of Registration

Difficulties in fitting the rectified halftone positives to the regis-
tered Landsat data prompted a registration of Jasper County using the recti-
fied halftone positives as a base rather than the black and white panchro-
matic unrectified photographs. The rectified halftone positives, when used
for registration, will not provide a better correlation between the two images,
1.e., Landsat and halftones. However, with the use of halftones in conjunction
with the Landsat classification, both must be registered to the same standard.
As with the unrectified photographs, error was predicted to be no more than
thirteen meters displacement.

Using rectified photographs should have eliminated some error due to
crabbing and scale differences in blocking the photograpns. However, because
the halftones were trimmed to less than 20% overlap, difficulty 1s being en-
countered in the blocking procedure. %hen registration to the halftone posi-
tives 1s completed, the data points will be reclassified using the most accu-
rate of the four statistical distributions.

Parent Materials Map. The 32 level histogrammed false color image proved
to be more detailed than necessary for preparation of a parent materials map.
Although the fine clicing of the spectral distribution provided more informa-
tion, becuase of difficulty 1n visually interpreting the color levels (minute
d1ffereg%es were not easily discernible) fewer defined levels would be more
reasonable.

Field Mapping of Quarter Sections. The map units were recorded on aerial
photographs at 3 cm to 1 km which were evaluated by four so1ls analysts. Map-
ping of the quarter sections required approximately two weeks of field worl
to complete.

Random selection resulted in the outwash quarter sections occurring 1n
the same section while two other quarter sections occurred side by side 1n the
other parent materials (Figure 6). The occurrence was advantaseous in that map-
ping the entire section was easier by elmminating the need to travel to four
different Tocations, but abundance of wooded Tots and pastures narrowed the
area that could be used for spectral evaluation of soils. One disadvantage of
MSS data s the 1nability to obtain so1l responses through trees, or dense
vegetation such as maturing crops and pastures.

The completed so1l maps of the quarter secttons (Figures 7-13) display a
wide variety of so1ls. The outwash section, although orimarily covered by
vegetation, ranged from excessively well drained Plainfield sand to various
histic so1ls such as Houghton and Adrian. The Tacustrine map units
ranged from well drained to poorly drained soi1ls characterized by
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A-C - A-C profile

Co-Corwin, fine-loamy, mixed, mesic Typic
Argiudolls (well drained)

0d-0dell, fine-loamy, mixed, mesic Aquic
Argiudolls (somewhat poorly drained)

Wo-Wolcott, fine-loamy, mixed, mesic Typic
Haplaquolls (poorly drained)

® - Bedrock 1 meter

Figure 7. Till parent material
T27N R7W SW% Sec 20

0d-0dell, fine-loamy, mixed, mesic Aquic
Argiudolls (somewhat poorly drained)

Pc-Parr, fine-loamy, mixed, mesic Typic
Argiudolls (well drained)

Figure 8. Till parent material
T27N R7W NWY% Sec 21




Cn-Conover, fine-loamy, mixed, mesic Udollic
Ochraqualfs (somewhat poorly drained)

Mo-Montmorenci, fine-loamy, mixed, mesic
Aquollic Hapludalfs (moderately well.
drained)

Wo-Wolcott, fine-loamy, mixed, mesic Typic
Haplaquolls (poorly drained)

Figure 9. Till parent material
T27N R7W E)% Sec 28.
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Al-Alvin, coarse-loamy, mixed, mesic
Typic Hapludalfs (moderately well
drained)

Ch-Chelsea, mixed, mesic Alfic Udipsam-
ments (excessively drained)

Rr-Rensselaer, fine-loamy, mixed, mesic
Typic Argiaquolls (poorly drained)

St-Starks, fine-silty, mixed, mesic Aeric
Ochraqualfs (somewhat poorly drained)

Figure 10. Lacustrine parent material
T28N R7W SEY Sec 23.

Al-Alvin, coarse-loamy, mixed, mesic
Typic Hapludalfs (moderately well
drained)

Dr-Darroch, fine-silty, mixed, mesic
Aquic Argiudolls (somewhat poorly
drained)

Ma-Mahalasville, fine-silty, mixed, mesic
Typic Argiaquolls (poorly drained)
Ro-Roby, coarse-loamy, mixed, mesic Aquic
Hapludalfs (somewhat poorly drained)

Rr-Rensselaer, fine-loamy, mixed, mesic
Typic Argiaquolls (poorly drained)

Figure 11. Lacustrine parent material
T28N R7W NE% Sec 28.
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Dk-Dickinson, coarse-loamy, mixed, mesic Typic Haplaquolls
(excessively drained)

Dr-Darroch, fine-loamy, mixed, mesic Typic Hapludalfs
(somewhat poorly drained)

Rr- Rensselaer, fine-loamy, mixed, mesic Typic Argiaquolls
(poorly drained)

Figure 12. Lacustrine parent material
T28N R7W Sk Sec 32
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Ad-Adrian, sandy or sandy skeletal, mixed, euic, mesic Terric
Medisaprists (very poorly drained)

Ba-Brady, coarse-loamy, mixed, mesic Aquollic Hapludalfs (somewhat
poorly drained)

Gf-Gilford, coarse-loamy, mixed, mesic Typic Haplaquolls (poorly
drained)

Ho-Houghton, euic, mesic Typic Medisaprists (very poorly drained)

Md-Maumee, sandy, mixed, mesic Typic Haplaquolls (poorly drained)

Mr-Morocco, mixed, mesic Aquic Udipsamments (somewhat poorly
drained)

Pn-Plainfield, mixed, mesic, Typic Udipsamments (excessively
drained)

Figure 13. Outwash parent material, T23N R5W Sec 28.
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fine sandy loam soils to silty clay textures. Till areas also ran from well
to poorly drained profiles with primarily silt loam textures. In western
till portions of the county bedrock occurred within 1 meter of the surface
(this being evidence of the coral reefs discussed earlier).

Results of Classification

Four separate classificationsof Jasper County were created. Of the
four, two were chosen as the most representative of county soils. The fol-
lowing gives an indication of each classification performance.

Classification One. Al1 block clusters resulted in at least two vege-
tative responses that when tested by a divergence measurement proved to be
spectrally separable. These vegetative responses generally were represen-
tative of wooded areas of crops and pastures. A wide variety of soil re-
sponses were identified, but many of these classes were eventually merged
when minimal distances were found for their divergence values. Water re-
sponses were not considered of major importance. Because there were no
extensive bodies of water except for scattered borrow pits along Inter-
state 65, their response grouped with that of poorly drained soils such as
the muck areas in the north and southeast. Urban areas were not of suffi-
cient size to consider them in a unique spectral stratification and were
not of interest in characterization of soils. Urban areas were classified
as vegetation because of the abundance of trees and grassed areas with
cities and towns.

