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Abstract -- An important problem in pattern recognition is the
effect of limited training samples on classification
performance.  When the ratio of the number of training
samples to the dimensionality is small, parameter estimates
become highly variable, causing the deterioration of
classification performance.  This problem has become more
prevalent in remote sensing with the emergence of a new
generation of sensors.  While the new sensor technology
provides higher spectral and spatial resolution, enabling a
greater number of spectrally separable classes to be identified,
the needed labeled samples for designing the classifier remain
difficult and expensive to acquire.  Better parameter estimates
can be obtained by exploiting a large number of unlabeled
samples in addition to training samples using the expectation
maximization (EM) algorithm under the mixture model.
However, the estimation method is sensitive to the presence of
statistical outliers.  In remote sensing data, classes with few
samples are difficult to identify and may constitute statistical
outliers.  Therefore, we propose a robust parameter estimation
method for the mixture model.  The proposed method assigns
full weight to the sample from the main body of the data, but
automatically gives reduced weight to statistical outliers.
Experimental results show that the robust method prevents
performance deterioration due to statistical outliers in the data
as compared to the estimates obtained from EM approach.

INTRODUCTION

In a mixture model, data are assumed to consist of two or
more distributions mixed in varying proportions. For remote
sensing applications, it is a common practice to consider
several "spectral subclasses" within each "information class"
or ground cover type. Each of such spectral subclasses is
considered to be normally distributed and classification is then
performed with respect to the spectral subclasses. Under this
model, we can regard remote sensing data as a mixture model
fitted with normally distributed components.  To estimate the
model parameters in a mixture, a common approach is to

                                                
 Work leading to this paper was supported in part by NASA

under Grant NAG5-3975 and the Army Research Office under
Grant DAAH04-96-1-0444.

apply the expectation maximization (EM) algorithm which is
an iterative method for numerically approximating the
maximum likelihood (ML) estimates of the parameters in a
mixture model.  Alternatively, it can be viewed as an
estimation problem involving incomplete data in which each
unlabeled observation is regarded as missing a label of its
origin[1].  In [2] , the EM algorithm has been studied and
applied to remote sensing data.  It was shown that by
assuming a mixture model and using both training samples
and unlabeled samples in obtaining the estimates, the
classification performance can be improved.  Also, the
Hughes phenomenon[3] can be delayed to a higher
dimensionality and hence more features can be used to obtain
better performance.  In addition, the parameter estimates
represent the true class distributions more accurately.

There are several factors affecting the convergence of the
EM algorithm to the maximum likelihood estimates.  First of
all, the selection of training samples as initial estimates can
affect the convergence to a great extent.  In this work, the
training set is assumed to provide a good initial estimate.
Another factor that decides the performance of the EM
algorithm is the presence of statistical outliers.  Assume that
the number of components have been decided and given by
the training set.  Statistical outliers are defined as those
observations which have great discrepancy from the
distributions of the mixture components.  The EM algorithm
assigns each observation to one of the components with the
sample’s posterior probability as its weight.  Even though an
outlying sample is inconsistent with distributions of all the
defined components, it may still have a large posterior
probability for one or more of the components.  As a result,
the iteration converges to erroneous solutions.

Unfortunately, for the analysis of remote sensing data, to
arrive at a set of exhaustive classes is an iterative process by
trial and error, and usually depends on the expertise of the
user. In addition, there might be some scattered background
pixels which are difficult or tedious to identify. These pixels
form the so-called "information noise" which may constitute
statistical outliers.  Such outliers are usually eliminated using
a chi-squared threshold[2] before applying the EM algorithm.
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In other words, pixels whose distances are greater than the
threshold value are considered as outliers and are
subsequently excluded from updating the estimates.
However, a suitable threshold value is often difficult to select
and is usually arbitrary.  Consequently, "useful" pixels might
be rejected as statistical outliers. In particular, as
dimensionality increases, most pixels might be considered as
outliers.

In this work, we propose a robust method to estimate the
mean vector and covariance matrix for classifying remote
sensing data under the mixture model.  This approach assigns
full weight to the training samples, but automatically gives
reduced weight to unlabeled samples.  Therefore, it avoids the
risk of rejecting useful pixels while still limiting the influence
of outliers in obtaining the ML estimates of the parameters.
The experimental results show that the proposed robust
method is effective in reducing the effect of statistical outliers
as compared to the EM approach.

ROBUST ESTIMATION

The EM algorithm first estimates the posterior probabilities
of each sample belonging to each of the component
distributions, and then computes the parameter estimates
using these posterior probabilities as weights.  With this
approach, each sample is assumed to come from one of the
component distributions, even though it may greatly differ
from all components.  The robust estimation attempts to
circumvent this problem by including the typicality of a
sample with respect to the component densities in updating
the estimates in the EM algorithm.