An overabundance of representative vegetation responses, which were
not of importance, were eliminated by tolerating a lower divergence value
between pairs of vegetation classes than for pairs of soils classes. That
is, vegetative response classes were grouped together that were not as
spectrally similar as soils classes. In this process vegetation distri-
butions became large with wide variances which resulted in detriment to
overall classification accuracy. Overall the distributions became too
large and variant when classes were combined from across the county. If
vegetation were left as discrete classes, correlation of soil, vegetation
and combination soil-vegetation responses could be investigated.

Over 65 statistical distributions were combined from all parent mate-
rials which resulted in 18 spectrally distinct classes. Of these 18
classes six displayed vegetation responses, nine were soils and the
remaining three had characteristics of both soil and vegetation. Since
these three classes had characteristics of soil, it was thought that infor-
mation from these classes would contribute to identification of soils;
therefore, they were considered part of the soil response group. No con-
sideration of parent material delineations was taken either in the merging
of cluster classes or in classification of the county.

Of the four analysis techniques the first spectral classification was
the least representative of the mapped quarter sections. The most accu-
rately classified of the twelve areas occurred in the till (Mollisol)
parent material. Spectral soil classes were more correlated to map units
in the till area than in the other representative areas.
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Some averaging occurred by combining cluster groups together. Dis-
tinctiveness of better drained areas was lost as well as more poorly drained
so1l responses. For example, the Odell, a somewhat poorly drained, was
represented by the same statistical group as Corwin, a well drained soil.
Corwin and Odell have silt loam surface téxtures and differed 1n color by
10YRZ2/2 for Corwin compared to 10YRZ/1 for 0Odell. Parr, another well
drained s11t Toam with 10YR2/2 surface color, was also confused with the
Odell. Due to closeness in color and drainage profiles, these so1l1s would
have been quite close spectrally; however, soil distinctness was lost when
distributions from across the county were combined.

A poorly drained Wolcott soil with a s11t loam surface texture and
10YR2/1 surface color did not correlate to any specific spectral class.
A1l map units had evidence of scattered vegetation data points which were
not in as great abundance as in other classifications. Figures 14 and 15
show spectral responses of soi1ls and soil-vegetation compiexes along with
1dent1f1ed vegetation classes.

Figure 16 shows the resulting county classification from the first
analysis. The overall county map is very representative of general cover
types within the county. Only on fine detail maps is the classification
Tess than adequate for defining so1l series. Soils differences that indi-
cate dramatic changes such as the organic soils are easily recognized, but
the more subtle differences are confused. Borrow pits along Interstate 65
are recognizable but, as stated before, were classified as a poorly drained
or histic so1l.

Classification Two. A systematic clustering of prespecified 1ines and
columns characterized the second classification scheme. By systematically
sampling the entire county, data which could be overlooked by block clus-
tering would be sampied. Unique areas of smaller than 225 ha could be
bypassed since those areas are not mapped (due to the expense n estab-
Tishing a so1l series and the small area 1n relation to the county) as a
soil series within a county. Those areas overlooked 1n a systematic
sampling would not be of importance 1n characterization of county soils.

Identification of cluster classes resulted 1n eight definite soil
responses, six vegetation classes and five soils with some vegetative
nfluence. In subjective sampling, vegetated areas such as the Jasper
Pulask1 State Fish and Wildlife Area, wetland areas and scrub oak areas
on sand ridges were generally avoided, but systematic sampling chose points
throughout the county which accounted for the increased number of soil-
vegetation responses. A good definition of scrub oak, wooded areas and
trees and plants along creeks and rivers was the result of the second
classification because these were not avoided and could be classified
with actual representative data points from the area.

Evaluation of the soi1l maps revealed the second classification to be
more representative than the first but not of the quality displayed in the
third and fourth techniques. Again, difficulties were encountered with
scattered data points of vegetation appearing across the map umits, but
not to the extent of classification one. 0dell, a somewhat poorly drained
so11, was again confused with the well drained so1ls, Parr and Corwin.
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Investigated scattered data points indicated characteristics of both
soils and vegetation. In an attempt to improve the homogeneity of the map
units, statistical distributions were altered by eliminating the combina-
tion soil-vegetation classes and reclassifying only those areas correspond-
ing to the mapped quarter sections. Figures 17 and 18 show the graph of
data before and after alteration. In general, data points previously
classified as mixed soils and vegetation were classified as the surrounding
soil response. Only classes displaying a relatively pure soil or vegeta-
tion response were used in reclassification.

The entire county was not reclassified because of the expense and be-
cause the reclassification was to be done on the rectified registration
that was not yet completed. Although favorable results were encouraging,
the quarter sections were not of sufficient size to infer the same results
would occur across the county. In some areas elimination of classes could
be of detriment to accurate scene identification by forcing data into
classes not indicative of their true response nature. For example, train-
ing statistics developed specifically for a well drained soil would accu-
rately identify that soil. However, if lighter responding erosion classes
had no training statistics spectrally near, it could be classified with a
1ight colored well drained soil. This could have been avoided had there
been a unique spectral distribution designed to represent an eroded soil.
Further research into identification of spectral classes should be attempted
so the most influential parameters contributing to response properties can
be determined. Large classification areas the size of a county necessitate
careful selection of spectral responses that provide an optimal spectral
design of the tract.

The second analysis provided better correlation with mapped soils
which could be attributed to better defined, more evenly distributed spec-
tral classes that were selected by a systematic approach.

Classification Three. By combining cluster classes only within parent
materials six sets of statistical distributions were created. Each set was
used to classify only within a particular parent material. The resulting
set of statistical distributions contained nine soils in outwash, six soils
in the rolling moraine till, seven within outwash over till, eight in the
lacustrine areas, eight in the till Mollisol and seven in the till Alfisol
(Figure 5). Initially, vegetation was included within each parent material,
but due to the limited 60-class capability of the tree design vegetation
was combined and a standard set of vegetation spectral distributions was
used in each area. Modifications to the tree design and classifier has
enlarged the capacity which will benefit future attempts at county char-
acterization. The third analysis provided still better correlations than
the first although some quarter sections displayed definite inaccuracies
in soil representations.

The outwash over till parent material area produced rather unique
spectral responses (Figure 19) in that only two classes displayed a char-
acteristic soil response over the four channels while the remaining classes
responded highly in channel three (indicative of vegetation) which leaves
question as to whether there was a lot of scattered vegetation in the area
at the time of the overpass or if these are unique soil responses that
have not been encountered before. Only three of the major parent materials
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had been chosen to evaluate the classification so no prepared ancillary
data were available to help explain these phenomena.

In the 111 areas Odell and Corwin were difficult to discriminate;
both reflected as the 1ightest so11 class. In some transitions to darker
poorly drained soils, such as in T27N R7W Sec20SWx till, 0Odell responded
much lower spectrally than when it was associated with Parr or Corwin. It
appears that Odell, a somewhat poorly drained soil, has a wide range of
reflectance. Since 1ts drainage characteristics resemble well drained
and poorly drained parameters, it may be less well drained 1n association
with poorly drained soils and better drained when associated with well
drained soils. Also, data point averaging could affect these responses.

The Tacustrine shows good correlations with excessively drained soils,
but evidence of inclusions within the soils was not supported with ancil-
lary data. Areas of small inclusions could have been overlooked 1n the
mni1tial mapping. So, areas 1n question should be revisited.

The outwash areas showed good definition between spectral classes and
so01] series. Some variability was evidenced in separation of Brady, a
somewhat poorly drained si11t Toam with 10YR3/1 color, and Plainfield, a
well drained fine sand with 10YR4/3 color. Although Brady was separated
for the majority of the map units, some pixels representative of Plainfield
were integrated in the map units.

G11ford, a poorly drained sandy loam with 10YR2/1 color, was com-
pletely separated from the Maumee, a poorly drained loamy fine sand with
10YR2/0 color. Other parameters than drainage characteristics must have
contributed to this spectral variability. Slight differences in texture
and color could also have contributed to the abi1lity to separate these two
poorly drained soils. Maumee, for the most part, appeared in depressional
wet spots and could have been categorized as a very poorly drained soil
which may also have contributed to separability.

Evaluation after classification sugaested that again the greatest con-
tributor to misclassification was largely due to the influence of a com-
bination of so1l-vegetation responses.

Classification Four. The last classification proved to be the most
accurate of the four analysis techniques. By clustering within parent
materials four percent of the data was sampled compared to a one percent
sampling 1n the previous analysis techniques. A larger sampling provided
better definition of spectral response which resulted i1n a more accurate
classification

The county was statistically classified with 52 so1l representations
and two vegetation classes. Ten spectral classes were used in the outwash,
twelve in the till (rolling moraine), ten in the outwash over till, nine
spectral classes in the lacustrine area, thirteen identified 1n the ti11
(A1f1sols) and ten classes within the ti11 Moll1sol area.

Although overall classification four appeared more representative,
misclassification was apparent in the outwash and lacustrine quarter
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sections. The lacustrine area, T28N R7W Sec32 S's, was better represented
by classification three. Mixing of two spectral classes occurs in the
Dickinson map units, an excessively drained fine sandy loam with 10YR2/2
surface color. Vegetation is scattered more throughout these map units

in the last classification than in classification three. The outwash sec-
tion, T23N R5W Sec28, which consists of large map units of Gilford and
Maumee, two poorly drained soils, were not differentiated as in the pre-
vious classifications. The same occurrence was noted within the lacustrine
area, where spectral responses of low responding soils were checked. The
poorly drained soils were representative of the lowest reflective soil,
but both graphs also revealed the next Towest responding soil as higher
reflecting in the third channel. If vegetation was masking the response
of soil, then perhaps bare soils within the same response group are clas-
sified to the nearest group responding as a bare soil with no vegetative
influence (Figures 20, 21).

Initial success at identifying soils was based on the ability to dif-
ferentiate drainage profiles; thus it was surprising to note two poorly
drained soils within the same parent material. Spectral characterization
of soil parameters is needed to define the extent to which each parameter
contributes to overall spectral response.

Unique Characteristics of the Data. Scattered vegetation was evident
across all classifications and contributed to interference with the homo-
geneity of all map units. These scattered vegetation-soil complexes were
at first considered to not be a valid delineation. Further inspection of
response values found that these data points were indeed a combination of
vegetation and soil responses. Crop information from June 1973 found
ninety percent of the corn and sixty percent of the soybeans were planted
by early June. This gives explanation to why so many scattered data points
were found in evaluations. These data should have been gathered before
decisions were made regarding the date to be used in analyzing the remotely
sensed data. At this time it is not known exactly how vegetation influences
a soil response, that is, whether it gives an overall high response or Tow
response or only influences the response in channel two and three. Infor-
mation then cannot be extrapolated from these combination pixels as to the
type of soil the vegetation is occurring on. If the combination points
appear in a map unit, those points cannot be assumed to be a part of that
map unit because of the possibility of inclusions occurring within the
unit. The easiest way to eliminate this problem is to choose a date that
is known to be relatively free of interfering ground cover. The next step
would be to analyze responses to predict the soil from the combination
response.

Aerial photographs were not rectified which contributed to error in
matching map images. The resulting rectified halftone transparencies
were used for reregistration which should produce a more accurate map
representative of the county. Map quality photos should be essential
for creation of registration data and map quality output.

Evaluation of Quarter Sections. Evaluation of quarter sections was,
in general, a subjective approach with map units and spectral classifica-
tions being overlaid for comparison. One analyst did use a numerical
approach by counting data points within each map unit and calculating
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the percent so11 each spectral class represented. The purest map units or
those spectral classes that represented the largest portion of any single
map unit were found in the last classification. A1l analysts agreed that
the Tast two classifications were the most representative of the four clas=
sification techniques.

A more quantifiable evaluative technique is necessary to provide an
objective approach 1n selecting classifications. Bias was also integrated
in the analysis techniques by the same 1ndividuals mapping the quarter
sections and evaluating the classifications. By varying the individuals
that mapped the quarter sections and evaluated the quarter sections, a more
objective evaluation would result.

A statistical evaluation was attempted to test the validity of separating
the parent materials. Both analyses (all highest responding classes and all
Towest responding classes across parent materials) proved highly significant
at the .01 level; therefore, the hypothesis of the homogeneity of distribu-
tions was rejected. These values may have been overly inflated due to the
large number of points used in compilation of the distributions. Calcula-
tion of degrees of freedom is based on the total number of points used in
the set of distributions; therefore, the large number of points contributed
to the significant values. The problem was further complicated because
at least six classes were needed for testing so no classes could be elim~
1nated to reduce point s1ze. A test more sensitive to relationships of
distributions and less sensitive to point quantities is needed.

Delineations Made by the Classifier. Favorable correlations with the
classification map were found when field observations were made. As 1in the
past, drainage patterns and organic matter differences were found to be
highly correlated to reflectance. Organic differences were evidenced by
the separable histic inclusions in the north and southeast. Minor differ-
ences 1n texture also were evident especially in the outwash area. Again,
1t is not certain how much contribution each of these so1l parameters make
to the overall soil reflectances.

Areas of moderate to severe erosion Tocated in the till region were
found to correlate almost 100% with one spectral class. Two separate areas
were checked and both gave evidence to good correlation. The second area
showed large areas of erosion running east to west that when field checked
were not that extensive. This could be caused by east-west bias that occurs
n clustering. Clustering samples point left to right across a 1line; there-
fore, the probabilities of points Tying next to one another being in the
same class 1s slightly higher than for points lying to the north or south.
Surrounding pixels may have contributed to the erosion areas which would
result n exaggerated erosion classes.