To incorporate a measure of typicality in the parameter
estimation of the mixture density, the component densities
f i x|µ i , Σi( ) for x ∈ℜ p  are assumed to be a member of the

family of p -dimensional elliptically symmetric densities with
mean vector µ i  and covariance matrix Σ i [4]:

Σ i

−12
f S δi x;µ i , Σi( ){ }

where δ i
2 = x − µ i( )T
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−1 x − µi( ) .  Typically, f S δ i( )  is

assumed to be the exponential of some symmetric function
ρ δi( ):

f S δ i( ) = exp −ρ δ i( ){ } .

Then, the likelihood parameter estimation for these
component densities can be obtained by applying the
expectation and maximization steps.  Denoting the current and
future parameter values by the superscripts "c" and "+", the
iterative equations are derived as[4]:
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where wij = ψ δ ij( ) δij  is the weight function and

ψ δ ij( ) = ′ ρ δ ij( )  is the first derivative of ρ δij( ) .  To limit the

influence of large atypical samples, the covariance estimator
is modified to be:
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The weight function has been chosen to be ψ s( ) s  where
s = δ ij .  A popular choice of ψ s( )  is the Huber's ψ -function

which is defined by ψ s( ) = −ψ −s( ) where for s > 0

ψ s( ) =
s            0 ≤ s ≤ k1 p( )
k1 p( )            s > k1 p( )

 
 
 

for an appropriate choice of the "tuning" constant k1 p( ) ,

which is a function of the dimensionality p .  This selection of

ψ s( )  gives:

ρ s( ) =

1

2
s2                     0 ≤ s ≤ k1 p( )

k1 p( )s − 1
2

k1
2 p( )     s > k1 p( )

 

 
 

 
 

.

The value of the tuning constant is a function of
dimensionality.  It also depends on the amount of
contamination in the data which is usually not known.  Since
the training samples are representative of the classes, it is
desirable that they are given more emphasis in the updates of
the estimates.  Therefore, in the proposed approach, the
training samples are assigned unit weight.  To do so,  the
value of k1 p( )  is defined to be

k1 p( ) = max ˆ d ij( )
where ˆ d ij

2 = y ij − µi( )T
Σ i

−1 yij − µi( ) and yij  is the training

sample j  from class i .  In other words, the tuning constant is
selected such that the training samples are given unit weight
and the weights for the unlabeled samples are inversely
proportional to the square root of their distances to the class
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mean.  Therefore, the weight assigned to each sample can be
expressed as:

wij =
1                               dij ≤ max ˆ d ij( )
max ˆ d ij( ) dij     max ˆ d ij( ) < d ij < ∞

 
 
 

  

where dij
2 = x j − µi( )T

Σ i
−1 x j − µi( ) is the squared distance of

unlabeled samples x j .  The iterative equations for the mean

and covariance estimates can then be expressed as:
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EXPERIMENTAL RESULTS

In the following experiment we compare the performance
of quadratic classifiers using the parameters estimated from
training samples alone (ML), the EM algorithm (EM) and the
proposed robust algorithm (REM).  The data set consists of a
portion of an AVIRIS data taken in June, 1992, which covers
a mixture of agricultural/forestry land in the Indian Pine Test
Site in Indiana. The water absorption bands were removed to
leave a total of 200 bands. The data set is composed of 4
classes. The classes and the number of labeled samples are
shown in Table 1.

The first experiment is intended to compare EM and REM
without outliers in the data.  To obtain data without outliers,
we generate synthetic data using the statistics computed from
the labeled samples of the four classes.  Due to the limited
labeled samples, we choose around 200 training samples and
set the spectral channels at 10, 20, 50, 67 and 100.  These
channels are selected by sampling the spectral range at fixed
interval.  A total of 400 test samples are used for each class.
Since the training samples are randomly selected from the
sample pool, we perform 10 trials for each experiment and
obtain the mean accuracy.  The mean accuracy is shown in
Fig. 1.  The second experiment is conducted using the real
data.  The training samples are non-random and are selected
by visual inspection.  The result is shown in Fig. 2.

DISCUSSION AND CONCLUSION

Using synthetic data, the experimental result shows that
when no outliers are present in the data, EM and REM have
similar performance and both achieve better accuracy than

ML without using additional unlabeled samples.  Using the
real image, REM performs better than ML and EM.  This
demonstrates that the scene contains outlying pixels which are
not represented in the training set.  In both experiments, the
performance declines at 100 dimensions due to the Hughes
effect.  Specifically, it implies that 600 samples are inadequate
to characterize 100 dimensional Gaussian distribution.  In
conclusion, the proposed robust method is effective in
reducing the effect of outliers as compared to the EM
algorithm.  Further details of this algorithm can be found in
[5].

Table 1 Class description of the AVIRIS data set

Class No. Class Name No. of Samples

1 Corn-notill 910
2 Soybeans-notill 638
3 Soybeans-min 1421
4 Grass 618
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Fig. 1  Mean Accuracy Using Synthetic Data Without Outliers
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Fig. 2  Classification Accuracy Using Real Data
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