The eroded class, in both areas, was not the highest responsive class.
In general, the highest respondina class tended to have the largest var-
1ance because it 1s an all inclusive class of points above a certain re-
sponse. Erosion representation, since 1t is not the highest responding
class, has definite 1imiters on 1ts response range which contributes to a
better defined distribution with smaller variance.
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The sand ridges, in the northern part of the county, were defined by
the vegetative response of the scrub oak, that occurred on the ridges.
This provides the ability to map Plainfield sand, the predominant soil
of the sand ridges, by delineated scrub oak areas. Areas of native vege-
tation or in this case scrub oak could be used to identify underlying
soils if certain soils supported unique vegetation types.

A vegetation map of the county was also available through the use of
the tree design processor which was used to delineate the Jasper-Pulaski
Fish and Wildlife Refuge, the location of rivers and creeks, drainageways,
and pastures and/or wheat fields. County roads and Interstate 65 were
also visible on the final classification. Boundaries of parent materials
could also be obtained and individual parent material classifications
ggu;d)be printed because of the nature of the layered processor (Figures

-27).

Map products of the soils classification can be all or any part of
the county at any scale. The products can be on acetate or computer
printout with grey scale values, alphanumeric or symbol sets. This map
quality product gives a synoptic view of Jasper County that has not been
available without Landsat except through mosaicing aerial photographs.

An Augmented Procedure for the County Soil Survey. If this type of
analysis has the potential to be used in soil surveying, where does it fit
into the county plan for a survey? The decision to use remotely sensed
data could be made at the same time the designation to initiate the soil
survey is made. Data preparation and imagery analysis would then be insti-
tuted at the same time preliminary investigation was to take place. If
photography were used as a base map for registration, then it must be taken
in advance. If 7% minute topographic maps are to be used for registration,
photographs need not be available until the usual time. Digital analysis,
evaluation, refinement, and creation of map products can also be done
before soil mapping begins. Map products could then aid in beginning the
soil mapping by locating spectrally similar soils, identifying inclusions,
providing information to areas not readily accessible, identifying drainage
profiles, locating possible areas of erosion, and identifying textural and
organic differences. If a parent material or soil association map were
created, this could aid in developing soil interpretations and establish-
ing soil series within the county. Finally, the remotely sensed data could
be used as a quality control for map units by identifying the percent inclu-
sions, their extent and location. Figure 28 shows a possible augmented
soil survey procedure.

Limitations and Difficulties. The greatest limitation was the inter-
ference of vegetation with soil response. Consideration of planting dates
should influence the date when the remotely sensed data are chosen. Future
remotely sensed data systems may not have the same difficulty as the Landsat
MSS data, but now this is extremely important.

Registration is important if close correlation to resolution size
elements is to be made. Aerial photography should be of map quality if
good correlations are desired. The photographic imagery and remotely
sensed data should be collected at approximately the same time.
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Compilation of statistical distributions is of extreme importance for
successful classification. In the systematic sampling of data points, dis-
tributions were more uniform unlike the subjective sampling of data points,
although in the layered processor large distributions of vegetation weighted
the classification of vegetation. Since the classifier has been altered
to accept more than 60 classes of data, the problem should be alleviated.
Large variances and platokurtic distributions should be avoided when smaller
leptokurtic distributions are part of the same set of statistical distribu-
tions. The reasoning for this follows that the probability of points being
classified in the larger variant distribution is greater than for the smaller
variant distribution.

Still more research should be done to identify the parameters that
affect soil reflectance. It is not known which parameters contribute the
most to overall soil reflectance. Investigation should be made as to how
they affect the response, whether higher or lower response is made because
of their presence.

SUMMARIES AND CONCLUSIONS

Preparation of a spectral map representative of soils within Jasper
County resulted in relatively inexpensive quality map products that could
be used in the future county soil survey. Development of a methodology
from acquisition of data to creation of usable map products will aid future
attempts at augmenting the traditional soil survey techniques. Heretofore,
costs in acquiring map products other than panchromatic black and white
photography have been prohibitive, but Landsat data analysis should be a
reasonable expense for county use if the duration of a county survey could
be shortened by increasing the daily mapping capacity.

Remotely sensed data should be closely associated in time to any an-
cillary data that would be used for registration purposes and/or for corre-
lation (field checking). Prior knowledge of the amount of ground cover
type and growth stage of corn, soybeans or other crops that contribute to
interference with soil response would be of importance in selecting dates
of data acquisition. Difficulties encountered in class confusion in the
Jasper County spectral man were largely due to scattered vegetation mask-
ing soil responses. '

Image interpretation of the Landsat image and field checking of the
image boundaries resulted in the creation of a county parent materials map
that made an obvious imnrovement when used as ancillary data in the sta-
tistical classification of the county.

A11 classifications provided a means of identifying map units that
“could be quantified. Soil series could be identified with the aid of the
ancillary data (parent material boundaries) along with the ability to
specify drainage characteristics. Organic matter differences were easily
jdentifiable throughout the county from the muck soils in the north and
the well drained sandy soils in the east with 1ittle organic matter con-
tent. Erosion was strikingly separable within the till area. (The other
areas have not been checked for an erosion class.)
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Difficulties in delineating closely associated soils in some areas
were encountered. Somewhat poorly drained so1ls were confused with mod-
erately well and well drained so1ls which is not surprising when the close-
ness of their drainage characteristics 1s considered. Some classes of _
somewhat poorly drained soils are so minutely different from better drained
so1ls that discussion as to their delineation can be controversial even
upon field inspections. These difficulties must be considered when cri-
ticism arises against MSS remotely sensed data being used because of
mabil1ty to make certain so1l delineations.

Evaluation of these classifications 1ndicated the classification
involving a systematic data point sampiing technique for compilation of
training statistics within unique areas to be the most representative.
Other classifications that used training samples across the entire county
resulted in statistical distributions that were too broad for a fine de-
Tineation of spectral responses. Establishing a statistical representa-
tion across such a large area as Jasper County created distributions that
diminished subtle differences in responses.

The subjgective nature of the evaluative techniques was not adequate
to evaluate classification performance quantitatively. A homogeneity test
was used to determine the necessity of parent material delineation but
this also proved 1nadequate. A more objective approach for determining
classification performance and a test less sensitive to point quantities
and more sensitive to relationships of distributions are needed.

Random quarter section evaluation was a sufficient means of sampling
the county soils, but not all parent materials were sampled. Therefore,
questions about the outwash over ti111 area on the iast classification
remained unanswered. Future classification evaluation should include a
larger sampling over a more extensive area.

Initially 1t was thought that the soil parameter most affecting Landsat
spectral responses was drainage characteristics. Results in the outwash
area produced spectrally separable so1ls of the same drainage characteris-
tics indicating that either minor textural or organic matter differences
might also significantly affect so1l spectral response. Although a success-
ful classification has been produced that will areatly aid Jasper County in
their so11 survey, more research 1s needed to determine the soil parameters
that make spectral separations possible and to what extent each of the
parameters contribute to overall soil response.

Final map products are available that delineate parent materials,
vegetation across the.entire county, specific sections or any area of the
county at any map scale. These map products can be printed on acetate or
paper with soil and vegetation classes represented by alphanumeric char-
acters, symbols or varying grey scale values.

Products from this study are to be available along with rectified
halftone transparent aerial photogranhs to be used in mapping the soi1ls of
Jasper County. The two images printed at the same scale {1:15840) were
spec1fically designed to be a readily usable tool for field investiga-
tions. These products will provide information 1n areas not readily
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accessible and can provide the opportunity of extending the mapping time
during the summer months when covered crop canopies make 1t extremely
d1fficult to map.

In conclusion, this research has investigated a number of capabili-
t1es using remotely sensed data. Specifically, the research resulted in
the following:

1) Designing a methodology for using remotely sensed data from the
in1tiation of a county so11 survey to evaluation of the map units;

2) Successfully creating a parent materials map through image interpreta-
tion of Landsat data;

3) Analyzing four statistical methods of classifying data points and
recommending the most representative of the four to be used 1n county
soil mapping;

4) Finding drainage characteristics, textural and organic matter differ-
ences, erosion, and scattered vegetation to be significant contributors
to s011 responses;

5) Map units that were eas1ly characterized as to their homogeneity, and
drainage characteristics i1n relation to other so1l1s;

6) Read1ly available single feature maps such as vegetation maps;

7) Definable parent material areas that contribute to a more representa-
tive statistical classification of a county so1l map;

8) Finding that selection of data acquisition dates 1s extremely important,

9) Vegetation affecting soi1l responses across the Landsat channels, how-
ever, it was not known how much and to what extent the response was
affected,

10) Finding statistical distributions for classification of an area to be
of extreme importance 1f an accurate classification 1s desirable;

11) Landsat providing a synoptic view of Jasper County that has not been
available for other counties unless aerial photographs were mosaiced
together;

12) Map products designed to be readily used in the research of county
s011s.
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HOOSIER NATIONAL FOREST PROJECT

INTRODUCTION

Since 1975 the LARS staff have been 1nvolved in a demonstration of com-
puter-aided Landsat analysis for the Hoosier National Forest. The demon-
stration involves the production of maps and tabular acreage statistics for
predominant Tand use on the Brownstown Range District of the Forest. The
ultimate objective of this activity has been to define the utility of Land-
sat remote sensing and computer analysis to day-to-day forest management.

Within the last decade environmental pressures 1n the form of Tegis-
lation including the Resources Planning Act, the National Forest Management
Act and pending Wilderness Legislation have increased the burden of forest
planners to be more responsive to apparent public desires for goods and
services from our National Forest lands. The desire to maximize this re-
source utilization is dependent on timely information regarding the nature
of the resource 1n question. Both man-power ceilings and inflation con-
tinue to drive the cost of ground survey, the most common part of forest
inventory, upward so that the coliection of data from which 1nformative
plans can be developed 15 extremely expensive. Although remote sensing
1s not capable of providing information regarding all aspects of forest
inventory, 1t can certainly be both timely and valuable at appropriate
T1inks 1n the information chain

Since we have demonstrated the capability of the Landsat technology to
provide useful information {described 1n previous semi-annual reports), we
have redefined our thrust to address the form in which that information
should be presented. The attached paper, presented before the 1977 Amer-
ican Societyof Photogrammetry, details some of the product 1mprovement
. work n which we have become 1nvolved.
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THE APPLICATION OF SPATIALLY PROCESSED
LANDSAT DATA TO FORESTRY *-

R P. Mroczynski; Manager, Forestry Applications Research
and
F. E. Goodrick; Research Forester

The Laboratory for Applications of Remote Sensing
Purdue University
1220 Potter Drive
West Lafayette, Indiana 47906

ABSTRACT

The forests and associated range and wildland complexes 1n the U.S.
form an important renewabie natural resource base. The management of these
resources rely heavily on timely knowledge about their Tocation, condition
and status. The gathering of current, accurate information is a prereqg-
uisite upon which management decisions will be based. Remote sensing
technology offers a vehicle to meet the 1nformation needs of resource
managers.

However, satellite derived information has not been widely accepted as
a resource management tool in forestry. In general, the single tree syndrome
has blocked the acceptance of the 1.2 acre resolution capab1lity of digitally
processed Landsat data. Ironically, often maps and tabular acreage for
forest type and land-use are provided on a 10 or 40 acre cell s1ze. In such
circumstances Landsat results provide too much information on a pixel-by-
pixel basis.

Improvements in the technology now aliow multispectral data to be
classified by a new processor which incorporates both spectral and spatial
characteristics of the ground cover. Classification unit sizes are variable
and can approximate current field mapping unit size. Tabular summaries and
maps are provided from Landsat classified data and both can be generated for
management classifications. These functions can now help provide informa-
tion in a form more readily acceptable to the user.

This paper emphasizes new analysis tools available which consider the
spatial characteristics of Landsat MSS data. Results and applications of
these techniques will be discussed.

* Paper presented at the 1977 American Society of Photogrammetry Annual
Meeting, Washington, D.C.
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INTRODUCTION

The environmental 70's will be remembered through history for Teaving
a telling trai1l of environmental legislation. The Renewable Resources
Planning Act of 1974, and the Forest Management Act and Bureau of Land
Management Organic Acts of 1976 will alter and intensify human involvement
1n environmental concerns. As professionals entrusted with the steward-
ship of our nation's renewable natural resources, foresters will be under
closer scrutiny of the American public Pressures are increasing to pro-
vide more goods and services from this diminishing forest resource base.
Technologically, we are capable of meeting these demands. If we are fully
aware of our resource base, we can positively manage it to provide those
services which the public desires. Paramount to meeting these demands 1is
the knowledge of the existing resource potential. Without current guality
inventory information, any intensification of management would be fruitless
1f at all possible.

Wildland and timberland 1nventories historically have been difficult
to obtain because of the complexity of the material being studied and its
geographic dispersion and diversity. Since the launch of Landsat we have
had the synoptic coverage capable of viewing these resources, and the tech-
nical know-how to 1denti1fy and map their extent. With computer-assisted
analysis techniques 1t appears feasible to reduce large amounts of spectral
data to 1nformation usable to resource managers. The results presented
here describe a demonstration of the potential application of machine-
assisted analysis of Landsat MSS data for supplying resource information
The study involved personnel from the U.S. Forest Service and the Labora-
tory for Applications of Remote Sensing (LARS) at Purdue tiniversity. The
objective of this study was to supply land use classification maps from
Landsat for the Brownstown Ranger District, an area that the Forest Ser-
vice had recently mapped. The resulting maps and tabular data from both
processes would be compared and the potential of machine-processed Landsat
data evaluated.

METHODS AND MATERIALS

The test site (Fiqure 1) 1s a continuous block of 56,680 hectares
(140,000 acres), situated 1n south-central Indiana. The area 1s located
on IT11ino1s aged topography and consists of numerous northeast trending
ridges and valieys The oredominant vegetation 1s the oak-hickory associa-
tion, common to the central hardwood region of the Eastern United States.
In addition to producing timber, the area has heavy recreational pressures
due to its proximity to some large population centers.

The Forest Supervisor's Office was in the process of updating their
area management plans and had just completed a land use map of the site.
The map was comprised of seven classes (hardwoods, conifers, brush, crop,
pasture, water and urban) and was developed through photo-interpretation
and ground survey. The minimum area displayed on the map was 85 hectares
(21 acres), or one hectare more than the mid-point of the mapping unit
size, which was 16.19 hectares (40 acres).
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We were to attempt duplicating the Forest Service map using the Land-
sat data. The analyst used a "modified cluster" technique for selected
training areas. Spectral classes were identified with the aid of small-
scale color infrared photography. Spectral groups were combined during
the classification to match the Tand use classes identified by the Forest
Supervisor's staff. The final map contained only five classes: hardwoods,
conifer, brush, ag lands, and water. The urban class was dropped since
there were virtually no identi1fiable urban areas on the site. Crop and
pasture lands were combined 1nto an agriculture class because they were
difficult to separate on the date of the data used. The final map was
prepared at maximum Landsat resolution so that mapping unit si1ze equaled
resolution, or approximately 0.45 hectares (1.1 acres).

RESULTS

The first map that we produced was the per-point classification,
Figures 2a and b, which visually agrees with the Forest Service map. How-
ever, a number of points appear to be misclassified which cause a "salt
and pepper" pattern on the map. This, in fact, might be a true represen~
tation of the spectral canopy of the forest. Undoubtedly, there are a few
points which are misclassified. This is probably due to the fact that the
spectral definition of one of the classes is too broad. For example, there
vere few brushland training classes so the variance of that class may be
expected to be greater than say the variance of the deciduous forest class.
The deciduous forest class was formed by grouping various spectral classes
which we 1denti1fied according to different slope, aspect, and crown closure
density situations. What has apparently happened 1s that one of the Tow
crown density subgroups has been confused with brushland. Once the reason
for the misciassification is understood, the analyst can reselect specific
training areas, thereby trying to reduce the variance in each class's mean.
By so doing, the confusion between the sparse or less dense deciduous and
brushland will be reduced and the classification map will improve. This
process can be both time consuming and costly depending on the amount of
"cleaning" that 1s necessary.

At maximum resolution the Landsat classification map 1s visually
unappealing and does not correspond well to the forest map. The problem
was that we were comparing a map where each un1t represents 0.45 hectares
with a map where the smallest unit 1s 8.5 hectares (21 acres).

To make the comparison meaningful, we had to bring the mapping units
into closer agreement. Our next map (Figure 3) was prepared by eliminating
every other Tine and column. Each element on the mab now represents a
ground area of approximately 2.02 hectares (5 acres). The data are not
averaged in this process, just simply eliminated. Obviously, this approach
1s satisfactory 1n some situations, although increasing the frequency which
one drops 1ines and columns 1s not suggested.

DISCUSSION

The material provided to the Forest Supervisor was useful but not
optimal for his specific situation For this progect we had to consider
more than the spectral characteristics of the scene. Somehow, we had to
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account for the spatial variations in the forest canopy. In actuality,
the photo-interpreter accounts more for textural repetitions in the scene
than tonal associations.

During the first decade of research and development in applying digi-
tal analysis techniques to multispectral remote sensing data, emphasis has
been concentrated on extracting information from the spectral domain. In
other words, the methods applied have been those which analyze the spectral
measurements on a pixel-by-pixel basis. Some work has been done to utilize
temporal information by registration and analysis of data from the same
scene collected at different times. Even less work has been done 1n ex-
traction and use of spatial information based on shape, context, texture
and other forms of spatial relationships which, from photo-interpretation
experience, are known to be significant

An algorithm has been developed which 1ncorporates the simple spatial
relationship-adjacency into the machine analysis process. The processor
called ECHO, for Extraction and Classification of Homogeneous Objects, allows
;he inalyst to account for the textural qualities of the data during classi-

1cation.

Flexibility is provided to allow the user some Tatitude in matching the
data set to the objectives of the analysis. This control 1s achieved through
parameters which determine: (1) the cell size or number of pixels comprising
the basic classification unit, (2) the level of homogeneity required within
a cell, and (3) the degree of annexation of similar cells 1nto aggregate
fields. The cell size used 1s dependent on the resolution of the sensor and
the area of the "ground object" which is to be detected. The homogeneity
parameter controls the classification of the cell and ranges from a per-
point classification of each pixel to complete per-field classification
where each cell is treated as a unit. The third parameter controls the de-
gree of annexation of cells of similar spectral properties into Targer
aggregate fields.

With the ECHO processor we reclassified the data utilizing various cell
widths. To illustrate, we selected a six-section area in the northern part
of the site. As we will see, in Figures 4 through 6 the map becomes more
biocky as cell width 1s increased. With careful selection of the classi-
fication parameters, the analyst can control the amount of cell splitting
that the classifier performs. Cell splitting allows for a class of high
variance to be distinquished from surrounding material. The option would
be useful 1n separating small inclusions of pine plantations from the more
predominant surrounding hardwoods. The hardwood class contains a greater
spread, or variance, than the conifers, thereby allowing for the separation
between the classes.

When carefully applying the ECHO processor, we can eliminate small
errors which often appear to be areas of misclassification. This, there-
fore, makes the final map more appealing to managers who are used to maps
possessing less detail. Additionally, a slight improvement 1n classifica-
tion accuracy 1s alsoc sometimes achieved. Again, this 1s due primarily
to combining pixels which occur at the tai1l of a class distribution and
are prone to misclassification because they are placed 1nto a class with
greater variance.
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CONCLUSIONS

Spatial processing has a definite place in the analysis of Landsat
data for renewable resource management.. Eor large regional mapping pro-
jects, Landsat data are apparently more sensitive to changes in the ground
scene than necessary. The ECHO processor accounts for the spatial varia-
bility 1n the scene. Maps can be produced which more closely approximate
the user's state-or-the-art of current need.

There are other approaches which can be utilized. We have only con-
sidered a processor which accounts for the primary characteristic of spatial
information--class variabiTity. This may, 1n fact, simulate the thought
process which an interpreter uses in aggregating classes into cells but
does not replicate the physical process. In actuality, an algorithm which
determines the majority class within a cell and classifies the cell by the
majority would more closely approximate an interpreter's physical process.
We 1ntend to look at this approach for future work.

During this study we 1denti1fied an apparent non sequitur. The apparent
paradox 1s simply stated:

Because of geographic diversity and the physical difficulty and
cost 1nvolved in collecting natural resource data, Landsat would
appear to have obvious application. Resource managers, however,
are concerned because the resolution of the satellite data 1s
less than considered optimal at 0.45 hectares (1.1 acres). How-
ever, these same individuals produce maps and tables at 16 hec-
tares (40 acres) or larger cell sizes to assist 1n development
of large area plans.

As scientists have been too willing to sell resource managers too much
based only on a system capable of providing spectral information, users have
been too concerned about replacing existing aerial {photo-interpretation)
data collection and analysis systems. Much discussion has revolved about
the Targe area mmplications of Landsat and computer-aided analysis but
1gnored the salient features, such as spatial manipulation of the data,
that would make 1t more appealing.



\_/
~
MONROE SBROWN

LAKE 07 /m

INDIANA /
Ve MONROE
=c
_, ~ JACKSON
—

LAWRENGE
J/M ,\\/‘

Hoosier National Forest test area in South Central Indiana

Figure 1.

_99_



-56-

tit17e

e N e e B
bbb bbb b e NN dﬂ.
B NN N NN N
NN NN

e e e B N e o e e e e o
Eh— NN NN
N Ll oS o B ol N S s e

L T R i
MABRE o\ =it b b b e b e b e e e NN N
~ BE o o N NN NN N - NN N

bbbt b S e b SN N NN N

o3
x e
* L ]
L] L]
L ] a L ]
e\ o b b0 NN NN
. =\ NOONN-— N 0
LI B N PR N NN N = N NN N
eeo e Of O b~ t—4—N- 1= NNN NN\ Q~ N\
LI ol ot o o ol ood o o NNNE o NN\ ~
e ofony =t bbet— N\ o -
DY ST « 1o . - -
o\ . o -t o -
A - N pao o S e —
e L m A N [ N e e o Vo
. = - N bbb e b N N
es oo o o P e e NN G N N
x e ” . (O [ WL WO e & WL
= NNEN N NN N b -
== N NN\ N SN\
e et e N N

O O e o ot
N L

L A Lo e N L e R Lt e Lo
=S N e b b NN N N bbb b N b b
=N N N b b NN e N
R N e S O e e o\ T o o a e ¢ S
P = R S R e el e L e c
L O R o e o N T

e A s nnce S W
E i e e e aian e ad B
L S S o

o A N e N e e e s
P NN b b e e e b N b et = N
D ~

NNNN SN NN\ Q-
S N S e A N .

e N bt e NN N = NN N
R SN e e

°x

(L XPwpmig et

. IETRIRRE et

“~ a NN NA b e\ o WS

o
- £
w o
~
o -
W
-~
=3
~ P
- »
©
ca
-
n
w
c e
=
- .
bede-}
<
U s
“ -
o
x
w— ©
2
G
o«c
<
= —
om
=
+-> »
©
R
—
Mgy
-5
w Ll
(%]
o H
=
oo
= -
P
[ [+1}
— 2
o— o
oo=x
]
Hm__
anx
<
o~
[}
s
3
=3
—
o

N

as

74

L)
d

~

=

4

ag lands,

o}
@
} 3
© o
@ -
£ &
< U
o Y-
o—
v c
£ O
P
(S}
o
YO
a =
<
E w
@
[
g8
o .
0o
@ [
Cunnt
— ©
>mc X
Lo—
- N ]
%2

=
e I
[R N e
v > Cc
- 0m
o O
weo -

[}
T O~
U O 3
— =g
Y4
-
— 0 Aa
o wn
Eon
——
mwouo

Figure 2b.



-57-

T
T
T
T
T
T
1
T
T
i
T
1
T
T
T
i
1
1

QA NN e
A N Y e Wt
b e NN N e NN R

R Ay e N e ot
R e m e S N
N e e e et Nt )
I et B A e e ol G S SR s &
e b b b b e b e B s i B B e B e e N

NANNEENN bbb

[ e s

7
/
T
1
T
T
/
/
T
1
T
T
T,
/
/
rI 1Ty
rTTIPP//TT//7/77/7/7TTTT

—— N e e e
[ N o e e et e i

b~ —— N E bbb\ NN
- [N L N ol d ad Y NN\

02 hectare mapping

. .
AN b\ NS
PN o O e e o
—N s e = b NFFNk #

POTTTTT

Qb NN NN Y
o R R e N I o
NENQ o =0Q bk e N bt
ATTATAXIETEZAF k- N+
INNEFETIOXT =EFFA.00 K+ N O

A 0 a 0 b=\ NNOLG

[

—— P e N /
[ N [ O N = RN
N e =N NN Nt ~
— e ————NN N et N
S i A e T L .o -~ N+
[ o . -/T”T/Tvl -”// 4 xle o NNE
- -
rx NN\ N\ ~
L RURG S E N :
I R AN L g et vel T e AEAAFIENN N IS
= ittt RN\ it vo|l T e mAA NN *
Z2\F N NP\ NNN e e 13 otttk NN, Ny v
z= [ S NN NNt W A Q00 NN\ \at "
. -
. [
L]
.

RO bt A0 NN N OO N N e -
e e e HNN e e OO N NN b bt

,
wwwwHWTTT/PPP.TT/w.
ALxTEFAF+- 00 XEXEXTXTETA
CEXTET N e - NNTEXETITZQ
NN s eN ¢ N FEEXXTT-\}
NN 8 NN - eEEX XX
—— e ke NN\ - -XEETHN

Classification of six section area where every other line and

column were dropped in order to simulate a 2

NN\ T/T//TnhLNWWN/T/. = N
b=\ o sl NE X N . - N
-~ NI EA— - “W‘ HTMTTU/T”WWW/ /W.
o QNI kN NI EXEANET = x s i
P O NN LN N NETEXEXXE O\ 5 = o 0
- =z [ ]
. = x= e ]
- ' =3 WS e ]
IR TEEXTTNANN ==
m xx NN -
=== NN NN
3 x> NN NN
=2 o == NNNEENN
Yl 0. =X NN NN
AN NN Naa NSNS
AN\ NaONNNN
NN AN e Y
Y R
L N e R e S e e e b NN
[ N N I e e e e S N o ol W 8 =N N
v BN [ adese NN RN N
e = e i Mok b b NN = e SN
L — . 0 A adant - L an o ZXEXXTRT o o

N e Q) b e e -

An ECHO 2 x 2 cell classification.

Figure 4.



-58-

e e E—e s v v s ememmsmne -

DP

I o s es e == Y b= 0 & Ohe b | adat et ol I Rt o0 ooTTTPPTo/TTTT/TTTTTTQTTTTT/.

[ Aalbubolediond - = ’ L, v hd i S and g o
. ¢ 0 & op=i— i aWs ® -

N R R T s T e e e N e e e et o e e ot e ey e o o
F. Y RS N Nt i e e b b= NN N b e e b e e e o e e e A 0 S S SN R N

v eoeleoce P A . B e e N N N L S S G G e i o e e e TT///TTH"

ofe oo efo o b el e b e e iy | BN S-SR RRAED ¢, RN

O o N

o so 0 |l et ot oot okt N et e N e A NN N=t=N NN

o L TTTWNNN ——— bbb N et N N SONMOENNAY

A e N O e S e N | Qoo aANN R WA (W N

=00 QNN oot - (O N /T/TT"WTT/TTT”T 1 W

—aaaah -\ b b b b e e\ B e Nyt by b N

a0 00fakN- e N S Sy et N i W.}f +

acaaparNN\ | ot ot a2 v o N ettt N NN P S

. o aa 000 - . sttt e ol ot N el et o alagel AN

. HER I G S Y e o W W X e iy Ly e o

[ bt O Q0 G Q=N h /T —- oty = Loy 4

e —t—e t o o e e e o N i S SN W

TWT ——t - ' it an o ol e N e B e o ot Sy S Sy | o

eLe o0 e e
T
T
/
f
/
/
T
T
T
/
T
1
WP
T

LI X I RN
2000 OCOONCGROINIIOIOONES

LN N N NN )
[ XXX N XN

Note the blocky appearance

TTTIFPV

;
=
N NN [ eda s
NN NN 1//TTTTTT =Nt
c - NN\ -Q 0 =N
5 . N = g N NN AL O N+
o X *NNNFN N - N
+ =zl o N NNNNN +
S . X\ N
0 ol T ATZA N NN N
- ol o e N S T ST SN SN
— . bbb b bt =N N\
v . b\ NN NN\ -
a BHZ b NeNEN N\
e b b e i P b= bbb bbb NP e NN =N NN NN\ N\
Pt e o e e = [T} et b bbb b b b b b e N e e e e e = N\ e
* e e S NN NN e NN e e N b bbb N NN\ N\
= IR NN — e Sa Nt ol o N e e L e e S 5 5 Y rarrhg \y Gy 14
= ° . e e e e o e e e e N e e o e e o o N NS - Ny S-S0 648
= bt i o e e e N e L o o
= ZXPKE bbb NN NN
= o = //TWNHN TTTTTTTTTWUTTTTTT/TIv
] . bt b et b b e b
. 23 fudninlatatetatoly x 2 NN e N b b e e e N
] e b b= b oS bbb b bbb N\ N b - N
EEbe N oE T nuassnadvawaoSaail L
= 52 = TEE b QN NN
= v E XX XOQ A b\ b e -+
= x TEES Ty = e
= © 4 E XXEEX -’ 2 TO -4
> << O B3 OXTEXTZTH0. 3 331 [ e
= 3 Ex 5 ES STt 55 N+
= = EXZXXXTT XXX\ =t
W ® XZTITITTETID =

EZTZTTITBE-ANQ bt
FERZZTTIZTZI BT\ N\ N\t

Figure 5
w
W
w
W
W
W
W
]
/
/
T
/
/
1.4
h g

gt SN o o i
® 0 NN o=\ NN\ N\-
et NN N e

Lirere

NN NN bbb b bbb b b e BRBEHN =N\
b NN -t NN 40N | = NNNN 6= =N NN\ =0 b b 23IRE NN NN
e NN vt st st et st et N =N\ bt e N\ e E2E L Eim mmi o N SN
fd NN Ty EE SEENN—p- 0 ERZarRRT> °

TN S SN A et b be =

Some of the blocky appearance

has been removed by allowing cell splitting.

An ECHO 4 x 4 classification.

Figure 6.



-59-

HEAT LOSS DETERMINATION IN RESIDENTIAL BUILDINGS

INTRODUCTION

Thermal Remote Sensing (or Thermography) can be defined as a technique
of imaging an object using the thermal infrared energy radiating from the
surface of the object. The instrumentation consists of a thermal scanner
and one or more monitors to display the area being scanned. Thermography
has been developed as a tool to measure the temperature of various surfaces.
The non-contact nature of this method, together with the display of the
entire surface-temperature distribution over an object, gives thermography
unique application possibilities. These include medical diagnosis (cancer
detection, etc.), hot spot detection in electrical power transmission lines,
surveys of land and sea temperatures from aircraft and satellite, non-
destructive testing (NDT) of products for flaws, and biological studies of
plant development and insect physiology.

In recent years, energy being the focus of attention, new applications
of thermography for energy conservation have emerged, particularly in the
industrial sector. A survey of the literature indicates that most of the
_work so far has been more qualitative than quantitative. The qualitative
analysis of thermal images (thermographs) reveals "apparent" areas of heat
loss (hot spots), giving no indication as to how much heat is being lost.
This study investigates the feasibility of extracting guantitative heat
loss information through the computer-aided analysis of thermal imagery.

OBJECTIVES
The project objectives are:

1. To assess the value of building heat loss data to municipal government
community development activities.

2. To develop a mobile thermography unit canable of making radiant tem-
perature surveys of building side walls.

3. To assess the feasibility of developing a computer-aided analysis
system extracting accurate economic information regarding energy
losses in building side walls from calibrated digital thermography
data.

STATUS

The Community Development Agency for the city of West Lafayette pro-
vided a 1ist of residences available for conducting the heat loss survey.
It was originally intended to collect thermal data from several homes
varying in age, building materials and the amount of insulation. However,
due to technical problems and lack of ideal weather conditions (cold, calm,
clear nights), data were collected from only two houses. Using a DYNARAD
model 209A IR scanner, thermal imagery was obtained and recorded on video-
tape. A total of 10 images of the side walls of the two houses were re-
corded, 6 from the first house and 4 from the second. Ancillary data
collected consisted of: photographs of the houses, ambient temperature
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measurements inside and outside the houses, and some radiant temperature
readings of "critical" points within each scene using a BARNES PRT-5 radia-
tion thermometer. These readings served as reference temperatures later
on in the analysis. The images were then digitized, using an analog to
digital converter developed at LARS, and reformatted into LARSYS multi-
spectral storage tape format, compatible with LARSYS functions. The ther-
mal imaging system is illustrated in Figures 1 and 2. The six images from
house 1 were calibrated using a two-point linear calibration. Temperature
distribution maps (T-maps), which are grey scale printouts indicating grey
level (response)-temperature associations, were generated (Figure 3).

These temperatures are not true but "apparent” temperatures as no
correction has yet been applied for emissivity. A computer program is
being developed which will perform the emissivity correction, given the
spectral emissivities of the building materials contained in the scene.
A literature search conducted to obtain the spectral emissivities (in the
8-14um region) of building materials has revealed a dearth of such infor-
mation.

The next phase of the project is to generate a data channel contain-
ing the digitized boundaries of the different building materials in the
scene along with total emissivity (due to lack of spectral emissivities)
information for each material. This additional channel of data will be
used in making the emissivity corrections to yield the true temperature
distributions in the scene. Once the true temperatures and the ambient
temperatures are known, heat transfer equations can be applied to extract
quantitative heat loss information.
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Figure 3.

Temperature distribution-
association map.




